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De novo and somatic structural variant 
discovery with SVision-pro

Songbo Wang1,2,3, Jiadong Lin2,3, Peng Jia    1,2,3, Tun Xu    2,3, Xiujuan Li2,3, 
Yuezhuangnan Liu4, Dan Xu4, Stephen J. Bush2,3, Deyu Meng3,5,6,7 & 
Kai Ye    1,2,3,4,8,9 

Long-read-based de novo and somatic structural variant (SV) discovery 
remains challenging, necessitating genomic comparison between samples. 
We developed SVision-pro, a neural-network-based instance segmentation 
framework that represents genome-to-genome-level sequencing differences 
visually and discovers SV comparatively between genomes without any 
prerequisite for inference models. SVision-pro outperforms state-of-the-art 
approaches, in particular, the resolving of complex SVs is improved, with 
low Mendelian error rates, high sensitivity of low-frequency SVs and reduced 
false-positive rates compared with SV merging approaches.

Long-read sequencing (LRS) technologies have greatly facilitated the 
detection of SVs1, including simple SVs (SSV)2–5 and complex SVs (CSVs)6, 
which typically comprise several internal SSV subcomponents. Given that 
de novo and somatic SVs7,8 are responsible for Mendelian disorders9,10 
and development of cancers11,12, comparative SV discovery between 
genomes (for example, comparing a proband genome against parent 
genomes to identify de novo SVs) has generally been attempted by either 
callset-merge or read-inference strategies. Callset-merge strategies13–15 
(for example, Jasmine) extract genome-specific calls from merged call-
sets and hence inevitably incorporate the miscalls from callers, lead-
ing to many false positives. In contrast, read-inference strategies16 (for 
example, nanomonsv) directly search differential alignments between 
genomes and construct SV inference models. However, this is typically 
limited to SSVs, and CSV modeling cannot be accommodated due to 
the unexplored CSV types and nested internal components17. Although 
sequencing-to-image and deep-learning-based callers have improved 
CSV characterization6,18, two principal issues hinder their application to 
comparative SV discovery. First, existing sequencing-to-image schemas 
can represent SVs only of an individual genome, whereas comparative SV 
discovery requires additional image features that can represent SV dif-
ferences between genomes. Second, comparative SV discovery demands 
several recognition tasks to detect and genotype SV between genomes 

simultaneously, while current single-task deep-learning callers classify 
one entire image into either a specific SV type6,19 or genotype20.

Here we propose SVision-pro, comprising two key modules: a 
sequence-to-image representation module encoding genomic fea-
tures from two samples in a single image, from which a neural-network 
recognition module comparatively recognizes SVs as well as their 
intergenome differences. SVision-pro integrates SV detection and 
genotyping between genomes as a one-stop neural-network-based 
image instance segmentation task, facilitating the discovery of both 
de novo and somatic SSVs and CSVs.

The sequence-to-image representation module first takes as 
input aberrant genome loci identified from LRS data. In contrast to 
traditional LRS-based callers, which search for SV-specific alignment 
signatures, SVision-pro summarizes each read into a series of sym-
bols (Extended Data Fig. 1a–d and Methods). These one-dimensional 
(1D)-symbol series are obtained directly from read alignment results 
without any SV-type-oriented preprocessing, and then clustered 
together iteratively as candidate aberrant loci (Extended Data Fig. 1e). 
This process, without matching known SV types, ensures the com-
prehensive capture of SV loci, especially for unexplored CSVs. The 
SV-type-classification task is delegated to subsequent representation 
and recognition modules.
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alignments in three image channels (Fig.1a and Extended Data Fig. 3a). 
Then, we use a fixed-height track above these structures (upper track) 
to encode the normalized ACT from the control genome (for example, 
from parent samples or normal tissue) while the track below (lower 
track) encodes ACT from the case genome (Extended Data Fig. 3b). This 
representation strategy facilitates genome-to-genome comparison, 
simultaneously encoding both SV structures (via segments and gaps) 
and their intergenome differences (via contrasting ACTs in lower and 
upper tracks), thereby requiring a multitask neural-network framework 
that can perform the detection and genotyping tasks simultaneously.

We integrated those many tasks into a one-stop neural- 
network-based image instance segmentation framework instead of 
utilizing several deep-learning classification modules (Fig. 1b and 

The sequence-to-image representation module then compares 
two genomes (termed as case and control genome) in two steps (Fig. 1a): 
structure sketching and content rendering. For an aberrant locus in the 
case genome (for example, from child or tumor tissue), the structure 
sketching step directly transforms the 1D read symbol series into a 
two-dimensional (2D) similarity image (Extended Data Fig. 2a), which 
uses segments and gaps to measure the structural similarity of the 
reference sequence and the variant feature sequence from the case 
genome in an image (Extended Data Fig. 2b). The content rendering 
step (Methods) fills the sparse image regions with augmented coverage 
tracks (ACTs), which represent genomic differences between the case 
and control genome. First, we color the raw coverage track according 
to the forward-, inverted- and duplicated-matching conditions of 
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Fig. 1 | SVision-pro overview. a, Overview of the sequence-to-image 
representation module in SVision-pro. SVision-pro sketches the structures of 
a candidate SV locus and renders ACTs (above) into the sparse image regions. 
The ACT is generated from mapped alignments by the three-channel RGB 
augmentation (below). Dup., duplicated-matching; Rev., reversed-matching; 
For., forward-matching. b, Overview of the comparative recognition module 
in SVision-pro. The neural-network-based instance segmentation framework 
outputs a segmentation mask, providing intuitive SV types (above). By 
comparative genotyping analysis of the colored regions in the upper and lower 
panels (below), we can determine the SV differences between case and control 

genomes. c, Neural-network model training and selection strategy of SVision-
pro. SVision-pro was trained with five basic SV subcomponent types along 
with wild type (identical to reference genome) and was able to recognize CSVs 
with several internal subcomponents (above). To select an efficient instance 
segmentation models (red solid circle), we leveraged three factors: validation 
accuracy, parameter size and interpretability. d, Attribution maps of the Lite-
Unet model. Pixels relevant for a certain prediction class are highlighted. DEL, 
deletion; DUP, duplication; INV, inversion; INS, insertion; invDUP, inverted-
duplication; WT, wild type; R, red; G, green; B, blue; w1, w2 and wn, parameter 
weights.
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Extended Data Fig. 4; Methods). Briefly, this framework takes in an 
encoded image and generates a pixel-level segmentation mask, clas-
sifying image areas in the upper and lower tracks into five basic SV com-
ponent classes (Fig. 1b and Extended Data Fig. 4a), and one wild-type 
reference (REF). The other image regions, such as the flanking sequence 
encoding region, were classified as Background. SV types are predicted 
directly by joining components together in both the case and control 
tracks. Moreover, this instance segmentation framework enables a 
three-task comparison of SV component types, breakpoints and allele 
frequencies (AFs) between the case and control genomes (Fig. 1b). 
Specifically, for each SV component in the segmentation mask, the 
horizontal span of the masked pixels represents its breakpoint span, 
while the vertical span represents its AF (Extended Data Fig. 4b). Apart 
from the widely used genotyping tags (1/1, 0/1 and 0/0) derived from 
AF, SVision-pro generated four distinct categories by contrasting each 
SV component presented in the case genome with that of the control 
genome (Extended Data Fig. 4b; Methods). These categories are: (1) 
‘Germline,’ indicating the presence of the SV subcomponent in the 
control genome with the same allele frequency as that of the case; (2) 
‘New component,’ indicating the absence of the SV subcomponent in 
the control genome; (3) ‘New breakpoint,’ indicating the presence of 
the SV subcomponent in the control genome but with a different break-
point span to the case and (4) ‘New alleles,’ indicating the presence of 
the SV subcomponent in the control genome but with a different AF 
to the case. In the scenarios for de novo SV discovery, SVision-pro will  
output the differences between the case genome and each control 
genome (Extended Data Fig. 4c). SVision-pro offers flexible image prop-
erties for different sensitivity requirements. Currently, SVision-pro 
enables a minimum detection AF of 0.01. Larger image sizes result 
in lower minimum representable and detectable AFs (Extended Data 
Fig. 4d; Methods).

To identify an appropriate instance segmentation model (Fig. 1c), 
five well-known models of different parameter sizes, including Unet21, 
Fully-Convolutional-Network22, Deeplab v.3 (ref. 23), Lite-Unet and 
mini-Unet were trained and compared on simulated data (Supplemen-
tary Note 1). The default model, Lite-Unet, achieved a balance between 
accuracy and model size (Extended Data Fig. 5a,b) while also exhibiting 
strong model interpretability (Fig. 1d and Extended Data Fig. 5c,d).

We benchmarked the performance of SVision-pro and other 
approaches using both simulated and publicly available datasets (Sup-
plementary Table 1), covering high-fidelity (HiFi), Oxford nanopore 
(ONT) and continuous long reads (CLR). The computational resource 
usages were assessed on both a personal computer and a cluster node 
(Supplementary Note 2 and Supplementary Table 14).

SVision-pro outperformed other callers on HG002 groundtruth 
SSVs and simulated CSVs (Extended Data Fig. 6a,b and Supplementary 
Table 2; Methods). Moreover, SVision-pro achieved 96–98% accuracy 
in CSV subcomponent accuracy (Extended Data Fig. 6c and Supple-
mentary Table 3; Methods), improving, on average, 15% compared 
with SVision—the state-of-the-art CSV caller. Further experimental 
validations (Supplementary Table 4, Supplementary File 1 and Sup-
plementary Note 3) supported that SVision-pro has high sensitivity 
and a low false-positive rate for CSV detection.

We next compared SVision-pro with callset-merge strategies on 
six families, including a ChineseQuartet24 (Methods). SVision-pro 
achieved the highest Mendelian consistency (97.3–98.4% on HiFi reads 
and 94.5%-97.6% on ONT reads) and the lowest discordancy (0.7%) 
between monozygotic twins (Fig. 2a and Supplementary Tables 5 and 
6; Methods). When restricted to high-confidence regions (Methods), 
SVision-pro continued to outperform other approaches: the Mendelian 
consistency improved to 98.4–99.3% and 96.8–98.8% for HiFi and ONT, 
respectively, and the twin discordancy decreased to 0.3% (Supple-
mentary Tables 5 and 6 and Extended Data Fig. 7). On a simulated trio 
harboring de novo/inherited CSVs (Supplementary Note 4), SVision-pro 
achieved 96.6% and 93.3% Mendelian genotype accuracy on HiFi and 

ONT long reads, respectively, while the second-best approach, SVision 
(followed by Jasmine merging), achieved 53.2% and 33.5% (Fig. 2b and 
Supplementary Table 7).

The high genotyping accuracy of SVision-pro led to reliable discov-
eries in Mendelian samples. For instance, a 32,549 bp deletion, encom-
passing the genes LCE3B and LCL3C and associated with increased risk 
of psoriasis25,26, was incorrectly genotyped by Sniffles2 (ref. 15) yet was 
correctly genotyped by SVision-pro in the six families (Extended Data 
Fig. 8 and Supplementary File 2). Another complex locus, which was 
mis-called by all other approaches, comprised two SV alleles: an SSV 
(insertion) and an CSV (insertion–deletion) (Extended Data Fig. 9a–c). 
SVision-pro correctly genotyped these two alleles (Fig. 2c and Extended 
Data Fig. 9d), consistent with visual verification on HiFi reads and 
published assemblies (Supplementary File 3).

In the six families, SVision-pro reported 26 de novo SVs, includ-
ing 13 insertions and 13 deletions (Supplementary Table 8), all of 
which were validated manually (Supplementary File 4). LRS enabled 
the discovery of a larger proportion of de novo insertions compared 
with SRS, and further annotation of the reported de novo SVs revealed 
that 20 of them featured repeat expansions or contractions (Sup-
plementary Table 8). By contrast, Sniffles2 reported 90 whereas Jas-
mine/SURVIVOR reported many more redundant calls: 5,831–12,468 
de novo SVs in total (Fig. 2d). We overlapped these 90 de novo calls of  
Sniffles2 with SVision-pro (Fig. 2e and Supplementary Table 9): 
among the 59 nonoverlapping calls, only one true-positive de novo 
SV was confirmed by manual inspection. Of the remaining 31 over-
lapped calls, 19 were identified as germline by both SVision-pro and  
manual curation (Supplementary File 5), indicating that they are  
false positives. Additional experimental validations (Supple-
mentary Note 3, Supplementary Files 6 and 7 and Supplementary  
Table 10) further supported that SVision-pro effectively reduced 
false-positive calls in Mendelian samples and reported high-quality 
de novo SVs.

To assess the somatic detection performance, we simulated a 
subclonal tumor genome, which harbored somatic SSVs and CSVs 
with AFs ranges from 0.01 to 0.10 (Supplementary Note 4). For SSVs, 
the F1-scores of SVision-pro were 0.98 (HiFi) and 0.94 (ONT), leading 
the other two somatic-capable callers, Sniffles2 and nanomonsv16, by 
0.03 to 0.45 (Extended Data Fig. 10a). For CSVs, the F1-scores were 0.95 
and 0.91. As expected, as the AF decreased, the detection accuracy 
exhibited a decreasing trend (Extended Data Fig. 10b). Nevertheless, for 
somatic SSVs and CSVs with AF = 0.01, SVision-pro still achieved average 
accuracies of 95.3% and 90.4% on HiFi and ONT reads (Supplementary 
Table 11). SVision-pro maintained consistent high-performance with 
various numbers of simulated events and coverages (Supplementary 
Table 12).

We next assessed SVision-pro using normal-tumor paired cell 
lines, HCC1395 and HCC1395BL, across three sequencing technologies, 
including HiFi, ONT and CLR (Methods). SVision-pro detected 87–90% 
of the published somatic SSV loci27, while Sniffles2 detected 66–81% 
and nanomonsv detected 6–29% (Fig. 2f). Through computational 
validation using Vapor28 on the detected somatic calls, SVision-pro 
demonstrated a much lower false-positive rate (4.3–8.7%; Fig. 2g, Sup-
plementary Table 13 and Supplementary Note 5) compared with Snif-
fles2 (9.8–40.3%). Taken together, these results show that SVision-pro 
detects somatic SVs with higher sensitivity and lower false-positive 
rates compared with Sniffles2 and nanomonsv16.

Moreover, SVision-pro resolved eight CSVs that were previously 
reported as SSVs (Supplementary File 8; Methods), including a dis-
persed duplication-deletion-inversion where the deletion component 
was missed and the dispersed duplication component was classified as 
a translocation (Extended Data Fig. 10c,d). SVision-pro also identified a 
nonsomatic complex locus, which was previously reported as a somatic 
SSV (Fig. 2h). SVision-pro revealed that the paired normal genome com-
prised one SSV allele and one CSV allele (deletion-inversion), whereas 
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the tumor genome lost the SSV allele and acquired a homozygous CSV 
(Extended Data Fig. 10e).

In summary, SVision-pro is an accurate and interpretable 
approach for comparative SV detection and genotyping, addressing 

the challenges in de novo and somatic SV discovery from long-read 
data. SVision-pro visually compares genomic features encoded from 
sequencing alignments, and so avoids the error-prone merging process 
intrinsic to a callset-level strategy, hence resulting in high-quality calls. 
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cuteSV and debreak (followed by SURVIVOR and Jasmine merging). Each box 
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Q3 and maxima. Values falling outside the Q1–Q3 range are plotted as outliers 
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caller SVision (followed by SURVIVOR and Jasmine merge). c, In the six families, 
SVision-pro correctly genotyped a complex locus comprising both an SSV and a 
CSV. Three distinct alleles are found by SVision-pro, including homologous SSV, 
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number of de novo calls in the six family datasets. e, Overlapping of 90 de novo 
calls produced by Sniffles2 with all calls produced by SVision-pro. f, Recall values 
on the previously published somatic SV callset of HCC1395 tumor-normal paired 
cell lines. g, The number of somatic SVs and the false-positive rates produced  
by Vapor validation decrease as the supporting read number increases.  
h, SVision-pro identified a nonsomatic complex locus that had been reported  
as a somatic SSV. SVision-pro revealed that the paired normal genome  
exhibited a heterozygous SSV and CSV, whereas the tumor genome exhibited 
homozygous CSV.
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The instance segmentation framework removes the requirement for 
prebuilding inference models for SV types, thereby providing high 
CSV resolution. We conducted experimental validation for the find-
ings of SVision-pro, in which certain events were deemed inconclu-
sive due to PCR failure, characterized by the absence of notable PCR 
band or the presence of noisy PCR bands. This ambiguity raises the 
possibility that these events could be false positives, necessitating 
an orthogonal technique capable of validating SVs identified by LRS. 
Future work would develop merging- and model-free approaches for 
population-scale SV characterization to further improve discovery of 
the human SV spectrum.
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Methods
SVision-pro methodology
Overall workflow of SVision-pro. SVision-pro initiates by searching 
the case genome for candidate SV loci, after which a sequence-to-image 
module encodes genome-to-genome image to visually compare the 
case and control genomes. Then, the neural-network-based instance 
segmentation framework recognizes basic SV component types from 
the encoded image and determines the genomic differences between 
the case genome and the control genome. Note that, if several control 
genomes (N and N > 1) are specified, SVision-pro works in a 1-to-N mode 
and generates representation images for the case genome and each 
control genome. Consequently, the instance segmentation frame-
work outputs the SV differences between the case genome and each 
control genome.

Candidate SV locus searching from case genome. SVision-pro 
identifies candidate SV loci by collecting and clustering abnormal read 
alignments in a model-free way that avoids searching for specific aber-
rant patterns of read alignments (Extended Data Fig. 1). Specifically, 
SVision-pro converts each read into a series of signature symbols, which 
can be extracted directly from a BAM file: M indicates directly mapping 
of alignment to the reference genome, V indicates reversed mapping 
and I indicates an additional sequence in read. Moreover, several prop-
erties are allocated to each signature symbol, including its span on the 
reference sequence, span on the read sequence, subsequence length 
and read name. Typically, symbols M and V are converted from split 
read alignments (primary and supplementary alignments) according 
to their reference span (reference start and end position) and mapping 
orientation. The symbol I is derived from both intraread alignments, 
by examining the CIGAR string, and inter-read alignments, by retriev-
ing unmapped sequence between split alignments (Extended Data 
Fig. 1a). Note that for I, if the unmapped sequence is aligned to a distal 
location on the reference sequence, SVision-pro marks it as a mapped 
I by recoding the additional source reference span. Finally, each read 
is converted into a series of symbols arranged in their read order. For 
example, if a read does not span any SVs, there will be only one symbol 
M (Extended Data Fig. 1b). If a read spans a deletion, the read will be 
converted into symbol series MM, where there is a gap between the 
reference end position of the first M and the reference start position 
of the last M (Extended Data Fig. 1c). For complex events, such as a 
deletion associated with an inversion, the event-supporting read is 
converted into symbol series MVM (Extended Data Fig. 1d). By adopt-
ing this convention, we are able to cluster similar read symbol series 
iteratively and identify any abnormal ones (Extended Data Fig. 1e). A 
read with the converted symbol series M is considered a normal read, 
otherwise, it will be marked as an aberrant one. If the number of reads 
supporting the same aberrant symbol series surpasses the minimum 
requirement (default ten reads), the genomic region covered by the 
aberrant symbol series is considered a candidate SV locus.

Image representation at candidate SV loci. To generate representa-
tion images, SVision-pro takes two main steps: structure sketching 
(Extended Data Fig. 2) and content rendering (Extended Data Fig. 3).

 (1) Structure sketching: for a candidate SV locus, the structure 
sketching step directly converts the 1D read symbol series 
into a 2D similarity image (Extended Data Fig. 2a), which uses 
segments and gaps to visually measure the mapping similarity 
between reference sequence (x axis) against variant feature 
sequence (y axis). The reference axis ranges from the start refer-
ence position of the first symbol to the end reference position 
of the last symbol. The read axis ranges from 0 to the length  
of the read. Typically, segments are derived from symbols M,  
V and mapped I, whereas gaps are derived from the  
unmapped symbol I and reference gaps between M and  

V symbols. Segments and gaps, excluding those converted from 
M symbols, are marked with aberrant flags for subsequent con-
tent rendering step (Extended Data Fig. 2b). This type of similar-
ity image makes it easy for humans and machines to visualize SV 
structures.

 (2) Content rendering: SVision-pro fills the sparse region in the sim-
ilarity image with ACTs originated from both case and control 
genomes.

Generating ACTs. Inspired by the regular coverage track commonly 
used in Integrative Genomics Viewer (IGV)29, SVision-pro introduces 
the ACT. In brief, the regular coverage track is a 2D grayscale barplot, 
where the x axis indicates reference positions and y axis indicates 
the coverage values, which are computed by counting the number of 
mapped alignments at each reference position (Extended Data Fig. 3a). 
The ACT in SVision-pro utilizes an RGB (red, green and blue) stacked 
barplot to encode additional genomic information that reflects SV 
signatures. Before constructing the ACT (Extended Data Fig. 3a), we 
count the number of alignments along with their mapping conditions. 
The mapping conditions of alignments include forward mapping, 
reversed mapping, duplicated mapping and reverse-duplicated map-
ping. Forward and reversed mapping conditions are retrieved directly 
from the aligner’s outputs and duplicated mapping is determined by 
checking whether an alignment is encompassed by other alignments 
from the same read (Extended Data Fig. 3a).

Next, we convert the count table into a three-channel RGB image. 
We use the RGB color values (135, 206, 255) to plot the coverage value 
of forward-mapped alignments. For the coverage value of reversed 
alignments, we subtract 100 from the color value in the second channel 
(Supplementary Fig. 1a). Likewise, for the coverage value of duplicated 
alignments, we subtract 100 from the color value in the third channel 
(Supplementary Fig. 1b). In cases of reverse-duplicated alignments, 
both the second and third channels undergo a subtraction of 100 
(Supplementary Fig. 1c). In brief, we use the second image channel to 
depict the reverse signatures and the third image channel to depict the 
duplication signatures. By leveraging this RGB stacked barplot in the 
ACT, SVision-pro provides a more comprehensive representation of the 
coverage information, incorporating distinct color variations to depict 
different types of alignments and their contribution to the SV signature.

Filling ACTs into similarity image. Genome-to-genome comparison 
requires comparative representation features to contrast the SV differ-
ences between the case genome and the control genome. Therefore, 
we utilize the sparse regions within the similarity image to fill the two 
ACTs originating from the case and control genomes (Extended Data 
Fig. 3b). To accomplish this, we first create two fixed-height and empty 
tracks along these sketched segments and gaps: one track (upper track) 
above and one track below (lower track). The upper track is used to 
fill the ACT of the control genome whereas the lower track is used to 
fill the ACT of the case genome. For a sketched similarity image i, we 
generate ACTs in both case and control genomes by fetching all read 
alignments from i.reference_start to i.reference_end. This ensures 
that the reference span of the sketched similarity image matches that 
of the ACTs. Next, we fill ACTs into upper/lower tracks that surround 
aberrant segments and gaps by aligning the reference coordinates. 
Contrasting ACTs in upper and lower tracks show apparent SV differ-
ences between the case and control genomes. Moreover, this kind of 
similarity image and ACTs maintains readability for both human and 
machines for further analysis.

Insertion-associated SV representation. Insertions and insertion- 
related SVs involve additional sequence present in the read sequence 
that is not in the reference sequence, leading to vertical gaps in the 
sketched similarity images (Supplementary Fig. 2a). Therefore, for 
insertions, we create two empty tracks located on the left (used to fill 
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the ACT of the control genome) and right (used to fill the ACT of the 
case genome) sides of these insertion-induced vertical gaps (Sup-
plementary Fig. 2b). Unlike deletions, inversion and duplications, 
where we count the alignment mapping conditions against the refer-
ence genome, for insertions, we count the alignments at read-level 
to calculate the number of reads that contain the inserted sequence 
(Supplementary Fig. 2c). Then, we generate vertical ACTs for both 
case genome and control genome and fill them into the right and 
left empty tracks, respectively. For insertion-associated CSVs, such 
as insertion-associated inversion, alignments are counted at both 
read-level and reference-level (Supplementary Fig. 2d).

One-to-N mode. The genome-to-genome representation module in 
SVision-pro allows for the comparison of one case genome with one 
control genome within a single image. However, in certain applications, 
such as de novo SV discovery, several control genomes are involved. To 
accommodate such scenarios, SVision-pro employs a One-to-N mode to 
generate images between case genome and each control genome. For 
example, de novo SV discovery in a trio comprises three genomes: child, 
father and mother. For a candidate SV locus, SVision-pro generates one 
image that compares the child genome with the father genome, and 
another that compares the child genome with the mother genome. This 
process results in two images that can be utilized by the subsequent 
instance segmentation framework for further analysis. By employing 
the One-to-N mode, SVision-pro enables direct comparison of the case 
genome with several control genomes. Moreover, SVision-pro can 
identify any genome-specific SVs among several genomes by taking 
one genome as the case genome and all others as control genomes.

Flexible properties of representation image. The image sizes, colors 
and track heights are flexible and can be customized to meet various 
application scenarios. Currently, SVision-pro offers three optional 
image sizes for different sensitivity requirements, including 256, 512 
and 1,024, whose track height for rendering contents is 25, 50 and 100 
pixels, respectively. Thereby, the minimum representable (1 pixel) and 
detectable AFs (one per track height) of the three image sizes are 0.04, 
0.02 and 0.01, respectively. Note that AF 0.01 is not the lowest detection 
limit of SVision-pro, and that the track heights and images sizes can be 
customized to meet lower AF detection requirements.

SV detection and genotyping by instance segmentation. The encoded 
representation images are directly fed into a neural-network-based 
instance segmentation framework without any manual or 
knowledge-oriented preprocessing. Since CSVs typically comprise 
several internal subcomponents, the instance segmentation framework 
in SVision-pro is designed to recognize five basic subcomponent types, 
including insertion (INS), deletion (DEL), inversion (INV), duplication 
(DUP) and inverted duplication (invDUP). In cases where there is no 
SV present in the control genome, a recognition type reference (REF) 
is included to denote that the control genome is identical to the refer-
ence genome. Specifically, the instance segmentation framework rec-
ognizes these six instance types in the encoded image and generates a 
segmentation mask. The mask assigns each pixel in the image to either 
a predicted specific type or the background type, segmenting the image 
regions and providing quantitative information about the presence 
and location of various SV subcomponents (Extended Data Fig. 4a). 
The horizontal span of the masked regions represents the breakpoint 
span of the subcomponents, while the vertical span represents the 
allele frequency (Extended Data Fig. 4b). Finally, in respective panels, 
we obtain the final SV type of the candidate locus by directly jointing 
together these subcomponents in their read order. By contrasting the 
lower and upper panels in the segmentation mask image, SVision-pro 
can determine whether a SV subcomponent is (Extended Data Fig. 4b) 
Germline, indicating that the SV subcomponent is present in the control 
genome with same allele frequency; (2) New allele, indicating that the 

SV subcomponent is present in the control genome at a different allele 
frequency; (3) New component, indicating that the SV subcomponent is 
absent from the control genome or (4) New breakpoint, indicating that 
the SV subcomponent is present in the control genome with a different 
breakpoint span. If several control genomes are provided, such as the 
father and mother genome in the scenarios for de novo SV discovery, 
SVision-pro will output the differences between the case genome and 
each control genome (Extended Data Fig. 4c).

Performance benchmarking methodology
SSV detection benchmark in HG002 groundtruth. The groundtruth 
SSVs (HG002_SVs_Tier1_v0.6.vcf.gz, highly confident insertions and 
deletions) of HG002 (Ashkenazim Trio, son), were applied to bench-
mark the SSV detection performance of callers. The detailed data 
generation steps were identical to those described in cuteSV3 paper. 
Briefly, both raw HiFi and ONT reads were aligned to human genome 
GRCh37 using Minimap2 (ref. 30) with parameter ‘-x pacbio/ont’. Seven 
state-of-the-art callers, including SVision-pro, SVision6, Sniffles2  
(ref. 15), cuteSV3, debreak4, pbsv and SVDSS5, were applied to the 
aligned reads with the minimum SV supporting read number set to 
ten. Truvari31 was employed to calculate precision, recall and F1-score 
between the groundtruth and the callset. Please refer to Supplementary 
Note 6 for the specific versions and parameters of each caller.

CSV detection benchmark in simulated data. The CSV simulation set, 
which contains 3,000 CSVs crossing ten frequently reported types, was 
obtained directly from our previous SVision paper6. We followed the 
same procedure described in this paper to generate both HiFi and ONT 
reads and performed subsequent alignment to GRCh38 by NGMLR2. 
The five highest-performing callers on the HG002 groundtruth dataset 
(SVision-pro, SVision, Sniffles2, cuteSV and debreak) were employed 
for the subsequent Truvari region-based comparison. Type-based 
comparison was performed by examining the CSV subcomponent 
accuracy. To accomplish this (Supplementary Fig. 3a), we first extracted 
the matched SV record pairs between the groundtruth and callset from 
Truvari output files, namely TP-base.vcf and TP-call.vcf, which respec-
tively enumerated the groundtruth record and matched callset record, 
respectively. Then, for each matched record pair, if any SV component 
from the groundtruth record was absent from the called record, this 
record pair was marked as inaccurate (Supplementary Fig. 3b). Note 
that, only SVision-pro and SVision reported SV component types. For 
the remaining callers, since they only reported SSVs and limited number 
of CSV types, we treated their output type directly as a component type.

Mendelian consistency analysis in six families. We collected 19 Men-
delian samples from six previously published families, including the 
Ashkenazim Trio, Chinese Trio, YRI Trio, CHS Trio, PUR Trio and Chinese 
Quartet (Supplementary Table 1). All six families were sequenced using 
HiFi reads, with the Ashkenazim Trio, Chinese Trio and Chinese Quar-
tet also sequenced with ONT reads. All reads were aligned to GRCh38 
genome using Minimap2. We utilized five callers, including SVision-pro, 
SVision, Sniffles2, cuteSV and debreak, and two merging approaches, 
including Jasmine and SURVIVOR. For SVision-pro, we considered 
the child sample as the case genome and parent samples as control 
genomes. Sniffles2 was employed in multisample calling mode, follow-
ing official instructions. For the remaining three callers that required 
merging approaches, we first applied them independently to generate 
callsets for each sample, including child(ren), father and mother. Then, 
we merged these callsets (for example, for ChineseQuartet, there were 
four callsets) together by Jasmine and SURVIVOR with the default or 
recommended parameters (Supplementary Note 2). To measure the 
Mendelian consistency within each family, we extracted the child and 
parent genotypes from each SV record in the VCF. If the genotypes of 
child, father and mother adhered to the Mendelian Law, we marked 
this record as a consistent one. Finally, we computed the Mendelian 
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consistency rate by dividing the number of consistent records by the 
total number of records.

Twin discordancy analysis in Chinese Quartet. A common assump-
tion is that the genomes of monozygotic twins are almost identical32. 
Therefore, the monozygotic twins (termed as child1 and child2) in 
the Chinese Quartet were used to calculate the twin discordancy. In 
brief, if one SV was present in the child1 genome while absent from the 
child2 genome, we would consider this SV as a discordant one between 
the twins. As such, for each SV record, we extracted the outputted 
genotypes of both child1 and child2 and examined whether they were 
identical. Finally, we computed the twin discordancy by dividing the 
number of discordant records by the total number of records.

De novo SV analysis in six families. For SVision-pro, de novo SVs 
were extracted by checking whether the comparison results of 
child-to-father and child-to-mother were both ‘New Component.’ 
For Sniffles2 and the merging approaches, de novo SV records were 
extracted by checking whether the SUPP_VEC equaled 100, indicating 
this SV record presented only in the child genome. Moreover, we com-
pared the de novo SVs between SVision-pro and Sniffles2. De novo SV 
calls from Sniffles2 were overlapped with all SV calls from SVision-pro 
using the BEDtools33 intersect option with reciprocal overlap fraction 
set to 0.5. Since merging approaches resulted in many more redun-
dant de novo SVs, we verified manually only the de novo SVs called by 
SVision-pro and Sniffles2 using IGV29 (Supplementary Files 4 and 5).

Somatic SV analysis in tumor-normal paired cell line HCC1395. 
A previous study27 utilized several sequence technologies and estab-
lished a consensus somatic SV callset of 1,788 SVs on cell line HCC1395 
and its normal pair HCC1395BL. We download the published HiFi, 
ONT and PacBio CLR long reads of the two cell lines and aligned them 
to human genome GRCh38 by Minimap2 with parameter ‘-x pacbio.’ 
Three callers that could detect somatic SVs were employed on this 
tumor-normal paired cell line, including SVision-pro, Sniffles2 and 
nanomonsv. SVision-pro took the tumor cell line as the case genome 
and normal cell line as the control genome. Sniffles2 was employed in its 
nongermline mode and nanomonsv was employed according to official 
instructions. For the three callers, the minimum number of support-
ing reads was set to 2 and the minimum detectable AF was set to 0.01.

High-confidence region filter. The raw high-confidence regions 
(HG002_SVs_Tier1_v0.6.bed) were hg19-based. Therefore, following 
the instruction of SVDSS paper5, we first used liftOver to convert these 
regions into hg38-based coordinates. Then we applied BEDtools inter-
sect option with reciprocal overlap fraction set to 0.5 to filter out SV 
calls that were not located within high-confidence regions.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The sources of HiFi, ONT and CLR reads of the six family datasets 
and HCC1395 normal-tumor paired cell are listed in Supplementary 
Table 1. The human reference genome GRCh37 was downloaded from 
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
phase2_reference_assembly_sequence/hs37d5.fa.gz. The human refer-
ence genome GRCh38 was downloaded from http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/.

Code availability
SVision-pro (v.1.6) is available at GitHub (https://github.com/song-
bowang125/SVision-pro.git)34. The scripts for model training, perfor-
mance valuation and simulate data generation are available at GitHub  

(https://github.com/songbowang125/SVision-pro-Utils.git)35. Both 
repositories are available under a GNU General Public License v.3.0, 
and are free for noncommercial use by academic, government and 
nonprofit/not-for-profit institutions.
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Extended Data Fig. 1 | Illustration of the candidate SV locus searching step in 
SVision-pro. a, SVision-pro converts each read into a series of symbols, including 
‘M’, ‘V’ and ‘I’, based on the aligner’s output. Staring with inter-alignment 
examination, primary alignment and supplementary alignments of the read 
are directly converted into ‘M’ and ‘V’ according to their mapping orientation. 
Unmapped sequence between split alignments are converted into ‘I’. For each 
alignments, SVision-pro further examine their CIGAR string (intra-alignment) 
to retrieve more ‘I’s. Consequently, a read is converted into a series of symbols 
arranged in their occurrence on read sequence. Each symbol contains several 
inner properties, including start position on reference sequence, start position 

on read sequence and its length. Each symbol can be abbreviated as ‘reference_
start-reference_end, length and symbol type’ for subsequent clustering step.  
b, An example of converting a normal read into a symbol series. c, An example of 
converting an abnormal read, which spans a deletion, into a symbol series. d, An 
example of converting an abnormal read, which spans a CSV deletion-inversion, 
into a symbol series. e, For a genome locus, normal reads, which contain only 
one ‘M’ in their symbol series, are filtered out. The remaining abnormal reads 
are iteratively clustered together by comparing their symbol series to identify 
candidate SV loci.
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Extended Data Fig. 2 | Illustration of the structure sketching step in SVision-
pro. a, SVision-pro directly transforms the 1-dimensional symbol series into a 
2-dimensional similarly image, which utilizes segments and gaps to sketch the 
structure of the SV. Segments, derived from symbol ‘M’ and ‘V’, are represented 

in solid lines while gaps, derived from symbol ‘I’, are represented in dash lines. 
Gaps along with segments converted from symbol ‘V’ are mark with an aberrant 
flag (red arrows) for subsequence process. b, Several examples for transforming 
symbol series that span SSVs or CSVs, into similarity images.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Illustration of the content rendering step in SVision-
pro. a, Comparison of regular coverage track and the augmented coverage track 
(ACT) in SVision-pro. The ACTs are generated by 3-channel RGB augmentation. 
SVision-pro counts read alignments according to their mapping conditions 
and generates a RGB stacked bar-plot, where different mapping conditions are 

represented in their respective RGB colors. b, Overview of the content rendering 
step. For both control and case genomes, the ACTs are generated, normalized, 
and further filled into the upper/lower tracks around aberrant segments and 
gaps in the similarity. Abbreviations: ‘Dup.’ denotes duplicated mapping; ‘Rev.’ 
denotes reversed mapping; ‘For.’ denotes forward mapping.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Illustration of the image instance segmentation 
framework in SVision-pro. a, At the pixel level, the segmentation process 
predicts each image pixel as either belonging to the background or a specific 
variant type in the segmentation mask image b, The segmentation mask provides 
obvious comparison in SV subcomponent type, breakpoint, and allele frequency 
(AF) by contrasting the lower and upper track. Mask color comparison indicates 
the differences in SV subcomponent type. Horizontal comparison indicates the 
differences in SV subcomponent breakpoint span. Vertical comparison indicated 
the differences in SV subcomponent AF. Consequently, SVision-pro outputs four 
distinct comparison types to depict the SV difference between the case genome 
and the control genome, including germline, new components, new breakpoints 

and new alleles. c, In the scenarios where multiple control genomes are provided 
(such as the parent genomes in de no SV discovery), the instance segmentation 
framework predicts each image and outputs the SV difference between 
case genome and each control genome. Abbreviation: ‘NewComp’ for new 
component; ‘NewBKP’ for new breakpoint; ‘NewAllele’ for new allele frequency. 
d, SVision-pro currently provides three different image sizes. Larger image 
sizes lead to larger track heights, and thereby lower minimum representable 
allele frequencies (AFs). Moreover, the properties of the representation image, 
such as image size, track height and colors, can be customized for user-specific 
applications.
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Extended Data Fig. 5 | Comparison and interpretation of the neural-network-
based instance segmentation frameworks. a, Comparison of the accuracy 
(y-axis) on validation dataset among the five models (x-axis). The models 
are arranged based on their parameter sizes. b, the network architecture of 

the default Lite-Unet model. c, A heatmap to illustrate the Feature Ablation 
interpretation of the Lite-Unet model. Positives values (in green) indicates 
positive attrition to the specific prediction while negative values are shown in 
red. d, Using Grad-Cam to generate attribution maps of each layer in Lite-Unet.
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Extended Data Fig. 6 | Performance evaluation of SSV and CSV calling among 
callers. a, SSV detection performance on HG002 groundtruth HiFi and ONT 
dataset. Recall, precision and F1-score were compared among callers. b, CSV 
detection performance on simulated 3,000 CSV HiFi and ONT dataset. Five of the 
highest-performing callers at SSV detection were chosen for a CSV performance 
comparison. Since only SVision-pro and SVision were equipped with CSV 
characterization ability, we utilized the region matching strategy to avoid the 
comparison of CSV types. c, CSV structure concordance evaluation among 

callers. Each box contains four values (Supplementary Table 3). The boxplot 
defines the median (Q2, 50th percentile), first quartile (Q1, 25th percentile) and 
third quartile (Q3, 75th percentile). The bounds of box, that is interquartile range 
(IQR), of the boxplot is between Q1 and Q3. The minima and maxima values are 
defined as Q1-1.5*IQR and Q3 + 1.5*IQR, respectively. The whiskers are values 
between minima and Q1 as well as between Q3 and maxima. Values falling outside 
the Q1 – Q3 range are plotted as outliers of the data.
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Extended Data Fig. 7 | Performance evaluation of Mendelian sample calling 
within high-confidence regions. a, In high-confidence regions, comparison of 
the Mendelian consistency in six family datasets (left) and the twin discordancy 
in the ChineseQuartet (right). SVision-pro is compared to Sniffles2 (multi-sample 
mode) and SVision, cuteSV and debreak (followed by SURVIVOR and Jasmine 
merging). Each box contains six and three values for HiFi and ONT, respectively 
(Supplementary Table 5). The boxplot defines the median (Q2, 50th percentile), 
first quartile (Q1, 25th percentile) and third quartile (Q3, 75th percentile). The 
bounds of box, that is interquartile range (IQR), of the boxplot is between Q1 and 
Q3. The minima and maxima values are defined as Q1-1.5*IQR and Q3 + 1.5*IQR, 

respectively. The whiskers are values between minima and Q1 as well as between 
Q3 and maxima. Values falling outside the Q1 – Q3 range are plotted as outliers 
of the data. b, Venn diagrams show the overlapping results of high-confidence 
calls among approaches. We overlapped these high-confidence calls from each 
approach in AshkenazimTrio. there were only several unique calls (n = 12 and 4 
when overlapping with SURVIVOR and Jasmine, respectively) from SVision-pro 
(9,348 in total), indicating that the leading consistency in Mendelian samples was 
attribute to the higher genotyping accuracy of SVision-pro compared to merging 
approaches.
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Extended Data Fig. 8 | IGV screenshot of the 32,549 bp deletion in 
chromosome 1. The Ashkenazim Trio (HG002, HG003 and HG004) from GIAB 
was used to illustrate the various genotypes of this deletion. Sniffles calculated 
incorrect genotypes in this trio, leading to mendelian inconsistency. SVision-pro 

correctly genotyped this locus in the trio dataset, revealing that both the child 
genome (HG002) and the father genome (HG003) exhibited a heterozygous 
deletion, while the mother genome (HG004) contained no SV in this locus.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Illustration of the complex locus in chromosome 11. 
a, IGV screenshot on this complex locus in the ChineseQuartet. This complex 
locus comprised of two alleles, including one SSV deletion and one CSV deletion-
insertion. Read that supported the SSV allele was marked in red while read that 
supported the CSV allele was marked in blue. b, The summarized pattern at this 

complex locus. c, Gepard Dotplots36 were used to show the differences between 
the SSV allele and CSV allele. d, SVision-pro correctly genotyped the two alleles, 
outputting the correct genotype of each allele. Sniffles2 and callset-merging 
strategies missed the CSV allele and incorrectly genotyped the SSV allele as 
homozygous in the child and father genome.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Somatic detection evaluation and discovery. a, The 
Precision, Recall, and F1-score of SVision-pro, Sniffles2, and nanomonsv on the 
simulated somatic SSVs and CSVs. b, The recall values of various low-frequency 
SSVs and CSVs in the simulation. c, A somatic CSV locus in chromosome 2 of 
HCC1395 cell line. SVision-pro reported this locus as somatic CSV, dispersed 
duplication-deletion-inversion, while in the previous published somatic SV set, 

the deletion component was missed and the dispersed duplication component 
was classified into translocation. d, IGV screenshot supported the CSV outputted 
by SVision-pro. e, IGV screenshot supported the homozygous CSV in the tumor 
genome and heterozygous SSV and CSV in the paired normal genome. The SSV 
large deletion breakpoint present in the paired normal genome while absent 
from the tumor genome.
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