Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancer hubs and loop collisions identified from single-allele topologies

Abstract

Chromatin folding contributes to the regulation of genomic processes such as gene activity. Existing conformation capture methods characterize genome topology through analysis of pairwise chromatin contacts in populations of cells but cannot discern whether individual interactions occur simultaneously or competitively. Here we present multi-contact 4C (MC-4C), which applies Nanopore sequencing to study multi-way DNA conformations of individual alleles. MC-4C distinguishes cooperative from random and competing interactions and identifies previously missed structures in subpopulations of cells. We show that individual elements of the β-globin superenhancer can aggregate into an enhancer hub that can simultaneously accommodate two genes. Neighboring chromatin domain loops can form rosette-like structures through collision of their CTCF-bound anchors, as seen most prominently in cells lacking the cohesin-unloading factor WAPL. Here, massive collision of CTCF-anchored chromatin loops is believed to reflect ‘cohesin traffic jams’. Single-allele topology studies thus help us understand the mechanisms underlying genome folding and functioning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multi-contact 4C technology.
Fig. 2: A β-globin superenhancer hub that can simultaneously accommodate two genes.
Fig. 3: MC-4C uncovers Pcdhα hub conformations in tissue-specific subsets of cells.
Fig. 4: Depletion of WAPL stimulates collision of CTCF-anchored domain loops.
Fig. 5: Super-resolution microscopy shows cohesin clustering in WAPL-depleted cells.

Similar content being viewed by others

References

  1. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  2. Denker, A. & de Laat, W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 30, 1357–1382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    CAS  PubMed  Google Scholar 

  6. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanscombe, O. et al. Importance of globin gene order for correct developmental expression. Genes Dev. 5, 1387–1394 (1991).

    CAS  PubMed  Google Scholar 

  11. Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10, 1453–1465 (2002).

    CAS  PubMed  Google Scholar 

  12. Gavrilov, A. A., Chetverina, H. V., Chermnykh, E. S., Razin, S. V. & Chetverin, A. B. Quantitative analysis of genomic element interactions by molecular colony technique. Nucleic Acids Res. 42, e36 (2014).

    CAS  PubMed  Google Scholar 

  13. Ay, F. et al. Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC Genom. 16, 121 (2015).

    Google Scholar 

  14. Olivares-Chauvet, P. et al. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 540, 296–300 (2016).

    CAS  PubMed  Google Scholar 

  15. Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl. Acad. Sci.USA 113, E4504–E4512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Splinter, E., de Wit, E., van de Werken, H. J., Klous, P. & de Laat, W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods 58, 221–230 (2012).

    CAS  PubMed  Google Scholar 

  18. van de Werken, H. J. et al. 4C technology: protocols and data analysis. Methods Enzymol. 513, 89–112 (2012).

    PubMed  Google Scholar 

  19. de Vree, P. J. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol. 32, 1019–1025 (2014).

    PubMed  Google Scholar 

  20. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pott, S. & Lieb, J. D. What are super-enhancers? Nat. Genet. 47, 8–12 (2015).

    CAS  PubMed  Google Scholar 

  22. Dukler, N., Gulko, B., Huang, Y. F. & Siepel, A. Is a super-enhancer greater than the sum of its parts? Nat. Genet. 49, 2–3 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Huang, J. et al. Dissecting super-enhancer hierarchy based on chromatin interactions. Nat. Commun. 9, 943 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Bender, M. A., Bulger, M., Close, J. & Groudine, M. Beta-globin gene switching and DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region. Mol. Cell 5, 387–393 (2000).

    CAS  PubMed  Google Scholar 

  25. Hu, X. et al. Transcriptional interference among the murine beta-like globin genes. Blood 109, 2210–2216 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cadiz-Rivera, B. et al. The chromatin “landscape” of a murine adult β-globin gene is unaffected by deletion of either the gene promoter or a downstream enhancer. PLoS One 9, e92947 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. van de Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).

    PubMed  Google Scholar 

  28. Davies, J. O. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016).

    CAS  PubMed  Google Scholar 

  29. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Esumi, S. et al. Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat. Genet. 37, 171–176 (2005).

    CAS  PubMed  Google Scholar 

  31. Hirayama, T. & Yagi, T. The role and expression of the protocadherin-alpha clusters in the CNS. Curr. Opin. Neurobiol. 16, 336–342 (2006).

    CAS  PubMed  Google Scholar 

  32. Kehayova, P., Monahan, K., Chen, W. & Maniatis, T. Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster. Proc. Natl. Acad. Sci. USA 108, 17195–17200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yokota, S. et al. Identification of the cluster control region for the protocadherin-beta genes located beyond the protocadherin-gamma cluster. J. Biol. Chem. 286, 31885–31895 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo, Y. et al. CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice. Proc.Natl. Acad. Sci. USA 109, 21081–21086 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Toyoda, S. et al. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82, 94–108 (2014).

    CAS  PubMed  Google Scholar 

  36. Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tedeschi, A. et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakayama, T. et al. Cas9-based genome editing in Xenopus tropicalis. Methods Enzymol 546, 355–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaneko, R. et al. Allelic gene regulation of Pcdh-α and Pcdh-γ clusters involving both monoallelic and biallelic expression in single Purkinje cells. J. Biol. Chem. 281, 30551–30560 (2006).

    CAS  PubMed  Google Scholar 

  43. Loman, N. J. & Quinlan, A. R. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 30, 3399–3401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Utrecht Sequencing Facility for providing sequencing data and service, E. Schijlen for help with initial Pacific Biosciences sequencing, and D. Leyton-Puig for help with imaging. We thank N. Geijsen and P. Shang (Hubrecht Institute) for providing Cas9 protein. This work was supported by an NWO VIDI grant (639.072.715) to J.d.R. and an NWO/CW TOP grant (714.012.002) and NWO VICI grant (724.012.003) to W.d.L. and by the NIH Common Fund Program, grant U01CA200147, as a Transformative Collaborative Project Award (TCPA, TCPA-2017-DE-LAAT).

Author information

Authors and Affiliations

Authors

Contributions

A.A. designed and performed the computational analysis, prepared corresponding plots and wrote the methods and Supplementary Information sections. C.V. and B.A.M.B. designed and performed experiments. C.V. wrote the manuscript and designed figures. P.H.L.K., M.J.A.M.V., M.v.K., M.P. and H.T. performed ‘C’ methods experiments. R.S. implemented the pipeline in Python. J.H.I.H. generated ∆WAPL cell lines and prepared microscopic slides for super-resolution imaging. K.J. guided acquisition and analyzed super-resolution microscopy data. I.J.R. performed and W.P.K. designed and supervised MinION sequencing experiments. B.D.R. supervised the generation of ∆WAPL cell lines and preparation of microscopic slides for super-resolution imaging. G.G. and E.d.W. helped with computational analysis. E.d.W. performed data analysis on the ΔWAPL Hi-C data. J.d.R. designed and supervised the computational analyses and pipelines and cowrote the manuscript. W.d.L. conceived and supervised the study and wrote the manuscript.

Corresponding authors

Correspondence to Jeroen de Ridder or Wouter de Laat.

Ethics declarations

Competing Interests

C.V., B.A.M.B., P.H.L.K., M.J.A.M.V. and G.G. are shareholders of Cergentis. E.d.W. is cofounder and shareholder of Cergentis. W.d.L. is founder and shareholder of Cergentis. J.d.R. is cofounder and shareholder of Cyclomics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Supplementary Figures 1–16

Reporting Summary

Supplementary Table 1

Statistics of the MC-4C experiments. Shown, per experiment, are the total number of reads sequenced per experiment (Raw read column), number of reads with more than one fragment—excluding VP—in the region of interest (Informative), number of reads with at least one unique molecular identifier fragment allowing a check for PCR duplication (Has far cis/trans UMI), number of independent alleles after removing PCR duplicates (PCR filtered unique reads), and the number of MinION sequencing runs that were pooled for each experiment (Sequence runs). The numbers in parentheses are percentage of reads remaining after each step of filtering compared to total number of reads sequenced

Supplementary Table 2

Primers used in this study. The primers used for each individual viewpoint, and the coordinates of each region of interest. FW and RV primers are used for MC-4C PCR; A and B refer to the FW primer used to synthesize the gRNA for the upstream and downstream neighboring fragment (respectively) of the viewpoint; VP is the primer used to synthesize the gRNA designed on the viewpoint fragment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahyar, A., Vermeulen, C., Bouwman, B.A.M. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat Genet 50, 1151–1160 (2018). https://doi.org/10.1038/s41588-018-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0161-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing