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Bidirectional epigenetic editing reveals
hierarchiesingeneregulation
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% Check for updates CRISPR perturbation methods are limited in their ability to study

non-coding elements and geneticinteractions. In this study, we developed a
system for bidirectional epigenetic editing, called CRISPRai, in which

we apply activating (CRISPRa) and repressive (CRISPRi) perturbations

to two loci simultaneously in the same cell. We developed CRISPRai
Perturb-seq by coupling dual perturbation gRNA detection with single-cell
RNA sequencing, enabling study of pooled perturbations in amixed
single-cell population. We applied this platform to study the genetic
interaction between two hematopoietic lineage transcription factors, SPI1
and GATA1, and discovered novel characteristics of their co-regulation
ondownstream target genes, including differences in SPI1 and GATA1
occupancy at genes that are regulated through different modes. We also
studied the regulatory landscape of /L2 (interleukin-2) inJurkat T cells,
primary T cells and chimeric antigen receptor (CAR) T cells and elucidated
mechanisms of enhancer-mediated /L2 gene regulation. CRISPRai
facilitates investigation of context-specific genetic interactions, provides
new insights into gene regulation and will enable exploration of non-coding
disease-associated variants.

Programmable epigenetic editing tools, specifically CRISPR activa-
tion (CRISPRa)'* and CRISPR interference (CRISPRi)®’, are valuable
for uncovering functional effects of genes and non-coding genetic
elements, such as enhancers® . Dual CRISPR perturbations, in which
two genes are perturbed simultaneously, are uniquely able to identify
genetic interactions and epistasis, which, in turn, enables the rapid
mapping of genetic pathways'®°. Previously, most large-scale dual
gain-of-function and loss-of-function CRISPR perturbation screens

employed CRISPR knockout (CRISPRko)®*"*, but these approaches are
limitedin their ability to study multiplex perturbations and non-coding
elements. CRISPRko introduces double-stranded DNA (dsDNA) breaks
via Cas9 nuclease cutting, which triggers DNA damage pathways***
and canresultinindels®*? and structural rearrangements**?’, Further-
more, CRISPRko has the potential for forming regulatory landscapes
viaintroduction of transcription factor (TF) binding sites or reduction
in distance between existing regulatory elements (REs), as well as the
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potential forinadequately perturbing REs, such as enhancers, for which
smallindels may not alter function. Multiplexed CRISPRi can address
non-coding element epistasis®® but may be limited to elements that
are contemporaneously active in the cell type being studied. More
recently, methods for bidirectional perturbations of two loci simulta-
neously, including paired CRISPRa and CRISPRi, have been developed
but have been applied only to non-mammalian cells, are transient or
are targeted to only a few genes®*°. New tools are needed that are
compatible with studying geneticinteractionsin human cells, pooled
high-throughput single-cell readouts and multiplexed bidirectional
control of non-coding elements and are highly scalable to hundreds
or thousands of perturbations. Epigenetic perturbations are key for
studying functional effects of non-coding elements such as enhancers
intheirendogenous locus because enhancer functionality is likely medi-
ated through structural chromatin contacts, histone modifications,
TF requirement and other effects**"*. Furthermore, comprehensive
investigation of genetic interactions requires versatile bidirectional
perturbation toolsinaddition to existing unidirectional tools to study
the complete range of context-specific genetic interactions®*5~,

Additionally, the power of high-throughputand high-content read-
outs hasbeenwell demonstrated. Perturb-seq, amethod for single-cell
transcriptome profiling coupled with CRISPR guide RNA (gRNA)
readout® %, enables investigation of gene networks® ** and disease risk
genes’®. Previous Perturb-seq methods have been limited to a single
perturbation type (thatis, CRISPRa, CRISPRi or CRISPRko), and current
methods cannot perform combinatorial bidirectional perturbations.

To broaden the toolkit for studying genes and non-coding ele-
ments and to enable investigation of context-specific geneticinterac-
tions, we developed CRISPRai, a system for bidirectional epigenetic
editing of two loci simultaneously in a single cell. We use orthogonal
activating (CRISPRa) and repressive (CRISPRi) perturbations to perturb
two distinct genomic loci simultaneously. We activate one element and
repress another to study how pairs of genetic elements functionally
interact, and we apply this tool to study genes and enhancers. First,
we developed dual-gRNA-capture CRISPRai Perturb-seq and applied
it to study interactions between genes. We investigated the genetic
interaction between SP/1 (Spi-1 proto-oncogene) and GATAI (GATAL
binding protein1)*°, two well-characterized lineage-directing TFs for
the myeloid (SPI1) and erythroid (GATAI) lineages. We found that bidi-
rectional perturbation enabled modulation of cell lineage signatures
and enabled heightened perturbation phenotypes compared to single
perturbations, and different TF occupancy relationships at down-
stream target genes resulted in different patterns of co-regulation.
Second, we applied CRISPRai to investigate how multiple enhancers
interact to regulate expression of a shared target gene, using the /L2
(interleukin-2) gene in activated Jurkat T cells as a model system. We
extended our findings from CRISPRai to primary human T cells using
CRISPRi perturbations. We integrated our CRISPRai findings with epi-
genomic datasets to jointly assess function, chromatin accessibility,
histone modifications, TF motif enrichment and chromatin looping.
Theseintegrated analyses revealed the existence of strong functional
‘gatekeeper’ enhancers that heavily compete with the promoter for
transcriptional control and highlighted two main modes of regulation
by gatekeeper enhancers: activity driven and contact driven. Overall,
CRISPRairevealsinsightsinto geneticinteractions for both genes and
non-coding elements and broadens the toolkit for investigating the
functional effects of the genome.

Results

CRISPRai system for bidirectional epigenetic editing

We developed asystem for bidirectional epigenetic editing (CRISPRai)
that enables activation and repression of two distinct loci simultane-
ously in asingle cell and can be applied to both genes and enhancers
(Fig.laand Extended Data Fig.1a-i). Our system comprises Tet-On doxy-
cycline (dox)-inducible CRISPRa and CRISPRi machinery and leverages

two orthogonal species of catalytically dead Cas9 (dCas9). We express
activator-fused dCas9 from Staphylococcus aureus (VPR-dSaCas9) and
repressor-fused dCas9 from Streptococcus pyogenes (dSpCas9-KRAB,
ZNF10 or KOX1 domain) simultaneously to achieve species-specific
recognition where two distinct gRNA scaffold sequences pair with
their cognate dCas9 (refs. 61,62). This enables two distinct pertur-
bations at two different loci in the same cell at the same time (Fig. 1a
and Extended Data Fig. 1a-i). After generating stable K562 (Extended
DataFig.1a-e) andJurkat (Extended Data Fig. 1f-i) CRISPRai cell lines,
we validated the system using bulk assays. We confirmed construct
expression, robust induction by dox and tunable control of CRISPR
perturbation strength based on dCas9 expression level (Extended Data
Fig.1a,b). Bidirectional double perturbations were similar in strength
totherespective single perturbations (ranging from -3 to +13 log, fold
change (FC) ingene expression; Extended Data Fig. 1c,f-h). Finally, we
confirmed stable expression of both dCas9 and the gRNA over14-20 d
(Extended DataFig.1d,e,i).

We next developed dual perturbation direct gRNA capture
Perturb-seq, or CRISPRai Perturb-seq, to study gene-gene interactions
withasingle-cell transcriptomereadoutin K562 cells. We designed 82
single (42 CRISPRa and 40 CRISPRi), 22 double (18 bidirectional pairs
and four unidirectional pairs as controls) and 12 non-targeting control
(NTC) gRNAs containing selected combinations of single and double
perturbations against a panel of 19 lineage-relevant TFs, chromatin
remodelers and proto-oncogenes, with two gRNAs per gene (Fig. 1b,
Extended DataFig.2aand Supplementary Tables1and 2). We used the
single perturbations to evaluate gRNA efficacy for CRISPRa versus
CRISPRi. To detect gRNAsin single-cell sequencing data, we extended
recently developed methods of droplet-based direct gRNA sequence
detection for CRISPRai®***, We spiked in two oligos complementary to
each gRNA scaffold regioninto the reverse transcription (RT) reaction.
We captured a total of 24,661 cells (14,086 cells with single perturba-
tions, 6,631 cells with double perturbations and 3,944 cells with NTCs).
Single and double perturbations were performed using separate gRNA
poolsinseparate single-cell captures, and sequencing datafromall cap-
tures were combined for analysis (Extended Data Figs.2c and 3a-d). To
determine gRNA detection efficacy, we assessed the number of gRNA
counts per cell. We found that 94.4% of cells expected to have single
perturbations had one gRNA assigned and 78.7% of cells expected
to have double perturbations had two gRNAs assigned (Fig. 1c and
Methods). Twenty-one of 22 designed double perturbations (95.5%)
were detected.

Weinvestigated the CRISPRai perturbationstrength and direction-
ality across the target genes present in our pool. The system enabled
consistent bidirectional expression changes for both target genes in
all double perturbations, with the log,FC gene expression increasing
or decreasing asexpected in each condition (range from -1.08 to +2.11
gene expression log,FC; Fig.1d,e and Extended Data Fig. 3b,c). In addi-
tion to bidirectional perturbations, the CRISPRai system also allows
for unidirectional dual CRISPRaa and CRISPRii perturbations (Fig. 1a).
We demonstrated the expected behavior for unidirectional CRISPRaa
and CRISPRii combinations (Fig. 1d). The expression changes were
statistically significant in both the single and double perturbations
and spanned a range of log,FC (Fig. 1d and Extended Data Fig. 3b). We
found that different genes had variable susceptibility to perturbation.
For example, SPI/1 was highly responsive to activation but not repres-
sion, whereas the opposite was true for GATAI (Fig. 1e and Extended
DataFig.3b).Finally, multipleindependent gRNAs targeting the same
gene had concordant impacts on target gene expression (Extended
DataFig.3c).

We nextinvestigated the aggregate characteristics of bidirectional
epigenetic editing across all of the genes in the pool. Baseline gene
expression was inversely correlated with perturbation strength for
CRISPRi (R*=0.47, P=1.58 x 1073, slope = -0.42; Fig. 1f, right). In con-
trast, baseline gene expression and strength of CRISPRa did not have
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Fig.1| CRISPRai system for bidirectional epigenetic editing in individual
cells. a, Schematic of CRISPRai system (top), CRISPRai construct (bottom) and
CRISPRai perturbations (right). b, Schematic of dual-gRNA CRISPRai Perturb-seq
screenin K562 cell line. ¢, gRNA expression (rows) by gRNA detected (columns).
Bar plot shows the number of gRNA per cell detected in all cell-gRNA expression
pairs passing a threshold. d, Average log,FC gene expression for each pair of
CRISPRaitarget genes (columns) in cells receiving either a single or double
perturbation (rows). Gene expression for gene 1(top) and gene 2 (bottom) from
the pairis shown. e, Examples of average log,FC gene expression in single and

Avg log, expression (NTC)

Avg log, FC expression (single)

double perturbations for indicated gene pairs with ai, aa or ii perturbations.

f, Correlation between perturbation strength and baseline target gene expression
level for CRISPRa (left) and CRISPRi (right). g, Correlation between perturbation
strengthin single versus double perturbations for a given gene, labeled with
double perturbation received. d-g, DE tests performed relative to cells with NTC
gRNAs. AllgRNA groupsincluded have n > 40 (d-f,h) and n > 20 (g) cells.

e, n=73-600.Box plot, median and interquartile range (IQR). Box whiskers,
1.5xIQR. Two-sided Wilcoxon test. f,g, Linear regression. Significance cutoffs: NS
P>0.05,*P<0.05,**P<0.01,**P< 0.001, ***P< 0.0001. NS, not significant.

aclear relationship (R?=0.003, P=0.84, slope = -0.06; Fig. 1f, left).
Furthermore, perturbation strength was highly correlated between sin-
gleand double perturbations (log,FC target gene expression:R>= 0.91,
P<1.16 x10™, slope = 1.30; Fig. 1g). This confirms the orthogonality of
the two dCas9 species and indicates that CRISPRai dual perturbations
donotdilutethe perturbation strength of the individual perturbations
inthe pair®®. Overall, CRISPRai enables robust, scalable and bidirec-
tionalinterrogation of diverse target genes.

CRISPRai reveals context-specific geneticinteractions

Pairwise CRISPR perturbations can identify genetic interactions
between genes'*2%?, and CRISPR screens with single-cell readouts
enable investigation of the global regulatory effects of a given gene,
including identification of downstream target genes and regulatory
gene modules controlled by the perturbed gene™>>%*, Thus, we next
applied CRISPRai to investigate genetic interactions. By analyzing
our K562 CRISPRai Perturb-seq data, we identified the SPI1I-GATA1
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genetic interaction as an excellent example of the ability of CRISPRai
to reveal new insights into TF biology (Fig. 2a). Thus, the design of
the initial CRISPRai screen allowed us to rigorously benchmark our
double perturbations as well as to investigate the SPII-GATA1 genetic
interaction in more detail.

SPI1 and GATAL1 are pivotal hematopoietic TFs that are essential
for myeloid and erythroid lineage development, and they are known
tointeractandinhibit each other’s function®°° (Fig. 2a). We first inves-
tigated the global transcriptome-wide effects of all combinations
of SPI1 and GATAL1 perturbations included in the screen in 437 cells.
After clustering and dimensionality reduction of the single-cell RNA
sequencing (scRNA-seq) data, we found that the perturbed cells clus-
tered according tothe detected gRNAs (Fig. 2b). Furthermore, double
perturbations were between the corresponding single perturbations
in the low-dimensional uniform manifold approximation and projec-
tion (UMAP) visualization, demonstrating a gradient intranscriptomic
signature resulting from the perturbations, which was also apparent
via correlation analysis (Fig. 2b,c and Extended Data Fig. 3e-h).

Next, we prioritized the SPI1.a|GATAL.ibidirectional double pertur-
bationandits corresponding single perturbations for further analysis,
due to the responsiveness of each gene to CRISPRa and CRISPRi (the
SPI1.a|GATALi perturbation is referred to below as ‘bidirectional per-
turbation’). The set of differentially expressed (DE) genes (relative
to NTC gRNAs) in the SPI1.a|GATAL.i bidirectional perturbation was
composed of two groups of genes that were shared by the correspond-
ing single perturbations (SPI1.a or GATAL.i) and a third bidirectional
perturbation-specific group of 70 genes (Fig. 2d and Extended Data
Fig.4a,b). The upregulated DE genes for each perturbation condition
were enriched for relevant biological process Gene Ontology (GO)
terms, including myeloid cell activation, actin polymerization, cell
adhesion, phagocytosis and otherimmune signaling pathways, with the
bidirectional perturbation being most significantly enriched (Fig. 2e).
DE genes specific to the bidirectional perturbation were similarly
enriched for relevant processes (Extended Data Fig. 4¢).

We next asked if the CRISPRai perturbation modulated expression
ofknown downstreamtarget genes of SPI1and GATA1 (Fig. 2a). Because
SPI1and GATA1 exhibit opposing and antagonistic effects on the mye-
loidand erythroid lineages, we hypothesized that known downstream
target gene sets would have heightened gene expression changes in
the bidirectional perturbation relative to the single perturbations.
We investigated two gene sets from the literature: erythroid marker
genes (n =419)° and myeloid marker genes (n=394)%. As expected,
theerythroid gene signature decreased and the myeloid gene signature
increased in both the single and bidirectional perturbations, with the
myeloid signature being most extreme in the bidirectional perturba-
tion (Fig. 2f). Additionally, we used the set of annotated target genes
for these two TFs from ENCODE’® > and grouped the gene sets based
onupregulation or downregulationin the bidirectional perturbation.
As expected, the average expression of known target genes was more
extremeinthe bidirectional perturbation thanthe single perturbations
(Fig. 2f,g). This pattern persisted after grouping the gene sets based
onidentity of TF regulator: GATAl only, SPI1 only or shared (Extended
DataFig.4d,e). We validated this regulatory patternongene sets froma
different database (Molecular Signatures Database)”>’* and saw similar
results (Extended Data Fig. 4f-h). Additionally, we confirmed that the
set of statistically significant DE genes inthe bidirectional perturbation
was highly overlapping with annotated SPI1 and GATAl target gene sets
(Extended DataFig. 4i,j).

We then used the bidirectional perturbation data to identify down-
stream target genes that were nonlinearly regulated by SPI1and GATAL.
We used an additive model of gene regulation that has previously
been used for pairwise CRISPR perturbations®>**”, First, we classified
DE genes as belonging to synergistic, buffering or additive modes of
regulation (Fig. 2h and Supplementary Table 3). The largest group of
genes classified as being under synergistic regulation was unique to

the bidirectional perturbation DE gene set (56.1%), highlighting the
ability of CRISPRai to provide new insights into cooperation between
TFs. Asexpected, the largest group of genes classified as being under
buffering regulation was shared across the DE gene sets of the three
perturbation groups (41.1%) (Fig. 2i). We then compared the propor-
tions of each regulatory mode for DE genes across perturbations. For
each perturbation, most genes were under additive regulation (63-76%)
(Fig.2j, left). Synergistic regulation (5-17%) was less common than buff-
ering regulation (14-26%). To compare across the three perturbation
groups, we accounted for differencesin DE gene set sizes by calculating
theratio between the numbers of synergistic and buffering genes. This
ratio was greatest for the bidirectional perturbation (bidirectional
perturbation 1.24 versus single perturbations 0.42 and 0.25), which
demonstrates that CRISPRai enables identification of genes under
synergistic regulation that would be missed by studying only single
perturbations (Fig. 2j, right).

Wethensought to furtherinvestigate the synergistic and buffering
genes and provide insight into the mechanism underlying the differ-
ent modes of gene regulation observed. We compared the SPI1 and
GATAl occupancy profiles for the buffering, additive and synergistic
gene sets. We calculated the log,FC chromatin immunoprecipitation
followed by sequencing (ChIP-seq) signal of SPI1 and GATA1 (ENCODE
data’®™) within 1 kb of the promoter or within predicted enhancers
for a given gene. The set of predicted enhancers was generated from
the activity-by-contact (ABC) model****. We found that additive genes
were enriched for genes occupied by both SPI1and GATA1 (Fig. 2k, left).
Synergistic genes had decreased SPI1 occupancy at the promoter and
enhancers relative to additive and buffering genes but had similar
GATAl occupancy as additive genes (Fig. 2k, right). This suggests that
synergistic genes may have higher dose sensitivity due toanimbalance
inbinding of these two TFs. Conversely, buffering genes had decreased
occupancy of both SPI1 and GATA1 at the promoter (Fig. 2k, right). The
correlated occupancy of these two TFs at buffering genes suggests that
binding of one TF may influence the other. Insummary, CRISPRai ena-
bles the investigation of important TFs and provides insight into how
these TFsinteract to regulate overlapping downstream gene modules.

CRISPRai defines enhancer-promoter regulatory hierarchies
After demonstrating the utility of the CRISPRai system for investigating
trans-regulatory effects and gene-gene interactions, we extended our
method toinvestigate cis-regulatory effects by studying enhancer-pro-
moter and enhancer-enhancer interactions (denoted enhancer-tran-
scriptionstartsite (E-TSS) and E-E, respectively). Previous studies showed
that enhancer impact on target gene expression is governed by several
factors, including distance to TSS and enhancer strength, and that some
enhancers may have redundant function*®*’*””, However, it is unknown
how multiple enhancers may interact to control target gene expression or
how enhancersinteract differentially with the TSS. We applied CRISPRai
tostudy theregulatorylandscape of the /L2and IFNG (interferon-gamma)
genes to investigate these questions. We focused on the /L2 regulatory
landscape due to its more interesting regulatory landscape.

We designed a CRISPRai gRNA pool for REs of /L2 and studied
the effect of these perturbations on cytokine expression in human
Jurkat T cells. Specifically, we designed CRISPRai gRNAs targeting 10
predicted enhancers and the promoter (Fig. 3a and Extended Data
Fig. 5a-i). /L2 s a key cytokine gene with a relatively large set of pre-
dicted enhancers, spanning a 2.4-Mb range®, providing an oppor-
tunity to study enhancer interactions in both short and long range
(Fig. 3a and Extended Data Fig. 5f). We selected predicted enhancers
with high enhancer scores for /L2in the ABC model***. Some selected
enhancers exhibited strong enhancer-related epigenomic features,
whereas others did not (Fig. 3a). In the gRNA pool, we included 576
gRNA pairs (484 bidirectional double, 88 single and four NTC gRNA
pairs; Fig. 3b, Extended Data Fig. 2b and Supplementary Table 4). The
gRNA pool contained all CRISPRa and CRISPRi single perturbations
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Fig. 2| CRISPRai reveals context-specific geneticinteraction for SPI1and
GATAL a, Schematic of SPII-GATAl genetic interaction. b, Visualization of
perturbed K562 cells. Each dot represents one cell, colored by detected gRNA
or gRNA pair. ¢, Pearson correlation of normalized and centered single-cell
transcriptomes over all genes. d, Overlap of DE genes. e, Biological process GO
term enrichment for DE genes upregulated in perturbed cells relative to NTC,
selected terms. f, Module scores for indicated gene sets. Gene set sizes from left
toright: n=419,394, 5,190 and 6,003. g, Same data as f, showing module scores
inlog,FC. h, Average log,FC gene expression of SP/1 and GATAI and selected
ENCODE annotated downstream target genes. Dashed line: expected additive
model (gray) and observed bidirectional perturbation (orange). Additive
(observed = expected), synergy (observed > expected or opposite sign) and
buffer (observed < expected).i, Overlap of synergy and buffer gene sets with
DE gene sets; number indicates gene set size. j, Proportion of DE genes under
each regulatory mode (left) and ratio of number of genes under synergistic

and buffering regulation (right). k, TF occupancy at synergy and buffer gene
sets, showing proportion of genes with one or more RE bound by GATA1 or SPI1
including promoter (within 1kb) or any ABC model® predicted enhancer (left)
and log,FC of promoter or average log,FC within enhancers (right). Includes all
annotated genes with non-zero ChIP-seq reads. Each dot is the average signal
across allbound REs for one gene. Additive set: subset of 50 genes with most
additive phenotype. Gene set sizes from left to right: n =300, 50, 53 and 55.
n=141-900 (two biological replicates, one additional technical replicate).
d-g,i-k, Significance cutoffs for DE genes are abs(log,FC) > 0.5, P_adj < 0.05;
DE gene testing for each gRNA group is against NTC. AllgRNA groups have n >34
(b,c) and n>59 (d-Kk) cells. Logistic regression was used for DE gene testing.

e, One-sided Fisher’s exact test. f k, Box plot, median and interquartile range
(IQR). Box whiskers, 1.5x IQR. Two-sided Wilcoxon test. Significance cutoffs: NS
P>0.05,*P<0.05,*P<0.01,**P<0.001,***P< 0.0001.GS, gene set; norm.,
normalized; NS, not significant.
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and all CRISPRai pairwise combinations for eachenhancer and the TSS
as well as NTCs (Extended Data Fig. 2b). We introduced the lentiviral
pool of gRNAs to our CRISPRai-expressingJurkat T cell line (Extended
DataFig.1f-i). After 6 d of CRISPRaiinduction, the cells were activated
to induce cytokine expression and sorted for cytokine positive and
negative populations using both IL2 and IFNG expression (Fig. 3c,
left,and Extended Data Fig.2d); then, gRNA enrichment libraries were
constructed (Fig. 3b and Extended Data Fig. 5a-e), and all CRISPRa and
CRISPRi pairs were examined (Fig. 3d and Extended Data Fig. 5g-i).

For further IL2 gRNA pool analysis, we focused on comparing IL2
single-positive cells relative to cytokine-negative cells (that is, IL2*
versus NEG) to investigate how /L2 locus perturbations influence IL2
expression. In addition to the /L2 locus gRNA pool, we also designed
an/FNG locus gRNA pool with 625 bidirectional gRNA pairs targeting
11 predicted enhancers and the promoter at this locus (Fig. 3¢, right,
Extended Data Fig. 6a-iand Supplementary Table 5). For the IFNG gRNA
poolanalysis, we focused on comparing IFNG single-positive cells rela-
tive to cytokine-negative cells (thatis, IFNG" versus NEG) to investigate
how IFNGlocus perturbations influence IFNG expression. For most of
our analysis, we calculated log,FC gRNA enrichment z-scores relative
to NTC gRNAs, which we refer to as log,FC z-scores.

First, weinvestigated general trends in enhancer-promoter inter-
actions. For theIL2 screen, we compared log,FC z-scoresin IL2" versus
cytokine-negative populations (IL2/NEG) and found that TSS-E inter-
actions followed alargely additive relationship with respect to log,FC
z-score (expected versus observed log,FCz-score:R?=0.91, P< 2 x 107,
slope =0.97; Fig. 3e). log,FC z-scores ranged from approximately —20
to +7.5 (Fig. 3e), and log,FC ranged from -1.05 to +0.62 for CRISPRi
and CRISPRa, respectively. For IFNG, log,FC z-scores ranged from
approximately -3.5 to +14 (Fig. 3j). We noted that some /L2 enhancers
had strong functional effects, whereas others had weaker functional
effects, in single perturbations (Fig. 3d). Additionally, we observed
atrend that TSS-E bidirectional perturbations became less additive
as TSS perturbation strength increased when considering pairs with
an enhancer gRNA passing a threshold (abs(log,FC z-score) >2) ina
subsequent validation gRNA pool (Extended Data Fig. 5j), where we
leveraged the natural variationin TSS gRNA strength by binning TSS-E
bidirectional perturbations based on the corresponding TSS single
perturbation strength. The distribution of residuals centered on zero
for pairs with low TSS gRNA strength and shifted up for TSS.a and
down for TSS.i pairs with greater TSS gRNA strength. Furthermore, in
general, the TSS exhibited clear hierarchy over enhancers (Fig. 3g-iand
Extended DataFigs. 5h, 6iand 7h). In other words, the TSS perturbation
was functionally dominant over enhancer perturbations and, therefore,
acted asthedriver of target gene expression. Repressing the promoter
prevented most of the activated enhancers fromactivating /L2 or IFNG
and vice versa (Fig. 3g,j).

Next, we investigated interactions between the promoter and each
individual enhancer to uncover potential enhancer-specific effects. For
IL2, two enhancers had strong functional effects that were capable of
overcoming TSS perturbation, namely E4 and E6 (Fig. 3g). Repression
of these two enhancers individually was sufficient to counteract TSS
activation and significantly reduce target gene expression (Fig. 3g).In
thereverse condition (E4.a|TSS.iand E6.a|TSS.i), both of these enhanc-
ers exhibited the ability to counteract TSS perturbation, as evidenced
by both screens for E4.a|TSS.i and by the significant (P<1x10™*) and
large effect size for E6.a|TSS.i relative to TSS.i observed in a subse-
quent validation screen where a larger number of gRNAs enabled us
to observe this effect (Fig. 3h and Extended Data Fig. 7h). Together,
thisbehavior suggests that E4 and E6 may act like ‘gatekeepers’for /L2
expression, in that they are strong functional enhancers that, when
perturbed, are capable of strongly dimming the perturbation applied to
the TSS. For IFNG, E4.iminimally counteracted TSS.a, and E7.a strongly
counteracted TSS.i (Fig. 3j).

After identifying the existence of gatekeeper enhancers capable
of counteracting TSS perturbation, we investigated these enhancers
further. We designed a second gRNA pool to validate findings from
the initial screen and investigate enhancer function over a broader
genomic range. We selected a subset of enhancers from the initial /L2
locus screen; designed eight additional gRNAs for each enhancer,
including all E-E and TSS-E CRISPRai pairs as well as NTCs, for a pool
of 4,032 gRNA pairs (3,072 bidirectional double, 896 single and 64
NTC gRNAs, made up of 56 unique CRISPRi and 72 unique CRISPRa
gRNAs; Fig. 3h, top, Extended Data Fig. 7h and Supplementary Table 6);
and constructed gRNA enrichment libraries for IL2" and IL2™ (NEG)
populations (Extended Data Fig. 7a-e). Inthe validation screen, log,FC
z-scores ranged from approximately -5to +7.5 (Extended DataFig. 7e),
and log,FC ranged from approximately -1.2 to +1.3, for CRISPRi and
CRISPRa, respectively (Extended Data Fig. 7g). The validation screen
confirmed the gatekeeper effects of E4 and E6 and highlighted the
presence of a strong activating functional hotspot within E7 that
was capable of overpowering TSS perturbation (Fig. 3h, bottom).
When quantifying the strength of single perturbations for gatekeeper
enhancers, E4, E6 and the E7 hotspot exhibited 99%, 115% and 160% of
TSS CRISPRastrength, and E4 and E6 exhibited 16% and 45% of TSS CRIS-
PRi strength (Fig. 3i and Extended Data Fig. 7h). Across bidirectional
perturbations, we observed strong concordance between gRNAs for
the same enhancer. Quantitatively, out of the eight validation gRNAs
perenhancer7/8,7/8,8/8 and 6/8 are strongly directionally concordant
forE4.a,E6.a, E4.iand Eé6.i, respectively (Extended Data Figs. Shand 7h).
For E4.iand E6.i, both gRNAs from the initial screen were concordant
withthe validation screen majority (Extended DataFigs. Shand 7h). For
E4.a,E6.aand E7.a, atleast one of two gRNAs from the initial screen was
concordant with the validation screen majority (Extended Data Figs. 5h

Fig.3| CRISPRai defines hierarchies in transcriptional regulation between
promoter and enhancers. a, Genome tracks showing regulatory landscape of
IL2 gene locus for primary T cells and Jurkat T cells. Insets show data for selected
enhancers, including gRNA CRISPRa score (log,FC) and CRISPRi score (-log,FC).
b, Schematic of CRISPRai RE screeninJurkat T cells. ¢, Intracellular cytokine
staining inactivated Jurkat. d, Average log,FC z-score (IL2*/NEG of all single,
bidirectionaland NTC gRNA pairs. Two gRNAs per enhancer (2 a, 2i). RE hierarchy
demonstrated when one perturbation overrides the expected effect of asecond
perturbation (for example, TSS.i bidirectional perturbations result in similar
effectas TSS.isingle perturbations; note that E6.i overrides other E.a). Results of
specific columns and rows are expanded in subsequent figure panels. e, log,FC
z-score (IL2"/NEG) for TSS-E bidirectional perturbations, showing expected

and observed. f, Schematic of bidirectional TSS-E perturbation pairs. g, log,FC
z-score (IL2+/NEG) for IL2 gene for TSS-E gRNA pairs. h, Schematic of validation
screen, eight gRNAs per enhancer (top) and examples of selected TSS-E pairs
highlighted in g with gray bars, showing log,FC z-score (IL2°/NEG) (bottom).
Bins represent single (a or i), bidirectional (ai) and expected bidirectional

perturbation from additive model (ai model, gray); dashed lines show observed
and expected bidirectional perturbations. Data are mean +s.e.m. i, Perturbation
strength, normalized to TSS perturbation, for selected enhancer single
perturbations in the IL2 validation screen, mean annotated. j, log,FC z-score
(IFNG'/NEG) for IFNG gene for TSS-E gRNA pairs. d,e,g, Data from/L2locus initial
screen, n = 6 (three biological replicates, two gRNAs per enhancer). j, Data from
IFNGlocus screen, n = 6 (three biological replicates, two gRNAs per enhancer).
a,h,i, Datafrom/L2locus validation screen, n =147-168 for E4 and E6 pairs,n =42
for E7 hotspot (three biological replicates, 7-8 gRNAs per enhancer, E7 hotspot
derived from two gRNAs in E7). Significance was tested relative to TSS single
perturbation (g,i,j) and observed bidirectional perturbation (h). g,i,j, Box plot,
median and interquartile range (IQR). Box whiskers, 1.5% IQR. d,h,i, Two-sided
Wilcoxon test. d, Benjamini-Hochberg correction. e, Linear regression. g,j,
Two-sided t-test. Significance cutoffs: NS P> 0.05, *P < 0.05, *P< 0.01,
***P<0.001, ***P < 0.0001. exp, expected; DP, double positive; NEG, negative;
NS, notsignificant; obs, observed; Puro, puromycin.
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and 7h). Furthermore, E4 and E6 demonstrated gatekeeper behaviorin
reciprocal CRISPRai conditions (that s, ai and ia) (Fig. 3i, bottom). We
noted that CRISPRa appears more focal than CRISPRi, possibly due to
different mechanisms of chromatin remodeling induced by VPR and
KRAB (Extended Data Figs. 5hand 7h).

To confirm that off-target effects did not play a major role in our
results, we performed a genome-wide analysis of potential off-target
sites (Supplementary Table 7). We overlapped all putative gRNA
off-target sites with the CRISPRa and CRISPRi screening data from
previously published screens studying IL2 and IFNG®. Overall, 0.07%
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Fig. 4| CRISPRai reveals hierarchies in enhancer-enhancer interactions for
IL2 transcriptional regulation. a, Schematic of bidirectional E-E perturbation
pairsin/L2locus validation screen. b, log,FC z-score (IL2/NEG) for all E-E

pairs, showing expected and observed. Expected log,FC z-score was calculated
using additive model of single perturbations. ¢, log,FC z-score (IL2*/NEG) for
selected single and bidirectional perturbations for E-E pairs showing tuning of
IL2 expression. d, log,FC z-score (IL2*/NEG) for all E-E pairs containing E4 (left)
and E6 (right) for CRISPRa (top) or CRISPRi (bottom) of E4 and E6, respectively.
Gray bars highlight gatekeeper enhancer perturbation pairs, which are shown
furtherin e. e, Examples of CRISPRai for specific E-E pairs containing E4, E6 and

E7.Bins representsingle (aori), bidirectional (ai) and expected bidirectional
perturbation from additive model (ai model, gray); dashed lines show observed
and expected bidirectional perturbations. Data are mean + s.e.m. a-e, Data from
IL21ocus validation screen. c-e, n =168-192 (three biological replicates, 7-8
gRNAs per enhancer, includes gRNAs for entire E7 region including hotspot).

b, Linear regression. ¢,d, Box plot, median and interquartile range (IQR). Box
whiskers, 1.5% IQR. c-e, Two-sided Wilcoxon test. Significance was tested relative
to single perturbation of indicated enhancer (d) and observed bidirectional
perturbation (e). Significance cutoffs: NS P> 0.05, *P < 0.05, **P< 0.01,
**P<0.001, ***P < 0.0001. exp, expected; NS, not significant; obs, observed.

(14/19,999) of off-target sites overlapped a gene that may be involved
in IL2 or IFNG regulation; 6.3% (13/204) of gRNAs had at least one
off-target site at one of these genes; and most of these off-target sites
had four mismatches. It has been shown that two mismatches typically
render a gRNA non-functional for CRISPRko’® and CRISPRi”. Thus,
off-target overlap with coding genes is unlikely to play a major role in
our results.

CRISPRai defines enhancer-enhancer regulatory interactions
We nextinvestigated how enhancersinteract with other enhancersto
control generegulation. We compared the log,FC z-scores of E-E bidi-
rectional perturbations from the /L2 locus validation screen (Fig. 4a).
Similar to the TSS-E pairs, E-E pairs largely followed an additive model
with respect to log,FC z-score (R>=0.75, P< 2 x 107, slope = 0.95;
Fig. 4b). Single and bidirectional E-E perturbations enabled tuning
of IL2 expression over a broad range, supporting a hypothesis that
multiple enhancers of varying strengths enable more precise tuning
collectively than would be possible with fewer enhancers (Fig. 4c).
Notably, the gatekeeper enhancers identified from the TSS-E bidirec-
tional perturbations, E4,E6 and E7, showed similar gatekeeper behavior

when paired with other enhancers (Fig. 4d and Extended Data Fig. 7g).
E4 or E6 activation increased gene expression when other enhancers
inthe samelocus wererepressed, and, conversely, E4 or E6 repression
prevented gene expression evenif otherIL2 enhancers were activated.

Toinvestigate the outcome of perturbing two gatekeeper enhanc-
ers simultaneously, we further examined the interactions among E4,
E6 and E7.E6 repression counteracted E4 activation (Fig. 4d, top left),
and, conversely, E6 activation counteracted E4 repression (Fig. 4d,
bottom left). We observed similar trends in magnitude of enhancer
strength as seen for TSS-E pairs (Fig. 3g,h), supporting the strong and
moderate functional effects of E6 and E4, respectively. E7 activation
was also capable of counteracting E4 and E6 repression (Fig. 4d, bot-
tom). All other enhancers had minimal ability to counteract E4 and
E6 perturbation (Fig. 4d). Interestingly, E1 and E2 activation weakly
reduced log,FC z-score, suggesting that these two enhancers, which
are both approximately 1.2 Mb from the TSS, may be weak repressive
REs (Fig. 4d and Extended Data Fig. 7h). Additionally, CRISPRai of E4
and E6 enabled reversible control of /L2 expression (Fig. 4e, top). Fur-
thermore, the relationship between E4 and E6 was additive or nearly
additive regardless of the perturbation direction (ai versusia) (Fig. 4e,
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Fig.5|IL2 enhancer activity in primary human T cellsand CART cells.

a, Schematic of primary T cell CRISPRI, including asummary of cell subtypes

and CART cell conditions as well as the readouts used. b, Intracellular cytokine
staining by flow cytometry during enhancer CRISPRiin Jurkat T cells.n =3 (three
biological replicates). ¢, Intracellular cytokine staining by flow cytometry during
enhancer CRISPRiin human primary T cells (CD8", CD4" and memory CD4").
CD8"and CD4" cells are gated from bulk CD3" T cells, and memory CD4" cells
were isolated before ex vivo culture via bead-based enrichment. n =3 (three
donors) for CD4"and CD8' T cells and n = 4 (two donors, two technical replicates)
for CD4" memory T cells. d, Enhancer perturbation strength, normalized to TSS

perturbation for datafrom aand c. e, CRISPRi gRNA enrichment screen in human
memory CD4* primary T cells for non-CAR, CD19-28z-CAR and HA-GD2-28z-CAR
cells.n=16 (two donors, eight gRNAs per enhancer). log,FC (IL2°/NEG) is shown
for each CAR condition. f, Enhancer perturbation strength, log,FC (IL2*/NEG)
normalized to TSS perturbation. g, log,FC (IL2°/NEG) normalized to NTC cells.
Number of gRNAs per enhancer: two (b-d) and eight (e-g). b-g, Box plot, median
and interquartile range (IQR). Box whiskers, 1.5x IQR. b-d, Two-sided ¢-test.

e-g, Two-sided Wilcoxon test. Significance was tested relative to indicated
group. Significance cutoffs: NS P> 0.05, *P < 0.05, **P < 0.01,**P< 0.001,

****P < 0.0001. NEG, negative; norm., normalized; NS, not significant.

top). E7 activation counteracted repression of both E4 and E6, and these
relationships were additive (Fig. 4e, bottom).

IL2 enhancer activity in primary human and chimeric antigen
receptor T cells

We next extended our findings from CRISPRai to several primary cell
contexts. We performed individual and pooled CRISPRi perturbations
inprimary humanT cells and chimeric antigen receptor (CAR) T cells.
We included gRNAs for gatekeeper enhancers (E4 and E6), the TSS,
the NTC and negative control enhancers that exhibited minimal effect
onIL2 expression in the Jurkat screens (E2 and E9), and we followed
asimilar experimental workflow as the Jurkat IL2 gRNA enrichment
screens (Fig. 5a). First, we individually validated selected enhancer
CRISPRi perturbations and quantified enhancer perturbation strength
during CRISPRi inJurkat T cells using flow cytometry for intracellular
IL2 (Fig. 5b). We observed similar trends in enhancer strength as seen
intheJurkatgRNA enrichment screens, thus validating the gatekeeper
effects of these enhancers (Fig. 5b). Next, we performed individual
CRISPRi (ZIM3KRAB domain) perturbationsin primary human T cells,
including bulk CD3" cells (gated for CD4*and CD8") and isolated CD4"

memory cells. We prioritized the memory CD4" T cell population for
in-depth study because Jurkat cells are CD4" and because previously
published assay for transposase-accessible chromatin with sequenc-
ing (ATAC-seq) datashowed that,among primary T cell subsets, CD4"
memory T cells have the highest accessibility at E4, E6 and the /L2 TSS®.
We foundthat E4 had the greatest effect among enhancersin primary
T cells when repressed (Fig. 5¢). Furthermore, we noted that there
is likely greater context-dependent usage of enhancers in primary
T cells relative to Jurkat T cells; a subtle effect was observed for E6 in
isolated CD4*memory T cells with one gRNA, suggesting that E6 likely
has context-restricted functionin primary cells (Fig. 5c). Quantitatively,
E4 perturbation strength varied across T cell subsets; on average, E4
achieved 28%, 82%, 67% and 96% of TSS perturbation strength for Jurkat,
CD8',CD4"and CD4" memory primary T cells, respectively (Fig. 5d, left).
Onaverage, E6 achieved 80% and 14% of TSS perturbation strength for
Jurkatand CD4" memory primary T cells, respectively (Fig. 5d, right).

We next performed pooled CRISPRi screensin both CD19-28z (clin-
icallyapproved) and HA-GD2-28z (exhaustion prone®*?) CD4* memory
primary CAR T cells (Fig. 5a,e-h and Extended Data Fig. 8a-h). We
observed similar trendsin enhancer perturbation effectsin CART cells
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Fig. 6 | Epigenomic interrogation of CRISPRai enhancers reveals activity-
driven and contact-driven REsin the /L2locus. a, ATAC-seq profiles of Jurkat
T cells with CRISPRi perturbation of the indicated RE, shown as genome tracks
(top) and quantification from ATAC-qPCR for peaks overlapping REs. Black
boxes indicate the peak for the CRISPRi-targeted RE. n = 2 (two biological
replicates, top) and n =4 (two qPCR technical replicates, two primer pairs,
bottom). b, ENCODE histone ChIP-seq’®”' from resting and activated primary

T cells, with activating marks (orange) and repressive marks (purple). ¢, Motif
scores (ChromVar”’) for JASPAR TF motifs® present in each enhancer. d, Activity,
contactand ABC scores from the ABC model®. e, SRE scores for all E-E pairsin
the SRE model*’. Selected enhancer pairs that also contain enhancers from the
CRISPRaiscreen are annotated, and CRISPRai enhancers are highlighted in red.

Eachdotis a pair. f, log,FC z-score (IL2°/NEG) for bidirectional perturbations,
showing expected and observed. Expected log,FC z-score was calculated using
additive model of single perturbations. Pairs with significant genetic interaction
scores are highlighted (green; significance cutoffs are described in the Methods).
Each dotis an enhancer pair from one biological replicate. g, Proposed model

of enhancer-mediated gene regulation for /L2 by strong functional enhancers.

f, Data from /L2locus validation screen, n = 3 (three biological replicates, 7-8
gRNAs per enhancer are aggregated). a, Box plot, median and interquartile

range (IQR). Box whiskers, 1.5x IQR. Two-sided ¢-test. Significance was tested
relative to NTC. f, Linear regression. Significance cutoffs: NS P> 0.05, *P < 0.05,
*P<0.01,**P<0.001, ***P < 0.0001. exp, expanded; norm., normalized; NS, not
significant; obs, observed.

as for non-CAR primary T cells (Fig. 5e and Extended Data Fig. 8e,f).
We found that E4 perturbation strength relative to TSS perturbation
strength was notinfluenced by level of CAR T cell exhaustion state. On
average, E4 exhibited 88%, 87% and 85% of TSS perturbation strength
fornon-CAR, CD19-28z-CAR and HA-GD2-28z-CART cells, respectively
(Fig. 5f).In contrast, CART cell capacity for perturbation by E4 varied
with degree of CART cell activation or exhaustion state; magnitude of
E4 perturbation was largestinnon-CART cells and grew progressively
smaller for CD19-28z and HA-GD2-28z CART cells (Fig. 5g, left). This
trend was also observed for the TSS (Extended Data Fig. 8g). E6 pertur-
bationin CART cells was detected only when considering gRNAsin the
5" end of E6 (Extended Data Fig. 8f). However, after correcting log,FC
for variability in NTC gRNAs, we observed that CAR T cell capacity
for E6 perturbation was slightly increased in HA-GD2-28z-CART cells

(Fig.5g, right). Additionally, HA-GD2-28z-CAR T cells had less than half
theamount of IL2" cells compared to non-CAR and CD19-28z-CART cells
(Extended Data Fig. 8h), indicating areduced capacity for IL2 produc-
tionin HA-GD2-28z-CAR T cells, as expected in T cell exhaustion®"2,

Epigenomic analysis reveals activity-driven and
contact-driven REs

In addition to the gRNA enrichment and intracellular protein data
demonstrating gatekeeper enhancer effects, we sought to further
validate IL2 enhancers and dissect the mechanism underlying gate-
keeper enhancer-mediated /L2 gene regulation. To provide mechanistic
insight, we performed ATAC-seq on RE perturbed cells (Fig. 6a and
Extended DataFig. 9a-c) and integrated these data together with previ-
ously published ChIP-seq (ENCODE"*"") and ABC model*** datasets to
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jointly assess chromatin accessibility, histone modifications, TF motif
enrichment and chromatin looping (Fig. 6b—d).

We first assessed chromatin accessibility changes induced by
CRISPRi perturbation of selected enhancers using the same set of
enhancersastheprimary T cell experiments. We performed ATAC-seq
onperturbedJurkat T cells, as well as ATAC-qPCR, which quantitatively
detects accessibility changes at specific loci of interest®. We observed
that repressing one enhancer by CRISPRi significantly decreased chro-
matin accessibility at that enhancer (Fig. 6a). In all conditions, the
perturbed RE had the greatest decrease in accessibility when con-
sidering all IL2 REs but had a limited ability to affect accessibility at
distant enhancers (Fig. 6a and Extended Data Fig. 9a-c).Forexample,
E4 repression did not alter accessibility of E2 or E7, and E6 repression
minimally altered accessibility of E4 and E7. Additionally, gatekeeper
enhancer function could not be completely explained by theirimpact
on promoter accessibility. CRISPRi of enhancers E4 and E6 did not
reduce TSS accessibility despite resulting in IL2 protein reduction as
measured by flow cytometry (reduced to 71% and 33% of NTC level,
respectively; Fig. 5b). This result indicates that enhancer-mediated
induction of IL2 expression is not entirely driven by chromatin acces-
sibility; rather, these enhancers likely function through other biochemi-
calmeans, suchas RNA polymerase Il pause release, TF recruitment or
histone modification spreading.

To investigate these possibilities, we compared ENCODE his-
tone ChlP-seq in resting and activated primary T cells’®” (Fig. 6b and
Extended Data Fig.10a,b), a relevant comparison because our screen
endpoint was T cell activation (Fig. 3b). We found that E4 and E7 had
high to moderate activating histone marks, including H3K4me3 and
H3K27ac (Fig. 6b and Extended Data Fig. 10b). In contrast, E6 wasrela-
tively low for these histone marks but showed alarge increase in acti-
vating histone marks inactivated compared to resting cells. The most
prominent histone mark for E6 was H3K4mel, which was accompanied
by H3K4me3 depletion, a characteristic of primed enhancers® (Fig. 6b
and Extended Data Fig. 10b). In addition, compared to other enhanc-
ers, E6 was highly enriched for TF motifs (JASPAR)® involved in T cell
activation, including BATF3, JUN, JUND, ATF2 and EOMES, indicating
that E6is activation responsive and suggesting thatit may beimportant
for regulating activation-induced IL2 expressionin T cells (Fig. 6¢). TF
ChlIP-seqinactivated primary CD4" T cells corroborated AP-1family TF
occupancy at E6 (Extended Data Fig. 10b)*. Together, these findings
suggest that E6 is a primed enhancer in primary T cells; however, its
heightened ability to recruit TFs gives it the potential to be highly acti-
vationresponsive, which may contribute to its context-restricted func-
tionin primary T cells and strong gatekeeper functioninJurkatT cells.

Additionally, we leveraged the ABC model*** data to investigate
further epigenomic characteristics of IL2 enhancers. Under the ABC
model, E4 had the highest predicted enhancer score, with high contact
score (contact frequency with the TSS) yet low activity score (combined
score of epigenetic features)* (Fig. 6d). Thus, E4 gatekeeper functionis
likely primarily contact drivenrather than activity driven. Conversely,
E7 exhibited the opposite, with low contact score but high activity
score, resulting in a relatively high overall predicted enhancer score,
suggesting activity-driven function (Fig. 6d). E6 had intermediate
scores for both contact and activity (Fig. 6d). Taken together, these
attributesindicate that E-TSS contacts and enhancer activity likely rep-
resent complementary mechanisms, where either property is able to
drive enhancer-mediated gene regulationinacontext-specific manner.

To quantify the extent of genetic interactions among IL2 REs,
we sought to contextualize our results using previously published
approaches for studying genetic interactions®*¥. First, we investi-
gated whether any strong functional CRISPRai enhancers overlapped
with the splicing regulatory element (SRE) enhancer set identified in
Lin etal.*®. We found that E7 and, most notably, E4 were presentin the
top most synergistic SRE E-E pairs, confirming their importance in
IL2 gene regulation (Fig. 6e). E6 was not present in the SRE enhancer

set. Second, we calculated ‘Gl scores’, using a method similar to Hor-
Ibeck et al.”’. We defined Gl scores as the residual between the linear
model and the observed bidirectional perturbationlog,FC z-score. The
resulting hits for synergistic interactions were E2.i|E7.a, TSS.i|[E4.aand
TSS.i|E6.a (positive residuals), whereas TSS.i|[E4.a and TSS.i|[E6.awere
identified as buffering interactions (negative residuals) (Fig. 6f). In
otherwords, E2.i|[E7.aresulted in higher IL2 expression than expected,
and TSS.i|E4.a and TSS.i|E6.a resulted in lower IL2 expression than
expected (Fig. 6f and Extended Data Fig. 7i). This analysis highlighted
three key insights. First, this analysis underscored the hierarchy that
the promoter has over enhancers in governing gene expression. Sec-
ond, the promoter genetic interaction effect was unique to CRISPRi,
and we did not observe this interaction for the reciprocal TSS.a pairs,
suggesting that E-TSS interaction is directionally dependent for /L2.
Third, we observed ageneticinteraction for E2.i|E7.awhere L2 expres-
sion was greater than expected. Interestingly, we also noted that E2
CRISPRiresultedinincreased accessibility at the TSS and all gatekeeper
enhancersE4,E6 and E7 (Extended DataFig. 9c). Furthermore, although
the magnitude of E4 and E6 accessibility change during E2 CRISPRi
was similar to that achieved by TSS CRISPRi, only E7 demonstrated
equivalent magnitude accessibility change in both of these conditions,
suggesting a unique relationship between E2 and E7. Furthermore, in
the IL2 validation screen, we observed that E2.a weakly reduces IL2
expression (Extended Data Fig. 7g,h), suggesting that E2 is a weak
repressive element.

In summary, our integrated analyses revealed two main modes
of gene regulation by gatekeeper enhancers: activity driven and
contact driven. Contact-driven enhancers, such as E4, exhibited
strong three-dimensional contacts with the TSS (Fig. 6d), and repres-
sion of either this enhancer itself or the TSS reduced accessibility
of the enhancer (Fig. 6a and Extended Data Fig. 9a-c). In contrast,
activity-driven enhancers, such as E6, did not form loops as strongly
and did not exhibit reduced accessibility during TSS repression. Fur-
thermore, although most of the RE pairs exhibited additive function,
which is expected given that strong genetic interactions are rare®,
CRISPRai enabled identification of three genetic interactions among
IL2 REs (Fig. 6f). We synthesized these findingsinto a proposed model
of IL2 gene regulation (Fig. 6g).

Discussion

We developed a bidirectional epigenetic editing system, called CRIS-
PRai, to expand the toolkit for investigating genetic interactions and
non-coding genetic elements. Furthermore, we extended CRISPRai to
be compatible with single-cell readouts and demonstrated the utility
of the system in applying bidirectional epigenetic perturbations to
pairs of genes. This allowed us to uncover insights into the genetic
interaction between SPI1 and GATAL, including that the bidirectional
perturbation uniquely highlights synergistically regulated downstream
target genes and that the pattern of SPI1and GATAl occupancy at down-
stream target genes depends on regulatory mode. Moving forward,
future approaches could extend CRISPRai Perturb-seqtoincorporate
multi-omic readouts or to study non-coding disease-associated vari-
ants. Additionally, emerging technologies, such as cell hashing®®; alter-
native single-cell workflows, such as split-pool®’; and new lower-cost
sequencing technologies’® are expanding the number of cells feasible
tosequence per experiment and provide a clear pathtoward enhancing
thescale of CRISPRai screensinthe future, potentially toward extend-
ing genome-wide Perturb-seq” for use with CRISPRai.

We also demonstrate here the utility of CRISPRai in studying
non-coding elements. We applied CRISPRai to study hierarchiesingene
regulation between the promoter and enhancers of /L2 and extended
our findings to primary T cells and CAR T cells. Integrated analysis
of CRISPRai functional data with epigenomic datasets revealed the
existence of gatekeeper enhancers, which exhibited strong functional
effects capable of heavily competing with the promoter in regulating
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IL2 expression, and elucidated mechanisms of gatekeeper enhancer
function. We anticipate that future applications of CRISPRai can
further extend its capabilities for studying non-coding elements by
multiplexing more than two simultaneous perturbations or using
additional epigenetic effector domains, such as DNA methyltransferase
or demethylase”. This will enable large-scale, systematic dissection of
non-coding disease-associated variants.

New tools to manipulate coding and non-coding elements of the
genome are needed to enable dissection of the complex gene regula-
tory and genetic interaction networks that wire mammalian cells.
CRISPRai enables precise and bidirectional control over genes and REs
in human cells, facilitating investigation of these questions. Specifi-
cally, CRISPRairevealed insight on the SPI1 and GATA1 hematopoietic
lineage TFs. CRISPRai enabled modulation of erythroid and myeloid
gene signatures using bidirectional perturbations as well asidentifica-
tion and quantification different modes of regulation on downstream
target genes, highlighting its utility in mapping genetic networks.
Additionally, CRISPRai can elucidate RE landscapes and enhancer
mechanisms. Itis known that enhancer functionality is heterogenous
and complex; some enhancers act in an additive manner’, whereas
other rare enhancers may have synergistic effects in combination™.
Some enhancers offer redundancy, whereas others are dominant levers
for gene expression control’®”*?>**_ Enhancers differ in their structural
chromatin contacts”, E-TSS distance*’ and chromatin modifications*
andinwhich TFsthey are capable of recruiting*®*, which likely governs
their function and the target genes for which they are compatible.
These characteristics of enhancers are consistent with our findings
from CRISPRai examining over 4,000 enhancer perturbation pairs.
We show that combined enhancer function is primarily additive and
that multiple enhancers enable tuning of gene expression levels. Fur-
thermore, our ability to perform bidirectional perturbations revealed
the existence of dominant gatekeeper enhancers that exist and heavily
compete with the promoter. Additionally, Brosh et al.”® recently per-
formed Sox2 enhancer genome editing using long DNA assembly and
sequence insertionin mouse embryonic stemcells, and they reported
similar conclusions about enhancer hierarchies to those demonstrated
by CRISPRai, which supports the biological significance of CRISPRai
findings by corroborating the results with alternate methods for study-
ing REs. Furthermore, Brosh et al. reported context-dependent func-
tion of REs within their gene locus, highlighting the importance of
studying REsin their endogenous locus, whichis astrength of CRISPRai.
Insummary, we developed CRISPRai and applied this method to study
the SPI1-GATAl geneticinteraction as well as IL2 regulatory hierarchies.
We anticipate that future applications of CRISPRai will enhance under-
standing of the multifaceted and heterogenous mechanisms underly-
ing geneticinteractions and gene regulation across the genome.
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Methods

Cell culture of cell lines

Lenti-X HEK293T (Clontech) cells were cultured in DMEM (Gibco) with
L-glutamine and sodium pyruvate supplemented with10% FBS (Gibco) and
1% penicillin-streptomycin (Gibco) and passaged using TrypLE Express
(Gibco). K562 (American Type Culture Collection (ATCC), CCL-238) was
cultured in RPMI1640 (Gibco) with L-glutamine supplemented with 10%
FBS and 1% penicillin-streptomycin. Jurkat clone E6-1 cells (ATCC, TIB-
152) were culturedin RPMI1640 with L-glutamine (Gibco) supplemented
with10% FBS,10 mM HEPES (Gibco), 1 mM sodium pyruvate (Gibco) and
1% penicillin-streptomycin. Cells were routinely tested for mycoplasma
using aMycoAlert PLUS Detection Kit (Lonza) and found to be negative.

Isolation and culture of primary human T cells

Human T cells were sourced from peripheral blood mononuclear cell
(PBMC)-enriched leukapheresis products (Leukopaks, STEMCELL
Technologies) from healthy donors, after institutional review board
(IRB)-approved informed written consent (STEMCELL Technologies).
T cell populations (bulk or CD4* memory cells) were isolated from
Leukopaks using EasySep magnetic selection following the manufac-
turer’s recommended protocol (STEMCELL Technologies, 100-0695,
19157). T cells were cultured in X-VIVO 15 (Lonza) supplemented with
5%FBSand100 IU ml™ recombinant humanIL-2 (AmerisourceBergen).

CRISPRai construct generation

The CRISPRai construct was cloned in the following format:
TRE3G-VPR-dSaCas9-P2A-dSpCas9-BFP-KRAB-EF1a-Bleo-T2A-rtTA.
Thevector containing the TRE3G and Tet-On system was PiggyBac; the
zeocinresistance gene and the Tet-On 3G transactivator were driven
by the EF1a promoter (gifted by the Stanley Qi laboratory)®®. The Super
PiggyBac transposase plasmid was obtained from System Biosciences.
VPR was obtained from pSLQ2349 (gifted by the Stanley Qi labora-
tory); dSaCas9 was obtained from pSLQ2840 (Addgene, 84246); and
dSpCas9-BFP-KRAB was obtained from pHR-SFFV-dCas9-BFP-KRAB
(Addgene, 46911). The ZNF10 (KOX1) KRAB domain’ was used. Con-
structs were cloned using Gibson Assembly (NEBuilder HiFi DNA
Assembly) and confirmed by Sanger sequencing (Elim Biopharmaceu-
ticals). Primers and oligos were obtained from Elim Biopharmaceuti-
calsand Integrated DNA Technologies (IDT). Selected constructs are
available on Addgene (https://www.addgene.org/Howard_Chang/).

CRISPR gRNA cloning

Primers and oligos for bulk validation experiments were obtained from
Elim Biopharmaceuticals and IDT. Plasmids were confirmed by Sanger
sequencing (Elim Biopharmaceuticals). Individual single gRNAs were
cloned using Gibson Assembly (NEBuilder HiFi DNA Assembly). For
validation and Perturb-seq experiments, gRNAs were constructed from
pSLQ2853-3 pHR: U6-Sasgv2CXCR4-1 CMV-EGFP (Addgene, 84254)
and pSLQ1852-2 pHR: U6-SpsgCD95-1 CMV-EGFP (Addgene, 84151).
For dSaCas9 gRNAs, GFP was replaced withmScarlet (pmScarlet_Gian-
tin_C1; Addgene, 85048).

For Perturb-seq single gRNAs, gRNAs pools were constructed
from two gRNA backbones, with the dSpCas9 or dSaCas9 gRNA scaf-
fold. Pools were cloned in arrayed format by ordering top and bottom
approximately 31-33-bp gRNA oligos from IDT with appropriate over-
hangs. Top and bottom oligos were combined at100 mMin annealing
buffer (potassium acetate, 30 mM HEPES-KOH pH 7.4 and 2 mM mag-
nesium acetate in water, adapted from Jonathan Weismann labora-
tory protocols, https://weissman.wi.mit.edu/resources/), annealed
on a thermocycler at 95 °C for 4 min, cooled slowly for 3 h, pooled,
phosphorylated using T4 PNK (NEB) at 37 °C for 30 min with 65 °C
for 20-min PNK inactivation, ligated into the previously digested and
dephosphorylated (Fast AP, Thermo Fisher Scientific) lentiviral gRNA
backbone using T4 ligase (NEB) and transformed by heat shock into
Stbl3 competent cells (Thermo Fisher Scientific).

For Perturb-seq double gRNAs, gRNA pools were constructed in
atwo-step cloning process (Extended Data Fig. 2a). Oligo pools (IDT)
containing approximately 200-bp oligos were cloned with the format:
(amplification primer)-(digest site)-(gRNA1)-(scaffoldl)-(hu6 landing
pad)-(digest site)-(amplification primer). For step 1, oligo pools were
PCR amplified inmultiple reactions with low cycle number (NEB Ultra
IIMaster Mix), digested and size selected via gel purification (E-Gel EX,
Thermo Fisher Scientific), ligated into predigested gRNA backbones
with T4 ligase overnight at 16 °C for 16 h and inactivated at 65 °C for
10 minand transformed into Stbl3 competent cellsand grown at 30 °C.
Forstep 2, plasmid products were digested, dephosphorylated and gel
size selected, and the previously digested hué PCR fragment (from
pMJ117; Addgene, 85997) with appropriate overhangs was inserted
via T4 ligation. Original vector backbone and intermediate backbone
product were designed for digestion with Esp31 (BsmBI, NEB), and
inserts were designed for digestion with Bsal (NEB).

For the enhancer gRNA enrichment screen, double gRNA pools
were constructed inaone-step cloning process (Extended DataFig. 2b).
Primer pools were obtained from IDT and contained gRNA sequences
and primer sequences for dSpCas9 gRNA scaffold and the hu6 pro-
moter. Primers were used to generate a PCR product in the format of
[mué6 fragment-gRNA1-Sp gRNA scaffold-hu6-gRNA2-Sa gRNA scaffold
fragment], flanked by BsmBI digestion sites. The PCR product and
backbone were digested separately and ligated with T4 ligase following
recommended protocols.

gRNAs are listed in Supplementary Tables 4 and 7 for Jurkat flow
cytometry and ATAC-seq experiments (Validation Experiment A) and
primary T cell flow cytometry experiments (Validation Experiment B).
Two gRNAs per RE were used. For primary CART cell CRISPRiscreens,
the same gRNA pool was used as for the IL2 validation screen, which
included eight gRNAs per enhancer.

Stable cell line generation

Stable celllines were generated by electroporation viathe Neon Trans-
fection System (Thermo Fisher Scientific). Cells were electroporated
using recommended parameters, recovered in fresh media for 3 d,
selected with zeocin (Thermo Fisher Scientific) for 10 d and then ana-
lyzed by flow cytometry for BFP to confirm dCas9 cassette expression
near100% of cells.

qPCR

Brilliant Il SYBR Green qPCR Master Mix (Agilent Technologies) was
used. Primers (Elim Biopharmaceuticals) were validated before use
by examining the melt curve. Analysis was performed using the AACt
method, relative to the housekeeping gene ACTB and NTC gRNA con-
trols. For ATAC-qPCR, Jurkat ATAC-seq libraries were used asinput to
qPCR, and optimal primers were designed in RE peaks using the ATAC
Primer Tool®’; one biological replicate of ATAC-seq was used as input
to ATAC-gPCR due to sample volume constraints.

Lentivirus production
For cellline experiments, Lenti-X HEK293T cells were seeded on plates
overnight to achieve 95% confluency at time of transfection and trans-
fected with packaging plasmids psPAX2 (1.5 pg; Addgene, 12260) and
pMD2.G (4.5 pg; Addgene, 12259) and viral expression vector (6 pg)
per 10-cm plate using Opti-MEM (Gibco) and Lipofectamine 3000
transfection reagents (Thermo Fisher Scientific). Viral supernatant was
collected at 48 hand concentrated using Lenti-X Concentrator (Clon-
tech) following the manufacturer’s instructions, resuspended in cell
culture media at10x the original culture volume and stored at -80 °C.
For primary T cell experiments, similar steps were followed with
the following modifications. Cells were seeded in Opti-MEM I Reduced
Serum Medium with L-glutamine (Gibco) supplemented with 5% FBS,
1mMsodium pyruvate (Gibco) and 1x non-essential amino acids (Gibco)
(cOpti-MEM) in T25 flasks in 5 ml. Cells were transfected with psPAX2

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://www.addgene.org/Howard_Chang/
https://weissman.wi.mit.edu/resources/

Article

https://doi.org/10.1038/s41587-024-02213-3

(3.1pg; Addgene, 12260), pMD2.G (1.5 pg; Addgene, 12259), expression
vector (4.2 pg), Lipofectamine 3000 (20.1 pl) and P3000 (18.5 pl; Thermo
Fisher Scientific) in 3.7 ml. At 6 h, mediawere replaced with cOpti-MEM
supplemented with ViralBoost at 1:500 dilution (ALSTEM). Lentiviral
supernatantwas harvested 24 hand 48 h after transfection, centrifuged at
500gfor5 minat4 °Ctoremovedebris, concentrated with Lenti-X Concen-
trator and resuspended in Opti-MEM at 100x the original culture volume.

Flow cytometry and fluorescence-activated cell sorting

All antibodies were used at 1:20-1:200 dilutions. All cells were
stained in flow cytometry staining buffer (eBioscience). Flowjo
(version 10.6.1) software was used for all analysis. Cells were ana-
lyzed by flow cytometry (Attune NxT, Thermo Fisher Scientific,
or LSR I, BD Biosciences) or sorted based on stained markers and
gRNA expression (GFP or mScarlet) (FACSAria Il, BD Biosciences).
Fluorescence-activated cell sorting (FACS) was performed at the
Stanford Shared FACS Facility.

For Jurkat intracellular cytokine staining, cells were stained with
Zombie NIR viability dye at1:1,000 dilutionin PBS at 10 million cells per
100 plfor15minat4 °C,washed, fixed using Cyto-Fast Fix/Perm Buffer
Set (BioLegend) for 25 min at 22 °C, washed and stored in Cyto-Last
Buffer (BioLegend) at 4 °C in the dark for 1-3 d. Before sorting, fixed
cells were permeabilized and stained withIL2-BV711 (BioLegend, clone
MQ1-17H12, cat. no. 500346, lot no. B354636) and IFNG-APC (BioLeg-
end, clone B27, cat.no. 506510, lot no. B329616) antibodies for 45 min at
22 °C, washed with fix/perm buffer and resuspended in staining buffer.
For Perturb-seq, cells were similarly stained with Zombie NIR fixable
viability dye. For Jurkat validation CRISPRi experiments, cells were
stained with CD3E-BV785 (BioLegend, clone OKT3, cat.no. 317329, lot
no.B311209) or CD47-BV605 (BioLegend, clone CC2Cé6, cat. no. 323119,
lot no. B300088) antibodies.

For primary T cell flow cytometry experiments, cells were stained
with Ghost Dye Red 780 (Tonbo Biosciences), CD4-BV510 (BioLegend,
clone OKT4, cat. no. 317444) and CD8-PerCP/Cyanine5.5 (BioLegend,
clone SK1, cat. no. 344710), fixed and permeabilized with BD Cytofix/
Cytoperm (BD Biosciences), stained for intracellular IL2 with IL2-APC
(BioLegend, clone MQ1-17H12, cat.no.500310) as described for Jurkat
T cells and analyzed by flow cytometry (Attune NxT, Thermo Fisher
Scientific). Plots shown are for live gated cells from a culture of CD3*
T cells (from which CD4" and CD8" are gated) or pre-isolated memory
CD4" cells. For CD4* and CD8 cell analysis, data were normalized to
NTC cells on a per-donor basis. For memory CD4" cell analysis, data
were normalized to NTC and unstimulated cells on a per-donor basis.
Perturbation strength was calculated by additionally normalizing by
normalized TSS percentIL2" values ona per-donor basis. Jurkat valida-
tion flow cytometry data were analyzed similarly.

For primary T cell pooled gRNA screens, cells were stained with
Ghost Dye Red 780 (Thermo Fisher Scientific), fixed and permea-
bilized with Cyto-Fast Fix/Perm Buffer Set (BioLegend) and stained
for intracellular IL2 (BioLegend, clone MQ1-17H12, cat. no. 500346,
lot no. B354636). CD4" memory primary T cell phenotype was veri-
fied using the following cell surface markers: CD3-PE (BioLegend,
clone UCHTI, cat. no. 300441); CD4-BV511 (BioLegend, clone OKT4,
cat. no. 317444); CD8-PerCP/Cyanine5.5 (BioLegend, clone SK1, cat.
no.344710); CD45RA-BV711 (BioLegend, clone HI100, cat. no.304138);
CD45RO-FITC (BioLegend, clone UCHLI, cat.no.304204); CD62L-PE/Cy7
(BioLegend, clone DREG-56, cat. no. 304822); and CCR7-BV421
(BioLegend, clone GO43H7, cat. no. 353208).

Pooled K562 and Jurkat screening

Cellswere infected with lentivirus gRNA pools in polybrene (8 pg ml™)
at a multiplcity of infection (MOI) of 0.1 (K562) or 0.2 (Jurkat), as
confirmed by flow cytometry for GFP or mScarlet expression on
days 2 and 3 after infection. Dox (1 pg ml™) was added at the time
of infection or 6 d before the screen endpoint and refreshed every

24 h. For the K562 screen, cells were expanded for 6 d after infec-
tion and frozen in aliquots on day 6 in CryotStor CS10 (STEMCELL
Technologies). Before sorting, cells were thawed and allowed to
recover in culture in dox" media for 18 h and then sorted for live,
gRNA" cells.

For Jurkat screens, 0.5 pg ml™ puromycin (Thermo Fisher Scien-
tific) was added on day 3 after infection, puromycin selected for 4 d
and confirmed by flow cytometry to have near 100% gRNA expression.
Onday 7, dox induction was started and continued for 6 d. On day 13,
cellswereactivated at approximately 2-4 million cells per millilter for
8 husing CD3 antibody (BioLegend, clone OKT3, cat. no. 317347, lot
no. B338622) coated tissue culture plates and media containing dox
(1pg ml™), CD28 antibody (3 pg ml™; BioLegend, clone CD28.2, cat. no.
302943, lot no.B335272), PMA (1x), ionomycin (1x) and Brefeldin A (1x)
(PMA/iono/BrefA were used from Cell Activation Cocktail, BioLegend).
gRNA" cell number (accounting for MOI) was maintained at1,000x the
number of gRNAsincludedinthe gRNA poolthroughout the screen. For
theinitial screen, the above steps were modified to begin dox induction
atthe time infection; puromycin selection was performed from day 3
to day 7; and the screen was stopped onday 7.

Single-cell library preparation

Single and double perturbations were performed in separate single-cell
captures. Sorted cells were prepared using the Chromium Next GEM
Single Cell 5" Kit v2, Chromium Next GEM Chip K Single Cell Kit and
Library ConstructionKit (10x Genomics), following the Chromium Next
GEMSingle Cell 5’ Reagent Kits v2 (Dual Index) with Feature Barcoding
user guide (CGOO0O330Rev A).

GEXlibraries were constructed asrecommended. For gRNA detec-
tion, oligos complementary to each of the gRNA scaffolds (Saand Sp)
were spiked into the RT reaction at 11.43 pmol each.

Sa: AAGCAGTGGTATCAACGCAGAGTACacaagttgacgagataaacacgg

Sp: AAGCAGTGGTATCAACGCAGAGTACcgactcggtgccactttttc

For step 2.2, cDNA primers were used (green; 10x Genomics, PN
2000089) instead of feature cDNA primers (purple; 10x Genomics,
PN 2000277). For step 2.3, GEX is in the pellet (2.3 A), and gRNAs are
in the supernatant (2.3B); both portions were retained; and library
construction was performed separately. gRNA library construction
was performed using a custom PCR protocol, and Sa and Sp gRNA
libraries were constructed separately. PCR1: outer nested PCR, F CTA-
CACGACGCTCTTCCGATCT, R_sa acaagttgacgagataaacacgg, R_sp
CGACTCGGTGCCACTTTTTC (98 °C for 3 min; 20 cycles at 98 °C for
205,66 °C(Sa)/68 °C (Sp) for 30 s and 72 °C for 20 s; and 72 °C for
5min). PCR2:inner nested PCR and adapter commonregion addition,
F same primer as PCR1,

R_saGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgataaacacg-
geattttgecttg,

R_sp GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcaagttga-
taacggactagcctt

(same cycling conditions as PCR1, with annealing temperatures
66 °C (Sa)/65°C (Sp)). PCR3: sample index PCR, P5 and P7 Dual Index
TT Set A (98 °C for 3 min; 15 cycles at 98 °C for 20 s, 54 °C for 30 s and
72 °Cfor1min;and 72 °Cfor 5 min). After each PCR, products were run
on E-Gel EX 2% agarose and size selected.

Design parameters for single-cell screens

CRISPRai was specifically designed to be highly scalable, and there
isnoinherent limitation on the number of perturbations CRISPRai
can perform. Similar to direct capture Perturb-seq, CRISPRai screens
have a tradeoff between the number of targets in the pool and the
number of single cells that the user wants to assay at once. CRISPRai is
highly scalable because we leverage the simultaneous direct capture
of two gRNAs, which enables pooled cloning and virus production.
Using current commercially available technologies, CRISPRai can
be scaled to thousands of perturbations, as recently demonstrated
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by Replogle et al.”’ for genome-scale direct capture Perturb-seq,
which can be further expanded using emerging technologies. To
maximize CRISPRai Perturb-seq data quality, we suggest the follow-
ing: (1) analyze at least 40-50 cells per gRNA genotype; (2) anticipate
approximately 50% efficacy of dual gRNA detection (for example,
planforsequencing 80-100 cells per gRNA to yield 40-50 cells with
high-confidence gRNA detection) to accommodate the lower gRNA
detection rate of two compared to one gRNA per cell; (3) include two
or more gRNAs per gene to enable gRNA correlation analysis; and (4)
incorporate single perturbation (CRISPRi and CRISPRa) controls to
enable genetic interaction analysis and to identify which gene pairs
are amenable to bidirectional control.

CRISPR gRNA enrichment library preparation

Genomic DNA (gDNA) was extracted from sorted cells for different
cytokine populations. Initial screen: IL2'IFNG™ (IL2), IFNG'IL2" (IFNG),
IL2'IFNG*(DP), IL2'IFNG™ (NEG) and unsorted (UN) cells. Validation
screen:IL2" (IL2), IL2” (NEG) and UN cells. Cells were washed with PBS
and resuspended in 1x lysis buffer (10 mM Tris pH 8, 5 mM EDTA, 0.5%
SDS, 1x (0.4 mg ml™) Proteinase K) (Thermo Fisher Scientific) inwater
at 10 million cells per 800 pl, incubated at 55 °C for 2 hand then 65 °C
for16-20 hovernight. Samples were then cooled to roomtemperature
for10 min, and Triton X-100 (Sigma-Aldrich) was added to afinal con-
centration of 0.5%. The number of cells per population used for gDNA
extraction was 0.2-15 million and 10-20 million for the initial and
validationscreens, respectively. For samples with more than 2 million
sorted cells, gDNA was then purified using the Quick-DNA Miniprep
Kit (Zymo Research), following the ‘Cell Suspensions and Proteinase
K Digested Samples’ recommended protocol. For samples with fewer
than 2 million cells, a precipitate-based method was used for gDNA
extraction. After addition of Triton X-100 and sodium acetate to 10%,
2.5xvolumes of 100% EtOH was added; samples were placed at —20 °C
for 1h followed by centrifugation at 20,000g for 15 min at 4 °C; the
supernatant was removed; 75% EtOH was added; centrifugation was
performed again; and pellets were dried overnight at room tempera-
ture and resuspended in elution buffer.

Library preparation from gDNA was performed by three PCR
steps. PCR1: multiple reactions per sample were set up with 2 pg or
less of gDNA with outer nested primers complementary to the gRNA
cassette (98 °C for 3 min; 14 cycles of 98 °C for 20 s, 58 °C for 20 s and
72°C for 40 s; and 72 °C for 2 min) and concentrated with DNA Clean
& Concentrator (Zymo Research). PCR2: inner nested primers (98 °C
for 30 s; six cycles of 98 °C for 15s, 60 °C for 15s and 72 °C for 45 s;
and 72 °Cfor 2 min) and size selected using SPRIbeads 0.75% cleanup.
PCR3: Tru-seq-based indexing primers (98 °C for 30 s; six cycles of
98°Cfor15s,63°Cfor15sand 72 °Cfor 45 s; and 72 °C for 2 min) and
size selected using SPRIbeads 0.75% cleanup. After each PCR, products
were checked on E-Gel EX 2% agarose.

Primer sequences:

PCR1

mU6_outer_fw: cagcacaaaaggaaactcaccctaactgtaaag

sasgRNA_PCR_3Rev: tctcgccaacaagttgacgagataaaca

PCR2

p7_saRNA _stagger2_rev: GTGACTGGAGTTCAGACGTGTGCTCTTC
CGATCTccttgttatagtagattctgtttccagagtactaTAAC

p7_saRNA _staggerl rev: GTGACTGGAGTTCAGACGTGTGCTCTTC
CGATCTcttgttatagtagattctgtttccagagtactaTAAC

p7_saRNA _staggerO_rev: GTGACTGGAGTTCAGACGTGTGCTCTTC
CGATCTtgttatagtagattctgtttccagagtactaTAAC

p5_mU6_Ont_stagger: ACACTCTTTCCCTACACGACGCTCTTC
CGATCTtcccttggagaaccaccttgt

p5_mU6_1Int_stagger: ACACTCTTTCCCTACACGACGCTCTTC
CGATCTCtcccttggagaaccaccttgt

p5_mU6_2nt_stagger: ACACTCTTTCCCTACACGACGCTCTTC
CGATCTGCtcccttggagaaccaccttgt

ATAC-seqinJurkatT cells

Jurkat CRISPRai T cells were transduced with individually cloned gRNAs
(two gRNAs per RE) and processed under the same conditions as the
Jurkat enhancer pooled screens. On the day of collection, cells were
harvested for bulk ATAC-seq library preparation according to pub-
lished protocols®. ATAC-seq reads were aligned to reference genome
hg19 with Bowtie 2 (ref. 100) (version 2.3.4.1) using the parameter
-very-sensitive. Data were filtered to remove mitochondrial reads,
retain proper pairs (-f 0x2) and remove ambiguously mapped reads
(MAPQ >10,-q10). BAM files were sorted and indexed with SAMtools
(version1.8). BedGraph coverage files were generated using bamCover-
age fromdeepTools (version 3.3.1_py36)'** with parameters -number-
OfProcessors 10-binSize 50-normalizeUsing CPM-region chr4. For
quantification, data were further normalized by the total signal for
chr4 per sample using a pseudocount of 1 x 10 and scaled to 1 x 10°.

Primary T cell CRISPRi experiments and pooled screen

The CRISPRi plasmids used for primary T cell experiments were
SFFV-ZIM3KRAB-dCas9-2A-mCherry or SFFV-ZIM3KRAB-dCas9-BlastR.
To generate these plasmids, we replaced dCas9-VP64 on
Lenti-SFFV-dCas9-VP64-2A-mCherry (Addgene, 180263) with ZIM-
3KRAB-dCas9 from Addgene, 154472, using Gibson assembly. The
ZIM3KRAB domain was used. Next, mCherrywasreplaced with BlastR
(Addgene, 52962) using Gibson assembly. The Lenti 1928z CAR con-
struct was a gift from Dan Goodman. The high-affinity HA-GD2-28z
CAR sequence was agift from the Crystal Mackall laboratory®? and was
clonedinto the Lenti-1928z plasmid, replacing the 1928z CAR with the
HA-GD2-28z CAR using Gibson assembly.

For all primary T cell experiments, cells were activated on day O
using anti-human CD3/CD28 CTS Dynabeads (Thermo Fisher Scien-
tific) at al:1 cell:bead ratio at 1 million cells per milliliter. Cells were
transduced witheach lentivirus sequentially after Dynabead activation:
dCas9-KRAB at 18 h, CAR constructs at 26 h (when added) and gRNAs
at40 h.Onday9, cells were reactivated with ImmunoCult Human CD3/
CD28/CD2T Cell Activator (STEMCELL Technologies) with 6.25 pl mlI™*
culture medium at 2 million cells per milliliter. One hour after reacti-
vation, GolgiPlug Protein Transport Inhibitor (BD Biosciences) was
added at a1:1,000 dilution, and, after 7 h, cells were stained for cell
surface proteins, fixed and permeabilized and stained for intracellular
cytokines.

Forarrayed primary T cell flow cytometry experiments, the above
steps were followed with the following modifications. Fresh Leukopak
cellswere pre-enriched for CD3* T cells using an EasySep Human T Cell
Isolation Kit (STEMCELL Technologies) before experiments.

For pooled primary T cell screens, the above steps were fol-
lowed with the following modifications. Fresh Leukopak cells were
pre-enriched for CD4" memory T cells using an EasySep Human Mem-
ory CD4"* T Cell Enrichment Kit (STEMCELL Technologies) before
experiments. CD4" memory T cell phenotype was verified by flow
cytometry immediately after isolation using cell surface markers CD3,
CD4,CD8,CD45RA, CD45R0, CD62L and CCR?7. Cells were treated with
10 pg ml™ blasticidin for 6 d starting on day 3 after activation. Cells
were collected on day 9 and stained for live/dead and intracellular IL2.
IL2"and IL2* populations were sorted by FACS; gDNA was isolated; and
gRNA enrichment libraries were constructed as described for Jurkat
Tcellscreens.

Sequencing

Library quality was checked by Bioanalyzer (Agilent Technologies) and
quantified by KAPA Library Quantification Kit (Roche). Sequencing
was performed on a NovaSeq 6000 (Illumina, Novogene) or a Next-
Seq 550 (Illumina). For single-cell Perturb-seq libraries, libraries were
sequenced atapproximately 6,000 reads per cell for gRNA and approxi-
mately 30,000-50,000 reads per cell for GEX. For the Jurkat enhancer
screens, gRNA enrichment libraries were sequenced at approximately
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1.5 million reads per sample for the initial screen and approximately
7.5 million reads per sample for the validation screen (-1,200 reads
per gRNA after filtering), and gRNA1 and gRNA2 in the double gRNA
cassette were sequenced in R1 and R2 paired reads, respectively, and
pairedinsilico. For primary T cell enhancer screens, gRNA enrichment
libraries were sequenced at 2.5-3 million reads per sample (on average
~50,000 reads per gRNA and minimum ~2,400 reads per gRNA). For
bulkJurkat ATAC-seq, libraries were sequenced at more than 29 million
reads per sample.

Single-cell gRNA and transcriptome analysis

scRNA-seq reads were aligned to the GRCh38 reference genome and
quantified using cellranger count (10x Genomics, version 5.0.0).
CRISPR gRNA expression was quantified using cellranger count (10x
Genomics, version 5.0.0) by specifying gRNA sequences and corre-
sponding genes in features.csv. Downstream data analysis was done
inR (version 3.6.1) using Seurat (version 3.2.3).

Datafrom five total captures were combined to one Seurat object.
Cells werefiltered: number of genes > 200, number of genes < 5,500-
8,300, transcriptome unique molecular identifiers (UMIs) <27,000-
75,000, percent mitochondrial reads <10%, detected gRNAs > 20
(background signal distribution) and gRNA UMIs > 50, with exact
parameters differing for each capture for ranges listed above. gRNA
labels for each cell were assigned based on cellranger feature calls.
Only cells with one or two cellranger-detected gRNAs were retained
for single gRNA and double gRNA captures, respectively. gRNA groups
with fewer than 250 cells with target gene detected or with low cell
numbers (n < 20) were removed. gRNA pools contained two gRNAs
per gene for single perturbations and one gRNA per gene for dou-
ble perturbations. For each gene, the gRNA with higher magnitude
log,FC in the single perturbations was used for the double perturba-
tion gRNA. If the two gRNAs for a given gene were not concordant in
target gene log,FC expression for single perturbations, only the gRNA
with greater magnitude change was retained for analysis. For these
reasons, the following gRNAs were removed from the dataset: CEBPA.
al, CEBPA.a2,MAP2K3.al,MYC.al,MYC.a2,MYC.el.al,MYC.el.a2,SPI1.
a2,RIPK2.a2, ATF5.i1, CEBPB.il and FOSLL1.i2. Gene expression was log
normalized with a scaling factor of 1 x 10*. gRNA expression was nor-
malized using relative counts with a scaling factor of 100. To quantify
the number of gRNAs expressed per cell above a certain expression
level threshold, we applied a threshold of 20% and 10% of total gRNA
expressionreads for cells expected to have single and double perturba-
tions, respectively, and applied these thresholds to cells after filtering
out cells without any gRNA expression and after filtering for quality
control metrics described previously. We estimated gRNA detection
false-negative rate (FNR, defined as true double but detected to be
single) and false-positive rate (FPR, defined as true single but detected
tobedouble) tobe 48% and 29%, respectively, using non-filtered data.
Itshould be noted that high FNRs are expected for single-cell datadue
to dropout. FPRs and FNRs can be corrected for by grouping single
and double perturbation cells via cell hashing antibodies®® or separate
captures thatimpart separate sample barcodes.

For Fig.1, only gRNA groups with more than 40 cells wereincluded.
Differential expression for CRISPR target genes was performed Find-
Markers() using normalized counts and a logistic regression model
with batch as a latent variable. Batch was defined as the day on which
10x captures were performed, either day 1 or day 2. For Fig. 2, the top
2,000 most variable genes were found using variance stabilization
transformation (vst). All genes were centered and scaled, and batch
and percent mitochondrial reads were regressed out using ScaleData().
Principal component analysis (PCA) was performed on the top 2,000
mostvariable genes, followed by nearest neighbor graph construction,
cluster determination using the original Louvain algorithm and UMAP
dimensionality reduction using the top principal components (PCs).
All further analyses were performed with regression on batch as the

only latent variable except for UMAP reduction of 24,661 cells, which
was regressed on batch and percent mitochondrial reads.

Next, the subset of cells with SPI1and GATA1gRNAs was retained,
and variable gene selection was repeated. Perturbation-driven cells
were identified as clusters that were not composed of equal repre-
sentations from all gRNA groups. Non-perturbation-driven cells were
removed, and variable feature selection, PCA, neighbor graph construc-
tion, clustering and UMAP reduction were performed again. All DE
testing was performed on either all genes or genesin theindicated TF
target gene sets using normalized counts and logistic regression with
batchasalatent variable. For module score analysis, ENCODE TF target
gene sets for SPI1and GATA1 were downloaded from Harmonizome’* 72,
and genes were identified as being unique to either set or shared.
Erythroid (n =419, human bone marrow CD34 negative-selected and
GYPA positive-selected erythroblasts, single-cell RNA-seq®®) and mye-
loid (n =394, human peripheral blood LIN(CD3, CD19, CD56) CD14*°
monocytes, single-cell RNA-seq®’) gene sets were obtained from the
literature. Module scores were calculated using AddModuleScore()
using normalized, scaled and batch-regressed counts. GO term enrich-
mentwas performed with clusterProfiler (version 3.14.0) enrichGO().

For all DE gene analysis, statistical significance was determined
by genes passing P_adj < 0.05 and abs(log,FC) > 0.5. For analysis of
regulatory modes for downstream target genes of SPI1and GATA1, DE
genes were filtered for statistical significance. Regulatory modes for
downstream target genes were defined using the following thresh-
olds (difference = log,FC observed - log,FC expected from additive
model for double perturbation): synergy difference > 0.1 (greater
magnitude than expected or opposite sign than expected) and buffer
difference > 0.7 (lower magnitude than expected), and the remain-
ing genes were classified as additive. For TF ChIP-seq analysis, the
top 50 genes with the most additive phenotype were selected. The
random gene subset was generated by randomly selecting 300 genes
detectedinthe Perturb-seqexperiment that were not containedin the
SPI1and GATA1DE gene sets. For SPI1 and GATA1 TF ChIP-seq analysis,
bigWig files containing ‘fold change over control’ were downloaded
from ENCODE’®": ENCFFOSORWW, ENCFF838RXA and ENCFF334KVR
(GATA1) and ENCFF172UZW, ENCFF454PTX and ENCFF216QNX (SPI1).
log,FC was calculated with a pseudocount of 0.01. log,FC ChIP-seq
signal of GATAL or SPI1 within 1kb of the promoter (2-kb window) or
within ABC model enhancers for agiven gene was calculated by taking
the average signal across the RE. Agene was classified asbeing bound by
aTFif oneor more REs (including promoter or enhancers) had log,FC
ChIP-seq signal > 5 (normalized to input).

Allfunctionsreferenced above are from Seurat unless noted oth-
erwise. Statistical testing was performed using stat_compare_means()
from ggpubr or FindMarkers() and FindAlIMarkers() from Seurat. All
plots were generated in Rusing Seurat, ggplot2 (version 3.3.2), ggpubr
(version 0.2.4) and pheatmap (version1.0.12).

CRISPR gRNA enrichment analysis

ForJurkat gRNA enrichment analysis, CRISPR gRNA enrichment reads
were counted; dual gRNAs were paired insilico from paired-end reads;
and a raw read counts per gRNA matrix was created using Python 3
(version3.7.4). Downstream data analysis was donein R (version 3.6.1).
gRNA pairs werefiltered for pairs with the sum of raw read counts across
allsorted populations > 300 reads. Reads were normalized per sample
by dividing by the total reads per sample and scaling by 1 x 10° and
log2 transformed with a pseudocount of 1. Fold change was calculated
between each population versus the cytokine-negative population.
z-scores were computed by centering and scaling relative to the mean
and standard deviation of all NTC gRNAs. z-scores were used for the
majority of further analyses. z-scores were calculated independently
for theinitial and validation/L2locus screens. To ensure that the initial
CRISPRai screens were benchmarked to positive control gRNAs with
strong effects, the TSS gRNAs with the strongest effects were retained,
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and the following gRNAs were removed from the analysis: TSS.a.2 and
TSS.i.2(IL2) and TSS.a.1and TSS.i.2 (IFNG). For theIL2 validation screen,
the following gRNAs were removed from the analysis because they
exhibited strong outlier behavior: NTC.a.1l.val, TSS.a.3.val, TSS.i.1.val,
orbecauseitwas notdetected: E6.a.8.val.

Expected double gRNA enrichment was calculated by summing
thelog,FC gRNA enrichment z-scores of the corresponding single per-
turbations: log,FC z-score(singlel) + log,FC z-score(single2). Residuals
were calculated fromtheline of best fit between expected and observed
doublelog,FCz-score. Pearson correlations were calculated using cor().
Perturbation strength was calculated through a second normalization
steprelative to TSS log,FC (Elog,FC — TSSlog,FC). log,FC difference was
calculated through an alternate second normalization step relative to
the average NTClog,FC (Elog,FC — average NTC log,FC).

The genome-wide off-target analysis in Supplementary Table 7
was performed using the publicly available web tool from IDT (https://
www.idtdna.com/site/order/designtool/index/CRISPR_SEQUENCE).
For each targeting gRNA, the 20-bp 5’ of the PAM was uploaded in
FASTA format to the web tool, generating a list of potential off-target
sites genome wide, with associated metadata such as number of
mismatches, genomic location and whether the off-target location
overlaps agene. We thenintersected these results with the CRISPRi/a
screening data of Schmidt et al.>® to evaluate whether any off-target
sites overlapped genes known to impact IL2 or IFNG expression. For
eachidentified potential off-target gene, we queried the Schmidtetal.
screen hits to see if targeting that gene impacted expression of the
relevant cytokine when targeted with the relevant guide type (that
is, CRISPRi or CRISPRa). If the gene was a hit in any of the relevant
conditions in Schmidt et al., we included the condition with the most
significance (lowest false discovery rate (FDR)) into Supplementary
Table 7. This analysis revealed that 14 of the 19,999 (0.07%) potential
off-target sites analyzed overlapped with a gene that was a hitinarel-
evant condition of Schmidt et al., and 13 of our 204 targeting gRNAs
(6.3%) contained at least one off-target site overlapping one of these
genes. Thus, off-target overlap with coding genes is unlikely to play a
major role in the observed efficacy of our gRNAs.

For histone ChIP-seq analysis, bigWig files containing ‘fold
change over control’ were downloaded from ENCODE"*”", File acces-
sions used were as follows: for activated T cells, ENCFF233LPC,
ENCFF370YXG, ENCFF356ZKI, ENCFF704NYS, ENCFF741XLV, ENCFF-
158HYB, ENCFF232FZK, ENCFF206YVE, ENCFF336KWY, ENCFF164WIU,
ENCFFO60VND, ENCFF398QTX, ENCFF9400QY, ENCFF903VV]J,
ENCFF356TWG, ENCFF248V)B, ENCFF690AHR, ENCFF243FBP, ENCFF-
624BMC and ENCFF352EYP and, for resting T cells, ENCFF906URN,
ENCFF787PDH, ENCFF787LLC, ENCFF820GJE, ENCFF984ZEE,
ENCFF829WQD, ENCFFO55UPO, ENCFF459VQV, ENCFF0410BG, ENCF-
F5430QM, ENCFF863YFO, ENCFF896VD]J, ENCFF560YNU, ENCFF-
309ISK, ENCFF953MIX and ENCFF478JER. Regions overlapping each
enhancer were used to estimate enhancer-specific histone signatures
using GRanges and IRanges. For TF motif enrichment analysis, position
frequency matrices (PFMs) were downloaded from JASPAR®®:

JASPAR2022_CORE_vertebrates_non-redundant_pfms_jaspar.
txt. TF motif score calculation in each enhancer was performed using
matchMotifs() from ChromVar® and motifmatchr'®® using parameters
genome = hg38, out = scores, bg = subject and p.cutoff =5x107 and
filtered for the top-scoring motifs.

For genome tracks, the following datasets were used. ABC model
predictions used for tracks and all other ABC model analyses: All-
Predictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz*.
ForJurkat cell type predicted enhancers, the ABC model usesJurkat
ATAC-seq and Jurkat H3K27ac ChIP-seq and mixed cell type Hi-C*.
The following file accessions were downloaded from ENCODE"*"":
H3K27ac-activated T cell ChIP-seq ENCFF370YXG; H3K27ac resting
T cell ChIP-seq ENCFF787LLC; H3K4me3-activated T cell ChIP-seq
ENCFF9400QY; H3K4me3 resting T cell ChIP-seq ENCFF863YFO;

H3K4mel-activated T cell ChIP-seq ENCFF755MCS; H3K4mel rest-
ing T cell ChIP-seq ENCFF0410BG; activated T cells DNase-seq
ENCFF997BFO; and CTCF-activated T cell ChIP-seq ENCFF523IEI.
H3K27ac resting Jurkat ChIP-seq (Gene Expression Omnibus (GEO)
GSM1697882)*"; BRD4 activated T cell ChIP-seq GSM5573170_Stim_
BRD4.bw (GEO GSM5573170)'°%; JUNB and cFOS activated CD4
T cell ChIP-seq (GEO GSE116695; Sequence Read Archive (SRA)
SRR7475866 and SRR7475865)%¢; RUNX1resting Jurkat ChIP-seq (GEO
GSM1697879)*; and restingJurkat ATAC-seq (GEO GSM4130892)'°%,
FASTQ files downloaded from the SRA were converted to bigWig
files using Galaxy tools (https://galaxyproject.org/, version 22.05)
and recommended pipelines'®. Activated Jurkat ATAC-seq shown
in tracks was generated for this manuscript using cells receiving
NTC gRNAs.

For SRE score analysis, enhancer coordinates and SRE scores
were downloaded from the Multiplexed CRISPRi EnhancerNet web-
site (http://enhancer.stanford.edu/, not versioned)* for the /L2 gene
inJurkat T cells. For the subset of enhancers shared between our screen
and the SRE dataset, SRE score was plotted for all enhancer pairs. The
following enhancers were shared between the CRISPRai screen and the
SRE dataset: E4, E5, E7, E8 and E9.

For geneticinteraction analysis, we took the following approach.
(1) Calculate expected double perturbation log,FC z-scores by sum-
mingthe values of the single perturbations. (2) Fitalinear model to the
relationship between expected and observed log,FC z-scores for dou-
ble perturbations. (3) Calculate the residual between the linear model
and observed double perturbationlog,FC z-score. (4) Determine sig-
nificance by using two methods as described below. For method 1, we
determined which RE pairs are outside1s.d. from the mean of residuals
and required that this ‘hit’ be shared by all three replicates, which
yielded three significant enhancer pairs. For method 2, we checked
the normality of the residual z-scores using a Shapiro-Wilk normality
test, whichgave P=0.17,P=0.65and P= 0.40 for Repl, Rep2 and Rep3,
respectively, indicating that these follow anormal distribution; assum-
ing normality, we calculated P values for each residual z-score using
pnorm() and took a cutoff of P < 0.05 as significant (without multiple
hypothesis correction), which yielded six, five and three significant
enhancer pairs for Repl, Rep2 and Rep3, respectively. To take a strin-
gent approach, we took only RE pairs that were called significant by
both methods to be true significant hits, which yielded three RE pairs,
as all pairs passing method 1 criteria also passed method 2 criteria.

Primary T cellgRNA enrichment data were analyzed as described
above forJurkat gRNA enrichment data. As sequencing depth was high
for allgRNAs, no pseudocount was added.

Allplots were generated in Rusing ggplot2 (version3.3.2), ggpubr
(version 0.2.4) and pheatmap (version 1.0.12). Genome tracks were
generated usingrtracklayer (version1.46.0) and Gviz (version 1.30.0).
In all box plots, statistical analysis was performed using stat_com-
pare_means() from ggpubr. Statistical significance was performed
using a two-sided Wilcoxon test using wilcox.test() unless otherwise
noted. P values were corrected for multiple hypothesis testing using
the Benjamini-Hochberg procedure where indicated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allsingle-cellRNA-seq, single-cell CRISPRgRNA, CRISPRgRNA enrich-
ment and Jurkat ATAC-seq data have been deposited in the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE220976) under accession code GSE220976. Gene setsare
available through the Molecular Signatures Database (https:/www.
gsea-msigdb.org/gsea/msigdb) and Harmonizome (https://maayanlab.
cloud/Harmonizome/).
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Code availability

For single-cell analysis, gRNA counts were quantified using cellranger
count, available at https://www.10xgenomics.com/support/software/
cell-ranger/latest, and downstream analysis was performed using
Seurat, available at https://satijalab.org/seurat/.No custom pipelines
were developed for analysis.
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inducibility of CRISPRai system, and dependence on dCas9 cassette expression
level. Expression level by qPCR of (a) dSaCas9 and dSpCas9, and (b) CD40 gene
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(top) and CRISPRi (bottom). (e) Time course of construct expression by flow
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and dCas9 expression remains high for >14 days, dCas9is not silenced.

(f-i) Development of Jurkat CRISPRai cell line in bulk. (f) Log2FC gene expression
by qPCR of several genes in CRISPRa single perturbations. (g) Protein levels by
flow cytometry during CRISPRi single perturbations. (h) Same data as (g).
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n=4(2biological replicates, 2 technical replicates). (g-h) n=10r 2 (Lor 2gRNAs).
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Extended DataFig. 3| (related to Fig. 1). Single-cell K562 CRISPRai screen

and SPI1and GATA1 quality control. (a) Visualization of all single-cell
transcriptomes from Perturb-seq. Each dot represents one cell which, colored

by detected gRNA or gRNA pair. Labeled clusters highlight cells with strong
perturbation-driven phenotypes. (b) Magnitude and significance of CRISPRai
target gene DE insingle (left) and double (right) perturbations. Horizontal dotted
line at p_adj < 0.05. (c) Average log2FC expression for all double perturbations
includedin the screen. Axes show gRNA 1and gRNA 2 in the double perturbation
pair. All pairs with n > 30 cells shown. (d) Number of DE genes in single and double
perturbations for all perturbation sets. All cells, including non-perturbation
driven cells, are included for DE testing. (e) Visualization of cells with gRNA calls

in the SPI1-GATA1 perturbation set. Proportion or number of cells per gRNA
group is shown. (f) Visualization of cells from (e) in the perturbation-driven
cellsubset. (g) Same dataas (f), colored by perturbation-driven (PD) or non-
perturbation driven (NPD) clustering (top), and average log2FC gene expression
of GATA1 and SP/1in PD and NPD cells. Perturbation-driven cells were defined
ascellsinall clusters that do not comprise a mixture of all gRNA groups. (g,h)
Logistic regression. (h) Top DE genes. Log2FC and DE gene testing is relative
toNTC, logistic regression was used for DE. Data from gRNA groups with (a,b)
n>20, (d) n>50 cells per group. Significance cutoffs: ns p > 0.05, *p < 0.05,
*p<0.01,**p<0.001,***p<0.0001.
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Extended DataFig. 4 | (related to Fig. 2). Additional analysis for SPI1 and
GATA1l geneticinteraction. (a) DE genes by gRNA group. (b) Overlap of DE
genes across gRNA groups. (c) Biological process GO term enrichment for
upregulated genes uniquely DE in SPI1.a|GATAL.i bidirectional perturbation.

(d) Gene set size for ENCODE TF target gene sets’’7?and the subset that is present
inthe dataset for GATAl only, SPI1 only, or shared TF target genes grouped by up
or down regulation in the SPI1.a|GATAL.i bidirectional perturbation. (e) Average
log2FC gene expression module score for gene sets in (d). (f) Gene set sizes for
MSigDb TF target gene sets”>* and the subset that is present in the dataset for
SPI1(PU.1), GATAL, or ETS family gene sets. (g) Average log2FC gene expression
module score for gene sets in (f). (h) Examples from (g). Gene set sizes from left
toright: n=265,280. (i) Overlap between statistically significant DE genes in the

bidirectional perturbation and SPI1and GATAIENCODE TF target gene sets (top),
and significance of overlap between CRISPRai DE genes and ENCODE gene sets
relative to null distribution (bottom). (j) DE genes in bidirectional perturbation
relative toindividual or combined single perturbations, colored by ENCODE TF
target gene set. Only genesin ENCODE TF target genes sets were tested for DE.
(a-c,i-j) Significance cutoffs for DE genes are: abs(log2FC) > 0.5, p_adj < 0.05.
Log2FC and DE geneis relative to NTC, logistic regression was used for DE gene
testing. AllgRNA groups have (a,b) n >34 and (c-j) n > 59 cells. (c) One-sided
Fisher’s exact test, BH correction. (h) Boxplot, median and IQR. Box whiskers,
1.5xIQR. Two-sided Wilcoxon test. Significance cutoffs: ns p > 0.05,*p < 0.05,
*p<0.01,**p<0.001,***p<0.0001.
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Extended DataFig. 5| (related to Fig. 3). Additional data from Jurkat /L2
locusinitial screen and TSS-E perturbations. (a) Log10 raw read counts per
gRNA pair by sorted population and biological replicate. DP =1L2 + IFNG+
(double positive), IFNG = IL2-IFNG +, IL2 =IL2 + IFNG-, NEG = IL2-IFNG- (double
negative), UN=unsorted. (b) Logl0 raw read counts per gRNA pair summed

over all populations, with read count cutoff (blue dotted line) used for filtering
reads. (c) Log2FC (IL2+/NEG) versus log2 raw read counts per gRNA, colored

by biological replicate. (d) Pearson correlation of log2FC (IL2+/NEG) across all
gRNAs for sorted populations and biological replicates. (e) Log2FC z-score (IL2+/
NEG) correlation of biological replicates for IL2 sorted population. (f) Distance
between enhancer midpointand /L2 TSS. (g) Average log2FC z-score (IL2+/NEG)
for all single and double TSS-E pairs. Data are mean + SEM. (h) Average log2FC
z-score (IL2+/NEG) for all single, double, and NTC gRNA pairs. Columns and rows

indicate gRNAland gRNA2 in the pair. (i) Magnitude and statistical significance
for all gRNA pairs, including single, bidirectional, and NTC gRNAs. TSS single
perturbations are highlighted. (j) Log2FC z-score of TSS single perturbations
(top, IL2+/NEG) and residuals from additive model for bidirectional
perturbations (bottom) for all TSS-E gRNA pairs with abs(log2FC) > 2 froma
subsequent validation screen. (a-i) Data from /L2initial screen, n = 6 (3 biological
replicates, 2 gRNAs per enhancer). (j) Data from /L2locus validation screen,

n =24 for grouped single perturbations and n = 147-168 for bidirectional
perturbations (n =3 biological replicates, 7-8 gRNAs per enhancer).

(i) Significance cutoff FDR < 0.05. (j) Boxplot, median and IQR. Box whiskers,
1.5xIQR. (i,j) Two-sided Wilcoxon test. Significance tested relative to (i) NTC, or
(j) weakest TSS gRNA. Significance cutoffs: ns p > 0.05, *p < 0.05,
*p<0.01,**p<0.001,***p<0.0001.
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6 | (related to Fig. 3). Additional data from Jurkat IFNG
locusinitial screen. (a) Genome tracks showing regulatory landscape of IFNG
gene locus. (b) Logl0 raw read counts per gRNA pair by sorted populationand
biological replicate. DP = L2 + IFNG+ (double positive), IFNG = IL2-IFNG+,

IL2 =1L2 + IFNG-, NEG = IL2-IFNG- (double negative), UN = unsorted. (c) Logl0
raw read counts per gRNA pair summed over all populations, with read count
cutoff (blue dotted line) used for filtering reads. (d) Log2FC (IFNG+/NEG) versus
log2 raw read counts per gRNA, colored by biological replicate. (e) Pearson

correlation of log2FC (IFNG+/NEG) across all gRNAs for sorted populations and
biological replicates. (f) Log2FC z-score (IFNG+/NEG) correlation of biological
replicates for IFNG sorted population. (g) Distance between enhancer midpoint
and /IFNGTSS. (h) Average log2FC z-score (IFNG+/NEG) for all single and
bidirectional TSS-E pairs, binned by sorted population. Data are mean + SEM.

(i) Average log2FC z-score (IFNG+/NEG) for all single, bidirectional, and NTC
gRNA pairs. Columns and rows indicate gRNA1and gRNA2 in the pair.

(a-i) Datafrom /FNG screen, n = 6 (3 biological replicates, 2 gRNAs per enhancer).
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Extended Data Fig. 7 | See next page for caption.
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Extended DataFig. 7 | (related to Figs. 3-4, 6). Additional data from Jurkat
IL21ocus validation screen. (a) Logl0 raw read counts per gRNA pair by sorted
population and biological replicate. IL2 = L2+, NEG = IL2-, UN=unsorted.

(b) Log10 raw read counts per gRNA pair summed over all populations,

with read count cutoff (blue dotted line) used for filtering reads. (c) Log2FC
(IL2+/NEG) versus log2 raw read counts per gRNA, colored by biological
replicate. (d) Pearson correlation of log2FC (IL2+/NEG) across all gRNAs for
sorted populations and biological replicates. (e) Log2FC z-score (IL2+/I NEG)
correlation of biological replicates for IL2 sorted population. (f) Average log2FC
z-score (IL2+/NEG) for all single (a or i), bidirectional (ai), or NTC gRNAs.

(g) log2FC (IL2+/NEG) of selected single and selected bidirectional

perturbations. (h) Average log2FC z-score (IL2+/NEG) for all single,
bidirectional, and NTC gRNA pairs as observed (top), and with CRISPRa or
CRISPRi gRNA contribution subtracted (middle). Average log2FC z-score
averaged over 8 gRNAs per enhancer (bottom). (i) Genetic interaction score
analysis for all gRNA pairs, showing significance method 1: pairs >1 standard
deviation from the mean of residuals and hit shared by all 3 replicates (top), and
significance method 2: normal distribution p-value < 0.05 (bottom). (a-i) Data
from/L2locus validation screen, n =147-168 (n = 3 biological replicates, 7-8
gRNAs per enhancer). (f,g) Boxplot, median and IQR. Box whiskers, 1.5x IQR.
(g,h) Two-sided Wilcoxon test, BH correction. Significance cutoffs: ns p > 0.05, *
p<=0.05,**p <= 0.01, **p <= 0.001, ***p <= 0.000L
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Extended DataFig. 8| (related to Fig. 5). Additional datafrom primary T cell
IL2locus screens. (a) Logl0 raw read counts per gRNA pair by sorted population
andbiological replicate.IL2 =IL2 +,NEG =1L2-. (b) Log10 raw read counts per
gRNA pair summed over all populations, with read count cutoff (blue dotted line)
used for filtering reads. (c) Log2FC versus log2 raw read counts per gRNA, colored
by biological replicate. (d) Pearson correlation of log2FC (IL2/NEG) across
allgRNAs for sorted populations and biological replicates. (e) Log2FC (IL2+/
NEG) for all gRNAs in primary human T cells with no CAR, CD19-28z-CAR, and

HA-GD2-28z-CAR. (f) Same dataas (e), binned by RE, for all 8 gRNAs aggregated
(left), or only E6 gRNAs 4-8 aggregated (right). (g) Log2FC (IL2+/NEG) normalized
to NTC cells. (h) Intracellular IL2 by flow cytometry. (a-f) Data from 2 biological
replicates (2 donors) in human primary memory CD4+ cells. (f,g) n =16 (2 donors,
8 gRNAs per enhancer). (e-g) Boxplot, median and IQR. Box whiskers, 1.5x IQR.
(f,g) Two-sided Wilcoxon test. Significance tested relative to NTC. Significance
cutoffs:ns p>0.05,*p <0.05,*p<0.01,**p<0.001,***p<0.0001.
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Extended DataFig. 9 | (related to Fig. 6). Chromatin accessibility at IL2
enhancers during enhancer CRISPRi inJurkat. (a) ATAC-seq at all enhancers
and the TSS during CRISPRiin]Jurkat T cells, with same y axis. (b) Same as (a) for
differenty axis. (c) ATAC-qPCR for peaks overlapping enhancers, the TSS, and

negative control ACTB peaks. (a,b) n =2 (2 biological replicates). (c) n =4 (2qPCR
technical replicates, 2 primer pairs). (a-c) Boxplot, median and IQR. Box whiskers,
1.5xIQR. Two-sided t-test. Significance tested relative to NTC. Significance
cutoffs: ns p >0.05,*p <0.05,* p<0.01, **p <0.001, ***p < 0.0001.
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Extended Data Fig. 10 | (related to Figs. 3-6). Genome tracks for strong functional enhancers of IL2. (a) Genome tracks showing regulatory and epigenetic
landscape across /L2 gene locus. (b) Genome tracks at selected enhancers and the TSS.
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Data collection  Single cell RNA-seq were aligned to the GRCh38 reference genome and quantified using cellranger count (10x Genomics, version 5.0.0).
CRISPR gRNA expression was quantified using cellranger count (10x Genomics, version 5.0.0) by specifying gRNA sequences and
corresponding genes in features.csv. CRISPR gRNA enrichment reads were counted, dual gRNAs were paired in silico from paired end reads,
and a raw read counts per gRNA matrix was created using python3 (version 3.7.4). ATAC-seq reads were aligned to the hg19 reference
genome using Bowtie2 (version 2.3.4.1), filtered to remove mitochondrial reads, retain proper pairs, and remove ambiguously mapped reads.
Bam files were sorted and indexed with Samtools (version 1.8). Bedgraph coverage files were generated using bamCoverage from deepTools
(version 3.3.1_py36).

Data analysis Downstream data analysis and plotting was done in R (version 3.6.1), using ggplot2 (version 3.3.2), ggpubr (version 0.2.4), pheatmap (version
1.0.12), rtracklayer (version 1.46.0), Gviz (version 1.30.0). Single cell RNA-seq and CRISPR gRNA data was analyzed using Seurat (version 2.3.4).
Gene Ontology (GO) term enrichment analysis was performed using clusterProfiler (version 3.14.0). ChIP-seq fastq files were used to generate
BigWig files using Galaxy tools (galaxyproject.org, version 22.05). ChIP-seq bigWig files were downloaded from ENCODE. gRNA off-target
analysis was performed using the web tool from IDT (https://www.idtdna.com/site/order/designtool/index/CRISPR_SEQUENCE, not
versioned). FlowJo (version 10.6.1) was used for flow cytometry analysis.
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All single-cell RNA-seq, single-cell CRISPR gRNA, CRISPR gRNA enrichment, and ATAC sequencing data have been deposited in the Gene Expression Omnibus (GEO)
under accession GSE220976. All other relevant data are available from the corresponding authors upon reasonable request.

Activity-by-Contact Model data was obtained from AllPredictions.AvgHiC.ABCO0.015.minus150.ForABCPaperV3.txt.gz. JUNB and cFOS activated CD4 T cell ChIP-seq
(GEO GSE116695, SRA SRR7475866 and SRR7475865). For SRE score analysis, enhancer coordinates and SRE scores were downloaded from the Multiplexed CRISPRi
EnhancerNet website (enhancer.stanford.edu). ChIP-seq bigWig files were downloaded from ENCODE (accession numbers listed below and in Methods). gRNA off-
target analysis was performed using the web tool from IDT (https://www.idtdna.com/site/order/designtool/index/CRISPR_SEQUENCE, not versioned).

ENCODE data for histone ChIP-seq data: ENCFF233LPC ENCFF370YXG ENCFF356ZKI ENCFF704NYS ENCFF741XLV ENCFF158HYB ENCFF232FZK ENCFF206YVE
ENCFF336KWY ENCFF164WIU ENCFFO60VND ENCFF398QTX ENCFF9400QY ENCFF903VVJ ENCFF356TWG ENCFF248VIB ENCFF690AHR ENCFF243FBP
ENCFF624BMC ENCFF352EYP and for resting T cells ENCFFOO6URN ENCFF787PDH ENCFF787LLC ENCFF820GJE ENCFF984ZEE ENCFF829WQD ENCFFO55UPO
ENCFF459vVQV ENCFF0410BG ENCFF5430QM ENCFF863YFO ENCFF896VDJ ENCFF560YNU ENCFF309ISK ENCFFO53MIX ENCFFA78JER. For GATAL: ENCFFOS80ORWW,
ENCFF838RXA, ENCFF334KVR. For SPI1: ENCFF172UZW, ENCFF454PTX, ENCFF216QNX.

Data used for genome tracks: H3K27ac activated T cell ChIP-seq ENCFF370YXG, H3K27ac resting T cell ChIP-seq ENCFF787LLC, H3K4me3 activated T cell ChIP-seq
ENCFF9400QY, H3K4me3 resting T cell ChIP-seq ENCFF863YFO, H3K4me1l activated T cell ChIP-seq ENCFF755MCS, H3K4me1 resting T cell ChIP-seq ENCFFO410BG,
activated T cells DNase-seq ENCFF997BFO, CTCF activated T cell ChIP-seq ENCFF523IEIl. H3K27ac resting Jurkat ChIP-seq (GEO GSM1697882); BRD4 activated T cell
ChIP-seq GSM5573170_Stim_BRD4.bw (GEO GSM5573170); JUNB and cFOS activated CD4 T cell ChIP-seq (GEO GSE116695, SRA SRR7475866 and SRR7475865),
RUNX1 resting Jurkat ChIP-seq (GEO GSM1697879); resting Jurkat ATAC-seq (GEO GSM4130892).

Gene sets are available through MSigDb (gsea-msigdb.org/gsea/msigdb) and Harmonizome (maayanlab.cloud/Harmonizome/).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Not applicable.

Population characteristics Not applicable.
Recruitment Not applicable.
Ethics oversight Not applicable.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to determine the sample size. For single-cell RNA and CRISPR gRNA experiments, the cell number per gRNA
group are consistent with prior single-cell studies. We focused our single-cell analysis on cell groups with greater than 50 cells. This
benchmark is based on the practice of published studies that use single-cell RNA-seq (Gasperini et al. Cell 2019, Xie et al. Molecular Cell 2017).
For CRISPR gRNA enrichment experiments, we used 2 gRNAs for primary screens and 8 gRNAs for the validation screen per enhancer, which is
comparable to published CRISPR screens (Horlbeck et al. Cell 2018, Gasperini et al. Cell 2019, Xie et al. Molecular Cell 2017, Bodapati et al.
Genome Biology 2020).

Data exclusions  gRNAs that were not detected, did not have sufficient cell numbers or whose target gene was expressed below detection limits in single-cell
experiments, or were not strongly not concordant with other gRNAs for the same target were examined and ultimately excluded from the
analysis. These criteria were predetermined and are listed in Methods.
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Replication Single-cell sequencing performed across multiple 10x Genomics captures. CRISPR gRNA enrichment experiments were replicated in 2-3
biological replicates, which were concordant. ATAC-seq was performed in 2 biological replicates. gPCR data was replicated at least twice.
Other experiments were replicated 2-3 times. All attempted replicates of ATAC-seq, qPCR, and gRNA enrichment screens were successful.

Randomization  Covariates, specifically batch of sample processing (day 1 or day 2) and percent mitochondrial reads per cell were controlled for during
statistical testing of differential gene expression for single-cell RNA-seq analysis. This practice is standard for published work with this data

type.

Blinding Investigators were not blinded to group allocations due to personnel constraints.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|Z Antibodies |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|:| Animals and other organisms
|:| Clinical data

|:| Dual use research of concern

XXX X0

Antibodies

Antibodies used For validation CRISPRi experiments, cells were stained with CD3E-BV785 (Biolegend, clone OKT3, cat. no. 317329, lot no. B311209) or
CD47-BV605 antibodies (Biolegend, clone CC2C6, cat. no. 323119, lot no. B300088). For gRNA enrichment screens, intracellular
cytokines were stained with IL2-BV711 (Biolegend clone MQ1-17H12, cat. no. 500346, lot no. B354636) and IFNG-APC (Biolegend,
clone B27, cat. no. 506510, lot no. B329616). Jurkat T cells were activated using CD3 antibody (Biolegend, clone OKT3, cat. no.
317347, lot no. B338622) and CD28 antibody (3ug/ml, Biolegend, clone CD28.2, cat. no. 302943, lot no. B335272). For primary T cell
flow cytometry experiments, cells were stained with CD4-BV510 (Biolegend clone OKT4, cat. no. 317444), and CD8-PerCP/Cyanine5.5
(Biolegend clone SK1, cat. no. 344710), IL2-APC (Biolegend clone MQ1-17H12, cat. no. 500310). Memory CD4+ primary T cell
phenotype was verified using CD3-PE (Biolegend clone UCHT1, cat. no. 300441), CD4-BV511 (Biolegend clone OKT4, cat. no. 317444),
CD8-PerCP/Cyanine5.5 (Biolegend clone SK1, cat. no. 344710), CD45RA-BV711 (Biolegend clone HI100, cat. no. 304138), CD45R0O-
FITC (Biolegend clone UCHL1, cat. no. 304204), CD62L-PE/Cy7 (Biolegend clone DREG-56, cat. no. 304822), CCR7-BV421 (Biolegend
clone GO43H7, cat. no. 353208). All antibodies were used at 1:20 to 1:200 dilutions.

Validation All antibodies were validated by the manufacturer directly in human peripheral blood mononuclear cells. Manufacturer validation

includes specificity testing in 1-3 target cell types in single or multi color analysis, intensity testing by MFI, and QC testing with a
series of titration dilutions. Antibodies were compared to no stain controls.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Lenti-X HEK293T were obtained from Clontech. K562 (CCL-238) and Jurkat (Clone E6-1, TIB-152) cell lines were obtained from
ATCC. Primary bulk CD3+ T cells and isolated memory CD4+ T cells were were sourced from PBMC-enriched leukapheresis
products (Leukopaks, STEMCELL Technologies) from healthy donors, after institutional review board—approved informed
written consent.

Authentication Cell lines were not authenticated, except for the isolated memory CD4+ T cells which were verified to express expected
markers by flow cytometry.

Mycoplasma contamination Cell lines were tested periodically for mycoplasma and found to be negative.

Commonly misidentified lines  no commonly misidentified cell lines were used.
(See ICLAC register)
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

X, A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

For single-cell RNA-seq experiments, cryopreserved cells in Cryotstor CS10 (StemCell Technologies) were thawed for sorting.
For CRISPR gRNA enrichment experiments, cells were used fresh from cell culture. All cells were washed with flow cytometry
staining buffer (eBioscience) prior to staining. For validation CRISPRi experiments, cells were stained for 30min at 4C. For
sorting, all cells for Perturb-seq and Jurkat gRNA enrichment screens were stained with Zombie NIR fixable viability dye at
1:1000 dilution in PBS (Biolegend). For primary cell flow cytometry experiments, cells from culture were stained with Ghost
Dye Red 780 (Tonbo Biosciences), CD4 (Biolegend), and CD8 (Biolegend), fixed and permeabilized with BD Cytofix/Cytoperm
(BD Biosciences), stained for intracellular IL2 (Biolegend). For primary T cell sorting, cells from culture were stained with
Ghost Dye Red 780 (Thermo Fisher), fixed and permeabilized with Cyto-Fast™ Fix/Perm Buffer Set (Biolegend), stained for
intracellular IL2 (Biolegend).

All samples were sorted using a FACSAria Il. All flow cytometry analysis that did not require sorting was performed using a BD
LSRIl or Attune Nxt.

Flow cytometry data was analyzed using FlowJo (version 10.6.1).

Post-sort purities were confirmed to be > 95% and were validated by single cell RNA-sequencing data, CRISPR gRNA
enrichment data, and live dead cell counting on Countess II.

For single-cell experiments, cells were first gated on FSC/SSC, then gated to exclude doublets on FSC-A/FSC-W and SSC-A/
SSC-W. Dead cells were excluded based on Zombie NIR viability staining. Cells were gated to include the top 70-75% of BFP
expressing cells (high dCas9 expression), then gRNA+ cells (GFP+ or mSclarlet+) were sorted. For gRNA enrichment
experiments, cells were first gated on FSC/SCC, then gated to exclude doublets on FSC-A/FSC-H and/or SSC-H/SSC-W. Dead
cells were excluded based on Zombie NIR or Ghost Dye Red 780 viability staining. Cells containing gRNA were gated (mScarlet
+), and cytokine populations were sorted. For primary Jurkat screens, sorted populations were NEG (IL2- IFNG-), IL2+ (IL2+
IFNG-), IFNG+ (IL2- ING+), and double positive (DP, IL2+ IFNG+). For validation screens, IFNG staining was not used, and
sorted populations were NEG (IL2-) and IL2+. For primary T cell experiments, a similar gating strategy was used as described
above on a population of CD3+ (from which CD4+ and CD8+ cells are gated) or isolated memory CD4+ T cells.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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