Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembling protein nanoparticles for cytosolic delivery of nucleic acids and proteins

Abstract

Intracellular delivery of biomacromolecules is hampered by low efficiency and cytotoxicity. Here we report the development of elastin-based nanoparticles for therapeutic delivery (ENTER), a recombinant elastin-like polypeptide (ELP)-based delivery system for effective cytosolic delivery of biomacromolecules in vitro and in vivo. Through iterative design, we developed fourth-generation ELPs fused to cationic endosomal escape peptides (EEPs) that self-assemble into pH-responsive micellar nanoparticles and enable cytosolic entry of cargo following endocytic uptake. In silico screening of α-helical peptide libraries led to the discovery of an EEP (EEP13) with 48% improved protein delivery efficiency versus a benchmark peptide. Our lead ELP–EEP13 showed similar or superior performance compared to lipid-based transfection reagents in the delivery of mRNA-encoded, DNA-encoded and protein-form Cre recombinase and CRISPR gene editors as well as short interfering RNAs to multiple cell lines and primary cell types. Intranasal administration of ELP–EEP13 combined with Cre protein achieved efficient editing of lung epithelial cells in reporter mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of elastin-based nanoparticles for cytosolic delivery of therapeutic macromolecules.
Fig. 2: Discovery of enhanced endosomolytic peptides via in silico screening.
Fig. 3: ELP-mediated protein delivery to primary cells.
Fig. 4: Complexation and delivery of siRNA by ELP nanoparticles.
Fig. 5: Complexation and delivery of mRNA by ELP nanoparticles.
Fig. 6: ELP-mediated delivery of Cre protein to the bronchial epithelium in vivo.

Similar content being viewed by others

Data availability

Data used for training EEP predictive models and the compiled α-helical peptide database are available on GitHub (https://github.com/sayoeweje/elp-eep-discovery)89. Source data are provided with this paper. All additional data are available upon request.

Code availability

All scripts and data used for EEP design can be found on GitHub at https://github.com/sayoeweje/elp-eep-discovery (ref. 89).

References

  1. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Ramaswamy, S. et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl Acad. Sci. USA 114, E1941–E1950 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Methods Primers 2, 24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian, Y., Tirrell, M. V. & LaBelle, J. L. Harnessing the therapeutic potential of biomacromolecules through intracellular delivery of nucleic acids, peptides, and proteins. Adv. Healthc. Mater. 11, 2102600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Sig. Transduct. Target. Ther. 6, 53 (2021).

    Article  CAS  Google Scholar 

  12. Zhao, Z., Anselmo, A. C. & Mitragotri, S. Viral vector‐based gene therapies in the clinic. Bioeng. Transl. Med. 7, e10258 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Das, R., Kanjilal, P., Medeiros, J. & Thayumanavan, S. What’s next after lipid nanoparticles? A perspective on enablers of nucleic acid therapeutics. Bioconjug. Chem. 33, 1996–2007 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koren, E., Apte, A., Sawant, R. R., Grunwald, J. & Torchilin, V. P. Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Deliv. 18, 377–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt, N., Mishra, A., Lai, G. H. & Wong, G. C. L. Arginine-rich cell-penetrating peptides. FEBS Lett. 584, 1806–1813 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Derossi, D., Joliot, A. H., Chassaing, G. & Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Krishnamurthy, S. et al. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat. Commun. 10, 4906 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sánchez-Navarro, M. Advances in peptide-mediated cytosolic delivery of proteins. Adv. Drug Deliv. Rev. 171, 187–198 (2021).

    Article  PubMed  Google Scholar 

  20. Boisguérin, P., Konate, K., Josse, E., Vivès, E. & Deshayes, S. Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines 9, 583 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim, W. & Chaikof, E. L. Recombinant elastin-mimetic biomaterials: emerging applications in medicine. Adv. Drug Deliv. Rev. 62, 1468–1478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gagner, J. E., Kim, W. & Chaikof, E. L. Designing protein-based biomaterials for medical applications. Acta Biomater. 10, 1542–1557 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins, I. C., Milligan, J. J. & Chilkoti, A. Genetically encoded elastin-like polypeptides for drug delivery. Adv. Healthc. Mater. 10, 2100209 (2021).

    Article  CAS  Google Scholar 

  24. Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028 (1997).

    Article  CAS  Google Scholar 

  25. Dreher, M. R. et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc. 130, 687–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Li, N. K., García Quiroz, F., Hall, C. K., Chilkoti, A. & Yingling, Y. G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15, 3522–3530 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, W., Xiao, J. & Chaikof, E. L. Recombinant amphiphilic protein micelles for drug delivery. Langmuir 27, 14329–14334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, W., Brady, C. & Chaikof, E. L. Amphiphilic protein micelles for targeted in vivo imaging. Acta Biomater. 8, 2476–2482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, W. et al. Targeted antithrombotic protein micelles. Angew. Chem. Int. Ed. Engl. 54, 1461–1465 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Yi, A., Sim, D., Lee, Y.-J., Sarangthem, V. & Park, R.-W. Development of elastin-like polypeptide for targeted specific gene delivery in vivo. J. Nanobiotechnology 18, 15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yi, A., Sim, D., Lee, S.-B., Sarangthem, V. & Park, R.-W. Application of bioengineered elastin-like polypeptide-based system for targeted gene delivery in tumor cells. Biomater. Biosyst. 6, 100050 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Eweje, F. et al. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 305, 122464 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, W., Thévenot, J., Ibarboure, E., Lecommandoux, S. & Chaikof, E. L. Self-assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angew. Chem. Int. Ed. Engl. 49, 4257–4260 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Dorr, B. M., Ham, H. O., An, C., Chaikof, E. L. & Liu, D. R. Reprogramming the specificity of sortase enzymes. Proc. Natl Acad. Sci. USA 111, 13343–13348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kwon, H.-S. et al. Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood 133, 2104–2108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Czechowicz, A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 10, 617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Freeman, E. C., Weiland, L. M. & Meng, W. S. Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. J. Biomater. Sci. Polym. Ed. 24, 398–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Hajimolaali, M. et al. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin. Drug Deliv. 18, 877–889 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Nielsen, E. J. B. et al. In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J. Control. Release 189, 19–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. El-Sayed, A., Masuda, T., Khalil, I., Akita, H. & Harashima, H. Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. J. Control. Release 138, 160–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Rai, D. K. & Qian, S. Interaction of the antimicrobial peptide aurein 1.2 and charged lipid bilayer. Sci. Rep. 7, 3719 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Peterson, J. J. & Meares, C. F. Cathepsin substrates as cleavable peptide linkers in bioconjugates, selected from a fluorescence quench combinatorial library. Bioconjug. Chem. 9, 618–626 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Biniossek, M. L., Nägler, D. K., Becker-Pauly, C. & Schilling, O. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J. Proteome Res. 10, 5363–5373 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Abboud-Jarrous, G. et al. Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J. Biol. Chem. 283, 18167–18176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Biswas, A. et al. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS Nano 5, 1385–1394 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Xie, J. et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front. Pharmacol. 11, 697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guterstam, P. et al. Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim. Biophys. Acta 1788, 2509–2517 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Islam, M. Z., Ariyama, H., Alam, J. M. & Yamazaki, M. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Biochemistry 53, 386–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Sato, H. & Feix, J. B. Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Biophys. Acta 1758, 1245–1256 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ho, A., Schwarze, S. R., Mermelstein, S. J., Waksman, G. & Dowdy, S. F. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 61, 474–477 (2001).

    CAS  PubMed  Google Scholar 

  53. Kabelka, I. & Vácha, R. Advances in molecular understanding of α-helical membrane-active peptides. Acc. Chem. Res. 54, 2196–2204 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Brock, D. J. et al. Mechanism of cell penetration by permeabilization of late endosomes: interplay between a multivalent TAT peptide and bis(monoacylglycero)phosphate. Cell Chem. Biol. 27, 1296–1307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guay, D., Del’Guidice, T. & Lepetit-Stoffaes, J.-P. Polypeptide-based shuttle agents for improving the transduction efficiency of polypeptide cargos to the cytosol of target eukaryotic cells, uses thereof, methods and kits relating to same. US patent US9738687B2 (2016).

  56. Wang, G., Li, X. & Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Pirtskhalava, M. et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49, D288–D297 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Tsai, C.-Y. et al. Helical structure motifs made searchable for functional peptide design. Nat. Commun. 13, 102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Machida, S., Niimi, S., Shi, X., Ando, Y. & Yu, Y. Design of a novel membrane-destabilizing peptide selectively acting on acidic liposomes. Biosci. Biotechnol. Biochem. 64, 985–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Slaninová, J. et al. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 33, 18–26 (2012).

    Article  PubMed  Google Scholar 

  61. Oh, J. H. et al. Multimeric amphipathic α-helical sequences for rapid and efficient intracellular protein transport at nanomolar concentrations. Adv. Sci. 5, 1800240 (2018).

    Article  Google Scholar 

  62. Chong, S.-E. et al. Intracellular delivery of immunoglobulin G at nanomolar concentrations with domain Z-fused multimeric α-helical cell penetrating peptides. J. Control. Release 330, 161–172 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277, 32157–32164 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, S., Shen, J., Li, D. & Cheng, Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11, 614–648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rilo-Alvarez, H., Ledo, A. M., Vidal, A. & Garcia-Fuentes, M. Delivery of transcription factors as modulators of cell differentiation. Drug Deliv. Transl. Res. 11, 426–444 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, F. et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Hołubowicz, R. et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat. Biomed. Eng. 9, 57–78 (2025).

    Article  PubMed  Google Scholar 

  70. Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02437-3 (2024).

  71. Mónica Bravo-Anaya, L. et al. Coupling of RAFT polymerization and chemoselective post-modifications of elastin-like polypeptides for the synthesis of gene delivery hybrid vectors. Polym. Chem. 12, 226–241 (2021).

    Article  Google Scholar 

  72. Bravo-Anaya, L. M. et al. Nucleic acids complexation with cationic elastin-like polypeptides: stoichiometry and stability of nano-assemblies. J. Colloid Interface Sci. 557, 777–792 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Kelly, G. et al. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J. Control. Release 343, 267–276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, C. H., Ingrole, R. S. J. & Gill, H. S. Generation of induced pluripotent stem cells using elastin like polypeptides as a non-viral gene delivery system. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165405 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Piña, M. J. et al. A double safety lock tumor-specific device for suicide gene therapy in breast cancer. Cancer Lett. 470, 43–53 (2020).

    Article  PubMed  Google Scholar 

  76. Del’Guidice, T. et al. Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR–Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS ONE 13, e0195558 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chow, D. C., Dreher, M. R., Trabbic-Carlson, K. & Chilkoti, A. Ultra-high expression of a thermally responsive recombinant fusion protein in E. coli. Biotechnol. Prog. 22, 638–646 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tripathi, N. K. Production and purification of recombinant proteins from Escherichia coli. ChemBioEng Rev. 3, 116–133 (2016).

    Article  Google Scholar 

  79. Schneier, M., Razdan, S., Miller, A. M., Briceno, M. E. & Barua, S. Current technologies to endotoxin detection and removal for biopharmaceutical purification. Biotechnol. Bioeng. 117, 2588–2609 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, S., Sun, Y., Zhang, L., Zhang, F. & Gao, W. Thermoresponsive polypeptide fused l-asparaginase with mitigated immunogenicity and enhanced efficacy in treating hematologic malignancies. Adv. Sci. 10, 2300469 (2023).

    Article  CAS  Google Scholar 

  81. Cheng, T.-F. et al. Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection. J. Immunol. 176, 7462–7470 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xu, L., Liu, Y. & Han, R. BEAT: a Python program to quantify base editing from Sanger sequencing. CRISPR J. 2, 223–229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Seluanov, A., Vaidya, A. & Gorbunova, V. Establishing primary adult fibroblast cultures from rodents. J. Vis. Exp. 2010, 2033 (2010).

  85. Angsana, J. et al. Syndecan-1 modulates the motility and resolution responses of macrophages. Arterioscler. Thromb. Vasc. Biol. 35, 332–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, J. et al. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Sci. Adv. 6, eaay8230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tran, N. T. et al. Efficient CRISPR/Cas9-mediated gene knockin in mouse hematopoietic stem and progenitor cells. Cell Rep. 28, 3510–3522 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bayes, H. K., Ritchie, N., Irvine, S. & Evans, T. J. A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection. Sci. Rep. 6, 35838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eweje, F. et al. Self-assembling protein nanoparticles for cytosolic delivery of nucleic acids and proteins. GitHub https://github.com/sayoeweje/elp-eep-discovery (2025).

Download references

Acknowledgements

We thank members of the laboratory of E.L.C. for helpful discussions; B. Pinckney, G. Haskett and J. Tigges (BIDMC Flow Cytometry Core); A. Pauer and T. Ferrante (Wyss Institute for Biologically Inspired Engineering); S. White (BIDMC Histology Core); A. Black (BIDMC Precision RNA Medicine Core); R. Nair (Harvard Molecular Electron Microscopy Suite) and A. Berger and P. Hammond for HeLa-d2eGFP cells (via P. Jain, University of Florida). Research in the laboratory of E.L.C. was supported by the NIH (UG3AI15055 and UH3AI150551) as part of the Somatic Cell Genome Editing consortium. Research in the laboratory of D.R.L. was additionally supported by HHMI. F.E. is supported by the Harvard/MIT MD–PhD program (5T32GM007753-42) and a Ruth L. Kirschstein NRSA F31 Fellowship (F31HL167533). V.I., K.A. and A.A. acknowledge research fellowship support from the Harvard College Research Program. M.L.W. is supported by the Harvard/MIT MD–PhD program (5T32GM144273-02). Images in Figs. 1a and 4a and Supplementary Fig. 1e were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

E.L.C., J.C., F.E., C.A.H. and D.R.L. designed the experiments and analyzed the results. F.E., V.I., A.S., K.A. and A.A. expressed and purified ELPs and cargo proteins. J.C. performed sortase conjugation studies. H.H. and K.L. designed and synthesized linkers for monoclonal antibody–ELP sortase conjugation. J.R.D. designed and cloned protein cargo plasmids. F.E., V.I., A.S. and J.C. performed nanoparticle size and zeta potential characterization. F.E., J.C., V.I., A.S., K.A., A.A., D.M. and M.L.W. conducted in vitro delivery studies. F.E. conducted predictive model development and EEP design. F.E. and J.C. performed in vivo delivery studies and analyzed efficacy. M.R. conducted histological evaluation of lung tissues. F.E., J.C. and E.L.C. wrote the paper with input from coauthors.

Corresponding authors

Correspondence to Jiaxuan Chen or Elliot L. Chaikof.

Ethics declarations

Competing interests

F.E., J.C. and E.L.C. are inventors on a pending patent related to this work filed by the Beth Israel Deaconess Medical Center (PCT/US2024/038614). D.R.L. is a consultant and equity holder of Nvelop Medicine, Prime Medicine, Beam Therapeutics, Pairwise Plants and Chroma Medicine, companies that use or deliver gene editing or genome engineering agents. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Joao Conde, Michael Mitchell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Formation of ELP-protein nanoparticle.

a) PAGE gel image depicting result of sortase-mediated Cre-LPETG conjugation to V1-ELP at varying ratios. The reaction solution underwent centrifugal filtration against a 100 kDa filter to remove unreacted Cre. b) Quantification of Cre-V1-ELP conjugation efficiency via densitometry analysis, measured as percentage of total ELP conjugated to Cre. c) Diameter of Cre-V1-ELP nanoparticles (n = 3 technical replicates). d) PAGE gel image depicting result of sortase-mediated SpCas9-LPETG conjugation to V1-ELP at varying ratios. e) Diameter and f) Zeta potential of SpCas9-V1-ELP nanoparticles (n = 3 technical replicates). g) PAGE gel image and h) Densitometry analysis of CD117 mAb-V1-ELP conjugation efficiency. i) MFI and j) Fluorescent images of CD117 + P815 mast cells treated with CD117 mAb-functionalized V1-ELP nanoparticles compared to unfunctionalized controls (n = 3). Scalebars = 10 μm. For all experiments, [V1-ELP] = 8 μM unless otherwise noted. Significance assessed via one-way ANOVA with Dunnett’s correction for multiple comparisons. Data represented by mean ± SEM.

Source data

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–16, Tables 1 and 2 and uncropped supplementary gel images.

Reporting Summary

Supplementary Data 1

Source data for supplementary figures.

Supplementary Table 3

Sequences and catalog numbers of the oligonucleotides used.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eweje, F., Ibrahim, V., Shajii, A. et al. Self-assembling protein nanoparticles for cytosolic delivery of nucleic acids and proteins. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02664-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research