Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

An Author Correction to this article was published on 16 August 2018


Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Manhattan plot of the meta-GWAS discovery phase.
Fig. 2: Structural visualization of amino acid variants associated with allergic rhinitis.
Fig. 3: Enrichment of allergic rhinitis-associated variants in tissue-specific open chromatin.
Fig. 4: Interaction network among drugs and proteins from genes associated with allergic rhinitis.


  1. 1.

    Greiner, A. N., Hellings, P. W., Rotiroti, G. & Scadding, G. K. Allergic rhinitis. Lancet 378, 2112–2122 (2011).

    Google Scholar 

  2. 2.

    Björkstén, B., Clayton, T., Ellwood, P., Stewart, A. & Strachan, D. Worldwide time trends for symptoms of rhinitis and conjunctivitis: phase III of the International Study of Asthma and Allergies in Childhood. Pediatr. Allergy Immunol. 19, 110–124 (2008).

    Google Scholar 

  3. 3.

    Willemsen, G., van Beijsterveldt, T. C. E. M., van Baal, C. G. C. M., Postma, D. & Boomsma, D. I. Heritability of self-reported asthma and allergy: a study in adult Dutch twins, siblings and parents. Twin Res. Hum. Genet. 11, 132–142 (2008).

    Google Scholar 

  4. 4.

    Fagnani, C. et al. Heritability and shared genetic effects of asthma and hay fever: an Italian study of young twins. Twin Res. Hum. Genet. 11, 121–131 (2008).

    Google Scholar 

  5. 5.

    Ramasamy, A. et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J. Allergy Clin. Immunol. 128, 996–1005 (2011).

    CAS  Google Scholar 

  6. 6.

    Hinds, D. A. et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat. Genet. 45, 907–911 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bønnelykke, K. et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat. Genet. 45, 902–906 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ferreira, M. A. R. et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J. Allergy Clin. Immunol. 133, 1564–1571 (2014).

    CAS  Google Scholar 

  9. 9.

    Bunyavanich, S. et al. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Med. Genom. 7, 48 (2014).

    Google Scholar 

  10. 10.

    Jahn-Schmid, B., Pickl, W. F. & Bohle, B. Interaction of allergens, major histocompatibility complex molecules, and T cell receptors: a ‘ménage à trois’ that opens new avenues for therapeutic intervention in type I allergy. Int. Arch. Allergy Immunol. 156, 27–42 (2011).

    CAS  Google Scholar 

  11. 11.

    Cavalli, G. et al. MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo. Proc. Natl Acad. Sci. USA 113, 1363–1368 (2016).

    CAS  Google Scholar 

  12. 12.

    Hayashi, M. et al. Autoimmune vitiligo is associated with gain-of-function by a transcriptional regulator that elevates expression of HLA-A*02:01 in vivo. Proc. Natl Acad. Sci. USA 113, 1357–1362 (2016).

    CAS  Google Scholar 

  13. 13.

    Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    CAS  Google Scholar 

  14. 14.

    Lundmark, F. et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat. Genet. 39, 1108–1113 (2007).

    CAS  Google Scholar 

  15. 15.

    Mori, T. et al. Lnk/Sh2b3 controls the production and function of dendritic cells and regulates the induction of IFN-γ-producing T cells. J. Immunol. 193, 1728–1736 (2014).

    CAS  Google Scholar 

  16. 16.

    Scott, L. M., Civin, C. I., Rorth, P. & Friedman, A. D. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80, 1725–1735 (1992).

    CAS  Google Scholar 

  17. 17.

    Gao, H., Parkin, S., Johnson, P. F. & Schwartz, R. C. C/EBP gamma has a stimulatory role on the IL-6 and IL-8 promoters. J. Biol. Chem. 277, 38827–38837 (2002).

    CAS  Google Scholar 

  18. 18.

    León, B. et al. Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat. Immunol. 13, 681–690 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Shinnakasu, R. et al. Regulated selection of germinal-center cells into the memory B cell compartment. Nat. Immunol. 17, 861–869 (2016).

    CAS  Google Scholar 

  21. 21.

    Roychoudhuri, R. et al. BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. A. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    CAS  Google Scholar 

  23. 23.

    Chan, P. Y. et al. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science 352, 99–103 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kassmeier, M. D. et al. VprBP binds full-length RAG1 and is required for B-cell development and V(D)J recombination fidelity. EMBO J. 31, 945–958 (2012).

    CAS  Google Scholar 

  25. 25.

    Hamblet, C. E., Makowski, S. L., Tritapoe, J. M. & Pomerantz, J. L. NK cell maturation and cytotoxicity are controlled by the intramembrane aspartyl protease SPPL3. J. Immunol. 196, 2614–2626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Andersen, J. B., Strandbygård, D. J., Hartmann, R. & Justesen, J. Interaction between the 2′-5′ oligoadenylate synthetase-like protein p59 OASL and the transcriptional repressor methyl CpG-binding protein 1. Eur. J. Biochem. 271, 628–636 (2004).

    CAS  Google Scholar 

  27. 27.

    Halim, T. Y. F. et al. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37, 463–474 (2012).

    CAS  Google Scholar 

  28. 28.

    Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    CAS  Google Scholar 

  29. 29.

    Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Pearce, N., Pekkanen, J. & Beasley, R. How much asthma is really attributable to atopy? Thorax 54, 268–272 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Böhme, M., Wickman, M., Lennart Nordvall, S., Svartengren, M. & Wahlgren, C. F. Family history and risk of atopic dermatitis in children up to 4 years. Clin. Exp. Allergy 33, 1226–1231 (2003).

    Google Scholar 

  32. 32.

    Kreiner, E. et al. Shared genetic variants suggest common pathways in allergy and autoimmune diseases. J. Allergy Clin. Immunol. 140, 771–781 (2017).

    CAS  Google Scholar 

  33. 33.

    Bousquet, J. et al. Important research questions in allergy and related diseases: nonallergic rhinitis: a GA2LEN paper. Allergy 63, 842–853 (2008).

    CAS  Google Scholar 

  34. 34.

    Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    CAS  Google Scholar 

  35. 35.

    Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinforma. 11, 288 (2010).

    Google Scholar 

  38. 38.

    Segrè, A. V., Groop, L., Mootha, V. K., Daly, M. J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Google Scholar 

  41. 41.

    Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    UK10K Consortium. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

    Google Scholar 

  44. 44.

    Wellcome Trust Case Control Consortium. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

    Google Scholar 

  45. 45.

    McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Zheng, X. et al. HIBAG—HLA genotype imputation with attribute bagging. Pharm. J. 14, 192–200 (2014).

    CAS  Google Scholar 

  47. 47.

    Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8, e64683 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 8, 599 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Vita, R. et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 43, D405–D412 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sethi, D. K., Gordo, S., Schubert, D. A. & Wucherpfennig, K. W. Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop. Nat. Commun. 4, 2623 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Rückert, C. et al. Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype. J. Biol. Chem. 281, 2306–2316 (2006).

    Google Scholar 

  53. 53.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    CAS  Google Scholar 

  55. 55.

    Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Lucas, A. O. Surveillance of communicable diseases in tropical Africa. Int. J. Epidemiol. 5, 39–43 (1976).

    CAS  Google Scholar 

  57. 57.

    Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Fairfax, B. P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Nicodemus-Johnson, J. et al. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 1, e90151 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Momozawa, Y. et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat. Commun. 9, 2427 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biol. 17, (127 (2016).

    Google Scholar 

  63. 63.

    Kamburov, A. et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717 (2011).

    CAS  Google Scholar 

  64. 64.

    Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Iotchkova, V. et al. GARFIELD: GWAS analysis of regulatory or functional information enrichment with LD correction. (2016).

  67. 67.

    Szklarczyk, D. et al. STRINGv10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    CAS  Google Scholar 

  68. 68.

    Bento, A. P. et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42, D1083–D1090 (2014).

    CAS  Google Scholar 

Download references


Detailed acknowledgements and funding details for each contributing study are provided in the Supplementary Note.

Author information





Study design and management: K.B., J.W., M.S., and D.P.S. Meta-analyses: M.S. and J.W. Manuscript writing: K.B., J.W., M.S., J.A.C., J.T., L.E.J., and M.A.F. Systems biology analyses: J.W., J.A.C., J.T., L.E.J., J.M.M., S.B.-G., and D.T. Data collection, analysis, and design in the individual contributing studies: K.B., J.W., M.S., J.A.C., C.F., A. Abdellaoui, T.S.A., A.C.A., A.F.S.A., J.M.A., A. Arnold, A.B.-L., H. Baurecht, C.E.M.v.B., E.R.B., D.I.B., S. Bunyavanich, E.B., Z.C., I.C., A.C., H.T.d.D., S.C.D., J.D., L.D., M.J.E., W.J.G., C.G., F.G., R.G., H.G., T.H., J. Heinrich, J. Henderson, N.H.-P., D.A.H., P.H., M.I., V.W.V.J., M.-R.J., D.L.J., I.J., M.K., J.K., A.K., Y.-A.L., A.M.L., X.L., F.L.-D., E.M., D.A.M., R.M., D.L.N., E.A.N., T.P., L.P., C.E.P., G.P., M.P.-Y., N.M.P.-H., F.R., A.S., K.S., J.S., G.S., E.T., P.J.T., C.T., M.T., J.Y.T., C.A.W., S. Weidinger, S. Weiss, G.W., L.K.W., C.O., M.A.F., H. Bisgaard, D.P.S., The 23andMe Research Team and AAGC collaborators. Immunological interpretation: N.S. and S. Brix. Gene-expression analysis: M.G. and J.D. Protein modeling: K.K.J.

Corresponding author

Correspondence to Klaus Bønnelykke.

Ethics declarations

Competing interests

G.S., I.J., and K.S. are affiliated with deCODE genetics/Amgen and declare competing financial interests as employees. C.T., D.A.H., J.Y.T., and the 23andMe Research Team are employees of and hold stock and/or stock options in 23andMe, Inc. L.P. has received a fee for participating in a scientific-input engagement meeting from Merck Sharp & Dohme Limited, outside of this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Note

Reporting Summary

Supplementary Tables

Supplementary Tables 1–25

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waage, J., Standl, M., Curtin, J.A. et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet 50, 1072–1080 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing