Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

GENE REGULATION

Pioneering the chromatin landscape

New genomic analyses indicate that pioneer transcription factors can sample a diverse repertoire of common binding sites among different cell types and become enriched where they cooperate with other factors specific to each cell. Pioneer-factor binding is mechanistically separate from, and is necessary for, subsequent phenomena of chromatin opening and epigenetic memory in vivo.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamics of pioneer-factor activity.

References

  1. Gualdi, R. et al. Genes Dev. 10, 1670–1682 (1996).

    Article  CAS  Google Scholar 

  2. Bossard, P. & Zaret, K. S. Development 125, 4909–4917 (1998).

    CAS  PubMed  Google Scholar 

  3. Lee, C. S., Friedman, J. R., Fulmer, J. T. & Kaestner, K. H. Nature 435, 944–947 (2005).

    Article  CAS  Google Scholar 

  4. Cirillo, L. A. et al. EMBO J. 17, 244–254 (1998).

    Article  CAS  Google Scholar 

  5. Cirillo, L. A. et al. Mol. Cell 9, 279–289 (2002).

    Article  CAS  Google Scholar 

  6. Donaghey, J. et al. Nat. Genet. https://doi.org/10.1038/s41588-017-0034-3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mayran, A. et al. Nat. Genet. https://doi.org/10.1038/s41588-017-0035-2 (2018).

    Article  PubMed  Google Scholar 

  8. Hurtado, A., Holmes, K. A., Ross-Innes, C. S., Schmidt, D. & Carroll, J. S. Nat. Genet. 43, 27–33 (2011).

    Article  CAS  Google Scholar 

  9. Swinstead, E. E. et al. Cell 165, 593–605 (2016).

    Article  CAS  Google Scholar 

  10. Phair, R. D. et al. Mol. Cell. Biol. 24, 6393–6402 (2004).

    Article  CAS  Google Scholar 

  11. Sekiya, T., Muthurajan, U. M., Luger, K., Tulin, A. V. & Zaret, K. S. Genes Dev. 23, 804–809 (2009).

    Article  CAS  Google Scholar 

  12. Iwafuchi-Doi, M. & Zaret, K. S. Genes Dev. 28, 2679–2692 (2014).

    Article  Google Scholar 

  13. Takahashi, K. & Yamanaka, S. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  14. Soufi, A. et al. Cell 161, 555–568 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Zaret.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaret, K.S. Pioneering the chromatin landscape. Nat Genet 50, 167–169 (2018). https://doi.org/10.1038/s41588-017-0038-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-017-0038-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing