Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells

Abstract

The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human β-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in β-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of wild-type and variant PAM function and expression.
Fig. 2: PAM expression in human pancreatic islets and EndoC-βH1 cells.
Fig. 3: Effects of endogenous PAM on β-cell function.
Fig. 4: Analysis of β-cell ultrastructural features following PAM silencing.
Fig. 5: Effects of rs35658696 genotype status on insulin secretion measures from intact human islets.
Fig. 6: Effects of rs35658696 genotype status on exocytosis measurements in dispersed human islets.
Fig. 7: Effects of endogenous CgA on β-cell function.

Similar content being viewed by others

References

  1. Dimas, A. S. et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63, 2158–2171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomsen, S. K. & Gloyn, A. L. Human genetics as a model for target validation: finding new therapies for diabetes. Diabetologia 60, 960–970 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Steinthorsdottir, V. et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat. Genet. 46, 294–298 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huyghe, J. R. et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat. Genet. 45, 197–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Phillips, D. I., Clark, P. M., Hales, C. N. & Osmond, C. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabet. Med. 11, 286–292 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Milgram, S. L., Mains, R. E. & Eipper, B. A. Identification of routing determinants in the cytosolic domain of a secretory granule-associated integral membrane protein. J. Biol. Chem. 271, 17526–17535 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Oyarce, A. M. & Eipper, B. A. Neurosecretory vesicles contain soluble and membrane-associated monofunctional and bifunctional peptidylglycine alpha-amidating monooxygenase proteins. J. Neurochem. 60, 1105–1114 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Eipper, B. A., Milgram, S. L., Husten, E. J., Yun, H. Y. & Mains, R. E. Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Protein Sci. 2, 489–497 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merkler, D. J. C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzym. Microb. Technol. 16, 450–456 (1994).

    Article  CAS  Google Scholar 

  14. Milgram, S. L., Kho, S. T., Martin, G. V., Mains, R. E. & Eipper, B. A. Localization of integral membrane peptidylglycine alpha-amidating monooxygenase in neuroendocrine cells. J. Cell Sci. 110, 695–706 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Eipper, B. A. et al. Alternative splicing and endoproteolytic processing generate tissue-specific forms of pituitary peptidylglycine alpha-amidating monooxygenase (PAM). J. Biol. Chem. 267, 4008–4015 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Garmendia, O., Rodriguez, M. P., Burrell, M. A. & Villaro, A. C. Immunocytochemical finding of the amidating enzymes in mouse pancreatic A-, B-, and D-cells: a comparison with human and rat. J. Histochem. Cytochem. 50, 1401–1416 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Tausk, F. A., Milgram, S. L., Mains, R. E. & Eipper, B. A. Expression of a peptide processing enzyme in cultured cells: truncation mutants reveal a routing domain. Mol. Endocrinol. 6, 2185–2196 (1992).

    CAS  PubMed  Google Scholar 

  18. De, M., Bell, J., Blackburn, N. J., Mains, R. E. & Eipper, B. A. Role for an essential tyrosine in peptide amidation. J. Biol. Chem. 281, 20873–20882 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Maeda-Nakai, E. & Ichiyama, A. A spectrophotometric method for the determination of glycolate in urine and plasma with glycolate oxidase. J. Biochem. 127, 279–287 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Carpenter, S. E. & Merkler, D. J. An enzyme-coupled assay for glyoxylic acid. Anal. Biochem. 323, 242–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  22. Nica, A. C. et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res. 23, 1554–1562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blodgett, D. M. et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64, 3172–3181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ravassard, P. et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J. Clin. Invest. 121, 3589–3597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsonkova, V. G. et al. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol. Metab. 8, 144–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Scharfmann, R. et al. Persistence of peptidylglycine alpha-amidating monooxygenase activity and elevated thyrotropin-releasing hormone concentrations in fetal rat islets in culture. Endocrinology 123, 1329–1334 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, A. & Thorn, N. A. Evidence for presence of peptide alpha-amidating activity in pancreatic islets from newborn rats. Biochem. J. 267, 253–256 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maltese, J. Y. et al. Ontogenetic expression of peptidyl-glycine alpha-amidating monooxygenase mRNA in the rat pancreas. Biochem. Biophys. Res. Commun. 158, 244–250 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Martinez, A. et al. Immunocytochemical localization of peptidylglycine alpha-amidating monooxygenase enzymes (PAM) in human endocrine pancreas. J. Histochem. Cytochem. 41, 375–380 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Gurgul-Convey, E., Kaminski, M. T. & Lenzen, S. Physiological characterization of the human EndoC-βH1 β-cell line. Biochem. Biophys. Res. Commun. 464, 13–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. El Meskini, R., Mains, R. E. & Eipper, B. A. Cell type-specific metabolism of peptidylglycine alpha-amidating monooxygenase in anterior pituitary. Endocrinology 141, 3020–3034 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Andersson, L. E. et al. Characterization of stimulus-secretion coupling in the human pancreatic EndoC-βH1 beta cell line. PLoS One 10, e0120879 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sun, B.B. et al. Consequences of natural perturbations in the human plasma proteome. bioRxiv https://doi.org/10.1101/134551 (2017).

  34. van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 11, e1005694 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. Elife 7, e31977 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gillis, K. D., Mossner, R. & Neher, E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16, 1209–1220 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, Y. H. et al. Paracrine signalling loops in adult human and mouse pancreatic islets: netrins modulate beta cell apoptosis signalling via dependence receptors. Diabetologia 54, 828–842 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, T., Tao-Cheng, J. H., Eiden, L. E. & Loh, Y. P. Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106, 499–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Colomer, V., Kicska, G. A. & Rindler, M. J. Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J. Biol. Chem. 271, 48–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Yoo, S. H. & Albanesi, J. P. Ca2+-induced conformational change and aggregation of chromogranin A. J. Biol. Chem. 265, 14414–14421 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Helle, K. B., Corti, A., Metz-Boutigue, M. H. & Tota, B. The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell. Mol. Life Sci. 64, 2863–2886 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Rorsman, P. & Braun, M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75, 155–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Katopodis, A. G. & May, S. W. Novel substrates and inhibitors of peptidylglycine alpha-amidating monooxygenase. Biochemistry 29, 4541–4548 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Simpson, P. D. et al. Striking oxygen sensitivity of the peptidylglycine alpha-amidating monooxygenase (PAM) in neuroendocrine cells. J. Biol. Chem. 290, 24891–24901 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoo, S. H. & Lewis, M. S. Dimerization and tetramerization properties of the C-terminal region of chromogranin A: a thermodynamic analysis. Biochemistry 32, 8816–8822 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Mosley, C. A. et al. Biogenesis of the secretory granule: chromogranin A coiled-coil structure results in unusual physical properties and suggests a mechanism for granule core condensation. Biochemistry 46, 10999–11012 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Bandyopadhyay, G. K. & Mahata, S. K. Chromogranin A regulation of obesity and peripheral insulin sensitivity. Front. Endocrinol. (Lausanne) 8, 20 (2017).

    Article  Google Scholar 

  49. Wollam, J. et al. Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res. 368, 487–501 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Bartolomucci, A. et al. The extended granin family: structure, function, and biomedical implications. Endocr. Rev. 32, 755–797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Obermüller, S. et al. Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One 5, e8936 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nanga, R. P., Brender, J. R., Vivekanandan, S. & Ramamoorthy, A. Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochim. Biophys. Acta 1808, 2337–2342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shalev, D. E., Mor, A. & Kustanovich, I. Structural consequences of carboxyamidation of dermaseptin S3. Biochemistry 41, 7312–7317 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Sforça, M. L. et al. How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry 43, 5608–5617 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, T. & Loh, Y. P. Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation. Mol. Biol. Cell 17, 789–798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koshimizu, H., Cawley, N. X., Kim, T., Yergey, A. L. & Loh, Y. P. Serpinin: a novel chromogranin A-derived, secreted peptide up-regulates protease nexin-1 expression and granule biogenesis in endocrine cells. Mol. Endocrinol. 25, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Benner, C. et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genom. 15, 620 (2014).

    Article  Google Scholar 

  58. MacDonald, P. E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51 Suppl 3, S434–S442 (2002).

    Article  Google Scholar 

  59. Wettergren, A., Pridal, L., Wøjdemann, M. & Holst, J. J. Amidated and non-amidated glucagon-like peptide-1 (GLP-1): non-pancreatic effects (cephalic phase acid secretion) and stability in plasma in humans. Regul. Pept. 77, 83–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Cross, S. E., Hughes, S. J., Clark, A., Gray, D. W. & Johnson, P. R. Collagenase does not persist in human islets following isolation. Cell Transplant. 21, 2531–2535 (2012).

    Article  PubMed  Google Scholar 

  61. Lyon, J. et al. Research-focused isolation of human islets from donors with and without diabetes at the Alberta Diabetes Institute IsletCore. Endocrinology 157, 560–569 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Manning Fox, J. E. et al. Human islet function following 20 years of cryogenic biobanking. Diabetologia 58, 1503–1512 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  64. McPherson, J. D. et al. A physical map of the human genome. Nature 409, 934–941 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 16, 195 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Chandra, V. et al. RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human β cells. Cell Rep. 9, 2206–2218 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Lees, M. J. & Whitelaw, M. L. Multiple roles of ligand in transforming the dioxin receptor to an active basic helix-loop-helix/PAS transcription factor complex with the nuclear protein Arnt. Mol. Cell. Biol. 19, 5811–5822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, Y. H. et al. Paracrine signalling loops in adult human and mouse pancreatic islets: netrins modulate beta cell apoptosis signalling via dependence receptors. Diabetologia 54, 828–842 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge sharing of data from the GoT2D and T2D-GENES consortia before publication. We thank J. Galvanovskis (University of Oxford) for microscopy assistance, J. Lyon (Alberta Diabetes Institute IsletCore) for his work on human islet isolations, and J. Buteau and Y. Wang (both Alberta Diabetes Institute) for their assistance with imaging human pancreatic sections. We also thank the Human Organ Procurement and Exchange Program (Edmonton) and the Trillium Gift of Life Network (Toronto) and other organ procurement agencies for their efforts in obtaining human pancreata for research. A.L.G. is a Wellcome Trust Senior Fellow in Basic Biomedical Science. P.E.M. holds a 2016–2017 Killam Annual Professorship. M.I.M. is a Wellcome Senior Investigator. S.K.T. is a Radcliffe Department of Medicine Scholar. S.S. is funded by the Medical Research council (MC_ST_15019 [2015 DTG/DTA]). J.C. is funded by the Oxford – Medical Research Council Doctoral Training Partnership and the Nuffield Department of Clinical Medicine. This work was funded by the Wellcome Trust (095101 (A.L.G.), 200837 (A.L.G.), 098381 (M.I.M.), 106130 (A.L.G., M.I.M.), 203141 (M.I.M.), 090531 (P.R.)), Medical Research Council (MR/L020149/1) (M.I.M., A.L.G., P.R.), European Union Horizon 2020 Programme (T2D Systems) (A.L.G.), and National Institutes of Health (U01-DK105535; U01-DK085545) (M.I.M., A.L.G.). Human islet isolation and phenotyping was supported by funding from the Alberta Diabetes Foundation (P.E.M.F.). The research was funded by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (A.L.G., M.I.M., P.R.). The views expressed are those of the author(s) and not necessarily those of the NHS, NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Contributions

S.K.T., A.R., B.H., and A.L.G. conceived the study. A.R., B.H., S.S., M.M.U., A. Barrett, C.J.G., N.L.B., P.R., and A.L.G. performed kinetic and cellular characterization of T2D-associated alleles. S.K.T., A.R., B.H., S.S., A.C., P.R., and A.L.G. performed the characterization of PAM knockdown in β-cells. S.K.T., X.-Q.D., A. Bautista, A.F.S., J.E.M.F., P.E.M., and A.L.G. performed characterization of primary human islets. A.J.P., M.I.M., and A.L.G. performed islet transcriptomics. J.C., M.I.M., and A.M. performed plasma proteomics. A.R., S.K.T., and A.L.G. wrote the manuscript. All authors approved the final draft of the manuscript.

Corresponding author

Correspondence to Anna L. Gloyn.

Ethics declarations

Competing interests

S.K.T. is now an employee of Vertex Pharmaceuticals, and N.L.B. is now an employee of Novo Nordisk, although all experimental work was carried out under employment at the University of Oxford. A.L.G. has received research funding and honoraria from Novo Nordisk. M.I.M. serves on advisory panels for Pfizer, Novo Nordisk and Zoe Global; has received honoraria from Pfizer, Novo Nordisk and Eli Lilly; has stock options in Zoe Global; and has received research funding from AbbVie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, Novo Nordisk, Pfizer, Roche, Sanofi Aventis, Servier and Takeda.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Analysis of wild-type and variant PAM function.

a, Amidating activity of wild-type (WT)-PAM (circles), p.Asp563Gly-PAM (squares), and p.Ser539Trp-PAM (crosses) (n = 1). b, Amidating activity of WT-PAM (circles), p.Asp563Gly-PAM (squares), and empty vector (EV) (triangles) over a substrate concentration range (n = 5 independent experiments). Data are shown as mean ± s.e.m.

Supplementary Figure 2 Analysis of wild-type and variant PAM expression.

a, PAM expression was investigated in (i) human tissues (n = 1), (ii) mouse tissues (n = 1), and (iii) FACS human beta cells and non-beta cells (n = 11 and n = 5 donors, respectively). RPKM, reads per kilobase of transcript per million mapped reads. Box plots display the interquartile range (IQR) with medians, whiskers indicating 1.5× the IQR, and individual data points. b, EndoC-βH1 cells were transfected with (i, iii) integral membrane or (ii) luminal variant PAM expression vectors, then labeled for PAM (green), the trans-Golgi network (TGN) (red in i), insulin (red in ii) or calnexin (ER) (red in iii). DAPI (blue) was used as a nuclear marker. Scale bar, 2 μm. Results are representative of at least two independent experiments.

Supplementary Figure 3 Allelic expression bias for rs35658696 in primary human islets.

The proportion of reference (A) to risk (G) allele expression in WASP-filtered RNA-seq data from intact islets isolated from 11 cadaveric donors heterozygous at rs35658696. The box plot displays the interquartile range (IQR) with medians, whiskers indicating 1.5× the IQR, and outliers.

Supplementary Figure 4 Gene silencing of PAM, CHGA, and IAPP and effects on beta cell function.

af, EndoC-βH1 cells were either transfected with scrambled sequence or gene-specific siRNAs, and then measured for efficiency of gene knockdown after 72 h (n = 5 biologically independent samples for a, n = 6 for b, and n = 4 for c) normalized to two housekeeping genes (PPIA and TBP). The effects of IAPP knockdown on insulin secretion (d; n = 8 biologically independent samples), insulin content (e; n = 16 for Scr and n = 8 for siIAPP), and cell numbers (f; n = 16 for Scr and n = 8 for siIAPP) are shown here, while those of PAM and CHGA knockdown are displayed in Figs. 2 and 6, respectively. *P < 0.05, *P < 0.01, ***P < 0.001 for two-tailed Student’s t-tests where a single independent variable was being tested (ac,e,f) or for two-way ANCOVA followed by Tukey’s HSD post-hoc test where two experimental variables were being tested (d). All box plots display the interquartile range (IQR) with medians, whiskers indicating 1.5× the IQR, and individual data points.

Supplementary Figure 5 Insulin secretion measures following PAM and CHGA knockdown.

ah, The data presented in Figs. 3 and 7 have been processed using alternative methods to compare the direct impact of gene silencing on insulin secretion relative to effects on insulin content and cell numbers. a and e (n = 8 biologically independent samples) show un-normalized insulin secretion (pg/hr), while b and f (n = 8) show secretion measures normalized to content values in c and g (n = 8), respectively. For reference, cell counts are shown in d and h (n = 16). *P < 0.05, **P < 0.01, ***P < 0.001 for two-tailed Student’s t-tests where a single independent variable was being tested (c,d,g,h) and by two-way ANCOVA followed by Tukey’s HSD post-hoc test where two experimental variables were being tested (a,b,e,f). All box plots display the interquartile range (IQR) with medians, whiskers indicating 1.5× the IQR, and individual data points.

Supplementary Figure 6 Calcium sensitivity of exocytosis following PAM silencing in EndoC-βH1 cells.

a, Content-normalized insulin secretion triggered by depolarizing stimuli (KCl, tolbutamide, forskolin) in 1 mM glucose (n = 3 independent experiments). b, Exocytosis and calcium current amplitude relationship (n = 15 cells from three independent experiments). The increment in exocytosis measured at the first pulse (fF) was normalized to the amplitude of the calcium current (pA) using data extracted from the capacitance measurements shown in Fig. 3. The calcium current density (normalized to the size of the cell) was measured at the first pulse, 5 ms after depolarization, to avoid interference with the sodium current component. Box plots display the interquartile range (IQR) with medians and whiskers indicating 1.5 × the IQR.

Supplementary Figure 7 Effects of rs35658696 genotype status on content-normalized insulin secretion measures from intact human islets.

The insulin secretion data shown in Fig. 5b were normalized to insulin content (Fig. 5a) on a per-donor basis. Data are shown for n = 16 donors in each group for basal (1 mM) and high (16.7 mM) glucose and n = 9 donors for medium (10 mM) glucose. All box plots display the interquartile range (IQR) with medians, whiskers indicating 1.5× the IQR, and individual data points.

Supplementary Figure 8 Western blot analysis of CgA-Gly and total CgA levels in EndoC-βH1 cells following perturbation of PAM.

a,b, The full, unedited blots corresponding to the sections shown in Fig. 6 are shown for PAM inhibition using 4P3BA (a) and PAM knockdown by siRNA (b).

Supplementary Figure 9 CgA amidation status in primary human islets from risk allele carriers and matched controls.

a, Representative co-staining of insulin (green) and total CgA (red; top) or CgA-Gly (red; bottom) in primary human islets indicative of results across all donors. b, Quantification of CgA amidation status (% of total CgA) in individuals heterozygous for the risk allele at rs35658696 (“PAM”) and matched controls (n = 6 donors per group). The graph shows means for n = 6; error bars, s.e.m.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1 and 2

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, S.K., Raimondo, A., Hastoy, B. et al. Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 50, 1122–1131 (2018). https://doi.org/10.1038/s41588-018-0173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0173-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research