Article

A molecular roadmap for the emergence of early-embryonic-like cells in culture

Received:
Accepted:
Published online:

Abstract

Unlike pluripotent cells, which generate only embryonic tissues, totipotent cells can generate a full organism, including extra-embryonic tissues. A rare population of cells resembling 2-cell-stage embryos arises in pluripotent embryonic stem (ES) cell cultures. These 2-cell-like cells display molecular features of totipotency and broader developmental plasticity. However, their specific nature and the process through which they arise remain outstanding questions. Here we identified intermediate cellular states and molecular determinants during the emergence of 2-cell-like cells. By deploying a quantitative single-cell expression approach, we identified an intermediate population characterized by expression of the transcription factor ZSCAN4 as a precursor of 2-cell-like cells. By using a small interfering RNA (siRNA) screen, we identified epigenetic regulators of 2-cell-like cell emergence, including the non-canonical PRC1 complex PRC1.6 and the EP400–TIP60 complex. Our data shed light on the mechanisms that underlie exit from the ES cell state toward the formation of early-embryonic-like cells in culture and identify key epigenetic pathways that promote this transition.

  • Subscribe to Nature Genetics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Ishiuchi, T. & Torres-Padilla, M. E. Towards an understanding of the regulatory mechanisms of totipotency. Curr. Opin. Genet. Dev. 23, 512–518 (2013).

  2. 2.

    Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007).

  3. 3.

    Wu, G. & Schöler, H. R. Lineage segregation in the totipotent embryo. Curr. Top. Dev. Biol. 117, 301–317 (2016).

  4. 4.

    Nichols, J. & Smith, A. The origin and identity of embryonic stem cells. Development 138, 3–8 (2011).

  5. 5.

    Tarkowski, A. K. Experiments on the development of isolated blastomeres of mouse eggs. Nature 184, 1286–1287 (1959).

  6. 6.

    Tarkowski, A. K. & Wróblewska, J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J. Embryol. Exp. Morphol. 18, 155–180 (1967).

  7. 7.

    Tsunoda, Y. & McLaren, A. Effect of various procedures on the viability of mouse embryos containing half the normal number of blastomeres. J. Reprod. Fertil. 69, 315–322 (1983).

  8. 8.

    Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

  9. 9.

    Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

  10. 10.

    Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

  11. 11.

    Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

  12. 12.

    Schöler, H. R., Hatzopoulos, A. K., Balling, R., Suzuki, N. & Gruss, P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 8, 2543–2550 (1989).

  13. 13.

    Canham, M. A., Sharov, A. A., Ko, M. S. & Brickman, J. M. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol. 8, e1000379 (2010).

  14. 14.

    Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

  15. 15.

    Hayashi, K., de Sousa Lopes, S. M. C., Tang, F., Lao, K. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

  16. 16.

    Kalmar, T. et al. Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149 (2009).

  17. 17.

    Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

  18. 18.

    Torres-Padilla, M. E. & Chambers, I. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 141, 2173–2181 (2014).

  19. 19.

    Martinez Arias, A. & Brickman, J. M. Gene expression heterogeneities in embryonic stem cell populations: origin and function. Curr. Opin. Cell Biol. 23, 650–656 (2011).

  20. 20.

    Morgani, S. M. et al. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep. 3, 1945–1957 (2013).

  21. 21.

    Marks, H. et al. The transcriptional and epigenomic foundations of ground-state pluripotency. Cell 149, 590–604 (2012).

  22. 22.

    Alexandrova, S. et al. Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development 143, 24–34 (2016).

  23. 23.

    Martin Gonzalez, J. et al. Embryonic stem cell culture conditions support distinct states associated with different developmental stages and potency. Stem Cell Rep. 7, 177–191 (2016).

  24. 24.

    Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

  25. 25.

    Falco, G. et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550 (2007).

  26. 26.

    Bošković, A. et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 28, 1042–1047 (2014).

  27. 27.

    Ishiuchi, T. et al. Early-embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671 (2015).

  28. 28.

    Grün, D. & van Oudenaarden, A. Design and analysis of single-cell sequencing experiments. Cell 163, 799–810 (2015).

  29. 29.

    Etzrodt, M., Endele, M. & Schroeder, T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 15, 546–558 (2014).

  30. 30.

    Buganim, Y. et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150, 1209–1222 (2012).

  31. 31.

    Guo, G. et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 13, 492–505 (2013).

  32. 32.

    Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013).

  33. 33.

    Ficz, G. et al. FGF signaling inhibition in ES cells drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13, 351–359 (2013).

  34. 34.

    Habibi, E. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369 (2013).

  35. 35.

    Zalzman, M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858–863 (2010).

  36. 36.

    Amano, T. et al. Zscan4 restores the developmental potency of embryonic stem cells. Nat. Commun. 4, 1966 (2013).

  37. 37.

    Hirata, T. et al. Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells. Sci. Rep. 2, 208 (2012).

  38. 38.

    Eckersley-Maslin, M. A. et al. MERVL–Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs. Cell Rep. 17, 179–192 (2016).

  39. 39.

    Cahan, P. & Daley, G. Q. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat. Rev. Mol. Cell Biol. 14, 357–368 (2013).

  40. 40.

    Wray, J. et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat. Cell Biol. 13, 838–845 (2011).

  41. 41.

    Fazzio, T. G., Huff, J. T. & Panning, B. An RNAi screen of chromatin proteins identifies Tip60–p400 as a regulator of embryonic stem cell identity. Cell 134, 162–174 (2008).

  42. 42.

    Hisada, K. et al. RYBP represses endogenous retroviruses and preimplantation- and germ-line-specific genes in mouse embryonic stem cells. Mol. Cell. Biol. 32, 1139–1149 (2012).

  43. 43.

    Suzuki, A. et al. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nat. Commun. 7, 11056 (2016).

  44. 44.

    Aloia, L., Di Stefano, B. & Di Croce, L. Polycomb complexes in stem cells and embryonic development. Development 140, 2525–2534 (2013).

  45. 45.

    Schwartz, Y. B. & Pirrotta, V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat. Rev. Genet. 14, 853–864 (2013).

  46. 46.

    Gao, Z. et al. PCGF homologs, CBX proteins and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).

  47. 47.

    Levine, S. S. et al. The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol. 22, 6070–6078 (2002).

  48. 48.

    Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

  49. 49.

    Zhao, W. et al. Essential role for Polycomb group protein Pcgf6 in embryonic stem cell maintenance and a noncanonical Polycomb repressive complex 1 (PRC1) integrity. J. Biol. Chem. 292, 2773–2784 (2017).

  50. 50.

    Sánchez, C. et al. Proteomics analysis of Ring1B–Rnf2 interactors identifies a novel complex with the Fbxl10 (Jhdm1B) histone demethylase and the Bcl6-interacting co-repressor. MCP 6, 820–834 (2007).

  51. 51.

    Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1 (KDM1A). Genes Dev. 25, 594–607 (2011).

  52. 52.

    Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

  53. 53.

    De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941–945 (2017).

  54. 54.

    Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).

  55. 55.

    Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016).

  56. 56.

    Xu, Y. et al. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J. Cell Biol. 191, 31–43 (2010).

  57. 57.

    Pradhan, S. K. et al. EP400 deposits H3.3 into promoters and enhancers during gene activation. Mol. Cell 61, 27–38 (2016).

  58. 58.

    Eid, A. & Torres-Padilla, M. E. Characterization of noncanonical Polycomb repressive complex 1 subunits during early mouse embryogenesis. Epigenetics 11, 389–397 (2016).

  59. 59.

    Miyanari, Y. & Torres-Padilla, M. E. Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483, 470–473 (2012).

  60. 60.

    Guo, G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010).

  61. 61.

    Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods—a Bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).

  62. 62.

    Burton, A. et al. Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo. Cell Rep. 5, 687–701 (2013).

  63. 63.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

  64. 64.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

  65. 65.

    Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  66. 66.

    Liu, Z. & Kraus, W. L. Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci. Mol. Cell 65, 589–603 (2017).

  67. 67.

    de Dieuleveult, M. et al. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530, 113–116 (2016).

  68. 68.

    Kundu, S. et al. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol. Cell 65, 432–446 (2017).

  69. 69.

    Farcas, A. M. et al. KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

  70. 70.

    Morey, L., Aloia, L., Cozzuto, L., Benitah, S. A. & Di Croce, L. RYBP and Cbx7 define specific biological functions of Polycomb complexes in mouse embryonic stem cells. Cell Rep. 3, 60–69 (2013).

  71. 71.

    Krepelova, A., Neri, F., Maldotti, M., Rapelli, S. & Oliviero, S. Myc and Max genome-wide binding sites analysis links the Myc regulatory network with the Polycomb and the core pluripotency networks in mouse embryonic stem cells. PLoS One 9, e88933 (2014).

  72. 72.

    Ramachandran, P., Palidwor, G. A., Porter, C. J. & Perkins, T. J. MaSC: mappability-sensitive cross-correlation for estimating mean fragment length of single-end short-read sequencing data. Bioinformatics 29, 444–450 (2013).

  73. 73.

    Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

  74. 74.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

  75. 75.

    Chung, D. et al. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data. PLoS Comput. Biol. 7, e1002111 (2011).

Download references

Acknowledgements

We thank A. Smith (Wellcome Trust/MRC Stem Cell Institute) for providing the knock-in REX1 reporter cell line, M. Ko (Keio University) for the Zscan4c promoter plasmid, R. Enriquez-Gasca for providing a classification of MERVLs before publication, D. Reinberg (New York University Langone School of Medicine) for the rabbit antibody to PRDM14, A. Ettinger for time-lapse analysis, C. Ebel, D. Pich, T. Hofer and W. Hammerschmidt for help and access to FACS, the INGESTEM infrastructure for access to the IGBMC high-throughput high-content screening workstation, C. Thibault, F. Recillas-Targa and M. Zurita-Ortega for helpful discussions and A. Burton for critical reading of the manuscript. M.-E.T.-P. acknowledges funding from EpiGeneSys NoE, ERC-Stg ‘NuclearPotency’ (280840), the EMBO Young Investigator Programme, the Fondation Schlumberger pour l’Education et la Recherche (2016-Torres-Padilla) and the Helmholtz Association. J.M.V. acknowledges funding from the Max Planck Society and Epigenesys NoE. T.I. was a recipient of postdoctoral fellowships from the Uehara Memorial Foundation and the Human Frontier Science Programme (LT000015/2012-l). D.R.-T. was partially supported by a DGECI fellowship (2890/2014) from the National University of Mexico.

Author information

Author notes

    • Takashi Ishiuchi

    Present address: Division of Epigenetics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan

  1. Diego Rodriguez-Terrones and Xavier Gaume contributed equally to this work.

Affiliations

  1. Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany

    • Diego Rodriguez-Terrones
    • , Xavier Gaume
    • , Takashi Ishiuchi
    • , Audrey Penning
    •  & Maria-Elena Torres-Padilla
  2. Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM, U964, Strasbourg, France

    • Diego Rodriguez-Terrones
    • , Xavier Gaume
    • , Amélie Weiss
    • , Arnaud Kopp
    •  & Laurent Brino
  3. Max Planck Institute for Molecular Biomedicine, Münster, Germany

    • Kai Kruse
    •  & Juan M. Vaquerizas
  4. Faculty of Biology, Ludwig Maximilians Universität, Munich, Germany

    • Maria-Elena Torres-Padilla

Authors

  1. Search for Diego Rodriguez-Terrones in:

  2. Search for Xavier Gaume in:

  3. Search for Takashi Ishiuchi in:

  4. Search for Amélie Weiss in:

  5. Search for Arnaud Kopp in:

  6. Search for Kai Kruse in:

  7. Search for Audrey Penning in:

  8. Search for Juan M. Vaquerizas in:

  9. Search for Laurent Brino in:

  10. Search for Maria-Elena Torres-Padilla in:

Contributions

D.R.-T., X.G. and T.I. designed, performed and analyzed experiments. D.R.-T. performed most of the computational analyses. A.W. performed the screen together with X.G., under the supervision of L.B. A.K. implemented the screening analysis pipeline with L.B. K.K. performed bioinformatics analysis under the supervision of J.M.V. A.P. performed experiments for screen validation. M.-E.T.-P. designed and supervised the study. All authors contributed to manuscript preparation and read, commented on and approved the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Maria-Elena Torres-Padilla.

Integrated supplementary information

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–12, Supplementary Table 10 and Supplementary Note

  2. Life Sciences Reporting Summary

  3. Supplementary Table 1

    List of TaqMan assays.

  4. Supplementary Table 2

    Raw data from the Biomark expression analysis.

  5. Supplementary Table 3

    Significantly differentially expressed genes between transitional states, based on the Biomark expression data.

  6. Supplementary Table 4

    List of siRNA targets used in the library.

  7. Supplementary Table 5

    List of siRNAs used for validation and subsequent experiments.

  8. Supplementary Table 6

    List of all primers used in this study.

  9. Supplementary Table 7

    Results from primary screening.

  10. Supplementary Table 8

    Results from secondary screening.

  11. Supplementary Table 9

    Differentially expressed genes across each transitional state.

  12. Supplementary Video 1

    Embryonic stem cells transitioning to the 2-cell-like state, through an intermediate Zscan4 + state—example 1. Example video for the time-lapse experiments shown in Fig. 2. The destabilized 2C::tbGFP reporter is shown in green, the destabilized ZSCAN4::mCherry reporter is shown in red and the constitutively expressed H2B-iRFP marking all nuclei is shown in cyan.

  13. Supplementary Video 2

    Embryonic stem cells transitioning to the 2-cell-like state, through an intermediate Zscan4 + state—example 2. Example video for the time-lapse experiments shown in Fig. 2. The destabilized 2C::tbGFP reporter is shown in green, the destabilized ZSCAN4::mCherry reporter is shown in red and the constitutively expressed H2B-iRFP marking all nuclei is shown in cyan.

  14. Supplementary Video 3

    Embryonic stem cells transitioning to the 2-cell-like state, through an intermediate Zscan4 + state—example 3. Example video for the time-lapse experiments shown in Fig. 2. The destabilized 2C::tbGFP reporter is shown in green, the destabilized ZSCAN4::mCherry reporter is shown in red and the constitutively expressed H2B-iRFP marking all nuclei is shown in cyan.