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Bidirectional epigenetic editing reveals 
hierarchies in gene regulation

Naomi M. Pacalin    1,2, Zachary Steinhart3, Quanming Shi1, Julia A. Belk    1, 
Dmytro Dorovskyi3,4,5, Katerina Kraft1, Kevin R. Parker1,6,7, Brian R. Shy    3,5,8, 
Alexander Marson    3,4,8,9,10,11,12,13 & Howard Y. Chang    1,14 

CRISPR perturbation methods are limited in their ability to study 
non-coding elements and genetic interactions. In this study, we developed a 
system for bidirectional epigenetic editing, called CRISPRai, in which  
we apply activating (CRISPRa) and repressive (CRISPRi) perturbations 
to two loci simultaneously in the same cell. We developed CRISPRai 
Perturb-seq by coupling dual perturbation gRNA detection with single-cell 
RNA sequencing, enabling study of pooled perturbations in a mixed 
single-cell population. We applied this platform to study the genetic 
interaction between two hematopoietic lineage transcription factors, SPI1 
and GATA1, and discovered novel characteristics of their co-regulation 
on downstream target genes, including differences in SPI1 and GATA1 
occupancy at genes that are regulated through different modes. We also 
studied the regulatory landscape of IL2 (interleukin-2) in Jurkat T cells, 
primary T cells and chimeric antigen receptor (CAR) T cells and elucidated 
mechanisms of enhancer-mediated IL2 gene regulation. CRISPRai 
facilitates investigation of context-specific genetic interactions, provides 
new insights into gene regulation and will enable exploration of non-coding 
disease-associated variants.

Programmable epigenetic editing tools, specifically CRISPR activa-
tion (CRISPRa)1–5 and CRISPR interference (CRISPRi)6,7, are valuable 
for uncovering functional effects of genes and non-coding genetic 
elements, such as enhancers8–15. Dual CRISPR perturbations, in which 
two genes are perturbed simultaneously, are uniquely able to identify 
genetic interactions and epistasis, which, in turn, enables the rapid 
mapping of genetic pathways16–20. Previously, most large-scale dual 
gain-of-function and loss-of-function CRISPR perturbation screens 

employed CRISPR knockout (CRISPRko)18,21–23, but these approaches are 
limited in their ability to study multiplex perturbations and non-coding 
elements. CRISPRko introduces double-stranded DNA (dsDNA) breaks 
via Cas9 nuclease cutting, which triggers DNA damage pathways24,25 
and can result in indels26,27 and structural rearrangements28,29. Further-
more, CRISPRko has the potential for forming regulatory landscapes 
via introduction of transcription factor (TF) binding sites or reduction 
in distance between existing regulatory elements (REs), as well as the 
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two orthogonal species of catalytically dead Cas9 (dCas9). We express 
activator-fused dCas9 from Staphylococcus aureus (VPR-dSaCas9) and 
repressor-fused dCas9 from Streptococcus pyogenes (dSpCas9-KRAB, 
ZNF10 or KOX1 domain) simultaneously to achieve species-specific 
recognition where two distinct gRNA scaffold sequences pair with 
their cognate dCas9 (refs. 61,62). This enables two distinct pertur-
bations at two different loci in the same cell at the same time (Fig. 1a 
and Extended Data Fig. 1a–i). After generating stable K562 (Extended 
Data Fig. 1a–e) and Jurkat (Extended Data Fig. 1f–i) CRISPRai cell lines, 
we validated the system using bulk assays. We confirmed construct 
expression, robust induction by dox and tunable control of CRISPR 
perturbation strength based on dCas9 expression level (Extended Data 
Fig. 1a,b). Bidirectional double perturbations were similar in strength 
to the respective single perturbations (ranging from −3 to +13 log2 fold 
change (FC) in gene expression; Extended Data Fig. 1c,f–h). Finally, we 
confirmed stable expression of both dCas9 and the gRNA over 14–20 d 
(Extended Data Fig. 1d,e,i).

We next developed dual perturbation direct gRNA capture 
Perturb-seq, or CRISPRai Perturb-seq, to study gene–gene interactions 
with a single-cell transcriptome readout in K562 cells. We designed 82 
single (42 CRISPRa and 40 CRISPRi), 22 double (18 bidirectional pairs 
and four unidirectional pairs as controls) and 12 non-targeting control 
(NTC) gRNAs containing selected combinations of single and double 
perturbations against a panel of 19 lineage-relevant TFs, chromatin 
remodelers and proto-oncogenes, with two gRNAs per gene (Fig. 1b, 
Extended Data Fig. 2a and Supplementary Tables 1 and 2). We used the 
single perturbations to evaluate gRNA efficacy for CRISPRa versus 
CRISPRi. To detect gRNAs in single-cell sequencing data, we extended 
recently developed methods of droplet-based direct gRNA sequence 
detection for CRISPRai63,64. We spiked in two oligos complementary to 
each gRNA scaffold region into the reverse transcription (RT) reaction. 
We captured a total of 24,661 cells (14,086 cells with single perturba-
tions, 6,631 cells with double perturbations and 3,944 cells with NTCs). 
Single and double perturbations were performed using separate gRNA 
pools in separate single-cell captures, and sequencing data from all cap-
tures were combined for analysis (Extended Data Figs. 2c and 3a–d). To 
determine gRNA detection efficacy, we assessed the number of gRNA 
counts per cell. We found that 94.4% of cells expected to have single 
perturbations had one gRNA assigned and 78.7% of cells expected 
to have double perturbations had two gRNAs assigned (Fig. 1c and 
Methods). Twenty-one of 22 designed double perturbations (95.5%) 
were detected.

We investigated the CRISPRai perturbation strength and direction-
ality across the target genes present in our pool. The system enabled 
consistent bidirectional expression changes for both target genes in 
all double perturbations, with the log2FC gene expression increasing 
or decreasing as expected in each condition (range from −1.08 to +2.11 
gene expression log2FC; Fig. 1d,e and Extended Data Fig. 3b,c). In addi-
tion to bidirectional perturbations, the CRISPRai system also allows 
for unidirectional dual CRISPRaa and CRISPRii perturbations (Fig. 1a). 
We demonstrated the expected behavior for unidirectional CRISPRaa 
and CRISPRii combinations (Fig. 1d). The expression changes were 
statistically significant in both the single and double perturbations 
and spanned a range of log2FC (Fig. 1d and Extended Data Fig. 3b). We 
found that different genes had variable susceptibility to perturbation. 
For example, SPI1 was highly responsive to activation but not repres-
sion, whereas the opposite was true for GATA1 (Fig. 1e and Extended 
Data Fig. 3b). Finally, multiple independent gRNAs targeting the same 
gene had concordant impacts on target gene expression (Extended 
Data Fig. 3c).

We next investigated the aggregate characteristics of bidirectional 
epigenetic editing across all of the genes in the pool. Baseline gene 
expression was inversely correlated with perturbation strength for 
CRISPRi (R2 = 0.47, P = 1.58 × 10−3, slope = −0.42; Fig. 1f, right). In con-
trast, baseline gene expression and strength of CRISPRa did not have 

potential for inadequately perturbing REs, such as enhancers, for which 
small indels may not alter function. Multiplexed CRISPRi can address 
non-coding element epistasis30 but may be limited to elements that 
are contemporaneously active in the cell type being studied. More 
recently, methods for bidirectional perturbations of two loci simulta-
neously, including paired CRISPRa and CRISPRi, have been developed 
but have been applied only to non-mammalian cells, are transient or 
are targeted to only a few genes31–39. New tools are needed that are 
compatible with studying genetic interactions in human cells, pooled 
high-throughput single-cell readouts and multiplexed bidirectional 
control of non-coding elements and are highly scalable to hundreds 
or thousands of perturbations. Epigenetic perturbations are key for 
studying functional effects of non-coding elements such as enhancers 
in their endogenous locus because enhancer functionality is likely medi-
ated through structural chromatin contacts, histone modifications, 
TF requirement and other effects40–47. Furthermore, comprehensive 
investigation of genetic interactions requires versatile bidirectional 
perturbation tools in addition to existing unidirectional tools to study 
the complete range of context-specific genetic interactions8,48–50.

Additionally, the power of high-throughput and high-content read-
outs has been well demonstrated. Perturb-seq, a method for single-cell 
transcriptome profiling coupled with CRISPR guide RNA (gRNA)  
readout51–55, enables investigation of gene networks51–53 and disease risk 
genes56. Previous Perturb-seq methods have been limited to a single 
perturbation type (that is, CRISPRa, CRISPRi or CRISPRko), and current 
methods cannot perform combinatorial bidirectional perturbations.

To broaden the toolkit for studying genes and non-coding ele-
ments and to enable investigation of context-specific genetic interac-
tions, we developed CRISPRai, a system for bidirectional epigenetic 
editing of two loci simultaneously in a single cell. We use orthogonal 
activating (CRISPRa) and repressive (CRISPRi) perturbations to perturb 
two distinct genomic loci simultaneously. We activate one element and 
repress another to study how pairs of genetic elements functionally 
interact, and we apply this tool to study genes and enhancers. First, 
we developed dual-gRNA-capture CRISPRai Perturb-seq and applied 
it to study interactions between genes. We investigated the genetic 
interaction between SPI1 (Spi-1 proto-oncogene) and GATA1 (GATA1 
binding protein 1)57–60, two well-characterized lineage-directing TFs for 
the myeloid (SPI1) and erythroid (GATA1) lineages. We found that bidi-
rectional perturbation enabled modulation of cell lineage signatures 
and enabled heightened perturbation phenotypes compared to single 
perturbations, and different TF occupancy relationships at down-
stream target genes resulted in different patterns of co-regulation. 
Second, we applied CRISPRai to investigate how multiple enhancers 
interact to regulate expression of a shared target gene, using the IL2 
(interleukin-2) gene in activated Jurkat T cells as a model system. We 
extended our findings from CRISPRai to primary human T cells using 
CRISPRi perturbations. We integrated our CRISPRai findings with epi-
genomic datasets to jointly assess function, chromatin accessibility, 
histone modifications, TF motif enrichment and chromatin looping. 
These integrated analyses revealed the existence of strong functional 
‘gatekeeper’ enhancers that heavily compete with the promoter for 
transcriptional control and highlighted two main modes of regulation 
by gatekeeper enhancers: activity driven and contact driven. Overall, 
CRISPRai reveals insights into genetic interactions for both genes and 
non-coding elements and broadens the toolkit for investigating the 
functional effects of the genome.

Results
CRISPRai system for bidirectional epigenetic editing
We developed a system for bidirectional epigenetic editing (CRISPRai) 
that enables activation and repression of two distinct loci simultane-
ously in a single cell and can be applied to both genes and enhancers 
(Fig. 1a and Extended Data Fig. 1a–i). Our system comprises Tet-On doxy-
cycline (dox)-inducible CRISPRa and CRISPRi machinery and leverages 
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a clear relationship (R2 = 0.003, P = 0.84, slope = −0.06; Fig. 1f, left). 
Furthermore, perturbation strength was highly correlated between sin-
gle and double perturbations (log2FC target gene expression: R2 = 0.91, 
P ≤ 1.16 × 10−19, slope = 1.30; Fig. 1g). This confirms the orthogonality of 
the two dCas9 species and indicates that CRISPRai dual perturbations 
do not dilute the perturbation strength of the individual perturbations 
in the pair65–67. Overall, CRISPRai enables robust, scalable and bidirec-
tional interrogation of diverse target genes.

CRISPRai reveals context-specific genetic interactions
Pairwise CRISPR perturbations can identify genetic interactions 
between genes16–20,23, and CRISPR screens with single-cell readouts 
enable investigation of the global regulatory effects of a given gene, 
including identification of downstream target genes and regulatory 
gene modules controlled by the perturbed gene51–55,64. Thus, we next 
applied CRISPRai to investigate genetic interactions. By analyzing 
our K562 CRISPRai Perturb-seq data, we identified the SPI1−GATA1 
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Fig. 1 | CRISPRai system for bidirectional epigenetic editing in individual 
cells. a, Schematic of CRISPRai system (top), CRISPRai construct (bottom) and 
CRISPRai perturbations (right). b, Schematic of dual-gRNA CRISPRai Perturb-seq 
screen in K562 cell line. c, gRNA expression (rows) by gRNA detected (columns). 
Bar plot shows the number of gRNA per cell detected in all cell–gRNA expression 
pairs passing a threshold. d, Average log2FC gene expression for each pair of 
CRISPRai target genes (columns) in cells receiving either a single or double 
perturbation (rows). Gene expression for gene 1 (top) and gene 2 (bottom) from 
the pair is shown. e, Examples of average log2FC gene expression in single and 

double perturbations for indicated gene pairs with ai, aa or ii perturbations.  
f, Correlation between perturbation strength and baseline target gene expression 
level for CRISPRa (left) and CRISPRi (right). g, Correlation between perturbation 
strength in single versus double perturbations for a given gene, labeled with 
double perturbation received. d–g, DE tests performed relative to cells with NTC 
gRNAs. All gRNA groups included have n > 40 (d–f,h) and n > 20 (g) cells.  
e, n = 73–600. Box plot, median and interquartile range (IQR). Box whiskers,  
1.5× IQR. Two-sided Wilcoxon test. f,g, Linear regression. Significance cutoffs: NS 
P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. NS, not significant.
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genetic interaction as an excellent example of the ability of CRISPRai 
to reveal new insights into TF biology (Fig. 2a). Thus, the design of 
the initial CRISPRai screen allowed us to rigorously benchmark our 
double perturbations as well as to investigate the SPI1−GATA1 genetic 
interaction in more detail.

SPI1 and GATA1 are pivotal hematopoietic TFs that are essential 
for myeloid and erythroid lineage development, and they are known 
to interact and inhibit each other’s function57–60 (Fig. 2a). We first inves-
tigated the global transcriptome-wide effects of all combinations 
of SPI1 and GATA1 perturbations included in the screen in 437 cells. 
After clustering and dimensionality reduction of the single-cell RNA 
sequencing (scRNA-seq) data, we found that the perturbed cells clus-
tered according to the detected gRNAs (Fig. 2b). Furthermore, double 
perturbations were between the corresponding single perturbations 
in the low-dimensional uniform manifold approximation and projec-
tion (UMAP) visualization, demonstrating a gradient in transcriptomic 
signature resulting from the perturbations, which was also apparent 
via correlation analysis (Fig. 2b,c and Extended Data Fig. 3e–h).

Next, we prioritized the SPI1.a|GATA1.i bidirectional double pertur-
bation and its corresponding single perturbations for further analysis, 
due to the responsiveness of each gene to CRISPRa and CRISPRi (the 
SPI1.a|GATA1.i perturbation is referred to below as ‘bidirectional per-
turbation’). The set of differentially expressed (DE) genes (relative 
to NTC gRNAs) in the SPI1.a|GATA1.i bidirectional perturbation was 
composed of two groups of genes that were shared by the correspond-
ing single perturbations (SPI1.a or GATA1.i) and a third bidirectional 
perturbation-specific group of 70 genes (Fig. 2d and Extended Data 
Fig. 4a,b). The upregulated DE genes for each perturbation condition 
were enriched for relevant biological process Gene Ontology (GO) 
terms, including myeloid cell activation, actin polymerization, cell 
adhesion, phagocytosis and other immune signaling pathways, with the 
bidirectional perturbation being most significantly enriched (Fig. 2e). 
DE genes specific to the bidirectional perturbation were similarly 
enriched for relevant processes (Extended Data Fig. 4c).

We next asked if the CRISPRai perturbation modulated expression 
of known downstream target genes of SPI1 and GATA1 (Fig. 2a). Because 
SPI1 and GATA1 exhibit opposing and antagonistic effects on the mye-
loid and erythroid lineages, we hypothesized that known downstream 
target gene sets would have heightened gene expression changes in 
the bidirectional perturbation relative to the single perturbations. 
We investigated two gene sets from the literature: erythroid marker 
genes (n = 419)68 and myeloid marker genes (n = 394)69. As expected, 
the erythroid gene signature decreased and the myeloid gene signature 
increased in both the single and bidirectional perturbations, with the 
myeloid signature being most extreme in the bidirectional perturba-
tion (Fig. 2f). Additionally, we used the set of annotated target genes 
for these two TFs from ENCODE70–72 and grouped the gene sets based 
on upregulation or downregulation in the bidirectional perturbation. 
As expected, the average expression of known target genes was more 
extreme in the bidirectional perturbation than the single perturbations 
(Fig. 2f,g). This pattern persisted after grouping the gene sets based 
on identity of TF regulator: GATA1 only, SPI1 only or shared (Extended 
Data Fig. 4d,e). We validated this regulatory pattern on gene sets from a 
different database (Molecular Signatures Database)73,74 and saw similar 
results (Extended Data Fig. 4f–h). Additionally, we confirmed that the 
set of statistically significant DE genes in the bidirectional perturbation 
was highly overlapping with annotated SPI1 and GATA1 target gene sets 
(Extended Data Fig. 4i,j).

We then used the bidirectional perturbation data to identify down-
stream target genes that were nonlinearly regulated by SPI1 and GATA1. 
We used an additive model of gene regulation that has previously 
been used for pairwise CRISPR perturbations52,53,75. First, we classified 
DE genes as belonging to synergistic, buffering or additive modes of 
regulation (Fig. 2h and Supplementary Table 3). The largest group of 
genes classified as being under synergistic regulation was unique to 

the bidirectional perturbation DE gene set (56.1%), highlighting the 
ability of CRISPRai to provide new insights into cooperation between 
TFs. As expected, the largest group of genes classified as being under 
buffering regulation was shared across the DE gene sets of the three 
perturbation groups (41.1%) (Fig. 2i). We then compared the propor-
tions of each regulatory mode for DE genes across perturbations. For 
each perturbation, most genes were under additive regulation (63–76%) 
(Fig. 2j, left). Synergistic regulation (5–17%) was less common than buff-
ering regulation (14–26%). To compare across the three perturbation 
groups, we accounted for differences in DE gene set sizes by calculating 
the ratio between the numbers of synergistic and buffering genes. This 
ratio was greatest for the bidirectional perturbation (bidirectional 
perturbation 1.24 versus single perturbations 0.42 and 0.25), which 
demonstrates that CRISPRai enables identification of genes under 
synergistic regulation that would be missed by studying only single 
perturbations (Fig. 2j, right).

We then sought to further investigate the synergistic and buffering 
genes and provide insight into the mechanism underlying the differ-
ent modes of gene regulation observed. We compared the SPI1 and 
GATA1 occupancy profiles for the buffering, additive and synergistic 
gene sets. We calculated the log2FC chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) signal of SPI1 and GATA1 (ENCODE 
data70,71) within 1 kb of the promoter or within predicted enhancers 
for a given gene. The set of predicted enhancers was generated from 
the activity-by-contact (ABC) model44,45. We found that additive genes 
were enriched for genes occupied by both SPI1 and GATA1 (Fig. 2k, left). 
Synergistic genes had decreased SPI1 occupancy at the promoter and 
enhancers relative to additive and buffering genes but had similar 
GATA1 occupancy as additive genes (Fig. 2k, right). This suggests that 
synergistic genes may have higher dose sensitivity due to an imbalance 
in binding of these two TFs. Conversely, buffering genes had decreased 
occupancy of both SPI1 and GATA1 at the promoter (Fig. 2k, right). The 
correlated occupancy of these two TFs at buffering genes suggests that 
binding of one TF may influence the other. In summary, CRISPRai ena-
bles the investigation of important TFs and provides insight into how 
these TFs interact to regulate overlapping downstream gene modules.

CRISPRai defines enhancer–promoter regulatory hierarchies
After demonstrating the utility of the CRISPRai system for investigating 
trans-regulatory effects and gene–gene interactions, we extended our 
method to investigate cis-regulatory effects by studying enhancer–pro-
moter and enhancer–enhancer interactions (denoted enhancer–tran-
scription start site (E–TSS) and E–E, respectively). Previous studies showed 
that enhancer impact on target gene expression is governed by several 
factors, including distance to TSS and enhancer strength, and that some 
enhancers may have redundant function40,47,76,77. However, it is unknown 
how multiple enhancers may interact to control target gene expression or 
how enhancers interact differentially with the TSS. We applied CRISPRai 
to study the regulatory landscape of the IL2 and IFNG (interferon-gamma) 
genes to investigate these questions. We focused on the IL2 regulatory 
landscape due to its more interesting regulatory landscape.

We designed a CRISPRai gRNA pool for REs of IL2 and studied 
the effect of these perturbations on cytokine expression in human 
Jurkat T cells. Specifically, we designed CRISPRai gRNAs targeting 10 
predicted enhancers and the promoter (Fig. 3a and Extended Data 
Fig. 5a–i). IL2 is a key cytokine gene with a relatively large set of pre-
dicted enhancers, spanning a 2.4-Mb range45, providing an oppor-
tunity to study enhancer interactions in both short and long range 
(Fig. 3a and Extended Data Fig. 5f). We selected predicted enhancers 
with high enhancer scores for IL2 in the ABC model44,45. Some selected 
enhancers exhibited strong enhancer-related epigenomic features, 
whereas others did not (Fig. 3a). In the gRNA pool, we included 576 
gRNA pairs (484 bidirectional double, 88 single and four NTC gRNA 
pairs; Fig. 3b, Extended Data Fig. 2b and Supplementary Table 4). The 
gRNA pool contained all CRISPRa and CRISPRi single perturbations 
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Fig. 2 | CRISPRai reveals context-specific genetic interaction for SPI1 and 
GATA1. a, Schematic of SPI1−GATA1 genetic interaction. b, Visualization of 
perturbed K562 cells. Each dot represents one cell, colored by detected gRNA 
or gRNA pair. c, Pearson correlation of normalized and centered single-cell 
transcriptomes over all genes. d, Overlap of DE genes. e, Biological process GO 
term enrichment for DE genes upregulated in perturbed cells relative to NTC, 
selected terms. f, Module scores for indicated gene sets. Gene set sizes from left 
to right: n = 419, 394, 5,190 and 6,003. g, Same data as f, showing module scores 
in log2FC. h, Average log2FC gene expression of SPI1 and GATA1 and selected 
ENCODE annotated downstream target genes. Dashed line: expected additive 
model (gray) and observed bidirectional perturbation (orange). Additive 
(observed = expected), synergy (observed > expected or opposite sign) and 
buffer (observed < expected). i, Overlap of synergy and buffer gene sets with 
DE gene sets; number indicates gene set size. j, Proportion of DE genes under 
each regulatory mode (left) and ratio of number of genes under synergistic 

and buffering regulation (right). k, TF occupancy at synergy and buffer gene 
sets, showing proportion of genes with one or more RE bound by GATA1 or SPI1 
including promoter (within 1 kb) or any ABC model45 predicted enhancer (left) 
and log2FC of promoter or average log2FC within enhancers (right). Includes all 
annotated genes with non-zero ChIP-seq reads. Each dot is the average signal 
across all bound REs for one gene. Additive set: subset of 50 genes with most 
additive phenotype. Gene set sizes from left to right: n = 300, 50, 53 and 55.  
n = 141–900 (two biological replicates, one additional technical replicate). 
d–g,i–k, Significance cutoffs for DE genes are abs(log2FC) > 0.5, P_adj < 0.05;  
DE gene testing for each gRNA group is against NTC. All gRNA groups have n > 34 
(b,c) and n > 59 (d–k) cells. Logistic regression was used for DE gene testing.  
e, One-sided Fisher’s exact test. f,k, Box plot, median and interquartile range 
(IQR). Box whiskers, 1.5× IQR. Two-sided Wilcoxon test. Significance cutoffs: NS 
P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. GS, gene set; norm., 
normalized; NS, not significant.
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and all CRISPRai pairwise combinations for each enhancer and the TSS 
as well as NTCs (Extended Data Fig. 2b). We introduced the lentiviral 
pool of gRNAs to our CRISPRai-expressing Jurkat T cell line (Extended 
Data Fig. 1f–i). After 6 d of CRISPRai induction, the cells were activated 
to induce cytokine expression and sorted for cytokine positive and 
negative populations using both IL2 and IFNG expression (Fig. 3c, 
left, and Extended Data Fig. 2d); then, gRNA enrichment libraries were 
constructed (Fig. 3b and Extended Data Fig. 5a–e), and all CRISPRa and 
CRISPRi pairs were examined (Fig. 3d and Extended Data Fig. 5g–i).

For further IL2 gRNA pool analysis, we focused on comparing IL2 
single-positive cells relative to cytokine-negative cells (that is, IL2+ 
versus NEG) to investigate how IL2 locus perturbations influence IL2 
expression. In addition to the IL2 locus gRNA pool, we also designed 
an IFNG locus gRNA pool with 625 bidirectional gRNA pairs targeting 
11 predicted enhancers and the promoter at this locus (Fig. 3c, right, 
Extended Data Fig. 6a–i and Supplementary Table 5). For the IFNG gRNA 
pool analysis, we focused on comparing IFNG single-positive cells rela-
tive to cytokine-negative cells (that is, IFNG+ versus NEG) to investigate 
how IFNG locus perturbations influence IFNG expression. For most of 
our analysis, we calculated log2FC gRNA enrichment z-scores relative 
to NTC gRNAs, which we refer to as log2FC z-scores.

First, we investigated general trends in enhancer–promoter inter-
actions. For the IL2 screen, we compared log2FC z-scores in IL2+ versus 
cytokine-negative populations (IL2+/NEG) and found that TSS–E inter-
actions followed a largely additive relationship with respect to log2FC 
z-score (expected versus observed log2FC z-score: R2 = 0.91, P ≤ 2 × 10−16, 
slope = 0.97; Fig. 3e). log2FC z-scores ranged from approximately −20 
to +7.5 (Fig. 3e), and log2FC ranged from −1.05 to +0.62 for CRISPRi 
and CRISPRa, respectively. For IFNG, log2FC z-scores ranged from 
approximately −3.5 to +14 (Fig. 3j). We noted that some IL2 enhancers 
had strong functional effects, whereas others had weaker functional 
effects, in single perturbations (Fig. 3d). Additionally, we observed 
a trend that TSS–E bidirectional perturbations became less additive 
as TSS perturbation strength increased when considering pairs with 
an enhancer gRNA passing a threshold (abs(log2FC z-score) > 2) in a 
subsequent validation gRNA pool (Extended Data Fig. 5j), where we 
leveraged the natural variation in TSS gRNA strength by binning TSS–E 
bidirectional perturbations based on the corresponding TSS single 
perturbation strength. The distribution of residuals centered on zero 
for pairs with low TSS gRNA strength and shifted up for TSS.a and 
down for TSS.i pairs with greater TSS gRNA strength. Furthermore, in 
general, the TSS exhibited clear hierarchy over enhancers (Fig. 3g–i and 
Extended Data Figs. 5h, 6i and 7h). In other words, the TSS perturbation 
was functionally dominant over enhancer perturbations and, therefore, 
acted as the driver of target gene expression. Repressing the promoter 
prevented most of the activated enhancers from activating IL2 or IFNG 
and vice versa (Fig. 3g,j).

Next, we investigated interactions between the promoter and each 
individual enhancer to uncover potential enhancer-specific effects. For 
IL2, two enhancers had strong functional effects that were capable of 
overcoming TSS perturbation, namely E4 and E6 (Fig. 3g). Repression 
of these two enhancers individually was sufficient to counteract TSS 
activation and significantly reduce target gene expression (Fig. 3g). In 
the reverse condition (E4.a|TSS.i and E6.a|TSS.i), both of these enhanc-
ers exhibited the ability to counteract TSS perturbation, as evidenced 
by both screens for E4.a|TSS.i and by the significant (P ≤ 1 × 10−4) and 
large effect size for E6.a|TSS.i relative to TSS.i observed in a subse-
quent validation screen where a larger number of gRNAs enabled us 
to observe this effect (Fig. 3h and Extended Data Fig. 7h). Together, 
this behavior suggests that E4 and E6 may act like ‘gatekeepers’ for IL2 
expression, in that they are strong functional enhancers that, when 
perturbed, are capable of strongly dimming the perturbation applied to 
the TSS. For IFNG, E4.i minimally counteracted TSS.a, and E7.a strongly 
counteracted TSS.i (Fig. 3j).

After identifying the existence of gatekeeper enhancers capable 
of counteracting TSS perturbation, we investigated these enhancers 
further. We designed a second gRNA pool to validate findings from 
the initial screen and investigate enhancer function over a broader 
genomic range. We selected a subset of enhancers from the initial IL2 
locus screen; designed eight additional gRNAs for each enhancer, 
including all E–E and TSS–E CRISPRai pairs as well as NTCs, for a pool 
of 4,032 gRNA pairs (3,072 bidirectional double, 896 single and 64 
NTC gRNAs, made up of 56 unique CRISPRi and 72 unique CRISPRa 
gRNAs; Fig. 3h, top, Extended Data Fig. 7h and Supplementary Table 6); 
and constructed gRNA enrichment libraries for IL2+ and IL2− (NEG) 
populations (Extended Data Fig. 7a–e). In the validation screen, log2FC 
z-scores ranged from approximately −5 to +7.5 (Extended Data Fig. 7e), 
and log2FC ranged from approximately −1.2 to +1.3, for CRISPRi and 
CRISPRa, respectively (Extended Data Fig. 7g). The validation screen 
confirmed the gatekeeper effects of E4 and E6 and highlighted the 
presence of a strong activating functional hotspot within E7 that 
was capable of overpowering TSS perturbation (Fig. 3h, bottom). 
When quantifying the strength of single perturbations for gatekeeper 
enhancers, E4, E6 and the E7 hotspot exhibited 99%, 115% and 160% of 
TSS CRISPRa strength, and E4 and E6 exhibited 16% and 45% of TSS CRIS-
PRi strength (Fig. 3i and Extended Data Fig. 7h). Across bidirectional 
perturbations, we observed strong concordance between gRNAs for 
the same enhancer. Quantitatively, out of the eight validation gRNAs 
per enhancer 7/8, 7/8, 8/8 and 6/8 are strongly directionally concordant 
for E4.a, E6.a, E4.i and E6.i, respectively (Extended Data Figs. 5h and 7h). 
For E4.i and E6.i, both gRNAs from the initial screen were concordant 
with the validation screen majority (Extended Data Figs. 5h and 7h). For 
E4.a, E6.a and E7.a, at least one of two gRNAs from the initial screen was 
concordant with the validation screen majority (Extended Data Figs. 5h 

Fig. 3 | CRISPRai defines hierarchies in transcriptional regulation between 
promoter and enhancers. a, Genome tracks showing regulatory landscape of 
IL2 gene locus for primary T cells and Jurkat T cells. Insets show data for selected 
enhancers, including gRNA CRISPRa score (log2FC) and CRISPRi score (−log2FC). 
b, Schematic of CRISPRai RE screen in Jurkat T cells. c, Intracellular cytokine 
staining in activated Jurkat. d, Average log2FC z-score (IL2+/NEG of all single, 
bidirectional and NTC gRNA pairs. Two gRNAs per enhancer (2 a, 2 i). RE hierarchy 
demonstrated when one perturbation overrides the expected effect of a second 
perturbation (for example, TSS.i bidirectional perturbations result in similar 
effect as TSS.i single perturbations; note that E6.i overrides other E.a). Results of 
specific columns and rows are expanded in subsequent figure panels. e, log2FC 
z-score (IL2+/NEG) for TSS–E bidirectional perturbations, showing expected 
and observed. f, Schematic of bidirectional TSS–E perturbation pairs. g, log2FC 
z-score (IL2+/NEG) for IL2 gene for TSS–E gRNA pairs. h, Schematic of validation 
screen, eight gRNAs per enhancer (top) and examples of selected TSS–E pairs 
highlighted in g with gray bars, showing log2FC z-score (IL2+/NEG) (bottom). 
Bins represent single (a or i), bidirectional (ai) and expected bidirectional 

perturbation from additive model (ai model, gray); dashed lines show observed 
and expected bidirectional perturbations. Data are mean ± s.e.m. i, Perturbation 
strength, normalized to TSS perturbation, for selected enhancer single 
perturbations in the IL2 validation screen, mean annotated. j, log2FC z-score 
(IFNG+/NEG) for IFNG gene for TSS–E gRNA pairs. d,e,g, Data from IL2 locus initial 
screen, n = 6 (three biological replicates, two gRNAs per enhancer). j, Data from 
IFNG locus screen, n = 6 (three biological replicates, two gRNAs per enhancer). 
a,h,i, Data from IL2 locus validation screen, n = 147–168 for E4 and E6 pairs, n = 42 
for E7 hotspot (three biological replicates, 7–8 gRNAs per enhancer, E7 hotspot 
derived from two gRNAs in E7). Significance was tested relative to TSS single 
perturbation (g,i,j) and observed bidirectional perturbation (h). g,i,j, Box plot, 
median and interquartile range (IQR). Box whiskers, 1.5× IQR. d,h,i, Two-sided 
Wilcoxon test. d, Benjamini–Hochberg correction. e, Linear regression. g,j,  
Two-sided t-test. Significance cutoffs: NS P > 0.05, *P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001, ****P ≤ 0.0001. exp, expected; DP, double positive; NEG, negative; 
NS, not significant; obs, observed; Puro, puromycin.
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and 7h). Furthermore, E4 and E6 demonstrated gatekeeper behavior in 
reciprocal CRISPRai conditions (that is, ai and ia) (Fig. 3i, bottom). We 
noted that CRISPRa appears more focal than CRISPRi, possibly due to 
different mechanisms of chromatin remodeling induced by VPR and 
KRAB (Extended Data Figs. 5h and 7h).

To confirm that off-target effects did not play a major role in our 
results, we performed a genome-wide analysis of potential off-target 
sites (Supplementary Table 7). We overlapped all putative gRNA 
off-target sites with the CRISPRa and CRISPRi screening data from 
previously published screens studying IL2 and IFNG50. Overall, 0.07% 
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(14/19,999) of off-target sites overlapped a gene that may be involved 
in IL2 or IFNG regulation; 6.3% (13/204) of gRNAs had at least one 
off-target site at one of these genes; and most of these off-target sites 
had four mismatches. It has been shown that two mismatches typically 
render a gRNA non-functional for CRISPRko78 and CRISPRi79. Thus, 
off-target overlap with coding genes is unlikely to play a major role in 
our results.

CRISPRai defines enhancer–enhancer regulatory interactions
We next investigated how enhancers interact with other enhancers to 
control gene regulation. We compared the log2FC z-scores of E–E bidi-
rectional perturbations from the IL2 locus validation screen (Fig. 4a). 
Similar to the TSS–E pairs, E–E pairs largely followed an additive model 
with respect to log2FC z-score (R2 = 0.75, P ≤ 2 × 10−16, slope = 0.95; 
Fig. 4b). Single and bidirectional E–E perturbations enabled tuning 
of IL2 expression over a broad range, supporting a hypothesis that 
multiple enhancers of varying strengths enable more precise tuning 
collectively than would be possible with fewer enhancers (Fig. 4c). 
Notably, the gatekeeper enhancers identified from the TSS–E bidirec-
tional perturbations, E4, E6 and E7, showed similar gatekeeper behavior 

when paired with other enhancers (Fig. 4d and Extended Data Fig. 7g). 
E4 or E6 activation increased gene expression when other enhancers 
in the same locus were repressed, and, conversely, E4 or E6 repression 
prevented gene expression even if other IL2 enhancers were activated.

To investigate the outcome of perturbing two gatekeeper enhanc-
ers simultaneously, we further examined the interactions among E4, 
E6 and E7. E6 repression counteracted E4 activation (Fig. 4d, top left), 
and, conversely, E6 activation counteracted E4 repression (Fig. 4d, 
bottom left). We observed similar trends in magnitude of enhancer 
strength as seen for TSS–E pairs (Fig. 3g,h), supporting the strong and 
moderate functional effects of E6 and E4, respectively. E7 activation 
was also capable of counteracting E4 and E6 repression (Fig. 4d, bot-
tom). All other enhancers had minimal ability to counteract E4 and 
E6 perturbation (Fig. 4d). Interestingly, E1 and E2 activation weakly 
reduced log2FC z-score, suggesting that these two enhancers, which 
are both approximately 1.2 Mb from the TSS, may be weak repressive 
REs (Fig. 4d and Extended Data Fig. 7h). Additionally, CRISPRai of E4 
and E6 enabled reversible control of IL2 expression (Fig. 4e, top). Fur-
thermore, the relationship between E4 and E6 was additive or nearly 
additive regardless of the perturbation direction (ai versus ia) (Fig. 4e, 
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top). E7 activation counteracted repression of both E4 and E6, and these 
relationships were additive (Fig. 4e, bottom).

IL2 enhancer activity in primary human and chimeric antigen 
receptor T cells
We next extended our findings from CRISPRai to several primary cell 
contexts. We performed individual and pooled CRISPRi perturbations 
in primary human T cells and chimeric antigen receptor (CAR) T cells. 
We included gRNAs for gatekeeper enhancers (E4 and E6), the TSS, 
the NTC and negative control enhancers that exhibited minimal effect 
on IL2 expression in the Jurkat screens (E2 and E9), and we followed 
a similar experimental workflow as the Jurkat IL2 gRNA enrichment 
screens (Fig. 5a). First, we individually validated selected enhancer 
CRISPRi perturbations and quantified enhancer perturbation strength 
during CRISPRi in Jurkat T cells using flow cytometry for intracellular 
IL2 (Fig. 5b). We observed similar trends in enhancer strength as seen 
in the Jurkat gRNA enrichment screens, thus validating the gatekeeper 
effects of these enhancers (Fig. 5b). Next, we performed individual 
CRISPRi (ZIM3 KRAB domain) perturbations in primary human T cells, 
including bulk CD3+ cells (gated for CD4+ and CD8+) and isolated CD4+ 

memory cells. We prioritized the memory CD4+ T cell population for 
in-depth study because Jurkat cells are CD4+ and because previously 
published assay for transposase-accessible chromatin with sequenc-
ing (ATAC-seq) data showed that, among primary T cell subsets, CD4+ 
memory T cells have the highest accessibility at E4, E6 and the IL2 TSS80. 
We found that E4 had the greatest effect among enhancers in primary 
T cells when repressed (Fig. 5c). Furthermore, we noted that there 
is likely greater context-dependent usage of enhancers in primary 
T cells relative to Jurkat T cells; a subtle effect was observed for E6 in 
isolated CD4+ memory T cells with one gRNA, suggesting that E6 likely 
has context-restricted function in primary cells (Fig. 5c). Quantitatively, 
E4 perturbation strength varied across T cell subsets; on average, E4 
achieved 28%, 82%, 67% and 96% of TSS perturbation strength for Jurkat, 
CD8+, CD4+ and CD4+ memory primary T cells, respectively (Fig. 5d, left). 
On average, E6 achieved 80% and 14% of TSS perturbation strength for 
Jurkat and CD4+ memory primary T cells, respectively (Fig. 5d, right).

We next performed pooled CRISPRi screens in both CD19-28z (clin-
ically approved) and HA-GD2-28z (exhaustion prone81,82) CD4+ memory 
primary CAR T cells (Fig. 5a,e–h and Extended Data Fig. 8a–h). We 
observed similar trends in enhancer perturbation effects in CAR T cells 
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as for non-CAR primary T cells (Fig. 5e and Extended Data Fig. 8e,f). 
We found that E4 perturbation strength relative to TSS perturbation 
strength was not influenced by level of CAR T cell exhaustion state. On 
average, E4 exhibited 88%, 87% and 85% of TSS perturbation strength 
for non-CAR, CD19-28z-CAR and HA-GD2-28z-CAR T cells, respectively 
(Fig. 5f). In contrast, CAR T cell capacity for perturbation by E4 varied 
with degree of CAR T cell activation or exhaustion state; magnitude of 
E4 perturbation was largest in non-CAR T cells and grew progressively 
smaller for CD19-28z and HA-GD2-28z CAR T cells (Fig. 5g, left). This 
trend was also observed for the TSS (Extended Data Fig. 8g). E6 pertur-
bation in CAR T cells was detected only when considering gRNAs in the 
5′ end of E6 (Extended Data Fig. 8f). However, after correcting log2FC 
for variability in NTC gRNAs, we observed that CAR T cell capacity 
for E6 perturbation was slightly increased in HA-GD2-28z-CAR T cells 

(Fig. 5g, right). Additionally, HA-GD2-28z-CAR T cells had less than half 
the amount of IL2+ cells compared to non-CAR and CD19-28z-CAR T cells 
(Extended Data Fig. 8h), indicating a reduced capacity for IL2 produc-
tion in HA-GD2-28z-CAR T cells, as expected in T cell exhaustion81,82.

Epigenomic analysis reveals activity-driven and 
contact-driven REs
In addition to the gRNA enrichment and intracellular protein data 
demonstrating gatekeeper enhancer effects, we sought to further 
validate IL2 enhancers and dissect the mechanism underlying gate-
keeper enhancer-mediated IL2 gene regulation. To provide mechanistic 
insight, we performed ATAC-seq on RE perturbed cells (Fig. 6a and 
Extended Data Fig. 9a–c) and integrated these data together with previ-
ously published ChIP-seq (ENCODE70,71) and ABC model44,45 datasets to 
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jointly assess chromatin accessibility, histone modifications, TF motif 
enrichment and chromatin looping (Fig. 6b–d).

We first assessed chromatin accessibility changes induced by 
CRISPRi perturbation of selected enhancers using the same set of 
enhancers as the primary T cell experiments. We performed ATAC-seq 
on perturbed Jurkat T cells, as well as ATAC–qPCR, which quantitatively 
detects accessibility changes at specific loci of interest83. We observed 
that repressing one enhancer by CRISPRi significantly decreased chro-
matin accessibility at that enhancer (Fig. 6a). In all conditions, the 
perturbed RE had the greatest decrease in accessibility when con-
sidering all IL2 REs but had a limited ability to affect accessibility at 
distant enhancers (Fig. 6a and Extended Data Fig. 9a–c). For example, 
E4 repression did not alter accessibility of E2 or E7, and E6 repression 
minimally altered accessibility of E4 and E7. Additionally, gatekeeper 
enhancer function could not be completely explained by their impact 
on promoter accessibility. CRISPRi of enhancers E4 and E6 did not 
reduce TSS accessibility despite resulting in IL2 protein reduction as 
measured by flow cytometry (reduced to 71% and 33% of NTC level, 
respectively; Fig. 5b). This result indicates that enhancer-mediated 
induction of IL2 expression is not entirely driven by chromatin acces-
sibility; rather, these enhancers likely function through other biochemi-
cal means, such as RNA polymerase II pause release, TF recruitment or 
histone modification spreading.

To investigate these possibilities, we compared ENCODE his-
tone ChIP-seq in resting and activated primary T cells70,71 (Fig. 6b and 
Extended Data Fig. 10a,b), a relevant comparison because our screen 
endpoint was T cell activation (Fig. 3b). We found that E4 and E7 had 
high to moderate activating histone marks, including H3K4me3 and 
H3K27ac (Fig. 6b and Extended Data Fig. 10b). In contrast, E6 was rela-
tively low for these histone marks but showed a large increase in acti-
vating histone marks in activated compared to resting cells. The most 
prominent histone mark for E6 was H3K4me1, which was accompanied 
by H3K4me3 depletion, a characteristic of primed enhancers84 (Fig. 6b 
and Extended Data Fig. 10b). In addition, compared to other enhanc-
ers, E6 was highly enriched for TF motifs ( JASPAR)85 involved in T cell 
activation, including BATF3, JUN, JUND, ATF2 and EOMES, indicating 
that E6 is activation responsive and suggesting that it may be important 
for regulating activation-induced IL2 expression in T cells (Fig. 6c). TF 
ChIP-seq in activated primary CD4+ T cells corroborated AP-1 family TF 
occupancy at E6 (Extended Data Fig. 10b)86. Together, these findings 
suggest that E6 is a primed enhancer in primary T cells; however, its 
heightened ability to recruit TFs gives it the potential to be highly acti-
vation responsive, which may contribute to its context-restricted func-
tion in primary T cells and strong gatekeeper function in Jurkat T cells.

Additionally, we leveraged the ABC model44,45 data to investigate 
further epigenomic characteristics of IL2 enhancers. Under the ABC 
model, E4 had the highest predicted enhancer score, with high contact 
score (contact frequency with the TSS) yet low activity score (combined 
score of epigenetic features)45 (Fig. 6d). Thus, E4 gatekeeper function is 
likely primarily contact driven rather than activity driven. Conversely, 
E7 exhibited the opposite, with low contact score but high activity 
score, resulting in a relatively high overall predicted enhancer score, 
suggesting activity-driven function (Fig. 6d). E6 had intermediate 
scores for both contact and activity (Fig. 6d). Taken together, these 
attributes indicate that E–TSS contacts and enhancer activity likely rep-
resent complementary mechanisms, where either property is able to 
drive enhancer-mediated gene regulation in a context-specific manner.

To quantify the extent of genetic interactions among IL2 REs, 
we sought to contextualize our results using previously published 
approaches for studying genetic interactions30,87. First, we investi-
gated whether any strong functional CRISPRai enhancers overlapped 
with the splicing regulatory element (SRE) enhancer set identified in  
Lin et al.30. We found that E7 and, most notably, E4 were present in the 
top most synergistic SRE E–E pairs, confirming their importance in 
IL2 gene regulation (Fig. 6e). E6 was not present in the SRE enhancer 

set. Second, we calculated ‘GI scores’, using a method similar to Hor-
lbeck et al.87. We defined GI scores as the residual between the linear 
model and the observed bidirectional perturbation log2FC z-score. The 
resulting hits for synergistic interactions were E2.i|E7.a, TSS.i|E4.a and 
TSS.i|E6.a (positive residuals), whereas TSS.i|E4.a and TSS.i|E6.a were 
identified as buffering interactions (negative residuals) (Fig. 6f). In 
other words, E2.i|E7.a resulted in higher IL2 expression than expected, 
and TSS.i|E4.a and TSS.i|E6.a resulted in lower IL2 expression than 
expected (Fig. 6f and Extended Data Fig. 7i). This analysis highlighted 
three key insights. First, this analysis underscored the hierarchy that 
the promoter has over enhancers in governing gene expression. Sec-
ond, the promoter genetic interaction effect was unique to CRISPRi, 
and we did not observe this interaction for the reciprocal TSS.a pairs, 
suggesting that E–TSS interaction is directionally dependent for IL2. 
Third, we observed a genetic interaction for E2.i|E7.a where IL2 expres-
sion was greater than expected. Interestingly, we also noted that E2 
CRISPRi resulted in increased accessibility at the TSS and all gatekeeper 
enhancers E4, E6 and E7 (Extended Data Fig. 9c). Furthermore, although 
the magnitude of E4 and E6 accessibility change during E2 CRISPRi 
was similar to that achieved by TSS CRISPRi, only E7 demonstrated 
equivalent magnitude accessibility change in both of these conditions, 
suggesting a unique relationship between E2 and E7. Furthermore, in 
the IL2 validation screen, we observed that E2.a weakly reduces IL2 
expression (Extended Data Fig. 7g,h), suggesting that E2 is a weak 
repressive element.

In summary, our integrated analyses revealed two main modes 
of gene regulation by gatekeeper enhancers: activity driven and 
contact driven. Contact-driven enhancers, such as E4, exhibited 
strong three-dimensional contacts with the TSS (Fig. 6d), and repres-
sion of either this enhancer itself or the TSS reduced accessibility 
of the enhancer (Fig. 6a and Extended Data Fig. 9a–c). In contrast, 
activity-driven enhancers, such as E6, did not form loops as strongly 
and did not exhibit reduced accessibility during TSS repression. Fur-
thermore, although most of the RE pairs exhibited additive function, 
which is expected given that strong genetic interactions are rare50, 
CRISPRai enabled identification of three genetic interactions among 
IL2 REs (Fig. 6f). We synthesized these findings into a proposed model 
of IL2 gene regulation (Fig. 6g).

Discussion
We developed a bidirectional epigenetic editing system, called CRIS-
PRai, to expand the toolkit for investigating genetic interactions and 
non-coding genetic elements. Furthermore, we extended CRISPRai to 
be compatible with single-cell readouts and demonstrated the utility 
of the system in applying bidirectional epigenetic perturbations to 
pairs of genes. This allowed us to uncover insights into the genetic 
interaction between SPI1 and GATA1, including that the bidirectional 
perturbation uniquely highlights synergistically regulated downstream 
target genes and that the pattern of SPI1 and GATA1 occupancy at down-
stream target genes depends on regulatory mode. Moving forward, 
future approaches could extend CRISPRai Perturb-seq to incorporate 
multi-omic readouts or to study non-coding disease-associated vari-
ants. Additionally, emerging technologies, such as cell hashing88; alter-
native single-cell workflows, such as split-pool89; and new lower-cost 
sequencing technologies90 are expanding the number of cells feasible 
to sequence per experiment and provide a clear path toward enhancing 
the scale of CRISPRai screens in the future, potentially toward extend-
ing genome-wide Perturb-seq91 for use with CRISPRai.

We also demonstrate here the utility of CRISPRai in studying 
non-coding elements. We applied CRISPRai to study hierarchies in gene 
regulation between the promoter and enhancers of IL2 and extended 
our findings to primary T cells and CAR T cells. Integrated analysis 
of CRISPRai functional data with epigenomic datasets revealed the 
existence of gatekeeper enhancers, which exhibited strong functional 
effects capable of heavily competing with the promoter in regulating 
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IL2 expression, and elucidated mechanisms of gatekeeper enhancer 
function. We anticipate that future applications of CRISPRai can 
further extend its capabilities for studying non-coding elements by 
multiplexing more than two simultaneous perturbations or using 
additional epigenetic effector domains, such as DNA methyltransferase 
or demethylase92. This will enable large-scale, systematic dissection of 
non-coding disease-associated variants.

New tools to manipulate coding and non-coding elements of the 
genome are needed to enable dissection of the complex gene regula-
tory and genetic interaction networks that wire mammalian cells. 
CRISPRai enables precise and bidirectional control over genes and REs 
in human cells, facilitating investigation of these questions. Specifi-
cally, CRISPRai revealed insight on the SPI1 and GATA1 hematopoietic 
lineage TFs. CRISPRai enabled modulation of erythroid and myeloid 
gene signatures using bidirectional perturbations as well as identifica-
tion and quantification different modes of regulation on downstream 
target genes, highlighting its utility in mapping genetic networks. 
Additionally, CRISPRai can elucidate RE landscapes and enhancer 
mechanisms. It is known that enhancer functionality is heterogenous 
and complex; some enhancers act in an additive manner76, whereas 
other rare enhancers may have synergistic effects in combination30. 
Some enhancers offer redundancy, whereas others are dominant levers 
for gene expression control76,77,93,94. Enhancers differ in their structural 
chromatin contacts95, E–TSS distance40 and chromatin modifications42 
and in which TFs they are capable of recruiting46,47, which likely governs 
their function and the target genes for which they are compatible. 
These characteristics of enhancers are consistent with our findings 
from CRISPRai examining over 4,000 enhancer perturbation pairs. 
We show that combined enhancer function is primarily additive and 
that multiple enhancers enable tuning of gene expression levels. Fur-
thermore, our ability to perform bidirectional perturbations revealed 
the existence of dominant gatekeeper enhancers that exist and heavily 
compete with the promoter. Additionally, Brosh et al.96 recently per-
formed Sox2 enhancer genome editing using long DNA assembly and 
sequence insertion in mouse embryonic stem cells, and they reported 
similar conclusions about enhancer hierarchies to those demonstrated 
by CRISPRai, which supports the biological significance of CRISPRai 
findings by corroborating the results with alternate methods for study-
ing REs. Furthermore, Brosh et al. reported context-dependent func-
tion of REs within their gene locus, highlighting the importance of 
studying REs in their endogenous locus, which is a strength of CRISPRai. 
In summary, we developed CRISPRai and applied this method to study 
the SPI1–GATA1 genetic interaction as well as IL2 regulatory hierarchies. 
We anticipate that future applications of CRISPRai will enhance under-
standing of the multifaceted and heterogenous mechanisms underly-
ing genetic interactions and gene regulation across the genome.
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Methods
Cell culture of cell lines
Lenti-X HEK293T (Clontech) cells were cultured in DMEM (Gibco) with 
L-glutamine and sodium pyruvate supplemented with 10% FBS (Gibco) and 
1% penicillin–streptomycin (Gibco) and passaged using TrypLE Express 
(Gibco). K562 (American Type Culture Collection (ATCC), CCL-238) was 
cultured in RPMI 1640 (Gibco) with L-glutamine supplemented with 10% 
FBS and 1% penicillin–streptomycin. Jurkat clone E6-1 cells (ATCC, TIB-
152) were cultured in RPMI 1640 with L-glutamine (Gibco) supplemented 
with 10% FBS, 10 mM HEPES (Gibco), 1 mM sodium pyruvate (Gibco) and 
1% penicillin–streptomycin. Cells were routinely tested for mycoplasma 
using a MycoAlert PLUS Detection Kit (Lonza) and found to be negative.

Isolation and culture of primary human T cells
Human T cells were sourced from peripheral blood mononuclear cell 
(PBMC)-enriched leukapheresis products (Leukopaks, STEMCELL 
Technologies) from healthy donors, after institutional review board 
(IRB)-approved informed written consent (STEMCELL Technologies). 
T cell populations (bulk or CD4+ memory cells) were isolated from 
Leukopaks using EasySep magnetic selection following the manufac-
turer’s recommended protocol (STEMCELL Technologies, 100-0695, 
19157). T cells were cultured in X-VIVO 15 (Lonza) supplemented with 
5% FBS and 100 IU ml−1 recombinant human IL-2 (AmerisourceBergen).

CRISPRai construct generation
The CRISPRai construct was cloned in the following format: 
TRE3G-VPR-dSaCas9-P2A-dSpCas9-BFP-KRAB-EF1a-Bleo-T2A-rtTA. 
The vector containing the TRE3G and Tet-On system was PiggyBac; the 
zeocin resistance gene and the Tet-On 3G transactivator were driven 
by the EF1a promoter (gifted by the Stanley Qi laboratory)98. The Super 
PiggyBac transposase plasmid was obtained from System Biosciences. 
VPR was obtained from pSLQ2349 (gifted by the Stanley Qi labora-
tory); dSaCas9 was obtained from pSLQ2840 (Addgene, 84246); and 
dSpCas9-BFP-KRAB was obtained from pHR-SFFV-dCas9-BFP-KRAB 
(Addgene, 46911). The ZNF10 (KOX1) KRAB domain7 was used. Con-
structs were cloned using Gibson Assembly (NEBuilder HiFi DNA 
Assembly) and confirmed by Sanger sequencing (Elim Biopharmaceu-
ticals). Primers and oligos were obtained from Elim Biopharmaceuti-
cals and Integrated DNA Technologies (IDT). Selected constructs are 
available on Addgene (https://www.addgene.org/Howard_Chang/).

CRISPR gRNA cloning
Primers and oligos for bulk validation experiments were obtained from 
Elim Biopharmaceuticals and IDT. Plasmids were confirmed by Sanger 
sequencing (Elim Biopharmaceuticals). Individual single gRNAs were 
cloned using Gibson Assembly (NEBuilder HiFi DNA Assembly). For 
validation and Perturb-seq experiments, gRNAs were constructed from 
pSLQ2853-3 pHR: U6-Sasgv2CXCR4-1 CMV-EGFP (Addgene, 84254) 
and pSLQ1852-2 pHR: U6-SpsgCD95-1 CMV-EGFP (Addgene, 84151). 
For dSaCas9 gRNAs, GFP was replaced with mScarlet (pmScarlet_Gian-
tin_C1; Addgene, 85048).

For Perturb-seq single gRNAs, gRNAs pools were constructed 
from two gRNA backbones, with the dSpCas9 or dSaCas9 gRNA scaf-
fold. Pools were cloned in arrayed format by ordering top and bottom 
approximately 31–33-bp gRNA oligos from IDT with appropriate over-
hangs. Top and bottom oligos were combined at 100 mM in annealing 
buffer (potassium acetate, 30 mM HEPES-KOH pH 7.4 and 2 mM mag-
nesium acetate in water, adapted from Jonathan Weismann labora-
tory protocols, https://weissman.wi.mit.edu/resources/), annealed 
on a thermocycler at 95 °C for 4 min, cooled slowly for 3 h, pooled, 
phosphorylated using T4 PNK (NEB) at 37 °C for 30 min with 65 °C 
for 20-min PNK inactivation, ligated into the previously digested and 
dephosphorylated (Fast AP, Thermo Fisher Scientific) lentiviral gRNA 
backbone using T4 ligase (NEB) and transformed by heat shock into 
Stbl3 competent cells (Thermo Fisher Scientific).

For Perturb-seq double gRNAs, gRNA pools were constructed in 
a two-step cloning process (Extended Data Fig. 2a). Oligo pools (IDT) 
containing approximately 200-bp oligos were cloned with the format: 
(amplification primer)-(digest site)-(gRNA1)-(scaffold1)-(hu6 landing 
pad)-(digest site)-(amplification primer). For step 1, oligo pools were 
PCR amplified in multiple reactions with low cycle number (NEB Ultra 
II Master Mix), digested and size selected via gel purification (E-Gel EX, 
Thermo Fisher Scientific), ligated into predigested gRNA backbones 
with T4 ligase overnight at 16 °C for 16 h and inactivated at 65 °C for 
10 min and transformed into Stbl3 competent cells and grown at 30 °C. 
For step 2, plasmid products were digested, dephosphorylated and gel 
size selected, and the previously digested hu6 PCR fragment (from 
pMJ117; Addgene, 85997) with appropriate overhangs was inserted 
via T4 ligation. Original vector backbone and intermediate backbone 
product were designed for digestion with Esp3I (BsmBI, NEB), and 
inserts were designed for digestion with BsaI (NEB).

For the enhancer gRNA enrichment screen, double gRNA pools 
were constructed in a one-step cloning process (Extended Data Fig. 2b). 
Primer pools were obtained from IDT and contained gRNA sequences 
and primer sequences for dSpCas9 gRNA scaffold and the hu6 pro-
moter. Primers were used to generate a PCR product in the format of 
[mu6 fragment-gRNA1-Sp gRNA scaffold-hu6-gRNA2-Sa gRNA scaffold 
fragment], flanked by BsmBI digestion sites. The PCR product and 
backbone were digested separately and ligated with T4 ligase following 
recommended protocols.

gRNAs are listed in Supplementary Tables 4 and 7 for Jurkat flow 
cytometry and ATAC-seq experiments (Validation Experiment A) and 
primary T cell flow cytometry experiments (Validation Experiment B). 
Two gRNAs per RE were used. For primary CAR T cell CRISPRi screens, 
the same gRNA pool was used as for the IL2 validation screen, which 
included eight gRNAs per enhancer.

Stable cell line generation
Stable cell lines were generated by electroporation via the Neon Trans-
fection System (Thermo Fisher Scientific). Cells were electroporated 
using recommended parameters, recovered in fresh media for 3 d, 
selected with zeocin (Thermo Fisher Scientific) for 10 d and then ana-
lyzed by flow cytometry for BFP to confirm dCas9 cassette expression 
near 100% of cells.

qPCR
Brilliant II SYBR Green qPCR Master Mix (Agilent Technologies) was 
used. Primers (Elim Biopharmaceuticals) were validated before use 
by examining the melt curve. Analysis was performed using the ΔΔCt 
method, relative to the housekeeping gene ACTB and NTC gRNA con-
trols. For ATAC–qPCR, Jurkat ATAC-seq libraries were used as input to 
qPCR, and optimal primers were designed in RE peaks using the ATAC 
Primer Tool83; one biological replicate of ATAC-seq was used as input 
to ATAC–qPCR due to sample volume constraints.

Lentivirus production
For cell line experiments, Lenti-X HEK293T cells were seeded on plates 
overnight to achieve 95% confluency at time of transfection and trans-
fected with packaging plasmids psPAX2 (1.5 µg; Addgene, 12260) and 
pMD2.G (4.5 µg; Addgene, 12259) and viral expression vector (6 µg) 
per 10-cm plate using Opti-MEM (Gibco) and Lipofectamine 3000 
transfection reagents (Thermo Fisher Scientific). Viral supernatant was 
collected at 48 h and concentrated using Lenti-X Concentrator (Clon-
tech) following the manufacturer’s instructions, resuspended in cell 
culture media at 10× the original culture volume and stored at −80 °C.

For primary T cell experiments, similar steps were followed with 
the following modifications. Cells were seeded in Opti-MEM I Reduced 
Serum Medium with L-glutamine (Gibco) supplemented with 5% FBS, 
1 mM sodium pyruvate (Gibco) and 1× non-essential amino acids (Gibco) 
(cOpti-MEM) in T25 flasks in 5 ml. Cells were transfected with psPAX2 
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(3.1 µg; Addgene, 12260), pMD2.G (1.5 µg; Addgene, 12259), expression 
vector (4.2 µg), Lipofectamine 3000 (20.1 µl) and P3000 (18.5 µl; Thermo 
Fisher Scientific) in 3.7 ml. At 6 h, media were replaced with cOpti-MEM 
supplemented with ViralBoost at 1:500 dilution (ALSTEM). Lentiviral 
supernatant was harvested 24 h and 48 h after transfection, centrifuged at 
500g for 5 min at 4 °C to remove debris, concentrated with Lenti-X Concen-
trator and resuspended in Opti-MEM at 100× the original culture volume.

Flow cytometry and fluorescence-activated cell sorting
All antibodies were used at 1:20–1:200 dilutions. All cells were 
stained in flow cytometry staining buffer (eBioscience). FlowJo 
(version 10.6.1) software was used for all analysis. Cells were ana-
lyzed by flow cytometry (Attune NxT, Thermo Fisher Scientific, 
or LSR II, BD Biosciences) or sorted based on stained markers and 
gRNA expression (GFP or mScarlet) (FACSAria II, BD Biosciences). 
Fluorescence-activated cell sorting (FACS) was performed at the 
Stanford Shared FACS Facility.

For Jurkat intracellular cytokine staining, cells were stained with 
Zombie NIR viability dye at 1:1,000 dilution in PBS at 10 million cells per 
100 µl for 15 min at 4 °C, washed, fixed using Cyto-Fast Fix/Perm Buffer 
Set (BioLegend) for 25 min at 22 °C, washed and stored in Cyto-Last 
Buffer (BioLegend) at 4 °C in the dark for 1–3 d. Before sorting, fixed 
cells were permeabilized and stained with IL2-BV711 (BioLegend, clone 
MQ1-17H12, cat. no. 500346, lot no. B354636) and IFNG-APC (BioLeg-
end, clone B27, cat. no. 506510, lot no. B329616) antibodies for 45 min at 
22 °C, washed with fix/perm buffer and resuspended in staining buffer. 
For Perturb-seq, cells were similarly stained with Zombie NIR fixable 
viability dye. For Jurkat validation CRISPRi experiments, cells were 
stained with CD3E-BV785 (BioLegend, clone OKT3, cat. no. 317329, lot 
no. B311209) or CD47-BV605 (BioLegend, clone CC2C6, cat. no. 323119, 
lot no. B300088) antibodies.

For primary T cell flow cytometry experiments, cells were stained 
with Ghost Dye Red 780 (Tonbo Biosciences), CD4-BV510 (BioLegend, 
clone OKT4, cat. no. 317444) and CD8-PerCP/Cyanine5.5 (BioLegend, 
clone SK1, cat. no. 344710), fixed and permeabilized with BD Cytofix/
Cytoperm (BD Biosciences), stained for intracellular IL2 with IL2-APC 
(BioLegend, clone MQ1-17H12, cat. no. 500310) as described for Jurkat 
T cells and analyzed by flow cytometry (Attune NxT, Thermo Fisher 
Scientific). Plots shown are for live gated cells from a culture of CD3+ 
T cells (from which CD4+ and CD8+ are gated) or pre-isolated memory 
CD4+ cells. For CD4+ and CD8+ cell analysis, data were normalized to 
NTC cells on a per-donor basis. For memory CD4+ cell analysis, data 
were normalized to NTC and unstimulated cells on a per-donor basis. 
Perturbation strength was calculated by additionally normalizing by 
normalized TSS percent IL2+ values on a per-donor basis. Jurkat valida-
tion flow cytometry data were analyzed similarly.

For primary T cell pooled gRNA screens, cells were stained with 
Ghost Dye Red 780 (Thermo Fisher Scientific), fixed and permea-
bilized with Cyto-Fast Fix/Perm Buffer Set (BioLegend) and stained 
for intracellular IL2 (BioLegend, clone MQ1-17H12, cat. no. 500346, 
lot no. B354636). CD4+ memory primary T cell phenotype was veri-
fied using the following cell surface markers: CD3-PE (BioLegend, 
clone UCHT1, cat. no. 300441); CD4-BV511 (BioLegend, clone OKT4,  
cat. no. 317444); CD8-PerCP/Cyanine5.5 (BioLegend, clone SK1, cat. 
no. 344710); CD45RA-BV711 (BioLegend, clone HI100, cat. no. 304138); 
CD45RO-FITC (BioLegend, clone UCHL1, cat. no. 304204); CD62L-PE/Cy7  
(BioLegend, clone DREG-56, cat. no. 304822); and CCR7-BV421  
(BioLegend, clone G043H7, cat. no. 353208).

Pooled K562 and Jurkat screening
Cells were infected with lentivirus gRNA pools in polybrene (8 µg ml−1) 
at a multiplcity of infection (MOI) of 0.1 (K562) or 0.2 ( Jurkat), as 
confirmed by flow cytometry for GFP or mScarlet expression on 
days 2 and 3 after infection. Dox (1 µg ml−1) was added at the time 
of infection or 6 d before the screen endpoint and refreshed every 

24 h. For the K562 screen, cells were expanded for 6 d after infec-
tion and frozen in aliquots on day 6 in CryotStor CS10 (STEMCELL 
Technologies). Before sorting, cells were thawed and allowed to 
recover in culture in dox+ media for 18 h and then sorted for live,  
gRNA+ cells.

For Jurkat screens, 0.5 µg ml−1 puromycin (Thermo Fisher Scien-
tific) was added on day 3 after infection, puromycin selected for 4 d 
and confirmed by flow cytometry to have near 100% gRNA expression. 
On day 7, dox induction was started and continued for 6 d. On day 13, 
cells were activated at approximately 2–4 million cells per millilter for 
8 h using CD3 antibody (BioLegend, clone OKT3, cat. no. 317347, lot 
no. B338622) coated tissue culture plates and media containing dox 
(1 µg ml−1), CD28 antibody (3 µg ml−1; BioLegend, clone CD28.2, cat. no. 
302943, lot no. B335272), PMA (1×), ionomycin (1×) and Brefeldin A (1×) 
(PMA/iono/BrefA were used from Cell Activation Cocktail, BioLegend). 
gRNA+ cell number (accounting for MOI) was maintained at 1,000× the 
number of gRNAs included in the gRNA pool throughout the screen. For 
the initial screen, the above steps were modified to begin dox induction 
at the time infection; puromycin selection was performed from day 3 
to day 7; and the screen was stopped on day 7.

Single-cell library preparation
Single and double perturbations were performed in separate single-cell 
captures. Sorted cells were prepared using the Chromium Next GEM 
Single Cell 5′ Kit v2, Chromium Next GEM Chip K Single Cell Kit and 
Library Construction Kit (10x Genomics), following the Chromium Next 
GEM Single Cell 5′ Reagent Kits v2 (Dual Index) with Feature Barcoding 
user guide (CG000330 Rev A).

GEX libraries were constructed as recommended. For gRNA detec-
tion, oligos complementary to each of the gRNA scaffolds (Sa and Sp) 
were spiked into the RT reaction at 11.43 pmol each.

Sa: AAGCAGTGGTATCAACGCAGAGTACacaagttgacgagataaacacgg
Sp: AAGCAGTGGTATCAACGCAGAGTACcgactcggtgccactttttc
For step 2.2, cDNA primers were used (green; 10x Genomics, PN 

2000089) instead of feature cDNA primers (purple; 10x Genomics, 
PN 2000277). For step 2.3, GEX is in the pellet (2.3 A), and gRNAs are 
in the supernatant (2.3B); both portions were retained; and library 
construction was performed separately. gRNA library construction 
was performed using a custom PCR protocol, and Sa and Sp gRNA 
libraries were constructed separately. PCR1: outer nested PCR, F CTA-
CACGACGCTCTTCCGATCT, R_sa acaagttgacgagataaacacgg, R_sp 
CGACTCGGTGCCACTTTTTC (98 °C for 3 min; 20 cycles at 98 °C for 
20 s, 66 °C (Sa)/68 °C (Sp) for 30 s and 72 °C for 20 s; and 72 °C for 
5 min). PCR2: inner nested PCR and adapter common region addition, 
F same primer as PCR1,

R_sa GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgataaacacg-
gcattttgccttg,

R_sp GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcaagttga-
taacggactagcctt

(same cycling conditions as PCR1, with annealing temperatures 
66 °C (Sa)/65 °C (Sp)). PCR3: sample index PCR, P5 and P7 Dual Index 
TT Set A (98 °C for 3 min; 15 cycles at 98 °C for 20 s, 54 °C for 30 s and 
72 °C for 1 min; and 72 °C for 5 min). After each PCR, products were run 
on E-Gel EX 2% agarose and size selected.

Design parameters for single-cell screens
CRISPRai was specifically designed to be highly scalable, and there 
is no inherent limitation on the number of perturbations CRISPRai 
can perform. Similar to direct capture Perturb-seq, CRISPRai screens 
have a tradeoff between the number of targets in the pool and the 
number of single cells that the user wants to assay at once. CRISPRai is 
highly scalable because we leverage the simultaneous direct capture 
of two gRNAs, which enables pooled cloning and virus production. 
Using current commercially available technologies, CRISPRai can 
be scaled to thousands of perturbations, as recently demonstrated 
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by Replogle et al.91 for genome-scale direct capture Perturb-seq, 
which can be further expanded using emerging technologies. To 
maximize CRISPRai Perturb-seq data quality, we suggest the follow-
ing: (1) analyze at least 40–50 cells per gRNA genotype; (2) anticipate 
approximately 50% efficacy of dual gRNA detection (for example, 
plan for sequencing 80–100 cells per gRNA to yield 40–50 cells with 
high-confidence gRNA detection) to accommodate the lower gRNA 
detection rate of two compared to one gRNA per cell; (3) include two 
or more gRNAs per gene to enable gRNA correlation analysis; and (4) 
incorporate single perturbation (CRISPRi and CRISPRa) controls to 
enable genetic interaction analysis and to identify which gene pairs 
are amenable to bidirectional control.

CRISPR gRNA enrichment library preparation
Genomic DNA (gDNA) was extracted from sorted cells for different 
cytokine populations. Initial screen: IL2+IFNG− (IL2), IFNG+IL2− (IFNG), 
IL2+IFNG+(DP), IL2−IFNG− (NEG) and unsorted (UN) cells. Validation 
screen: IL2+ (IL2), IL2− (NEG) and UN cells. Cells were washed with PBS 
and resuspended in 1× lysis buffer (10 mM Tris pH 8, 5 mM EDTA, 0.5% 
SDS, 1× (0.4 mg ml−1) Proteinase K) (Thermo Fisher Scientific) in water 
at 10 million cells per 800 µl, incubated at 55 °C for 2 h and then 65 °C 
for 16–20 h overnight. Samples were then cooled to room temperature 
for 10 min, and Triton X-100 (Sigma-Aldrich) was added to a final con-
centration of 0.5%. The number of cells per population used for gDNA 
extraction was 0.2–15 million and 10–20 million for the initial and 
validation screens, respectively. For samples with more than 2 million 
sorted cells, gDNA was then purified using the Quick-DNA Miniprep 
Kit (Zymo Research), following the ‘Cell Suspensions and Proteinase 
K Digested Samples’ recommended protocol. For samples with fewer 
than 2 million cells, a precipitate-based method was used for gDNA 
extraction. After addition of Triton X-100 and sodium acetate to 10%, 
2.5× volumes of 100% EtOH was added; samples were placed at −20 °C 
for 1 h followed by centrifugation at 20,000g for 15 min at 4 °C; the 
supernatant was removed; 75% EtOH was added; centrifugation was 
performed again; and pellets were dried overnight at room tempera-
ture and resuspended in elution buffer.

Library preparation from gDNA was performed by three PCR 
steps. PCR1: multiple reactions per sample were set up with 2 µg or 
less of gDNA with outer nested primers complementary to the gRNA 
cassette (98 °C for 3 min; 14 cycles of 98 °C for 20 s, 58 °C for 20 s and 
72 °C for 40 s; and 72 °C for 2 min) and concentrated with DNA Clean 
& Concentrator (Zymo Research). PCR2: inner nested primers (98 °C 
for 30 s; six cycles of 98 °C for 15 s, 60 °C for 15 s and 72 °C for 45 s; 
and 72 °C for 2 min) and size selected using SPRI beads 0.75× cleanup. 
PCR3: Tru-seq-based indexing primers (98 °C for 30 s; six cycles of 
98 °C for 15 s, 63 °C for 15 s and 72 °C for 45 s; and 72 °C for 2 min) and 
size selected using SPRI beads 0.75× cleanup. After each PCR, products 
were checked on E-Gel EX 2% agarose.

Primer sequences:
PCR1
mU6_outer_fw: cagcacaaaaggaaactcaccctaactgtaaag
sasgRNA_PCR_3Rev: tctcgccaacaagttgacgagataaaca
PCR2
p7_saRNA_stagger2_rev: GTGACTGGAGTTCAGACGTGTGCTCTTC 

CGATCTccttgttatagtagattctgtttccagagtactaTAAC
p7_saRNA_stagger1_rev: GTGACTGGAGTTCAGACGTGTGCTCTTC 

CGATCTcttgttatagtagattctgtttccagagtactaTAAC
p7_saRNA_stagger0_rev: GTGACTGGAGTTCAGACGTGTGCTCTTC 

CGATCTtgttatagtagattctgtttccagagtactaTAAC
p5_mU6_0nt_stagger: ACACTCTTTCCCTACACGACGCTCTTC 

CGATCTtcccttggagaaccaccttgt
p5_mU6_1nt_stagger: ACACTCTTTCCCTACACGACGCTCTTC 

CGATCTCtcccttggagaaccaccttgt
p5_mU6_2nt_stagger: ACACTCTTTCCCTACACGACGCTCTTC 

CGATCTGCtcccttggagaaccaccttgt

ATAC-seq in Jurkat T cells
Jurkat CRISPRai T cells were transduced with individually cloned gRNAs 
(two gRNAs per RE) and processed under the same conditions as the 
Jurkat enhancer pooled screens. On the day of collection, cells were 
harvested for bulk ATAC-seq library preparation according to pub-
lished protocols99. ATAC-seq reads were aligned to reference genome 
hg19 with Bowtie 2 (ref. 100) (version 2.3.4.1) using the parameter 
–very-sensitive. Data were filtered to remove mitochondrial reads, 
retain proper pairs (-f 0×2) and remove ambiguously mapped reads 
(MAPQ > 10, -q 10). BAM files were sorted and indexed with SAMtools 
(version 1.8). BedGraph coverage files were generated using bamCover-
age from deepTools (version 3.3.1_py36)101 with parameters –number-
OfProcessors 10–binSize 50–normalizeUsing CPM–region chr4. For 
quantification, data were further normalized by the total signal for 
chr4 per sample using a pseudocount of 1 × 10−4 and scaled to 1 × 106.

Primary T cell CRISPRi experiments and pooled screen
The CRISPRi plasmids used for primary T cell experiments were 
SFFV-ZIM3KRAB-dCas9-2A-mCherry or SFFV-ZIM3KRAB-dCas9-BlastR. 
To generate these plasmids, we replaced dCas9-VP64 on 
Lenti-SFFV-dCas9-VP64-2A-mCherry (Addgene, 180263) with ZIM-
3KRAB-dCas9 from Addgene, 154472, using Gibson assembly. The 
ZIM3 KRAB domain was used. Next, mCherry was replaced with BlastR 
(Addgene, 52962) using Gibson assembly. The Lenti 1928z CAR con-
struct was a gift from Dan Goodman. The high-affinity HA-GD2-28z 
CAR sequence was a gift from the Crystal Mackall laboratory82 and was 
cloned into the Lenti-1928z plasmid, replacing the 1928z CAR with the 
HA-GD2-28z CAR using Gibson assembly.

For all primary T cell experiments, cells were activated on day 0 
using anti-human CD3/CD28 CTS Dynabeads (Thermo Fisher Scien-
tific) at a 1:1 cell:bead ratio at 1 million cells per milliliter. Cells were 
transduced with each lentivirus sequentially after Dynabead activation: 
dCas9-KRAB at 18 h, CAR constructs at 26 h (when added) and gRNAs 
at 40 h. On day 9, cells were reactivated with ImmunoCult Human CD3/
CD28/CD2 T Cell Activator (STEMCELL Technologies) with 6.25 μl ml−1 
culture medium at 2 million cells per milliliter. One hour after reacti-
vation, GolgiPlug Protein Transport Inhibitor (BD Biosciences) was 
added at a 1:1,000 dilution, and, after 7 h, cells were stained for cell 
surface proteins, fixed and permeabilized and stained for intracellular 
cytokines.

For arrayed primary T cell flow cytometry experiments, the above 
steps were followed with the following modifications. Fresh Leukopak 
cells were pre-enriched for CD3+ T cells using an EasySep Human T Cell 
Isolation Kit (STEMCELL Technologies) before experiments.

For pooled primary T cell screens, the above steps were fol-
lowed with the following modifications. Fresh Leukopak cells were 
pre-enriched for CD4+ memory T cells using an EasySep Human Mem-
ory CD4+ T Cell Enrichment Kit (STEMCELL Technologies) before 
experiments. CD4+ memory T cell phenotype was verified by flow 
cytometry immediately after isolation using cell surface markers CD3, 
CD4, CD8, CD45RA, CD45RO, CD62L and CCR7. Cells were treated with 
10 µg ml−1 blasticidin for 6 d starting on day 3 after activation. Cells 
were collected on day 9 and stained for live/dead and intracellular IL2. 
IL2− and IL2+ populations were sorted by FACS; gDNA was isolated; and 
gRNA enrichment libraries were constructed as described for Jurkat  
T cell screens.

Sequencing
Library quality was checked by Bioanalyzer (Agilent Technologies) and 
quantified by KAPA Library Quantification Kit (Roche). Sequencing 
was performed on a NovaSeq 6000 (Illumina, Novogene) or a Next-
Seq 550 (Illumina). For single-cell Perturb-seq libraries, libraries were 
sequenced at approximately 6,000 reads per cell for gRNA and approxi-
mately 30,000–50,000 reads per cell for GEX. For the Jurkat enhancer 
screens, gRNA enrichment libraries were sequenced at approximately 
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1.5 million reads per sample for the initial screen and approximately 
7.5 million reads per sample for the validation screen (~1,200 reads 
per gRNA after filtering), and gRNA1 and gRNA2 in the double gRNA 
cassette were sequenced in R1 and R2 paired reads, respectively, and 
paired in silico. For primary T cell enhancer screens, gRNA enrichment 
libraries were sequenced at 2.5–3 million reads per sample (on average 
~50,000 reads per gRNA and minimum ~2,400 reads per gRNA). For 
bulk Jurkat ATAC-seq, libraries were sequenced at more than 29 million 
reads per sample.

Single-cell gRNA and transcriptome analysis
scRNA-seq reads were aligned to the GRCh38 reference genome and 
quantified using cellranger count (10x Genomics, version 5.0.0). 
CRISPR gRNA expression was quantified using cellranger count (10x 
Genomics, version 5.0.0) by specifying gRNA sequences and corre-
sponding genes in features.csv. Downstream data analysis was done 
in R (version 3.6.1) using Seurat (version 3.2.3).

Data from five total captures were combined to one Seurat object. 
Cells were filtered: number of genes > 200, number of genes < 5,500–
8,300, transcriptome unique molecular identifiers (UMIs) < 27,000–
75,000, percent mitochondrial reads < 10%, detected gRNAs > 20 
(background signal distribution) and gRNA UMIs > 50, with exact 
parameters differing for each capture for ranges listed above. gRNA 
labels for each cell were assigned based on cellranger feature calls. 
Only cells with one or two cellranger-detected gRNAs were retained 
for single gRNA and double gRNA captures, respectively. gRNA groups 
with fewer than 250 cells with target gene detected or with low cell 
numbers (n < 20) were removed. gRNA pools contained two gRNAs 
per gene for single perturbations and one gRNA per gene for dou-
ble perturbations. For each gene, the gRNA with higher magnitude 
log2FC in the single perturbations was used for the double perturba-
tion gRNA. If the two gRNAs for a given gene were not concordant in 
target gene log2FC expression for single perturbations, only the gRNA 
with greater magnitude change was retained for analysis. For these 
reasons, the following gRNAs were removed from the dataset: CEBPA.
a1, CEBPA.a2, MAP2K3.a1, MYC.a1, MYC.a2, MYC.e1.a1, MYC.e1.a2, SPI1.
a2, RIPK2.a2, ATF5.i1, CEBPB.i1 and FOSL1.i2. Gene expression was log 
normalized with a scaling factor of 1 × 104. gRNA expression was nor-
malized using relative counts with a scaling factor of 100. To quantify 
the number of gRNAs expressed per cell above a certain expression 
level threshold, we applied a threshold of 20% and 10% of total gRNA 
expression reads for cells expected to have single and double perturba-
tions, respectively, and applied these thresholds to cells after filtering 
out cells without any gRNA expression and after filtering for quality 
control metrics described previously. We estimated gRNA detection 
false-negative rate (FNR, defined as true double but detected to be 
single) and false-positive rate (FPR, defined as true single but detected 
to be double) to be 48% and 29%, respectively, using non-filtered data. 
It should be noted that high FNRs are expected for single-cell data due 
to dropout. FPRs and FNRs can be corrected for by grouping single 
and double perturbation cells via cell hashing antibodies88 or separate 
captures that impart separate sample barcodes.

For Fig. 1, only gRNA groups with more than 40 cells were included. 
Differential expression for CRISPR target genes was performed Find-
Markers() using normalized counts and a logistic regression model 
with batch as a latent variable. Batch was defined as the day on which 
10x captures were performed, either day 1 or day 2. For Fig. 2, the top 
2,000 most variable genes were found using variance stabilization 
transformation (vst). All genes were centered and scaled, and batch 
and percent mitochondrial reads were regressed out using ScaleData(). 
Principal component analysis (PCA) was performed on the top 2,000 
most variable genes, followed by nearest neighbor graph construction, 
cluster determination using the original Louvain algorithm and UMAP 
dimensionality reduction using the top principal components (PCs). 
All further analyses were performed with regression on batch as the 

only latent variable except for UMAP reduction of 24,661 cells, which 
was regressed on batch and percent mitochondrial reads.

Next, the subset of cells with SPI1 and GATA1 gRNAs was retained, 
and variable gene selection was repeated. Perturbation-driven cells 
were identified as clusters that were not composed of equal repre-
sentations from all gRNA groups. Non-perturbation-driven cells were 
removed, and variable feature selection, PCA, neighbor graph construc-
tion, clustering and UMAP reduction were performed again. All DE 
testing was performed on either all genes or genes in the indicated TF 
target gene sets using normalized counts and logistic regression with 
batch as a latent variable. For module score analysis, ENCODE TF target 
gene sets for SPI1 and GATA1 were downloaded from Harmonizome70–72, 
and genes were identified as being unique to either set or shared. 
Erythroid (n = 419, human bone marrow CD34 negative-selected and 
GYPA positive-selected erythroblasts, single-cell RNA-seq68) and mye-
loid (n = 394, human peripheral blood LIN(CD3, CD19, CD56)−CD14+/lo 
monocytes, single-cell RNA-seq69) gene sets were obtained from the 
literature. Module scores were calculated using AddModuleScore() 
using normalized, scaled and batch-regressed counts. GO term enrich-
ment was performed with clusterProfiler (version 3.14.0) enrichGO().

For all DE gene analysis, statistical significance was determined 
by genes passing P_adj < 0.05 and abs(log2FC) > 0.5. For analysis of 
regulatory modes for downstream target genes of SPI1 and GATA1, DE 
genes were filtered for statistical significance. Regulatory modes for 
downstream target genes were defined using the following thresh-
olds (difference = log2FC observed − log2FC expected from additive 
model for double perturbation): synergy difference > 0.1 (greater 
magnitude than expected or opposite sign than expected) and buffer 
difference > 0.7 (lower magnitude than expected), and the remain-
ing genes were classified as additive. For TF ChIP-seq analysis, the 
top 50 genes with the most additive phenotype were selected. The 
random gene subset was generated by randomly selecting 300 genes 
detected in the Perturb-seq experiment that were not contained in the 
SPI1 and GATA1 DE gene sets. For SPI1 and GATA1 TF ChIP-seq analysis, 
bigWig files containing ‘fold change over control’ were downloaded 
from ENCODE70,71: ENCFF080RWW, ENCFF838RXA and ENCFF334KVR 
(GATA1) and ENCFF172UZW, ENCFF454PTX and ENCFF216QNX (SPI1). 
log2FC was calculated with a pseudocount of 0.01. log2FC ChIP-seq 
signal of GATA1 or SPI1 within 1 kb of the promoter (2-kb window) or 
within ABC model enhancers for a given gene was calculated by taking 
the average signal across the RE. A gene was classified as being bound by 
a TF if one or more REs (including promoter or enhancers) had log2FC 
ChIP-seq signal > 5 (normalized to input).

All functions referenced above are from Seurat unless noted oth-
erwise. Statistical testing was performed using stat_compare_means() 
from ggpubr or FindMarkers() and FindAllMarkers() from Seurat. All 
plots were generated in R using Seurat, ggplot2 (version 3.3.2), ggpubr 
(version 0.2.4) and pheatmap (version 1.0.12).

CRISPR gRNA enrichment analysis
For Jurkat gRNA enrichment analysis, CRISPR gRNA enrichment reads 
were counted; dual gRNAs were paired in silico from paired-end reads; 
and a raw read counts per gRNA matrix was created using Python 3 
(version 3.7.4). Downstream data analysis was done in R (version 3.6.1). 
gRNA pairs were filtered for pairs with the sum of raw read counts across 
all sorted populations > 300 reads. Reads were normalized per sample 
by dividing by the total reads per sample and scaling by 1 × 106 and 
log2 transformed with a pseudocount of 1. Fold change was calculated 
between each population versus the cytokine-negative population. 
z-scores were computed by centering and scaling relative to the mean 
and standard deviation of all NTC gRNAs. z-scores were used for the 
majority of further analyses. z-scores were calculated independently 
for the initial and validation IL2 locus screens. To ensure that the initial 
CRISPRai screens were benchmarked to positive control gRNAs with 
strong effects, the TSS gRNAs with the strongest effects were retained, 
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and the following gRNAs were removed from the analysis: TSS.a.2 and 
TSS.i.2 (IL2) and TSS.a.1 and TSS.i.2 (IFNG). For the IL2 validation screen, 
the following gRNAs were removed from the analysis because they 
exhibited strong outlier behavior: NTC.a.1.val, TSS.a.3.val, TSS.i.1.val, 
or because it was not detected: E6.a.8.val.

Expected double gRNA enrichment was calculated by summing 
the log2FC gRNA enrichment z-scores of the corresponding single per-
turbations: log2FC z-score(single1) + log2FC z-score(single2). Residuals 
were calculated from the line of best fit between expected and observed 
double log2FC z-score. Pearson correlations were calculated using cor(). 
Perturbation strength was calculated through a second normalization 
step relative to TSS log2FC (E log2FC − TSS log2FC). log2FC difference was 
calculated through an alternate second normalization step relative to 
the average NTC log2FC (E log2FC − average NTC log2FC).

The genome-wide off-target analysis in Supplementary Table 7 
was performed using the publicly available web tool from IDT (https://
www.idtdna.com/site/order/designtool/index/CRISPR_SEQUENCE). 
For each targeting gRNA, the 20-bp 5′ of the PAM was uploaded in 
FASTA format to the web tool, generating a list of potential off-target 
sites genome wide, with associated metadata such as number of 
mismatches, genomic location and whether the off-target location 
overlaps a gene. We then intersected these results with the CRISPRi/a 
screening data of Schmidt et al.50 to evaluate whether any off-target 
sites overlapped genes known to impact IL2 or IFNG expression. For 
each identified potential off-target gene, we queried the Schmidt et al.  
screen hits to see if targeting that gene impacted expression of the 
relevant cytokine when targeted with the relevant guide type (that 
is, CRISPRi or CRISPRa). If the gene was a hit in any of the relevant 
conditions in Schmidt et al., we included the condition with the most 
significance (lowest false discovery rate (FDR)) into Supplementary 
Table 7. This analysis revealed that 14 of the 19,999 (0.07%) potential 
off-target sites analyzed overlapped with a gene that was a hit in a rel-
evant condition of Schmidt et al., and 13 of our 204 targeting gRNAs 
(6.3%) contained at least one off-target site overlapping one of these 
genes. Thus, off-target overlap with coding genes is unlikely to play a 
major role in the observed efficacy of our gRNAs.

For histone ChIP-seq analysis, bigWig files containing ‘fold 
change over control’ were downloaded from ENCODE70,71. File acces-
sions used were as follows: for activated T cells, ENCFF233LPC, 
ENCFF370YXG, ENCFF356ZKI, ENCFF704NYS, ENCFF741XLV, ENCFF-
158HYB, ENCFF232FZK, ENCFF206YVE, ENCFF336KWY, ENCFF164WIU, 
ENCFF060VND, ENCFF398QTX, ENCFF940OQY, ENCFF903VVJ, 
ENCFF356TWG, ENCFF248VJB, ENCFF690AHR, ENCFF243FBP, ENCFF-
624BMC and ENCFF352EYP and, for resting T cells, ENCFF906URN, 
ENCFF787PDH, ENCFF787LLC, ENCFF820GJE, ENCFF984ZEE, 
ENCFF829WQD, ENCFF055UPO, ENCFF459VQV, ENCFF041OBG, ENCF-
F543OQM, ENCFF863YFO, ENCFF896VDJ, ENCFF560YNU, ENCFF-
309ISK, ENCFF953MIX and ENCFF478JER. Regions overlapping each 
enhancer were used to estimate enhancer-specific histone signatures 
using GRanges and IRanges. For TF motif enrichment analysis, position 
frequency matrices (PFMs) were downloaded from JASPAR85:

JASPAR2022_CORE_vertebrates_non-redundant_pfms_jaspar.
txt. TF motif score calculation in each enhancer was performed using 
matchMotifs() from ChromVar97 and motifmatchr102 using parameters 
genome = hg38, out = scores, bg = subject and p.cutoff = 5 × 10−5 and 
filtered for the top-scoring motifs.

For genome tracks, the following datasets were used. ABC model 
predictions used for tracks and all other ABC model analyses: All-
Predictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz45. 
For Jurkat cell type predicted enhancers, the ABC model uses Jurkat 
ATAC-seq and Jurkat H3K27ac ChIP-seq and mixed cell type Hi-C4. 
The following file accessions were downloaded from ENCODE70,71: 
H3K27ac-activated T cell ChIP-seq ENCFF370YXG; H3K27ac resting 
T cell ChIP-seq ENCFF787LLC; H3K4me3-activated T cell ChIP-seq 
ENCFF940OQY; H3K4me3 resting T cell ChIP-seq ENCFF863YFO; 

H3K4me1-activated T cell ChIP-seq ENCFF755MCS; H3K4me1 rest-
ing T cell ChIP-seq ENCFF041OBG; activated T cells DNase-seq 
ENCFF997BFO; and CTCF-activated T cell ChIP-seq ENCFF523IEI. 
H3K27ac resting Jurkat ChIP-seq (Gene Expression Omnibus (GEO) 
GSM1697882)41; BRD4 activated T cell ChIP-seq GSM5573170_Stim_
BRD4.bw (GEO GSM5573170)103; JUNB and cFOS activated CD4 
T cell ChIP-seq (GEO GSE116695; Sequence Read Archive (SRA) 
SRR7475866 and SRR7475865)86; RUNX1 resting Jurkat ChIP-seq (GEO 
GSM1697879)41; and resting Jurkat ATAC-seq (GEO GSM4130892)104. 
FASTQ files downloaded from the SRA were converted to bigWig 
files using Galaxy tools (https://galaxyproject.org/, version 22.05) 
and recommended pipelines105. Activated Jurkat ATAC-seq shown 
in tracks was generated for this manuscript using cells receiving 
NTC gRNAs.

For SRE score analysis, enhancer coordinates and SRE scores 
were downloaded from the Multiplexed CRISPRi EnhancerNet web-
site (http://enhancer.stanford.edu/, not versioned)30 for the IL2 gene 
in Jurkat T cells. For the subset of enhancers shared between our screen 
and the SRE dataset, SRE score was plotted for all enhancer pairs. The 
following enhancers were shared between the CRISPRai screen and the 
SRE dataset: E4, E5, E7, E8 and E9.

For genetic interaction analysis, we took the following approach. 
(1) Calculate expected double perturbation log2FC z-scores by sum-
ming the values of the single perturbations. (2) Fit a linear model to the 
relationship between expected and observed log2FC z-scores for dou-
ble perturbations. (3) Calculate the residual between the linear model 
and observed double perturbation log2FC z-score. (4) Determine sig-
nificance by using two methods as described below. For method 1, we 
determined which RE pairs are outside 1 s.d. from the mean of residuals 
and required that this ‘hit’ be shared by all three replicates, which 
yielded three significant enhancer pairs. For method 2, we checked 
the normality of the residual z-scores using a Shapiro–Wilk normality 
test, which gave P = 0.17, P = 0.65 and P = 0.40 for Rep1, Rep2 and Rep3, 
respectively, indicating that these follow a normal distribution; assum-
ing normality, we calculated P values for each residual z-score using 
pnorm() and took a cutoff of P < 0.05 as significant (without multiple 
hypothesis correction), which yielded six, five and three significant 
enhancer pairs for Rep1, Rep2 and Rep3, respectively. To take a strin-
gent approach, we took only RE pairs that were called significant by 
both methods to be true significant hits, which yielded three RE pairs, 
as all pairs passing method 1 criteria also passed method 2 criteria.

Primary T cell gRNA enrichment data were analyzed as described 
above for Jurkat gRNA enrichment data. As sequencing depth was high 
for all gRNAs, no pseudocount was added.

All plots were generated in R using ggplot2 (version 3.3.2), ggpubr 
(version 0.2.4) and pheatmap (version 1.0.12). Genome tracks were 
generated using rtracklayer (version 1.46.0) and Gviz (version 1.30.0). 
In all box plots, statistical analysis was performed using stat_com-
pare_means() from ggpubr. Statistical significance was performed 
using a two-sided Wilcoxon test using wilcox.test() unless otherwise 
noted. P values were corrected for multiple hypothesis testing using 
the Benjamini–Hochberg procedure where indicated.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All single-cell RNA-seq, single-cell CRISPR gRNA, CRISPR gRNA enrich-
ment and Jurkat ATAC-seq data have been deposited in the Gene 
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE220976) under accession code GSE220976. Gene sets are 
available through the Molecular Signatures Database (https://www.
gsea-msigdb.org/gsea/msigdb) and Harmonizome (https://maayanlab.
cloud/Harmonizome/).
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Code availability
For single-cell analysis, gRNA counts were quantified using cellranger 
count, available at https://www.10xgenomics.com/support/software/
cell-ranger/latest, and downstream analysis was performed using 
Seurat, available at https://satijalab.org/seurat/. No custom pipelines 
were developed for analysis.
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Extended Data Fig. 1 | (related to Figs. 1, 3). Development of CRISPRai system. 
(a-e) Development of K562 CRISPRai cell line in bulk. (a,b) Construct expression, 
inducibility of CRISPRai system, and dependence on dCas9 cassette expression 
level. Expression level by qPCR of (a) dSaCas9 and dSpCas9, and (b) CD40 gene 
after sorting high, mid, low (H,M,L) dCas9 expression levels by FACS. Cells 
express gRNA for CD40 CRISPRa or NTC. (c) Log2FC gene expression by qPCR for 
several genes in single and bidirectional perturbations. (d) Time course of gene 
expression by qPCR during CRISPRai single perturbations of 2 genes for CRISPRa 
(top) and CRISPRi (bottom). (e) Time course of construct expression by flow 
cytometry of dCas9 cassette (top) and gRNA (bottom). (d,e) Perturbation effect 

and dCas9 expression remains high for >14 days, dCas9 is not silenced.  
(f-i) Development of Jurkat CRISPRai cell line in bulk. (f ) Log2FC gene expression 
by qPCR of several genes in CRISPRa single perturbations. (g) Protein levels by 
flow cytometry during CRISPRi single perturbations. (h) Same data as (g).  
(i) Time course of dox induction by flow cytometry showing dCas9 cassette  
does not silence for >20 days. (a-d,f ) All qPCR analysis was done using the  
double delta Ct method relative to housekeeping gene ACTB and NTC gRNAs,  
n = 4 (2 biological replicates, 2 technical replicates). (g-h) n = 1 or 2 (1 or 2 gRNAs). 
NTC gRNA is against lacZ gene. (a-d,f,h) Data are mean ± SEM.
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Extended Data Fig. 2 | (related to Figs. 1–6). Dual CRISPR gRNA cloning and gating strategy for screens. (a,b) Cloning strategy for: (a) dual gRNAs for K562  
Perturb-seq screen, and (b) dual gRNAs for Jurkat gRNA enrichment screen. (c,d) Gating strategy for: (c) K562 Perturb-seq screen and (d) Jurkat gRNA enrichment 
screen, including dCas9 cassette (BFP) and gRNA constructs (GFP or mScarlet).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | (related to Fig. 1). Single-cell K562 CRISPRai screen 
and SPI1 and GATA1 quality control. (a) Visualization of all single-cell 
transcriptomes from Perturb-seq. Each dot represents one cell which, colored 
by detected gRNA or gRNA pair. Labeled clusters highlight cells with strong 
perturbation-driven phenotypes. (b) Magnitude and significance of CRISPRai 
target gene DE in single (left) and double (right) perturbations. Horizontal dotted 
line at p_adj ≤ 0.05. (c) Average log2FC expression for all double perturbations 
included in the screen. Axes show gRNA 1 and gRNA 2 in the double perturbation 
pair. All pairs with n > 30 cells shown. (d) Number of DE genes in single and double 
perturbations for all perturbation sets. All cells, including non-perturbation 
driven cells, are included for DE testing. (e) Visualization of cells with gRNA calls 

in the SPI1-GATA1 perturbation set. Proportion or number of cells per gRNA 
group is shown. (f ) Visualization of cells from (e) in the perturbation-driven 
cell subset. (g) Same data as (f), colored by perturbation-driven (PD) or non-
perturbation driven (NPD) clustering (top), and average log2FC gene expression 
of GATA1 and SPI1 in PD and NPD cells. Perturbation-driven cells were defined 
as cells in all clusters that do not comprise a mixture of all gRNA groups. (g,h) 
Logistic regression. (h) Top DE genes. Log2FC and DE gene testing is relative 
to NTC, logistic regression was used for DE. Data from gRNA groups with (a,b) 
n > 20, (d) n > 50 cells per group. Significance cutoffs: ns p > 0.05, * p ≤ 0.05,  
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.
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Extended Data Fig. 4 | (related to Fig. 2). Additional analysis for SPI1 and 
GATA1 genetic interaction. (a) DE genes by gRNA group. (b) Overlap of DE  
genes across gRNA groups. (c) Biological process GO term enrichment for  
upregulated genes uniquely DE in SPI1.a|GATA1.i bidirectional perturbation.  
(d) Gene set size for ENCODE TF target gene sets70–72 and the subset that is present 
in the dataset for GATA1 only, SPI1 only, or shared TF target genes grouped by up 
or down regulation in the SPI1.a|GATA1.i bidirectional perturbation. (e) Average 
log2FC gene expression module score for gene sets in (d). (f ) Gene set sizes for 
MSigDb TF target gene sets73,74 and the subset that is present in the dataset for 
SPI1 (PU.1), GATA1, or ETS family gene sets. (g) Average log2FC gene expression 
module score for gene sets in (f). (h) Examples from (g). Gene set sizes from left 
to right: n = 265, 280. (i) Overlap between statistically significant DE genes in the 

bidirectional perturbation and SPI1 and GATA1 ENCODE TF target gene sets (top), 
and significance of overlap between CRISPRai DE genes and ENCODE gene sets 
relative to null distribution (bottom). ( j) DE genes in bidirectional perturbation 
relative to individual or combined single perturbations, colored by ENCODE TF 
target gene set. Only genes in ENCODE TF target genes sets were tested for DE. 
(a-c,i-j) Significance cutoffs for DE genes are: abs(log2FC) > 0.5, p_adj < 0.05. 
Log2FC and DE gene is relative to NTC, logistic regression was used for DE gene 
testing. All gRNA groups have (a,b) n > 34 and (c-j) n > 59 cells. (c) One-sided 
Fisher’s exact test, BH correction. (h) Boxplot, median and IQR. Box whiskers,  
1.5x IQR. Two-sided Wilcoxon test. Significance cutoffs: ns p > 0.05, * p ≤ 0.05,  
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | (related to Fig. 3). Additional data from Jurkat IL2 
locus initial screen and TSS-E perturbations. (a) Log10 raw read counts per 
gRNA pair by sorted population and biological replicate. DP = IL2 + IFNG+ 
(double positive), IFNG = IL2-IFNG + , IL2 = IL2 + IFNG-, NEG = IL2-IFNG- (double 
negative), UN=unsorted. (b) Log10 raw read counts per gRNA pair summed 
over all populations, with read count cutoff (blue dotted line) used for filtering 
reads. (c) Log2FC (IL2+/NEG) versus log2 raw read counts per gRNA, colored 
by biological replicate. (d) Pearson correlation of log2FC (IL2+/NEG) across all 
gRNAs for sorted populations and biological replicates. (e) Log2FC z-score (IL2+/
NEG) correlation of biological replicates for IL2 sorted population. (f ) Distance 
between enhancer midpoint and IL2 TSS. (g) Average log2FC z-score (IL2+/NEG) 
for all single and double TSS-E pairs. Data are mean ± SEM. (h) Average log2FC 
z-score (IL2+/NEG) for all single, double, and NTC gRNA pairs. Columns and rows 

indicate gRNA1 and gRNA2 in the pair. (i) Magnitude and statistical significance 
for all gRNA pairs, including single, bidirectional, and NTC gRNAs. TSS single 
perturbations are highlighted. ( j) Log2FC z-score of TSS single perturbations 
(top, IL2+/NEG) and residuals from additive model for bidirectional 
perturbations (bottom) for all TSS-E gRNA pairs with abs(log2FC) > 2 from a 
subsequent validation screen. (a-i) Data from IL2 initial screen, n = 6 (3 biological 
replicates, 2 gRNAs per enhancer). ( j) Data from IL2 locus validation screen, 
n = 24 for grouped single perturbations and n = 147–168 for bidirectional 
perturbations (n = 3 biological replicates, 7–8 gRNAs per enhancer).  
(i) Significance cutoff FDR ≤ 0.05. ( j) Boxplot, median and IQR. Box whiskers,  
1.5x IQR. (i,j) Two-sided Wilcoxon test. Significance tested relative to (i) NTC, or 
( j) weakest TSS gRNA. Significance cutoffs: ns p > 0.05, * p ≤ 0.05,  
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | (related to Fig. 3). Additional data from Jurkat IFNG 
locus initial screen. (a) Genome tracks showing regulatory landscape of IFNG 
gene locus. (b) Log10 raw read counts per gRNA pair by sorted population and 
biological replicate. DP = IL2 + IFNG+ (double positive), IFNG = IL2-IFNG+, 
IL2 = IL2 + IFNG-, NEG = IL2-IFNG- (double negative), UN = unsorted. (c) Log10 
raw read counts per gRNA pair summed over all populations, with read count 
cutoff (blue dotted line) used for filtering reads. (d) Log2FC (IFNG+/NEG) versus 
log2 raw read counts per gRNA, colored by biological replicate. (e) Pearson 

correlation of log2FC (IFNG+/NEG) across all gRNAs for sorted populations and 
biological replicates. (f ) Log2FC z-score (IFNG+/NEG) correlation of biological 
replicates for IFNG sorted population. (g) Distance between enhancer midpoint 
and IFNG TSS. (h) Average log2FC z-score (IFNG+/NEG) for all single and 
bidirectional TSS-E pairs, binned by sorted population. Data are mean ± SEM.  
(i) Average log2FC z-score (IFNG+/NEG) for all single, bidirectional, and NTC 
gRNA pairs. Columns and rows indicate gRNA1 and gRNA2 in the pair.  
(a-i) Data from IFNG screen, n = 6 (3 biological replicates, 2 gRNAs per enhancer).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | (related to Figs. 3–4, 6). Additional data from Jurkat 
IL2 locus validation screen. (a) Log10 raw read counts per gRNA pair by sorted 
population and biological replicate. IL2 = IL2+, NEG = IL2-, UN=unsorted. 
(b) Log10 raw read counts per gRNA pair summed over all populations, 
with read count cutoff (blue dotted line) used for filtering reads. (c) Log2FC 
(IL2+/NEG) versus log2 raw read counts per gRNA, colored by biological 
replicate. (d) Pearson correlation of log2FC (IL2+/NEG) across all gRNAs for 
sorted populations and biological replicates. (e) Log2FC z-score (IL2+/I NEG) 
correlation of biological replicates for IL2 sorted population. (f ) Average log2FC 
z-score (IL2+/NEG) for all single (a or i), bidirectional (ai), or NTC gRNAs.  
(g) log2FC (IL2+/NEG) of selected single and selected bidirectional 

perturbations. (h) Average log2FC z-score (IL2+/NEG) for all single, 
bidirectional, and NTC gRNA pairs as observed (top), and with CRISPRa or 
CRISPRi gRNA contribution subtracted (middle). Average log2FC z-score 
averaged over 8 gRNAs per enhancer (bottom). (i) Genetic interaction score 
analysis for all gRNA pairs, showing significance method 1: pairs >1 standard 
deviation from the mean of residuals and hit shared by all 3 replicates (top), and 
significance method 2: normal distribution p-value < 0.05 (bottom). (a-i) Data 
from IL2 locus validation screen, n = 147–168 (n = 3 biological replicates, 7–8 
gRNAs per enhancer). (f,g) Boxplot, median and IQR. Box whiskers, 1.5x IQR. 
(g,h) Two-sided Wilcoxon test, BH correction. Significance cutoffs: ns p > 0.05, * 
p <= 0.05, ** p <= 0.01, *** p <= 0.001, **** p <= 0.0001.
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Extended Data Fig. 8 | (related to Fig. 5). Additional data from primary T cell 
IL2 locus screens. (a) Log10 raw read counts per gRNA pair by sorted population 
and biological replicate. IL2 = IL2 + , NEG = IL2-. (b) Log10 raw read counts per 
gRNA pair summed over all populations, with read count cutoff (blue dotted line) 
used for filtering reads. (c) Log2FC versus log2 raw read counts per gRNA, colored 
by biological replicate. (d) Pearson correlation of log2FC (IL2/NEG) across 
all gRNAs for sorted populations and biological replicates. (e) Log2FC (IL2+/
NEG) for all gRNAs in primary human T cells with no CAR, CD19-28z-CAR, and 

HA-GD2–28z-CAR. (f ) Same data as (e), binned by RE, for all 8 gRNAs aggregated 
(left), or only E6 gRNAs 4-8 aggregated (right). (g) Log2FC (IL2+/NEG) normalized 
to NTC cells. (h) Intracellular IL2 by flow cytometry. (a-f ) Data from 2 biological 
replicates (2 donors) in human primary memory CD4+ cells. (f,g) n = 16 (2 donors, 
8 gRNAs per enhancer). (e-g) Boxplot, median and IQR. Box whiskers, 1.5x IQR. 
(f,g) Two-sided Wilcoxon test. Significance tested relative to NTC. Significance 
cutoffs: ns p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.
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Extended Data Fig. 9 | (related to Fig. 6). Chromatin accessibility at IL2 
enhancers during enhancer CRISPRi in Jurkat. (a) ATAC-seq at all enhancers 
and the TSS during CRISPRi in Jurkat T cells, with same y axis. (b) Same as (a) for 
different y axis. (c) ATAC-qPCR for peaks overlapping enhancers, the TSS, and 

negative control ACTB peaks. (a,b) n = 2 (2 biological replicates). (c) n = 4 (2 qPCR 
technical replicates, 2 primer pairs). (a-c) Boxplot, median and IQR. Box whiskers, 
1.5x IQR. Two-sided t-test. Significance tested relative to NTC. Significance 
cutoffs: ns p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.
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Extended Data Fig. 10 | (related to Figs. 3–6). Genome tracks for strong functional enhancers of IL2. (a) Genome tracks showing regulatory and epigenetic 
landscape across IL2 gene locus. (b) Genome tracks at selected enhancers and the TSS.
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