Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

A Publisher Correction to this article was published on 03 June 2019

A Publisher Correction to this article was published on 16 March 2018

A Publisher Correction to this article was published on 16 March 2018

This article has been updated

Abstract

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect sizes of the 14 BMI-associated rare and low frequency coding variants by variant minor allele frequency.
Fig. 2: Heat map showing DEPICT gene set enrichment results for rare and low-frequency coding SNVs with suggestive and significant evidence of association with BMI.

Similar content being viewed by others

Change history

  • 03 June 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 16 March 2018

    A Correction to this paper has been published: https://doi.org/10.1038/s41588-018-0050-y

References

  1. Bray, G. A. & Ryan, D. H. Update on obesity pharmacotherapy. Ann. NY Acad. Sci. 1311, 1–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Bray, G. A., Frühbeck, G., Ryan, D. H. & Wilding, J. P. Management of obesity. Lancet 387, 1947–1956 (2016).

    Article  PubMed  Google Scholar 

  3. Monda, K. L. et al. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat. Genet. 45, 690–696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wen, W. et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum. Mol. Genet. 23, 5492–5504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Winkler, T. W. et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 11, e1005378 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Akiyama, M. et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 49, 1458–1467 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. van der Klaauw, A. A. & Farooqi, I. S. The hunger genes: pathways to obesity. Cell 161, 119–132 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93, 779–797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stratigopoulos, G. et al. Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J. Clin. Invest. 126, 1897–1910 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stratigopoulos, G., LeDuc, C. A., Cremona, M. L., Chung, W. K. & Leibel, R. L. Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator–interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J. Biol. Chem. 286, 2155–2170 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Stratigopoulos, G. et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 19, 767–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sina, M. et al. Phenotypes in three pedigrees with autosomal dominant obesity caused by haploinsufficiency mutations in the melanocortin-4 receptor gene. Am. J. Hum. Genet. 65, 1501–1507 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pearce, L. R. et al. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell 155, 765–777 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinney, A. et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J. Clin. Endocrinol. Metab. 84, 1483–1486 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van den Berg, L. et al. Melanocortin-4 receptor gene mutations in a Dutch cohort of obese children. Obesity 19, 604–611 (2011).

    Article  CAS  Google Scholar 

  22. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lunetta, K. L. et al. Rare coding variants and X-linked loci associated with age at menarche. Nat. Commun. 6, 7756 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Z. et al. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat. Genet. 35, 49–56 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. Tews, D. et al. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol. Cell. Endocrinol. 395, 41–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Stutzmann, F. et al. Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a Janus obesity gene. Hum. Mol. Genet. 16, 1837–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Lin, H. Q., Wang, Y., Chan, K. L., Ip, T. M. & Wan, C. C. Differential regulation of lipid metabolism genes in the brain of acetylcholinesterase knockout mice. J. Mol. Neurosci. 53, 397–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Vignaud, A. et al. Genetic ablation of acetylcholinesterase alters muscle function in mice. Chem. Biol. Interact. 175, 129–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Ji, Z., Mei, F. C. & Cheng, X. Epac, not PKA catalytic subunit, is required for 3T3-L1 preadipocyte differentiation. Front. Biosci. 2, 392–398 (2010).

    Article  Google Scholar 

  30. Yan, J. et al. Enhanced leptin sensitivity, reduced adiposity, and improved glucose homeostasis in mice lacking exchange protein directly activated by cyclic AMP isoform 1. Mol. Cell. Biol. 33, 918–926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Almahariq, M., Mei, F. C. & Cheng, X. Cyclic AMP sensor EPAC proteins and energy homeostasis. Trends Endocrinol. Metab. 25, 60–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Kai, A. K. et al. Exchange protein activated by cAMP 1 (Epac1)-deficient mice develop β-cell dysfunction and metabolic syndrome. FASEB J. 27, 4122–4135 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hardie, D. G. & Ashford, M. L. AMPK: regulating energy balance at the cellular and whole body levels. Physiology 29, 99–107 (2014).

    CAS  Google Scholar 

  35. López, M., Nogueiras, R., Tena-Sempere, M. & Diéguez, C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat. Rev. Endocrinol. 12, 421–432 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Viollet, B. et al. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111, 91–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xue, B. et al. Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol. Cell. Biol. 29, 4563–4573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Warren, H. R. et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat. Genet. 49, 403–415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chami, N. et al. Exome genotyping identifies pleiotropic variants associated with red blood cell traits. Am. J. Hum. Genet. 99, 8–21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, M. et al. SOS2 and ACP1 loci identified through large-scale exome chip analysis regulate kidney development and function. J. Am. Soc. Nephrol. 28, 981–994 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Garfield, A. S. et al. A neural basis for melanocortin-4 receptor–regulated appetite. Nat. Neurosci. 18, 863–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Yeo, G. S. H. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Lubrano-Berthelier, C. et al. Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype–phenotype relationship, and lack of association with binge eating. J. Clin. Endocrinol. Metab. 91, 1811–1818 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hinney, A. et al. Melanocortin-4 receptor gene: case–control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J. Clin. Endocrinol. Metab. 88, 4258–4267 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miyawaki, K. et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8, 738–742 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 117, 143–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Fulurija, A. et al. Vaccination against GIP for the treatment of obesity. PLoS One 3, e3163 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Finan, B. et al. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol. Med. 22, 359–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Irwin, N. & Flatt, P. R. Evidence for beneficial effects of compromised gastric inhibitory polypeptide action in obesity-related diabetes and possible therapeutic implications. Diabetologia 52, 1724–1731 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Revelli, J. P. et al. Profound obesity secondary to hyperphagia in mice lacking kinase suppressor of ras 2. Obesity 19, 1010–1018 (2011).

    Article  CAS  Google Scholar 

  61. Costanzo-Garvey, D. L. et al. KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab. 10, 366–378 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brommage, R. et al. High-throughput screening of mouse knockout lines identifies true lean and obese phenotypes. Obesity 16, 2362–2367 (2008).

    Article  CAS  Google Scholar 

  63. Liu, L. et al. Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway. Biochim. Biophys. Acta 1794, 1485–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Kühnen, P. et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Engl. J. Med. 375, 240–246 (2016).

    Article  PubMed  CAS  Google Scholar 

  65. Xiang, Y. Y., Dong, H., Yang, B. B., Macdonald, J. F. & Lu, W. Y. Interaction of acetylcholinesterase with neurexin-1β regulates glutamatergic synaptic stability in hippocampal neurons. Mol. Brain 7, 15 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bartels, C. F., Zelinski, T. & Lockridge, O. Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism. Am. J. Hum. Genet. 52, 928–936 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Farlow, M. R. et al. Effectiveness and tolerability of high-dose (23 mg/d) versus standard-dose (10 mg/d) donepezil in moderate to severe Alzheimer’s disease: a 24-week, randomized, double-blind study. Clin. Ther. 32, 1234–1251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Farlow, M. et al. Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer’s disease. BMC Neurol. 11, 57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tariot, P., Salloway, S., Yardley, J., Mackell, J. & Moline, M. Long-term safety and tolerability of donepezil 23 mg in patients with moderate to severe Alzheimer’s disease. BMC Res. Notes 5, 283 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hu, Y. et al. Role of exchange protein directly activated by cyclic AMP isoform 1 in energy homeostasis: regulation of leptin expression and secretion in white adipose tissue. Mol. Cell. Biol. 36, 2440–2450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Altarejos, J. Y. et al. The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat. Med. 14, 1112–1117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winnier, D. A. et al. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES). PLoS One 10, e0119941 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Molotkov, A., Deltour, L., Foglio, M. H., Cuenca, A. E. & Duester, G. Distinct retinoid metabolic functions for alcohol dehydrogenase genes Adh1 and Adh4 in protection against vitamin A toxicity or deficiency revealed in double null mutant mice. J. Biol. Chem. 277, 13804–13811 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  75. Volpicelli-Daley, L. A., Duysen, E. G., Lockridge, O. & Levey, A. I. Altered hippocampal muscarinic receptors in acetylcholinesterase-deficient mice. Ann. Neurol. 53, 788–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Ivanenkov, V. V., Murphy-Piedmonte, D. M. & Kirley, T. L. Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function. Biochemistry 42, 11726–11735 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Jain, R. N. et al. Hip1r is expressed in gastric parietal cells and is required for tubulovesicle formation and cell survival in mice. J. Clin. Invest. 118, 2459–2470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tao, Y. X. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr. Rev. 31, 506–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stutzmann, F. et al. Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes 57, 2511–2518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vaisse, C. et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 253–262 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schönke, M., Myers, M. G. Jr., Zierath, J. R. & Björnholm, M. Skeletal muscle AMP-activated protein kinase γ1H151R overexpression enhances whole body energy homeostasis and insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 309, E679–E690 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins. J. Cell Biol. 173, 767–780 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Banerjee, U. & Cheng, X. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: structure, function and therapeutics. Gene 570, 157–167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rippey, C. et al. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am. J. Hum. Genet. 93, 697–710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmitz, C., Kinge, P. & Hutter, H. Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proc. Natl. Acad. Sci. USA 104, 834–839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Widom, R. L., Culic, I., Lee, J. Y. & Korn, J. H. Cloning and characterization of hcKrox, a transcriptional regulator of extracellular matrix gene expression. Gene 198, 407–420 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Sun, X. et al. Deletion of Atbf1/Zfhx3 in mouse prostate causes neoplastic lesions, likely by attenuation of membrane and secretory proteins and multiple signaling pathways. Neoplasia 16, 377–389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Parsons, M. J. et al. The regulatory factor ZFHX3 modifies circadian function in SCN via an AT motif–driven axis. Cell 162, 607–621 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Balzani, E. et al. The Zfhx3-mediated axis regulates sleep and interval timing in mice. Cell Rep. 16, 615–621 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Kao, Y. H. et al. ZFHX3 knockdown increases arrhythmogenesis and dysregulates calcium homeostasis in HL-1 atrial myocytes. Int. J. Cardiol. 210, 85–92 (2016).

    Article  PubMed  Google Scholar 

  93. Auer, P. L., Reiner, A. P. & Leal, S. M. The effect of phenotypic outliers and non-normality on rare-variant association testing. Eur. J. Hum. Genet. 24, 1188–1194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Goldstein, J. I. et al. zCall: a rare variant caller for array-based genotyping: genetics and population analysis. Bioinformatics 28, 2543–2545 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grove, M. L. et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS One 8, e68095 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 32, 1423–1426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, D. J. et al. Meta-analysis of gene-level tests for rare variant association. Nat. Genet. 46, 200–204 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Winkler, T. W. et al. EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data. Bioinformatics 31, 259–261 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Price, A. L. et al. Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet. 86, 832–838 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44, 623–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Feng, S., Liu, D., Zhan, X., Wing, M. K. & Abecasis, G. R. RAREMETAL: fast and powerful meta-analysis for rare variants. Bioinformatics 30, 2828–2829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics 26, 1205–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.P.R. was supported by R01DK089256. A.W.H. is supported by an NHMRC Practitioner Fellowship (APP1103329). A.K.M. received funding from NIH/NIDDK K01DK107836. A.T.H. is a Wellcome Trust Senior Investigator (WT098395) and an NIH Research Senior Investigator. A.P.M. is a Wellcome Trust Senior Fellow in Basic Biomedical Science (WT098017). A.R.W. is supported by the European Research Council (SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC). A.U.J. is supported by the American Heart Association (13POST16500011) and the NIH (R01DK089256, R01DK101855, K99HL130580). B.K. and E.K.S. were supported by the Doris Duke Medical Foundation, the NIH (R01DK106621), the University of Michigan Internal Medicine Department, Division of Gastroenterology, the University of Michigan Biological Sciences Scholars Program and the Central Society for Clinical Research. C.J.W. is supported by the NIH (HL094535, HL109946). D.J.L. is supported by R01HG008983 and R21DA040177. D.R.W. is supported by the Danish Diabetes Academy, which is funded by the Novo Nordisk Foundation. V. Salomaa has been supported by the Finnish Foundation for Cardiovascular Research. F.W.A. is supported by Dekker scholarship–Junior Staff Member 2014T001 Netherlands Heart Foundation and the UCL Hospitals NIHR Biomedical Research Centre. F.D. is supported by the UK MRC (MC_UU_12013/1-9). G.C.-P. received scholarship support from the University of Queensland and QIMR Berghofer. G.L. is funded by the Montreal Heart Institute Foundation and the Canada Research Chair program. H.Y. and T.M.F. are supported by the European Research Council (323195; SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC). I.M.H. is supported by BMBF (01ER1206) and BMBF (01ER1507m), the NIH and the Max Planck Society. J. Haessler was supported by NHLBI R21HL121422. J.N.H. is supported by NIH R01DK075787. K.E.N. was supported by the NIH (R01DK089256, R01HD057194, U01HG007416, R01DK101855) and the American Heart Association (13GRNT16490017). M.A.R. is supported by the Nuffield Department of Clinical Medicine Award, Clarendon Scholarship. M.I.M. is a Wellcome Trust Senior Investigator (WT098381) and an NIH Research Senior Investigator. M.D. is supported by the NCI (R25CA94880, P30CA008748). P.R.N. is supported by the European Research Council (AdG; 293574), the Research Council of Norway, the University of Bergen, the KG Jebsen Foundation and the Helse Vest, Norwegian Diabetes Association. P.T.E. is supported by the NIH (1R01HL092577, R01HL128914, K24HL105780), by an Established Investigator Award from the American Heart Association (13EIA14220013) and by the Foundation Leducq (14CVD01). P.L.A. was supported by NHLBI R21HL121422 and R01DK089256. P.L.H. is supported by the NIH (NS33335, HL57818). R.S.F. is supported by the NIH (T32GM096911). R.J.F.L. is supported by the NIH (R01DK110113, U01HG007417, R01DK101855, R01DK107786). S.A.L. is supported by the NIH (K23HL114724) and a Doris Duke Charitable Foundation Clinical Scientist Development Award. T.D.S. holds an ERC Advanced Principal Investigator award. T.A.M. is supported by an NHMRC Fellowship (APP1042255). T.H.P. received Lundbeck Foundation and Benzon Foundation support. V.T. is supported by a postdoctoral fellowship from the Canadian Institutes of Health Research (CIHR). Z.K. is supported by the Leenaards Foundation, the Swiss National Science Foundation (31003A-143914) and SystemsX.ch (51RTP0_151019). Part of this work was conducted using the UK Biobank resource (project numbers 1251 and 9072). A full list of acknowledgments appears in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Writing group (wrote and edited the manuscript): A.E.J., A.E.L., C.M.L., C.S., G.L., H.M.H., J.N.H., K.E.N., K.L.Y., M.F.F., M. Graff, P.D., R.J.F.L., T.M.F., V.T., Y. Lu. Data preparation group (program development and quality control of data from contributing cohorts for meta-analyses): A.E.J., A.E.L., C.M.-G., C.S., D.J.L., E.M., H.M.H., I.B.B., K.L.Y., K.E.S., K.S.L., M.A.R., M.C.Y.N., M. Graff, N.G.D.M., P. Mudgal, R.J.F.L., S. Feng, S.M.W., S.S., S.V., T.A., T.E., T. Karaderi, T.W.W., V.T., X.Z., Y. Lu. BMI meta-analyses (discovery and follow-up, single variant and gene based): A.E.J., C.S., C.-T.L., D.J.L., H.M.H., I.B.B., J.N.H., K.L.Y., R.J.F.L., T.M.F., V.T., Y. Lu. Childhood data (analyses and interpretation): A.E.H., G.M., H.H., I. Barroso, I.S.F., J.P.B., S.F.A.G., V.M. Pleiotropy working group: A.M., C.J.W., C.M.L., D.J.L., E.M., F.D., G.A., G.M., G.M.P., H. Kitajima, H.M.H., J.C.F., J.P.C., J.R.B.P., J.W., K.S.R., M. Boehnke, M.I.M., P.B.M., P.D., R.J.F.L., S. Kathiresan, S.M.W., S.W., T.F.V., X.S. Phenome-wide association studies: A.G., A.M., J.C.D., L. Bastarache, M.I.M., T.L.E. Gene set enrichment analyses: D.L., J.N.H., R.S.F., S.B., T.H.P., Z.K. Monogenic and syndromic gene enrichment analyses: A.K.M., H.M.H. Fly obesity screen: A. Lempradl, J.A. Pospisilik. Oversight of contributing studies: A. Linneberg, A. Peters, A. Tönjes, A.C.H., A.D.M., A.G.U., A.I.d.H., A.J.L., A.M.D., A.P.M., A.P.R., A.S.B., A.T.H., A.W.H., B.B., B.G.N., C.A.B., C.C., C.E.P., C.H., C.J.W., C.L., C.M.L., C.N.A.P., D.F.E., D.F.R., D.I.C., D.M.W., D.O.M.-K., D.R.N., D.R.W., D.S., D.W.B., E.B., E.B.L., E.D.A., E.F., E.I., E.K.S., E.P.B., E.Z., F. Karpe, F. Kee, F. Renström, F.W.A., G. Dedoussis, G. Tromp, G.B., G.B.J., G.K.H., G.L., G.P., G.P.J., G.W.M., H. Kuivaniemi, H.B., H.D.W., H.H., H.-J.G., H.M.d.R., H.R.W., I. Barroso, I. Brandslund, I.B.B., I.F., I.J.D., I.M.H., I.R., I.S.F., J. Kaprio, J.C.C., J.-C.T., J.D., J.D.R., J.F., J.G.W., J.I.R., J.M.M.H., J.M.S., J.R.O’C., J.S.K., J.T., K. Stefansson, K. Strauch, K.E.N., K.K., K.K.A., K.L.M., K.M.H., K.N., K.R.O., K.T.Z., L.E.W., L.L., L.W., M. Blüher, M. Kähönen, M.A.I., M.A.R., M.B.S., M.C.H.d.G., M.d.H., M.E.J., M.F., M.H.B., M.I.M., M.L.O’D., M.M., M.P., M.-P.D., M.S., M.U., M.V., M.W., N.D.P., N.J.S., N.J.W., N.S., N.v.L., O. Pedersen, O. Polasek, O.T.R., P. Kovacs, P.A., P.A.P., P.B.M., P.D., P.E., P.G., P.G.-L., P.J.S., P.L.A., P.L.H., P.L.P., P.M.R., P.R.N., P.T.C., P.W.F., R.A.O., R.A.S., R.C., R.E.S., R.J.F.L., R.V., S. Fauser, S. Kathiresan, S.E.M., S.F.A.G., S.J., S.L.R.K., S.M., S.P., S.H.S., T.A.M., T.B.H., T.D.S., T.E., T.H., T.J., T.L., T.L.E., T.M.F., U.T., V. Gudnason, V. Salomaa, V.V., W.H.-H.S., X.G., X.L., Y. Liu. Genotyping of contributing studies: A. Loukola, A.T.-H., A.S.B., A.D’E., A.G.U., A.I.d.H., A.J.L., A.L.M., A.M., A.M.D., A.P.G., A.P.M., A.P.R., A.R.H., A.S.B., A.V., A.W.H., A.Y.C., B.G.N., C.A.B., C.E.P., C.H., C.J.P., C.K., C.L., C.M., C.M.-G., C.M.L., C.M.v.D., C.N.A.P., C.S., D.F.R., D.I.C., D.J.C., D.J.R., D.M.W., D.R.N., E.D.A., E.E., E.I., E.K., E.M.L., E.P.B., E.W.D., F. Karpe, F. Rivadeneira, F.S.C., G. Davies, G. Tromp, G.P.J., G.W.M., H. Kuivaniemi, H.H., H.L.G., H. Li, H.V., I.G., J. Kuusisto, J.A. Perry, J.B.-J., J.C.C., J.D., J.D.F., J.G.D., J.I.R., J.M.M.H., J.S.K., J.T., K. Strauch, K.D.T., K.E.S., K.M., L. Milani, L. Southam, L.A.L., L.A.K., L.M.Y.-A., L.-P.L., M. Benn, M. Boehnke, M. Gorski, M. Kähönen, M.B.S., M.C.H.d.G., M.F., M.H.B., M.I.M., M.L., M.L.B., M.L.G., M.L.O’D., M.M.-N., M.-P.D., M.P.S.-L., N.D.P., N.G., N.J.S., N.J.W., N.v.L., Ø.H., P.B.M., P.G.-L., P.I.W.d.B., P.T.C., P.W.F., R.A.O., R.A.S., R.E.S., R.F.-S., R.J.F.L., R.L.-G., R.R., R.Y., S. Kanoni, S. Kathiresan, S.C., S.F.A.G., S.F.N., S.H.V., S.L.R.K., S.S., S.W.v.d.L., T.A.L., T.B.H., T.E., T.H., T.L., U.V., V.V., Wei Zhao, X.L., Y. Lu, Y.-D.I.C., Y.H., Y. Liu, Y. Wang. Phenotyping of contributing studies: A.A.B., A.-E.F., A.F., A.J. Swift, A. Pattie, A. Peters, A.R.H., A. Robino, A.S.B., A.T.H., A. Tönjes, A.T.-H., A.U.J., A.V., A.W.H., B.B., B.G.N., B.H.T., B.K., C.A.B., C.E.L., C.E.P., C.H., C.J.P., C.K., C.M., C.M.-G., C.M.L., C.N.A.P., C.S., D.E., D.F.R., D.I.C., D.J.R., D.R.N., D.R.V.E., D.R.W., E.C., E.D.A., E.E., E.F., E.I., E.P.B., E.R.B.P., E.T., E.W.D., F. Karpe, F. Kee, F. Renström, F. Rivadeneira, F.W., G.B.J., G.L., G.P.J., G. Tromp, G.W.M., H.B., H.D.W., H.H., H.L.G., H. Li, I.J.D., I.R., J.C., J.C.C., J.D., J.D.F., J.F., J.-H.J., J. Kaprio, J. Lindström, J.M.M.H., J.M.S., J.P.B., J.S.K., K.E.N., K.-H.L., K.K., K.K.A., K.M.H., K.N., K.R.O., K.S.L., K.S.S., K.T.Z., L.A.K., L.E.B., L.E.W., L.L., L.M.Y.-A., L. Southam, L. Sun, L.W., M.A., M.A.I., M. Blüher, M. Brumat, M.C.H.d.G., M.F.F., M.I.M., M.J.C., M. Kähönen, M. Karaleftheri, M.L.B., M.M., M.M.-N., M.N., M.R., M.S., N.D.P., N.F., N.G., N.J.S., N.J.W., N.N., N.R.L., Ø.H., O.H.F., O.L.H., O. Polasek, O.R., O.T.R., P.A., P.G.-L., P. Komulainen, P. Kovacs, P.L.P., P.M.R., P. Mitchell, P.R.K., P.R.N., P.T.C., P.T.E., R.d.M., R.E.S., R.F.-S., R.M.-C., R.R., R.S.K., R.V., R.Y., S.A.L., S.E.M., S.F.A.G., S. Fauser, S.H.S., S.H.V., S.L.R.K., S.M., S.S., S.T., T.A.L., T.A.M., T.B.H., T.D.S., T.E.G., T.J., T.J.P., T.L., T.L.E., T.N.P., V. Giedraitis, V. Salomaa, V.T., W.H.-H.S., X.L., X.S., Y. Liu, Y. Lu. Data analysis of contributing studies: A.E.H., A.E.J., A.E.L., A.G., A.J.C., A.J. Slater, A. Lophatananon, A.M., A.P.M., A.P.P., A. Pirie, A.R.W., A. Rasheed, A. Robino, A.S.B., A. Teumer, A.V.S., A.Y.C., B.K., C.A.B., C.A.W., C.H., C.M.-G., C.P.N., C.S., C.T.H., C.-T.L., D.F.R., D.I.C., D.J.T., D.M.W., D.S.A., D.S.C., D.V., E.B.W., E.E., F. Rivadeneira, G.C.-P., G. Davies, G.L., G.M., G. Thorleifsson, G. Tromp, G.V., H. Li, H. Lin, H.M.S., H.P., H.R.W., H.T., H.Y., I.F., I.G., J.A. Perry, J.B.-J., J.C.C., J.C.G., J.E.H., J.G., J.G.D., J.H.Z., J. Haessler, J. Hernesniemi, J.I.R., J. Kuusisto, J. Li, J. Luan, J.M.M.H., J.P.B., J.P.T., J.R.O’C., J.S.K., J.v.S., J.W.J., J.Y., K.E.N., K.E.S., K.E.T., K.L.Y., K.M., K.S.L., L.-A.L., L.A.L., L. Broer, L.F.B., L.H., L.M.O.L., L.M.Y.-A., L. Moilanen, L.-P.L., L. Southam, M.A.N., M.C., M.C.H.d.G., M.C.Y.N., M.D., M.F., M.F.F., M. Gorski, M. Graff, M.L., M.P.S.-L., M.R., M.U., M.V., N.D.P., N.G., N.G.D.M., N.J.S., N.L.H.-C., N.R.R., N.v.L., Ø.H., P.L.A., P. Mudgal, P.S., P.Y., R.A.S., R.C., R.L.-G., R.U., R.Y., S.A.L., S.E.A., S.G., S.J., S.M., S.M.W., S.P., S.S., S.V., S.W.v.d.L., T.E., T. Karaderi, T. Korhonen, T.L.E., T.M.F., T.V.V., T.W.W., V.M., V. Steinthorsdottir, V.T., V.V., W.G., W. Zhang, W. Zhou, Wei Zhao, X.G., X.L., X.S., Y.H., Y.J., Y. Lu, Y.S., Y. Wu.

Corresponding authors

Correspondence to Joel N. Hirschhorn or Ruth J. F. Loos.

Ethics declarations

Competing interests

G. Thorleifsson, V. Steinthorsdottir, U.T. and K. Stefansson are employed by deCODE Genetics/Amgen, Inc.I. Barroso and spouse own stock in GlaxoSmithKline and Incyte, Ltd.S. Kathiresan has received grant support from Bayer Healthcare and Amarin; holds equity in San Therapeutics and Catabasis; and has received personal fees for participation in scientific advisory boards for Bayer Healthcare, Catabasis, Regeneron Genetics Center, Merck, Celera, Genomics PLC, Novartis, Sanofi, AstraZeneca, Alnylam, Eli Lilly Company, Leerink Partners, Noble Insights and Ionis Pharmaceuticals. A.Y.C., D.F.R. and T.F.V. are employees of Merck Sharp Dohme Corp., New Jersey, USA. D.I.C. receives genotyping and collaborative scientific support from Amgen and receives support for genetic analysis from AstraZeneca. P.M.R. receives genotyping and collaborative scientific support from Amgen and receives support for genetic analysis from AstraZeneca. M.J.C. is Chief Scientist for Genomics England, a UK government company.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Note.

Life Sciences Reporting Summary

Supplementary Tables 1–26

Supplementary Tables 1–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turcot, V., Lu, Y., Highland, H.M. et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 50, 26–41 (2018). https://doi.org/10.1038/s41588-017-0011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-017-0011-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing