Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response

Abstract

Regulatory variants are often context specific, modulating gene expression in a subset of possible cellular states. Although these genetic effects can play important roles in disease, the molecular mechanisms underlying context specificity are poorly understood. Here, we identified shared quantitative trait loci (QTLs) for chromatin accessibility and gene expression in human macrophages exposed to IFNγ, Salmonella and IFNγ plus Salmonella. We observed that ~60% of stimulus-specific expression QTLs with a detectable effect on chromatin altered the chromatin accessibility in naive cells, thus suggesting that they perturb enhancer priming. Such variants probably influence binding of cell-type-specific transcription factors, such as PU.1, which can then indirectly alter the binding of stimulus-specific transcription factors, such as NF-κB or STAT2. Thus, although chromatin accessibility assays are powerful for fine-mapping causal regulatory variants, detecting their downstream effects on gene expression will be challenging, requiring profiling of large numbers of stimulated cellular states and time points.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Regulation of gene expression in the macrophage immune response.
Fig. 2: Quantifying enhancer priming in the macrophage immune response.
Fig. 3: Identifying caQTLs that regulate chromatin accessibility at multiple independent regions.
Fig. 4: Identifying eQTLs and caQTLs that colocalize with complex disease-risk loci.

References

  1. 1.

    Li, Y. et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat. Med. 22, 952–960 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Barreiro, L. B. et al. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosisinfection. Proc. Natl Acad. Sci. USA 109, 1204–1209 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kim, S. et al. Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nat. Commun. 5, 5236 (2014).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Lee, M. N. et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343, 1246980 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Çalışkan, M., Baker, S. W., Gilad, Y. & Ober, C. Host genetic variation influences gene expression response to rhinovirus infection. PLoS Genet. 11, e1005111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–66 .e21 (2016).

    Article  PubMed  Google Scholar 

  8. 8.

    de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kim-Hellmuth, S. et al. Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations. Nat. Commun. 8, 266 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Jin, F., Li, Y. & Ren, B. & Natarajan, R. PU.1 and C/EBP(alpha) synergistically program distinct response to NF-kappaB activation through establishing monocyte specific enhancers. Proc. Natl. Acad. Sci. USA 108, 5290–5295 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Heinz, S. et al. Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wang, A. et al. Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. Cell Stem Cell 16, 386–399 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Chow, N. A., Jasenosky, L. D. & Goldfeld, A. E. A distal locus element mediates IFN-γ priming of lipopolysaccharide-stimulated TNF gene expression. Cell Rep. 9, 1718–1728 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Shin, H. Y. et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat. Genet. 48, 904–911 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Banovich, N. E. et al. Impact of regulatory variation across human iPSCs and differentiated cells. Genome Res. 28, 122–131 (2017).

    Article  PubMed  Google Scholar 

  19. 19.

    Pique-Regi, R. et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sherwood, R. I. et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol. 32, 171–178 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Alasoo, K. et al. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. Sci. Rep. 5, 12524 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kilpinen, H. et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 546, 370–375 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 39, 454–469 (2013).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206–213 (2016).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Grubert, F. et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162, 1051–1065 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039–1050 (2015).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Cheng, C.S. et al. Genetic determinants of chromatin accessibility and gene regulation in T cell activation across human individuals. Preprint at https://www.biorxiv.org/content/early/2017/06/08/090241/ (2017).

  30. 30.

    Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Jansen, R. et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum. Mol. Genet. 26, 1444–1451 (2017).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Guo, H. et al. Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. Hum. Mol. Genet. 24, 3305–3313 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Chun, S. et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet. 49, 600–605 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Battle, A. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed  Google Scholar 

  43. 43.

    Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Pai, A. A. et al. The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. PLoS Genet. 8, e1003000 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Mullen, A. C. et al. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell 147, 565–576 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Trompouki, E. et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell 147, 577–589 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Magnani, L., Eeckhoute, J. & Lupien, M. Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet. 27, 465–474 (2011).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Bojcsuk, D., Nagy, G. & Balint, B. L. Inducible super-enhancers are organized based on canonical signal-specific transcription factor binding elements. Nucleic Acids Res. 45, 3693–3706 (2017).

    CAS  PubMed  Google Scholar 

  53. 53.

    Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Jun, G. et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204–216 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15, 182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997/ (2013).

  65. 65.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 16, 195 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article  PubMed  Google Scholar 

  69. 69.

    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Davis, J. R. et al. An efficient multiple-testing adjustment for eqtl studies that accounts for linkage disequilibrium between variants. Am. J. Hum. Genet. 98, 216–224 (2016).

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  72. 72.

    Tan, G. & Lenhard, B. TFBSTools: an R/bioconductor package for transcription factor binding site analysis. Bioinformatics 32, 1555–1556 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

    Book  Google Scholar 

  75. 75.

    Alasoo, K. wiggleplotr: Make Read Coverage Plots From BigWig Files. R package version 1.2.0 (Bioconductor, 2017).

Download references

Acknowledgements

We thank L. Parts, J. Schwartzentruber, C. Wallace, L. Milani, K. Lepik and H. Peterson for helpful comments on the manuscript. We thank R. Nelson for assistance and early access to HipSci iPSC lines. We thank R. Kreuzhuber for providing access to the imputed genotype data from the Fairfax study. We thank C. D. Brown for helpful comments on the manuscript. We also thank WTSI DNA Pipelines and Cytometry Core Facility for their sequencing and flow cytometry services. This work was supported by Wellcome Trust grant WT098051 (G.D. and D.J.G.). K.A. was supported by a PhD fellowship from the Wellcome Trust (WT099754/Z/12/Z) and a postdoctoral fellowship from the Estonian Research Council (MOBJD67). The iPSC lines were generated at the Wellcome Trust Sanger Institute, under the Human Induced Pluripotent Stem Cell Initiative funded by a strategic award (WT098503) from the Wellcome Trust and Medical Research Council. We also acknowledge Life Science Technologies Corporation as the provider of cytotune.

Author information

Affiliations

Authors

Consortia

Contributions

K.A. and D.J.G. wrote the paper with input from all authors. K.A. and J.R. performed the macrophage differentiation experiments. J.R. and A.J.K. performed the chromatin accessibility assays. A.L.M. and K.K. assisted with disease colocalization and enrichment analysis. K.A., S.M. and C.H. optimized the stimulation experiments. K.A. analyzed the data. K.A., S.M., G.D. and D.J.G. designed the experiments. G.D. and D.J.G. supervised research. The HIPSCI Consortium generated and provided early accesss to the iPSC lines used in this work.

Corresponding authors

Correspondence to Kaur Alasoo or Daniel J. Gaffney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19, Supplementary Tables 2, 3 and 9, and Supplementary Note

Life Sciences Reporting Summary

Supplementary Tables

Supplementary Tables 1 and 4–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alasoo, K., Rodrigues, J., Mukhopadhyay, S. et al. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nat Genet 50, 424–431 (2018). https://doi.org/10.1038/s41588-018-0046-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing