Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A large electronic-health-record-based genome-wide study of serum lipids

Abstract

A genome-wide association study (GWAS) of 94,674 ancestrally diverse Kaiser Permanente members using 478,866 longitudinal electronic health record (EHR)-derived measurements for untreated serum lipid levels empowered multiple new findings: 121 new SNP associations (46 primary, 15 conditional, and 60 in meta-analysis with Global Lipids Genetic Consortium data); an increase of 33–42% in variance explained with multiple measurements; sex differences in genetic impact (greater impact in females for LDL, HDL, and total cholesterol and the opposite for triglycerides); differences in variance explained among non-Hispanic whites, Latinos, African Americans, and East Asians; genetic dominance and epistatic interaction, with strong evidence for both at the ABO and FUT2 genes for LDL; and tissue-specific enrichment of GWAS-associated SNPs among liver, adipose, and pancreas eQTLs. Using EHR pharmacy data, both LDL and triglyceride genetic risk scores (477 SNPs) were strongly predictive of age at initiation of lipid-lowering treatment. These findings highlight the value of longitudinal EHRs for identifying new genetic features of cholesterol and lipoprotein metabolism with implications for lipid treatment and risk of coronary heart disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epistasis between SNPs at FUT2 and ABO (n = 94,674).
Fig. 2: Tissue-specific eQTL analysis in the 44 GTEx tissues.
Fig. 3: Time to initiation of lipid-lowering treatment by LDL and triglyceride GRS quintile.

Similar content being viewed by others

References

  1. Castelli, W. P. Cholesterol and lipids in the risk of coronary artery disease—the Framingham Heart Study. Can. J. Cardiol. 4 (Suppl. A), 5A–10A (1988).

    PubMed  Google Scholar 

  2. Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. & Stokes, J. III Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann. Intern. Med. 55, 33–50 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Below, J. E. et al. Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects, and tissue-specific enrichment of eQTLs. Sci. Rep. 6, 19429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buyske, S. et al. Evaluation of the metabochip genotyping array in African Americans and implications for fine mapping of GWAS-identified loci: the PAGE study. PLoS One 7, e35651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coram, M. A. et al. Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am. J. Hum. Genet. 92, 904–916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elbers, C. C. et al. Gene-centric meta-analysis of lipid traits in African, East Asian and Hispanic populations. PLoS One 7, e50198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keller, M. et al. THOC5: a novel gene involved in HDL-cholesterol metabolism. J. Lipid Res. 54, 3170–3176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ko, A. et al. Amerindian-specific regions under positive selection harbour new lipid variants in Latinos. Nat. Commun. 5, 3983 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurano, M. et al. Genome-wide association study of serum lipids confirms previously reported associations as well as new associations of common SNPs within PCSK7 gene with triglyceride. J. Hum. Genet. 61, 427–433 (2016).

    Article  PubMed  Google Scholar 

  12. Lanktree, M. B. et al. Genetic meta-analysis of 15,901 African Americans identifies variation in EXOC3L1 is associated with HDL concentration. J. Lipid Res. 56, 1781–1786 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Leeuwen, E. M. et al. Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels. J. Med. Genet. 53, 441–449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu, X. et al. Genetic susceptibility to lipid levels and lipid change over time and risk of incident hyperlipidemia in Chinese populations. Circ. Cardiovasc. Genet. 9, 37–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Musunuru, K. et al. Multi-ethnic analysis of lipid-associated loci: the NHLBI CARe project. PLoS One 7, e36473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 47, 589–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

    Article  Google Scholar 

  18. Wu, Y. et al. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained. PLoS Genet. 9, e1003379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sidore, C. et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat. Genet. 47, 1272–1281 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanoni, S. et al. Analysis with the exome array identifies multiple new independent variants in lipid loci. Hum. Mol. Genet. 25, 4094–4106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tada, H. et al. Multiple associated variants increase the heritability explained for plasma lipids and coronary artery disease. Circ. Cardiovasc. Genet. 7, 583–587 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Dongen, J., Willemsen, G., Chen, W.-M., de Geus, E. J. C. & Boomsma, D. I. Heritability of metabolic syndrome traits in a large population-based sample. J. Lipid Res. 54, 2914–2923 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ganesh, S. K. et al. Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations. Am. J. Hum. Genet. 95, 49–65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoffmann, T. J. et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat. Genet. 49, 54–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Banda, Y. et al. Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200, 1285–1295 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kvale, M. N. et al. Genotyping informatics and quality control for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200, 1051–1060 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hoffmann, T. J. et al. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics 98, 422–430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoffmann, T. J. et al. Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics 98, 79–89 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics 30, 2906–2914 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huedo-Medina, T. B., Sánchez-Meca, J., Marín-Martínez, F. & Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I 2 index? Psychol. Methods 11, 193–206 (2006).

    Article  PubMed  Google Scholar 

  35. Sijbrands, E. J. G. et al. Severe hyperlipidemia in apolipoprotein E2 homozygotes due to a combined effect of hyperinsulinemia and an SstI polymorphism. Arterioscler. Thromb. Vasc. Biol. 19, 2722–2729 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Aung, L. H. H. et al. Sex-specific association of the zinc finger protein 259 rs2075290 polymorphism and serum lipid levels. Int. J. Med. Sci. 11, 471–478 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Model-free estimation of recent genetic relatedness. Am. J. Hum. Genet. 98, 127–148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, G.-B. Estimating heritability of complex traits from genome-wide association studies using IBS-based Haseman–Elston regression. Stat. Genet. 5, 107 (2014).

    Google Scholar 

  39. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  Google Scholar 

  41. Hosmer, D. & Lemeshow, S. Applied Survival Analysis: Regression Modeling of Time to Event Data (Wiley, Hoboken, NJ, 2008).

  42. Link, E. et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Coviello, A. D. et al. A genome-wide association meta-analysis of circulating sex hormone–binding globulin reveals multiple loci implicated in sex steroid hormone regulation. PLoS Genet. 8, e1002805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson, A. D. et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum. Mol. Genet. 18, 2700–2710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oshiro, C., Mangravite, L., Klein, T. & Altman, R. PharmGKB very important pharmacogene: SLCO1B1. Pharmacogenet. Genomics 20, 211–216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abe, T. et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem. 274, 17159–17163 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Hsiang, B. et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem. 274, 37161–37168 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, E. A. & Weaver, D. R. Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging 3, 479–493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimba, S. et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6, e25231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Castro, C., Briggs, W., Paschos, G. K., FitzGerald, G. A. & Griffin, J. L. A metabolomic study of adipose tissue in mice with a disruption of the circadian system. Mol. Biosyst. 11, 1897–1906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Green, M. D., Oturu, E. M. & Tephly, T. R. Stable expression of a human liver UDP-glucuronosyltransferase (UGT2B15) with activity toward steroid and xenobiotic substrates. Drug Metab. Dispos. 22, 799–805 (1994).

    CAS  PubMed  Google Scholar 

  53. Beaulieu, M., Lévesque, E., Hum, D. W. & Bélanger, A. Isolation and characterization of a novel cDNA encoding a human UDP-glucuronosyltransferase active on C19 steroids. J. Biol. Chem. 271, 22855–22862 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Turgeon, D., Carrier, J.-S., Chouinard, S. & Bélanger, A. Glucuronidation activity of the UGT2B17 enzyme toward xenobiotics. Drug Metab. Dispos. 31, 670–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Liao, Y.-J. et al. Glycine N-methyltransferase deficiency affects Niemann–Pick type C2 protein stability and regulates hepatic cholesterol homeostasis. Mol. Med. 18, 412–422 (2012).

    CAS  PubMed  Google Scholar 

  56. Liu, S.-P. et al. Glycine N-methyltransferase–/– mice develop chronic hepatitis and glycogen storage disease in the liver. Hepatology 46, 1413–1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Chu, B.-B. et al. Cholesterol transport through lysosome–peroxisome membrane contacts. Cell 161, 291–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guan, H.-P. et al. Glucagon receptor antagonism induces increased cholesterol absorption. J. Lipid Res. 56, 2183–2195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ebbert, J. O. & Jensen, M. D. Fat depots, free fatty acids, and dyslipidemia. Nutrients 5, 498–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoenig, M. R., Cowin, G., Buckley, R., McHenery, C. & Coulthard, A. Low density lipoprotein cholesterol is inversely correlated with abdominal visceral fat area: a magnetic resonance imaging study. Lipids Health Dis. 10, 12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Dewey, F. E. et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 354, aaf6814 (2016).

    Article  PubMed  Google Scholar 

  64. Lu, X. et al. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum. Mol. Genet. 24, 865–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, D. J. et al. Exome-wide association study of plasma lipids in ≥300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Lu, X. et al. Exome chip meta-analysis identifies novel loci and East Asian–specific coding variants that contribute to lipid levels and coronary artery disease. Nat. Genet. 49, 1722–1730 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).

    CAS  PubMed  Google Scholar 

  68. Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011).

    Article  PubMed  Google Scholar 

  69. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457–470 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Huang, L. et al. Genotype-imputation accuracy across worldwide human populations. Am. J. Hum. Genet. 84, 235–250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schadt, E. E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Greenawalt, D. M. et al. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome Res. 21, 1008–1016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Kaiser Permanente Northern California members who have generously agreed to participate in the Kaiser Permanente Research Program on Genes, Environment, and Health. We would like to thank R. Dobrin for his contribution of the liver and adipose eQTL results table from the RYGB cohort. This work was supported by NIH P50 GM115318 to R.M.K., which partially supported T.H., E.T., M.W.M., C.I., C.S., E.J., R.M.K., and N.R. This work was supported by grants R21 AG046616 and K01 DC013300 to T.J.H. from the US National Institutes of Health for imputation. Support for participant enrollment, survey completion, and biospecimen collection for the RPGEH was provided by the Robert Wood Johnson Foundation, the Wayne and Gladys Valley Foundation, the Ellison Medical Foundation, and Kaiser Permanente national and regional community benefit programs. Genotyping of the GERA cohort was funded by a grant from the National Institute on Aging, the National Institute of Mental Health, and the National Institutes of Health Common Fund (RC2 AG036607 to C.S. and N.R.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.J.H., E.T., T.H., E.J., M.W.M., C.S., R.M.K., C.I., and N.R. conceived and designed the study. P.-Y.K. supervised the creation of genotype data. D.K.R., in collaboration with C.I., C.S., N.R., and T.J.H., extracted phenotype data from the EHRs. T.J.H., E.T., T.H., D.K.R., and N.R. performed the statistical analysis. T.J.H., E.T., T.H., D.K.R., E.J., M.W.M., C.S., R.M.K., C.I., and N.R. interpreted the results of analysis. T.J.H., E.T., T.H., D.K.R., E.J., M.W.M., M.N.K., P.-Y.K., C.S., R.M.K., C.I., and N.R. contributed to the drafting and critical review of the manuscript.

Corresponding authors

Correspondence to Thomas J. Hoffmann or Neil Risch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 3–14, and Supplementary Tables 1, 2, 10, 11, and 13–17

Life Sciences Reporting Summary

Supplementary Figure 2

Plots of each genetic locus

Supplementary Table 3

Novel GERA lipid results

Supplementary Table 4

GERA results for previously identified loci

Supplementary Table 6

Novel GERA + GLGC lipid results

Supplementary Table 8

Conditional SNP results

Supplementary Table 12

Discovery was done in the fixed-effects meta-analysis (n = 94,674) of GERA non-Hispanic whites (n = 76,627), Latinos (n = 7,795), East Asians (n = 6,855), African Americans (n = 2,958), and South Asians (n = 439), each using linear regression

Supplementary Tables 5, 7 and 9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, T.J., Theusch, E., Haldar, T. et al. A large electronic-health-record-based genome-wide study of serum lipids. Nat Genet 50, 401–413 (2018). https://doi.org/10.1038/s41588-018-0064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0064-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing