Letter | Published:

Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

Nature Geneticsvolume 50pages10721080 (2018) | Download Citation

Abstract

Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Greiner, A. N., Hellings, P. W., Rotiroti, G. & Scadding, G. K. Allergic rhinitis. Lancet 378, 2112–2122 (2011).

  2. 2.

    Björkstén, B., Clayton, T., Ellwood, P., Stewart, A. & Strachan, D. Worldwide time trends for symptoms of rhinitis and conjunctivitis: phase III of the International Study of Asthma and Allergies in Childhood. Pediatr. Allergy Immunol. 19, 110–124 (2008).

  3. 3.

    Willemsen, G., van Beijsterveldt, T. C. E. M., van Baal, C. G. C. M., Postma, D. & Boomsma, D. I. Heritability of self-reported asthma and allergy: a study in adult Dutch twins, siblings and parents. Twin Res. Hum. Genet. 11, 132–142 (2008).

  4. 4.

    Fagnani, C. et al. Heritability and shared genetic effects of asthma and hay fever: an Italian study of young twins. Twin Res. Hum. Genet. 11, 121–131 (2008).

  5. 5.

    Ramasamy, A. et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J. Allergy Clin. Immunol. 128, 996–1005 (2011).

  6. 6.

    Hinds, D. A. et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat. Genet. 45, 907–911 (2013).

  7. 7.

    Bønnelykke, K. et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat. Genet. 45, 902–906 (2013).

  8. 8.

    Ferreira, M. A. R. et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J. Allergy Clin. Immunol. 133, 1564–1571 (2014).

  9. 9.

    Bunyavanich, S. et al. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Med. Genom. 7, 48 (2014).

  10. 10.

    Jahn-Schmid, B., Pickl, W. F. & Bohle, B. Interaction of allergens, major histocompatibility complex molecules, and T cell receptors: a ‘ménage à trois’ that opens new avenues for therapeutic intervention in type I allergy. Int. Arch. Allergy Immunol. 156, 27–42 (2011).

  11. 11.

    Cavalli, G. et al. MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo. Proc. Natl Acad. Sci. USA 113, 1363–1368 (2016).

  12. 12.

    Hayashi, M. et al. Autoimmune vitiligo is associated with gain-of-function by a transcriptional regulator that elevates expression of HLA-A*02:01 in vivo. Proc. Natl Acad. Sci. USA 113, 1357–1362 (2016).

  13. 13.

    Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

  14. 14.

    Lundmark, F. et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat. Genet. 39, 1108–1113 (2007).

  15. 15.

    Mori, T. et al. Lnk/Sh2b3 controls the production and function of dendritic cells and regulates the induction of IFN-γ-producing T cells. J. Immunol. 193, 1728–1736 (2014).

  16. 16.

    Scott, L. M., Civin, C. I., Rorth, P. & Friedman, A. D. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80, 1725–1735 (1992).

  17. 17.

    Gao, H., Parkin, S., Johnson, P. F. & Schwartz, R. C. C/EBP gamma has a stimulatory role on the IL-6 and IL-8 promoters. J. Biol. Chem. 277, 38827–38837 (2002).

  18. 18.

    León, B. et al. Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat. Immunol. 13, 681–690 (2012).

  19. 19.

    Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651 (2009).

  20. 20.

    Shinnakasu, R. et al. Regulated selection of germinal-center cells into the memory B cell compartment. Nat. Immunol. 17, 861–869 (2016).

  21. 21.

    Roychoudhuri, R. et al. BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016).

  22. 22.

    Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. A. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

  23. 23.

    Chan, P. Y. et al. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science 352, 99–103 (2016).

  24. 24.

    Kassmeier, M. D. et al. VprBP binds full-length RAG1 and is required for B-cell development and V(D)J recombination fidelity. EMBO J. 31, 945–958 (2012).

  25. 25.

    Hamblet, C. E., Makowski, S. L., Tritapoe, J. M. & Pomerantz, J. L. NK cell maturation and cytotoxicity are controlled by the intramembrane aspartyl protease SPPL3. J. Immunol. 196, 2614–2626 (2016).

  26. 26.

    Andersen, J. B., Strandbygård, D. J., Hartmann, R. & Justesen, J. Interaction between the 2′-5′ oligoadenylate synthetase-like protein p59 OASL and the transcriptional repressor methyl CpG-binding protein 1. Eur. J. Biochem. 271, 628–636 (2004).

  27. 27.

    Halim, T. Y. F. et al. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37, 463–474 (2012).

  28. 28.

    Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

  29. 29.

    Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).

  30. 30.

    Pearce, N., Pekkanen, J. & Beasley, R. How much asthma is really attributable to atopy? Thorax 54, 268–272 (1999).

  31. 31.

    Böhme, M., Wickman, M., Lennart Nordvall, S., Svartengren, M. & Wahlgren, C. F. Family history and risk of atopic dermatitis in children up to 4 years. Clin. Exp. Allergy 33, 1226–1231 (2003).

  32. 32.

    Kreiner, E. et al. Shared genetic variants suggest common pathways in allergy and autoimmune diseases. J. Allergy Clin. Immunol. 140, 771–781 (2017).

  33. 33.

    Bousquet, J. et al. Important research questions in allergy and related diseases: nonallergic rhinitis: a GA2LEN paper. Allergy 63, 842–853 (2008).

  34. 34.

    Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

  35. 35.

    Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015).

  36. 36.

    Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

  37. 37.

    Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinforma. 11, 288 (2010).

  38. 38.

    Segrè, A. V., Groop, L., Mootha, V. K., Daly, M. J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).

  39. 39.

    Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004).

  40. 40.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

  41. 41.

    Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

  42. 42.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

  43. 43.

    UK10K Consortium. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

  44. 44.

    Wellcome Trust Case Control Consortium. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

  45. 45.

    McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

  46. 46.

    Zheng, X. et al. HIBAG—HLA genotype imputation with attribute bagging. Pharm. J. 14, 192–200 (2014).

  47. 47.

    Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8, e64683 (2013).

  48. 48.

    Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 8, 599 (2017).

  49. 49.

    Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

  50. 50.

    Vita, R. et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 43, D405–D412 (2015).

  51. 51.

    Sethi, D. K., Gordo, S., Schubert, D. A. & Wucherpfennig, K. W. Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop. Nat. Commun. 4, 2623 (2013).

  52. 52.

    Rückert, C. et al. Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype. J. Biol. Chem. 281, 2306–2316 (2006).

  53. 53.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

  54. 54.

    Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

  55. 55.

    Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).

  56. 56.

    Lucas, A. O. Surveillance of communicable diseases in tropical Africa. Int. J. Epidemiol. 5, 39–43 (1976).

  57. 57.

    Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

  58. 58.

    Fairfax, B. P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

  59. 59.

    Nicodemus-Johnson, J. et al. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 1, e90151 (2016).

  60. 60.

    Momozawa, Y. et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat. Commun. 9, 2427 (2018).

  61. 61.

    Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

  62. 62.

    Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biol. 17, (127 (2016).

  63. 63.

    Kamburov, A. et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717 (2011).

  64. 64.

    Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

  65. 65.

    Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

  66. 66.

    Iotchkova, V. et al. GARFIELD: GWAS analysis of regulatory or functional information enrichment with LD correction. https://www.biorxiv.org/content/early/2016/11/07/085738 (2016).

  67. 67.

    Szklarczyk, D. et al. STRINGv10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

  68. 68.

    Bento, A. P. et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42, D1083–D1090 (2014).

Download references

Acknowledgements

Detailed acknowledgements and funding details for each contributing study are provided in the Supplementary Note.

Author information

Author notes

  1. These authors contributed equally: Johannes Waage, Marie Standl.

  2. A list of members and affiliations appears in the Supplementary Note.

Affiliations

  1. COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark

    • Johannes Waage
    • , Leon E. Jessen
    • , Jonathan Thorsen
    • , Tarunveer S. Ahluwalia
    • , Hans Bisgaard
    •  & Klaus Bønnelykke
  2. Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany

    • Marie Standl
    • , Christian Gieger
    • , Joachim Heinrich
    •  & Elisabeth Thiering
  3. Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK

    • John A. Curtin
    •  & Angela Simpson
  4. 23andMe, Inc., Mountain View, CA, USA

    • Chao Tian
    • , Joyce Y. Tung
    •  & David A. Hinds
  5. Department of Human Genetics, University of Chicago, Chicago, IL, USA

    • Nathan Schoettler
    • , Rachel Myers
    • , Dan L. Nicolae
    •  & Carole Ober
  6. Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Tenerife, Spain

    • Carlos Flores
    • , Amalia Barreto-Luis
    • , Natalia Hernandez-Pacheco
    •  & Maria Pino-Yanes
  7. CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

    • Carlos Flores
    •  & Maria Pino-Yanes
  8. Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands

    • Abdel Abdellaoui
    • , Catharina E. M. van Beijsterveldt
    • , Dorret I. Boomsma
    •  & Gonneke Willemsen
  9. Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

    • Abdel Abdellaoui
  10. Department of Epidemiology and Biostatistics, MRC–PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK

    • Alexessander C. Alves
    •  & Marjo-Riitta Jarvelin
  11. Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK

    • Andre F. S. Amaral
    •  & Deborah L. Jarvis
  12. ISGlobal, Barcelona, Spain

    • Josep M. Antó
    •  & Jordi Sunyer
  13. IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain

    • Josep M. Antó
  14. Universitat Pompeu Fabra (UPF), Barcelona, Spain

    • Josep M. Antó
  15. CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain

    • Josep M. Antó
  16. Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany

    • Andreas Arnold
  17. Department of Dermatology, Venereology and Allergology, University-Hospital Schleswig-Hostein, Campus Kiel, Kiel, Germany

    • Hansjörg Baurecht
    •  & Stephan Weidinger
  18. Divisions of Pharmacogenomics and Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA

    • Eugene R. Bleecker
    •  & Deborah A. Meyers
  19. Barcelona Supercomputing Center (BSC), Joint BSC–CRG–IRB Research Program in Computational Biology, Barcelona, Spain

    • Sílvia Bonàs-Guarch
    • , Josep M. Mercader
    •  & David Torrents
  20. APH Amsterdam Public Health, Amsterdam, The Netherlands

    • Dorret I. Boomsma
  21. Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark

    • Susanne Brix
  22. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    • Supinda Bunyavanich
  23. Department of Medicine, University of California San Francisco, San Francisco, CA, USA

    • Esteban G. Burchard
  24. Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA

    • Esteban G. Burchard
  25. Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA

    • Zhanghua Chen
    • , W. James Gauderman
    •  & Frank Gilliland
  26. University of Basel, Basel, Switzerland

    • Ivan Curjuric
    • , Medea Imboden
    • , Ashish Kumar
    •  & Nicole M. Probst-Hensch
  27. Swiss Tropical and Public Health Institute, Basel, Switzerland

    • Ivan Curjuric
    • , Medea Imboden
    • , Ashish Kumar
    •  & Nicole M. Probst-Hensch
  28. Department of Paediatrics, Imperial College London, London, UK

    • Adnan Custovic
  29. The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands

    • Herman T. den Dekker
    • , Liesbeth Duijts
    •  & Vincent W. V. Jaddoe
  30. Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands

    • Herman T. den Dekker
    •  & Vincent W. V. Jaddoe
  31. Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands

    • Herman T. den Dekker
    •  & Liesbeth Duijts
  32. Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia

    • Shyamali C. Dharmage
  33. Laboratory of Animal Genomics, Unit of Medical Genomics, GIGA Institute, University of Liège, Liège, Belgium

    • Julia Dmitrieva
    •  & Michel Georges
  34. Department of Pediatrics, Division of Neonatology, Erasmus Medical Center, Rotterdam, The Netherlands

    • Liesbeth Duijts
  35. LMU Munich, Dr von Hauner Children’s Hospital, Munich, and German Center for Lung Research (DZL), Munich, Germany

    • Markus J. Ege
  36. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany

    • Christian Gieger
  37. MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK

    • Raquel Granell
    • , John Henderson
    •  & Lavinia Paternoster
  38. Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA

    • Hongsheng Gui
    •  & L. Keoki Williams
  39. Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

    • Torben Hansen
  40. Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany

    • Joachim Heinrich
  41. Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain

    • Natalia Hernandez-Pacheco
    • , Fabian Lorenzo-Diaz
    •  & Maria Pino-Yanes
  42. Telethon Kids Institute (TKI), Perth, Western Australia, Australia

    • Patrick Holt
  43. Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands

    • Vincent W. V. Jaddoe
  44. Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland

    • Marjo-Riitta Jarvelin
  45. Biocenter Oulu, University of Oulu, Oulu, Finland

    • Marjo-Riitta Jarvelin
  46. Unit of Primary Care, Oulu University Hospital, Oulu, Finland

    • Marjo-Riitta Jarvelin
  47. Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark

    • Kamilla K. Jensen
  48. deCODE genetics/Amgen Inc, Reykjavik, Iceland

    • Ingileif Jónsdóttir
    • , Kari Stefansson
    •  & Gardar Sveinbjornsson
  49. Faculty of Medicine, University of Iceland, Reykjavik, Iceland

    • Ingileif Jónsdóttir
    •  & Kari Stefansson
  50. Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Regensburg, Germany

    • Michael Kabesch
  51. Department of Public Health, University of Helsinki, Helsinki, Finland

    • Jaakko Kaprio
  52. Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland

    • Jaakko Kaprio
    •  & Teemu Palviainen
  53. National Institute for Health and Welfare, Helsinki, Finland

    • Jaakko Kaprio
  54. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden

    • Ashish Kumar
    • , Erik Melén
    •  & Göran Pershagen
  55. Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany

    • Young-Ae Lee
    •  & Franz Rüschendorf
  56. Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany

    • Young-Ae Lee
  57. Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA

    • Albert M. Levin
  58. Divisions of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA

    • Xingnan Li
  59. Sachs’ Children’s Hospital, Stockholm, Sweden

    • Erik Melén
  60. Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA

    • Josep M. Mercader
  61. Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA

    • Josep M. Mercader
  62. Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics & Gynecology, Odense University Hospital, Odense, Denmark

    • Ellen A. Nohr
  63. School of Medicine and Public Health, Faculty of Medicine and Health, University of Newcastle, Callaghan, New South Wales, Australia

    • Craig E. Pennell
    •  & Carol A. Wang
  64. Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden

    • Göran Pershagen
  65. Ludwig-Maximilians-University of Munich, Dr. von Hauner Children’s Hospital, Division of Metabolic Diseases and Nutritional Medicine, Munich, Germany

    • Elisabeth Thiering
  66. Institute for Respiratory Health, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, Western Australia, Australia

    • Philip J. Thompson
  67. Ib-Salut, Area de Salut de Menorca, Institut d’Investigacio Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain

    • Maties Torrent
  68. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

    • David Torrents
  69. Channing Division of Network Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA

    • Scott Weiss
  70. Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA

    • L. Keoki Williams
  71. QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia

    • Manuel A. Ferreira
  72. Population Health Research Institute, St George’s, University of London, London, UK

    • David P. Strachan

Authors

  1. Search for Johannes Waage in:

  2. Search for Marie Standl in:

  3. Search for John A. Curtin in:

  4. Search for Leon E. Jessen in:

  5. Search for Jonathan Thorsen in:

  6. Search for Chao Tian in:

  7. Search for Nathan Schoettler in:

  8. Search for Carlos Flores in:

  9. Search for Abdel Abdellaoui in:

  10. Search for Tarunveer S. Ahluwalia in:

  11. Search for Alexessander C. Alves in:

  12. Search for Andre F. S. Amaral in:

  13. Search for Josep M. Antó in:

  14. Search for Andreas Arnold in:

  15. Search for Amalia Barreto-Luis in:

  16. Search for Hansjörg Baurecht in:

  17. Search for Catharina E. M. van Beijsterveldt in:

  18. Search for Eugene R. Bleecker in:

  19. Search for Sílvia Bonàs-Guarch in:

  20. Search for Dorret I. Boomsma in:

  21. Search for Susanne Brix in:

  22. Search for Supinda Bunyavanich in:

  23. Search for Esteban G. Burchard in:

  24. Search for Zhanghua Chen in:

  25. Search for Ivan Curjuric in:

  26. Search for Adnan Custovic in:

  27. Search for Herman T. den Dekker in:

  28. Search for Shyamali C. Dharmage in:

  29. Search for Julia Dmitrieva in:

  30. Search for Liesbeth Duijts in:

  31. Search for Markus J. Ege in:

  32. Search for W. James Gauderman in:

  33. Search for Michel Georges in:

  34. Search for Christian Gieger in:

  35. Search for Frank Gilliland in:

  36. Search for Raquel Granell in:

  37. Search for Hongsheng Gui in:

  38. Search for Torben Hansen in:

  39. Search for Joachim Heinrich in:

  40. Search for John Henderson in:

  41. Search for Natalia Hernandez-Pacheco in:

  42. Search for Patrick Holt in:

  43. Search for Medea Imboden in:

  44. Search for Vincent W. V. Jaddoe in:

  45. Search for Marjo-Riitta Jarvelin in:

  46. Search for Deborah L. Jarvis in:

  47. Search for Kamilla K. Jensen in:

  48. Search for Ingileif Jónsdóttir in:

  49. Search for Michael Kabesch in:

  50. Search for Jaakko Kaprio in:

  51. Search for Ashish Kumar in:

  52. Search for Young-Ae Lee in:

  53. Search for Albert M. Levin in:

  54. Search for Xingnan Li in:

  55. Search for Fabian Lorenzo-Diaz in:

  56. Search for Erik Melén in:

  57. Search for Josep M. Mercader in:

  58. Search for Deborah A. Meyers in:

  59. Search for Rachel Myers in:

  60. Search for Dan L. Nicolae in:

  61. Search for Ellen A. Nohr in:

  62. Search for Teemu Palviainen in:

  63. Search for Lavinia Paternoster in:

  64. Search for Craig E. Pennell in:

  65. Search for Göran Pershagen in:

  66. Search for Maria Pino-Yanes in:

  67. Search for Nicole M. Probst-Hensch in:

  68. Search for Franz Rüschendorf in:

  69. Search for Angela Simpson in:

  70. Search for Kari Stefansson in:

  71. Search for Jordi Sunyer in:

  72. Search for Gardar Sveinbjornsson in:

  73. Search for Elisabeth Thiering in:

  74. Search for Philip J. Thompson in:

  75. Search for Maties Torrent in:

  76. Search for David Torrents in:

  77. Search for Joyce Y. Tung in:

  78. Search for Carol A. Wang in:

  79. Search for Stephan Weidinger in:

  80. Search for Scott Weiss in:

  81. Search for Gonneke Willemsen in:

  82. Search for L. Keoki Williams in:

  83. Search for Carole Ober in:

  84. Search for David A. Hinds in:

  85. Search for Manuel A. Ferreira in:

  86. Search for Hans Bisgaard in:

  87. Search for David P. Strachan in:

  88. Search for Klaus Bønnelykke in:

Consortia

  1. The 23andMe Research Team

    1. AAGC collaborators

      Contributions

      Study design and management: K.B., J.W., M.S., and D.P.S. Meta-analyses: M.S. and J.W. Manuscript writing: K.B., J.W., M.S., J.A.C., J.T., L.E.J., and M.A.F. Systems biology analyses: J.W., J.A.C., J.T., L.E.J., J.M.M., S.B.-G., and D.T. Data collection, analysis, and design in the individual contributing studies: K.B., J.W., M.S., J.A.C., C.F., A. Abdellaoui, T.S.A., A.C.A., A.F.S.A., J.M.A., A. Arnold, A.B.-L., H. Baurecht, C.E.M.v.B., E.R.B., D.I.B., S. Bunyavanich, E.B., Z.C., I.C., A.C., H.T.d.D., S.C.D., J.D., L.D., M.J.E., W.J.G., C.G., F.G., R.G., H.G., T.H., J. Heinrich, J. Henderson, N.H.-P., D.A.H., P.H., M.I., V.W.V.J., M.-R.J., D.L.J., I.J., M.K., J.K., A.K., Y.-A.L., A.M.L., X.L., F.L.-D., E.M., D.A.M., R.M., D.L.N., E.A.N., T.P., L.P., C.E.P., G.P., M.P.-Y., N.M.P.-H., F.R., A.S., K.S., J.S., G.S., E.T., P.J.T., C.T., M.T., J.Y.T., C.A.W., S. Weidinger, S. Weiss, G.W., L.K.W., C.O., M.A.F., H. Bisgaard, D.P.S., The 23andMe Research Team and AAGC collaborators. Immunological interpretation: N.S. and S. Brix. Gene-expression analysis: M.G. and J.D. Protein modeling: K.K.J.

      Competing interests

      G.S., I.J., and K.S. are affiliated with deCODE genetics/Amgen and declare competing financial interests as employees. C.T., D.A.H., J.Y.T., and the 23andMe Research Team are employees of and hold stock and/or stock options in 23andMe, Inc. L.P. has received a fee for participating in a scientific-input engagement meeting from Merck Sharp & Dohme Limited, outside of this work.

      Corresponding author

      Correspondence to Klaus Bønnelykke.

      Supplementary information

      1. Supplementary Text and Figures

        Supplementary Figures 1–10 and Supplementary Note

      2. Reporting Summary

      3. Supplementary Tables

        Supplementary Tables 1–25

      About this article

      Publication history

      Received

      Accepted

      Published

      DOI

      https://doi.org/10.1038/s41588-018-0157-1