Article | Published:

A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases

Nature Geneticsvolume 50pages857864 (2018) | Download Citation

Abstract

Clinical and epidemiological data suggest that asthma and allergic diseases are associated and may share a common genetic etiology. We analyzed genome-wide SNP data for asthma and allergic diseases in 33,593 cases and 76,768 controls of European ancestry from UK Biobank. Two publicly available independent genome-wide association studies were used for replication. We have found a strong genome-wide genetic correlation between asthma and allergic diseases (rg = 0.75, P = 6.84 × 10−62). Cross-trait analysis identified 38 genome-wide significant loci, including 7 novel shared loci. Computational analysis showed that shared genetic loci are enriched in immune/inflammatory systems and tissues with epithelium cells. Our work identifies common genetic architectures shared between asthma and allergy and will help to advance understanding of the molecular mechanisms underlying co-morbid asthma and allergic diseases.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Johansson, S. G. et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 113, 832–836 (2004).

  2. 2.

    Lenz, H. J. Management and preparedness for infusion and hypersensitivity reactions. Oncologist 12, 601–609 (2007).

  3. 3.

    Wallace, D. V. et al. The diagnosis and management of rhinitis: an updated practice parameter. J. Allergy Clin. Immunol. 122, S1–S84 (2008).

  4. 4.

    Torgerson, D. G. et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 43, 887–892 (2011).

  5. 5.

    Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

  6. 6.

    Bunyavanich, S. et al. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Med. Genomics 7, 48 (2014).

  7. 7.

    Ramasamy, A. et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J. Allergy Clin. Immunol. 128, 996–1005 (2011).

  8. 8.

    Pillai, S. G. et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 5, e1000421 (2009).

  9. 9.

    Leynaert, B., Neukirch, F., Demoly, P. & Bousquet, J. Epidemiologic evidence for asthma and rhinitis comorbidity. J. Allergy Clin. Immunol. 106, S201–S205 (2000).

  10. 10.

    Brauer, M. et al. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am. J. Respir. Crit. Care Med. 166, 1092–1098 (2002).

  11. 11.

    Pariente, P. D., LePen, C., Los, F. & Bousquet, J. Quality-of-life outcomes and the use of antihistamines in a French national population-based sample of patients with perennial rhinitis. Pharmacoeconomics 12, 585–595 (1997).

  12. 12.

    Liang, L. et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 520, 670–674 (2015).

  13. 13.

    Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

  14. 14.

    Criswell, L. A. et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet. 76, 561–571 (2005).

  15. 15.

    Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

  16. 16.

    Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

  17. 17.

    Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

  18. 18.

    Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).

  19. 19.

    Hobbs, B. D. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 49, 426–432 (2017).

  20. 20.

    Emdin, C. A. et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. J. Am. Med. Assoc. 317, 626–634 (2017).

  21. 21.

    Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49, 1584–1592 (2017).

  22. 22.

    Ober, C. & Yao, T. C. The genetics of asthma and allergic disease: a 21st century perspective. Immunol. Rev. 242, 10–30 (2011).

  23. 23.

    Cookson, W. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat. Rev. Immunol. 4, 978–988 (2004).

  24. 24.

    Belsky, D. W. et al. Polygenic risk and the development and course of asthma: an analysis of data from a four-decade longitudinal study. Lancet Respir. Med. 1, 453–461 (2013).

  25. 25.

    Holgate, S. T. The epidemic of allergy and asthma. Nature 402, B2–B4 (1999).

  26. 26.

    Duffy, D. L., Martin, N. G., Battistutta, D., Hopper, J. L. & Mathews, J. D. Genetics of asthma and hay fever in Australian twins. Am. Rev. Respir. Dis. 142, 1351–1358 (1990).

  27. 27.

    Hinds, D. A. et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat. Genet. 45, 907–911 (2013).

  28. 28.

    Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).

  29. 29.

    Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015).

  30. 30.

    Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

  31. 31.

    Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

  32. 32.

    Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

  33. 33.

    de Bakker, P. I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

  34. 34.

    Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

  35. 35.

    Li, X. et al. The C11orf30-LRRC32 region is associated with total serum IgE levels in asthmatic patients. J. Allergy Clin. Immunol. 129, 575–578.e9 (2012).

  36. 36.

    Amaral, A. F. et al. The locus C11orf30 increases susceptibility to poly-sensitization. Allergy 70, 328–333 (2015).

  37. 37.

    Anthoni, M. et al. Smad3—signalling and Th2 cytokines in normal mouse airways and in a mouse model of asthma. Int. J. Biol. Sci. 3, 477–485 (2007).

  38. 38.

    Struys, E. A. et al. Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am. J. Hum. Genet. 76, 358–360 (2005).

  39. 39.

    Seko, A., Nagata, K., Yonezawa, S. & Yamashita, K. Down-regulation of Gal 3-O-sulfotransferase-2 (Gal3ST-2) expression in human colonic non-mucinous adenocarcinoma. Jpn. J. Cancer Res. 93, 507–515 (2002).

  40. 40.

    Marsh, D. G., Meyers, D. A. & Bias, W. B. The epidemiology and genetics of atopic allergy. N. Engl. J. Med. 305, 1551–1559 (1981).

  41. 41.

    Moffatt, M. F. et al. Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur. J. Hum. Genet. 9, 341–346 (2001).

  42. 42.

    Dale, M. & Nicklin, M. J. Interleukin-1 receptor cluster: gene organization of IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL18R1 (IL-1Rrp) on human chromosome 2q. Genomics 57, 177–179 (1999).

  43. 43.

    Gudbjartsson, D. F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

  44. 44.

    McLean, W. H. The allergy gene: how a mutation in a skin protein revealed a link between eczema and asthma. F1000 Med. Rep. 3, 2 (2011).

  45. 45.

    Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  46. 46.

    Hackett, N. R. et al. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 13, 82 (2012).

  47. 47.

    Novak, N., Kraft, S. & Bieber, T. IgE receptors. Curr. Opin. Immunol. 13, 721–726 (2001).

  48. 48.

    Wynn, T. A. Type 2 cytokines: mechanisms and therapeutic strategies. Nat. Rev. Immunol. 15, 271–282 (2015).

  49. 49.

    Barnes, P. J. Th2 cytokines and asthma: an introduction. Respir. Res. 2, 64–65 (2001).

  50. 50.

    Lotem, J. et al. Runx3 at the interface of immunity, inflammation and cancer. Biochim. Biophys. Acta 1855, 131–143 (2015).

  51. 51.

    Laprise, C. The Saguenay-Lac-Saint-Jean asthma familial collection: the genetics of asthma in a young founder population. Genes Immun. 15, 247–255 (2014).

  52. 52.

    Guo, C. et al. Chromatin immunoprecipitation and association study revealed a possible role of Runt-related transcription factor 3 in the ulcerative colitis of Chinese population. Clin. Immunol. 135, 483–489 (2010).

  53. 53.

    Esparza-Gordillo, J. et al. A functional IL-6 receptor (IL6R) variant is a risk factor for persistent atopic dermatitis. J. Allergy Clin. Immunol. 132, 371–377 (2013).

  54. 54.

    Meijer, H., Reinecke, J., Becker, C., Tholen, G. & Wehling, P. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm. Res. 52, 404–407 (2003).

  55. 55.

    Presland, R. B. & Dale, B. A. Epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit. Rev. Oral Biol. Med. 11, 383–408 (2000).

  56. 56.

    Ganesan, S., Comstock, A. T. & Sajjan, U. S. Barrier function of airway tract epithelium. Tissue Barriers 1, e24997 (2013).

  57. 57.

    Wang, Y., Bai, C., Li, K., Adler, K. B. & Wang, X. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir. Med. 102, 949–955 (2008).

  58. 58.

    Rackley, C. R. & Stripp, B. R. Building and maintaining the epithelium of the lung. J. Clin. Invest. 122, 2724–2730 (2012).

  59. 59.

    Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

  60. 60.

    Alonso, L. & Fuchs, E. Stem cells of the skin epithelium. Proc. Natl Acad. Sci. USA 100((suppl 1)), 11830–11835 (2003).

  61. 61.

    Pawankar, R., Mori, S., Ozu, C. & Kimura, S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac. Allergy 1, 157–167 (2011).

  62. 62.

    Collins, R. What makes UK Biobank special? Lancet 379, 1173–1174 (2012).

  63. 63.

    Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

  64. 64.

    Allen, N. E., Sudlow, C., Peakman, T. & Collins, R. UK Biobank data: come and get it. Sci. Transl. Med. 6, 224ed4 (2014).

  65. 65.

    McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

  66. 66.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

  67. 67.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

  68. 68.

    Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

  69. 69.

    Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

  70. 70.

    Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

  71. 71.

    Bhattacharjee, S. et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am. J. Hum. Genet. 90, 821–835 (2012).

  72. 72.

    Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).

  73. 73.

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  74. 74.

    The Wellcome Trust Case Control Consortium. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

  75. 75.

    Wallace, C. Statistical testing of shared genetic control for potentially related traits. Genet. Epidemiol. 37, 802–813 (2013).

  76. 76.

    Dougherty, J. D., Schmidt, E. F., Nakajima, M. & Heintz, N. Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Res. 38, 4218–4230 (2010).

  77. 77.

    Xu, X., Wells, A. B., O’Brien, D. R., Nehorai, A. & Dougherty, J. D. Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J. Neurosci. 34, 1420–1431 (2014).

  78. 78.

    Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics 30, 2906–2914 (2014).

  79. 79.

    Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83 (2013).

  80. 80.

    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

  81. 81.

    Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

  82. 82.

    Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

  83. 83.

    Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

Download references

Acknowledgements

This research has been conducted using the UK Biobank Resource under application number 16549. We would like to thank the participants and researchers from UK Biobank who significantly contributed or collected data. We thank the GABRIEL consortium and the EAGLE consortium for providing GWAS summary statistic data. We also thank W. Cookson and M. Moffatt their clinical advice, and D. Chasman, V. Anttila, S. Gazal, H. Shi, Y. Feng and M. Chen for their statistical advice. This study was supported by grants R01HL060710 (D.C.C.), R56HL134356 (D.C.C.), R01HL114769 (Q.L.), AAF15-0097 (Q.L.) and R00MH101367 (P.H.L.) from the National Heart, Lung, and Blood Institute (NHLBI), the National Institutes of Health, the American Asthma Foundation and the National Institute of Mental Health.

Author information

Affiliations

  1. Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA

    • Zhaozhong Zhu
    • , Wonil Chung
    • , Po-Ru Loh
    •  & Liming Liang
  2. Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA

    • Zhaozhong Zhu
    •  & David C. Christiani
  3. Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA

    • Zhaozhong Zhu
    •  & Phil H. Lee
  4. Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA

    • Phil H. Lee
    • , Mark D. Chaffin
    •  & Po-Ru Loh
  5. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA

    • Phil H. Lee
  6. Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA

    • Quan Lu
  7. Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA

    • David C. Christiani
  8. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA

    • Liming Liang

Authors

  1. Search for Zhaozhong Zhu in:

  2. Search for Phil H. Lee in:

  3. Search for Mark D. Chaffin in:

  4. Search for Wonil Chung in:

  5. Search for Po-Ru Loh in:

  6. Search for Quan Lu in:

  7. Search for David C. Christiani in:

  8. Search for Liming Liang in:

Contributions

Z.Z., L.L., P.H.L., Q.L. and D.C.C. designed the study. Z.Z., M.D.C., W.C. and P.-R.L. performed the statistical analysis. Z.Z., M.D.C., L.L., W.C. and Q.L. wrote the manuscript. All authors helped interpret the data, reviewed and edited the final paper, and approved the submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Liming Liang.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–19, Supplementary Tables 1–18 and Supplementary Note

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41588-018-0121-0