Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous multiplexed phage genome editing using recombitrons

Abstract

Bacteriophage genome editing can enhance the efficacy of phages to eliminate pathogenic bacteria in patients and in the environment. However, current methods for editing phage genomes require laborious screening, counterselection or in vitro construction of modified genomes. Here, we present a scalable approach that uses modified bacterial retrons called recombitrons to generate recombineering donor DNA paired with single-stranded binding and annealing proteins for integration into phage genomes. This system can efficiently create genome modifications in multiple phages without the need for counterselection. The approach also supports larger insertions and deletions, which can be combined with simultaneous counterselection for >99% efficiency. Moreover, we show that the process is continuous, with more edits accumulating the longer the phage is cultured with the host, and multiplexable. We install up to five distinct mutations on a single lambda phage genome without counterselection in only a few hours of hands-on time and identify a residue-level epistatic interaction in the T7 gp17 tail fiber.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recombitrons target phage genomes for continuous editing.
Fig. 2: Optimizing recombitron parameters.
Fig. 3: Insertions and deletions using recombitrons.
Fig. 4: Multiplexed phage engineering using recombitrons.
Fig. 5: Combinatorial mutations of the T7 tail fiber.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information or will be made available from the authors upon request. Sequencing data associated with this study are available from the NCBI SRA (PRJNA933262).

Code availability

Custom code to process or analyze data from this study is available from GitHub (https://github.com/Shipman-Lab/Multiplexed_Phage_Recombitrons).

References

  1. Żaczek, M., Weber-Dąbrowska, B., Międzybrodzki, R., Łusiak-Szelachowska, M. & Górski, A. Phage therapy in Poland—a centennial journey to the first ethically approved treatment facility in Europe. Front. Microbiol. 11, 1056 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Antimicrobial Resistance CollaboratorsGlobal burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  Google Scholar 

  3. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. In The Review on Antimicrobial Resistance. (Government of the United Kingdom, 2016).

  4. Chan, B. K., Stanley, G., Modak, M., Koff, J. L. & Turner, P. E. Bacteriophage therapy for infections in CF. Pediatr. Pulmonol. 56, S4–S9 (2021).

    Article  PubMed  Google Scholar 

  5. Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gencay, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 42, 265–274 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahler, M., Costa, A. R., van Beljouw, S. P. B., Fineran, P. C. & Brouns, S. J. J.Approaches for bacteriophage genome engineering. Trends Biotechnol. 41, 669–685 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Kiro, R., Shitrit, D. & Qimron, U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR–Cas system. RNA Biol. 11, 42–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Box, A. M., McGuffie, M. J., O’Hara, B. J. & Seed, K. D. Functional analysis of bacteriophage immunity through a type I-E CRISPR–Cas system in Vibrio cholerae and its application in bacteriophage genome engineering. J. Bacteriol. 198, 578–590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bari, S. M. N., Walker, F. C., Cater, K., Aslan, B. & Hatoum-Aslan, A. Strategies for editing virulent staphylococcal phages using CRISPR–Cas10. ACS Synth. Biol. 6, 2316–2325 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Ramirez-Chamorro, L., Boulanger, P. & Rossier, O. Strategies for bacteriophage T5 mutagenesis: expanding the toolbox for phage genome engineering. Front. Microbiol. 12, 667332 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Adler, B. A. et al. Broad-spectrum CRISPR–Cas13a enables efficient phage genome editing. Nat. Microbiol. 7, 1967–1979 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strotskaya, A. et al. The action of Escherichia coli CRISPR–Cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Res. 45, 1946–1957 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nozaki, S. Rapid and accurate assembly of large DNA assisted by in vitro packaging of bacteriophage. ACS Synth. Biol. 11, 4113–4122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emslander, Q. et al. Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem. Biol. 29, 1434–1445 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, e2018181118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simon, A. J., Morrow, B. R. & Ellington, A. D. Retroelement-based genome editing and evolution. ACS Synth. Biol. 7, 2600–2611 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Lopez, S. C., Crawford, K. D., Lear, S. K., Bhattarai-Kline, S. & Shipman, S. L. Precise genome editing across kingdoms of life using retron-derived DNA. Nat. Chem. Biol. 18, 199–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature 609, 144–150 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Palka, C., Fishman, C. B., Bhattarai-Kline, S., Myers, S. A. & Shipman, S. L. Retron reverse transcriptase termination and phage defense are dependent on host RNase H1. Nucleic Acids Res. 50, 3490–3504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mosberg, J. A., Lajoie, M. J. & Church, G. M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nyerges, Á. et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc. Natl Acad. Sci. USA 113, 2502–2507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nyerges, Á. et al. Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Res. 42, e62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhattarai-Kline, S. et al. Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217–225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aronshtam, A. & Marinus, M. G. Dominant negative mutator mutations in the mutL gene of Escherichia coli. Nucleic Acids Res. 24, 2498–2504 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weigele, P. & Raleigh, E. A. Biosynthesis and function of modified bases in bacteria and their viruses. Chem. Rev. 116, 12655–12687 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Bryson, A. L. et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPR–Cas9. mBio 6, e00648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fleischman, R. A., Cambell, J. L. & Richardson, C. C. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine. J. Biol. Chem. 251, 1561–1570 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Weigel, C. & Seitz, H. Bacteriophage replication modules. FEMS Microbiol. Rev. 30, 321–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Wolfson, J., Dressler, D. & Magazin, M. Bacteriophage T7 DNA replication: a linear replicating intermediate (gradient centrifugation–electron microscopy–E. coli–DNA partial denaturation). Proc. Natl Acad. Sci. USA 69, 499–504 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bourguignon, G. J., Sweeney, T. K. & Delius, H. Multiple origins and circular structures in replicating T5 bacteriophage DNA. J. Virol. 18, 245–259 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hochschild, A. & Lewis, M. The bacteriophage lambda CI protein finds an asymmetric solution. Curr. Opin. Struct. Biol. 19, 79–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tal, A., Arbel-Goren, R., Costantino, N., Court, D. L. & Stavans, J. Location of the unique integration site on an Escherichia coli chromosome by bacteriophage lambda DNA in vivo. Proc. Natl Acad. Sci. USA 111, 7308–7312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Filsinger, G. T. et al. Characterizing the portability of phage-encoded homologous recombination proteins. Nat. Chem. Biol. 17, 394–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hernandez, A. J. & Richardson, C. C. Gp2.5, the multifunctional bacteriophage T7 single-stranded DNA binding protein. Semin. Cell Dev. Biol. 86, 92–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Werten, S. Identification of the ssDNA-binding protein of bacteriophage T5: implications for T5 replication. Bacteriophage 3, e27304 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marinelli, L. J. et al. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS ONE 3, e3957 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mosberg, J. A., Gregg, C. J., Lajoie, M. J., Wang, H. H. & Church, G. M. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PLoS ONE 7, e44638 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huss, P., Meger, A., Leander, M., Nishikawa, K. & Raman, S.Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning. eLife 10, e63775 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parson, K. A. & Snustad, D. P. Host DNA degradation after infection of Escherichia coli with bacteriophage T4: dependence of the alternate pathway of degradation which occurs in the absence of both T4 endonuclease II and nuclear disruption on T4 endonuclease IV. J. Virol. 15, 221–224 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Warner, H. R., Drong, R. F. & Berget, S. M. Early events after infection of Escherichia coli by bacteriophage T5. Induction of a 5′-nucleotidase activity and excretion of free bases. J. Virol. 15, 273–280 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dunne, M. et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep. 29, 1336–1350 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Yehl, K. et al. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 179, 459–469 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jeong, H., Kim, H. J. & Lee, S. J.Complete genome sequence of Escherichia coli strain BL21. Genome Announc. 3, e00134-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fortier, L. C. & Moineau, S. Phage production and maintenance of stocks, including expected stock lifetimes. Methods Mol. Biol. 501, 203–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501, 69–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Rajagopala, S. V., Casjens, S. & Uetz, P. The protein interaction map of bacteriophage lambda. BMC Microbiol. 11, 213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Epp, C., Pearson, M. L. & Enquist, L. Downstream regulation of int gene expression by the b2 region in phage lambda. Gene 13, 327–337 (1981).

    Article  CAS  PubMed  Google Scholar 

  61. Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol. Biol. 501, 81–85 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Science Foundation (MCB 2137692), the National Institute of Biomedical Imaging and Bioengineering (R21EB031393), the Gary and Eileen Morgenthaler Fund and the National Institute of General Medical Sciences (1DP2GM140917). S.L.S. is a Chan Zuckerberg Biohub, San Francisco investigator and acknowledges additional funding support from the L.K. Whittier Foundation and the Pew Biomedical Scholars Program. K.D.C. and K.Z. were supported by National Science Foundation Graduate Research Fellowships and University of California, San Francisco Discovery Fellowships. A.G.-D. was supported by the California Institute of Regenerative Medicine scholar program.

Author information

Authors and Affiliations

Authors

Contributions

C.B.F., S.B.-K. and S.L.S. conceptualized the study and, with K.D.C., K.A.Z. and A.G.-D., outlined the scope of the project and designed experiments. C.B.F. developed the phage handling and editing protocols. Experiments were performed and analyzed by C.B.F. (Figs. 1e,f,i, 2ak and 4 and Extended Data Figs. 1c–m, 2a and 4), K.D.C. (Figs. 2l,m, 3 and 5 and Extended Data Figs. 1b and 3), S.B.-K. (Fig. 1bd and Extended Data Fig. 1a), D.P. (Fig. 5), K.A.Z. (Figs. 1g and 3 and Extended Data Figs. 1n and 3) and A.G.-D. (Fig. 2n and Extended Data Fig. 2b–d). C.B.F. and S.L.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Seth L. Shipman.

Ethics declarations

Competing interests

C.B.F., S.B.K. and S.L.S. are named inventors on a patent application related to the technologies described in this work. S.L.S. is a cofounder of Retronix Bio and Sprint Synthesis. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Accompaniment to Fig. 1.

a. Left: Edited phage T2 genomes (%). With forward (blue) or reverse (purple) RT-DNA. Open circles are three biological replicates, closed circles are means. Right: Recombitron editing at site 143,279 (R) (±SD) versus a dRT control (unpaired, two-sided t-test, P = 0.77). b. Editing of wild-type and mutant T4 without modified cytosines, shown as in a (N = 3) (two-way ANOVA, effect of modified bases, P = 0.0061). c. Editing (%) of lambda and lambda_ΔcI in different host strains at site 14,070 (R). Open circles show 3 (wt in bSLS.114), 5 (ΔcI in bSLS.114), and 2 (ΔcI in bCF.5) biological replicates, closed circles show the mean (one-way ANOVA, effect of strain/phage, P = 0.2421). d. Editing (%) of lambda without induction of CspRecT at site 14,126, shown as in a (N = 3). e. Titer (PFU/mL) of phage lambda, T7, and T5 after propagation through host cells of different conditions, compared to amount of phage added to the culture, without recombitrons (open black circles), with uninduced recombitrons (open pink circles), with induced recombitrons (closed pink circles), and with induced recombitrons targeting a different phage (closed blue circles). Individual biological replicates are shown. f. Editing (%) of lambda, T7, and T5 from the induced, on-target recombitron condition in panel d, shown as in a (N = 3). g. Editing (%) of T7 with supplemental expression of lambda genes gam or beta, shown as in a (N = 3, one-way ANOVA P < 0.0001). h. Editing (%) of lamda with supplemental expression of lambda genes gam or beta, shown as in a (N = 3, one-way ANOVA P = 0.0904). i. Editing (%) of T7 with supplemental expression of E. coli SSB and lambda genes gam or beta, shown as in a (N = 3, one-way ANOVA P < 0.0001). j. Editing (%) of lambda with supplemental expression of E. coli SSB and lambda genes gam or beta, as in a (N = 3, one-way ANOVA P < 0.0001). k. Editing (%) of lambda at site 14126 (F) compared to editing with supplemental expression of T5 SSB, shown as in a (N = 3). l. Editing (%) of T7 at site 22872 (R) compared to editing with supplemental expression of T5 SSB, shown as in a (N = 3). m. Editing (%) of T5 at site 88634 (F) with supplemental expression of E. coli SSB, T7 SSB, or T5 SSB, shown as in a (N = 3). n. Editing (%) of phages from the basal collection, Bas46 (A19798T) and Bas47 (A6332G), that contain modified bases with the RT induced (+) or uninduced (-), as in f (N = 3).

Extended Data Fig. 2 Accompaniment to Fig. 2.

a. Rate of acquiring only the scanning edit in lambda when donors contain both scanning and central edits. (open circles are biological replicates, closed circles are the mean). b. PAGE analysis of retron RT-DNA in different E. coli strains. c. Editing (%) of lambda with editing cultures started at different initial multiplicities of infection (MOI), using MG1655 (Δexo1recJ) as the editing host (one-way ANOVA P < 0.0001) (open circles are 3 biological replicates, closed circles are the mean). d. Editing (%) of lambda with editing cultures incubated at different temperatures, using MG1655 (Δexo1recJ) as the editing host (unpaired, two-sided t-test P = 0.0013) (open circles are 3 biological replicates, closed circles are the mean).

Extended Data Fig. 3 Accompaniment to Fig. 3.

a. Comparison of edited phages measure by amplicon (Illumina) or amplification-free (Oxford Nanopore) sequencing. Open orange circles represent biological replicates of amplicon data and filled orange circle represents the mean. Filled blue circle represents the aggregate nanopore data from three replicates. b. Coverage of the editing site in long-read nanopore sequencing for deletions in which we observe editing. c. Coverage of the editing site in long-read nanopore sequencing for deletions in which we do not observe any edits. Estimated limit of detection for these samples is calculated by dividing 100 by the coverage of the site. d. Examples of nanopore reads for different deletion conditions. e. Coverage of the editing site in long-read nanopore sequencing for large insertions, for which we do not observe any edits. Estimated limit of detection for these samples is calculated by dividing 100 by the coverage of the site.

Extended Data Fig. 4 Accompaniment to Fig. 4.

Editing (%) from Sanger sequencing of plaques at each site from mixed recombitron cultures after 3 rounds of editing. Three biological replicates are shown in open circles for each site, clustered over the number of recombitrons used.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1 and 3.

Reporting Summary

Supplementary Table 2

Recombitron plasmid details.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fishman, C.B., Crawford, K.D., Bhattarai-Kline, S. et al. Continuous multiplexed phage genome editing using recombitrons. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02370-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology