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High-throughput evaluation of genetic 
variants with prime editing sensor libraries
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Alvin Hsu    4,5,6, Varun K. Narendra7, Ondine Atwa1,2, Stuart S. Levine    1,2, 
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Tumor genomes often harbor a complex spectrum of single nucleotide 
alterations and chromosomal rearrangements that can perturb protein 
function. Prime editing has been applied to install and evaluate genetic 
variants, but previous approaches have been limited by the variable 
efficiency of prime editing guide RNAs. Here we present a high-throughput 
prime editing sensor strategy that couples prime editing guide RNAs with 
synthetic versions of their cognate target sites to quantitatively assess the 
functional impact of endogenous genetic variants. We screen over 1,000 
endogenous cancer-associated variants of TP53—the most frequently 
mutated gene in cancer—to identify alleles that impact p53 function in 
mechanistically diverse ways. We find that certain endogenous TP53 
variants, particularly those in the p53 oligomerization domain, display 
opposite phenotypes in exogenous overexpression systems. Our results 
emphasize the physiological importance of gene dosage in shaping native 
protein stoichiometry and protein–protein interactions, and establish a 
framework for studying genetic variants in their endogenous sequence 
context at scale.

A wide range of human diseases are associated with diverse genetic 
alterations that may be responsible for initiating, promoting or other-
wise modifying the course of a given disease. These alterations can be 
quite complex; for instance, cancer genomes typically contain a reper-
toire of single nucleotide variants (SNVs) and large-scale copy number 
alterations that can impact many genes in different ways depending 
on the type of alteration, gene function and biological context. While 
tumor genotype is a well-established determinant of disease initiation, 
progression and therapy responses, the functional impact conferred 
by the thousands of unique mutations observed in human tumors 
remains poorly understood. This presents a major challenge to preci-
sion medicine efforts that aim to tailor cancer therapies to patients 
suffering from cancers harboring specific genetic lesions. Beyond 

the clinic, understanding the impact that diverse types of mutations 
have on different residues and protein domains would improve our 
fundamental understanding of gene and protein function (Fig. 1a).

Until recently, approaches for studying genetic variants have been 
limited to low-throughput, homology-directed repair (HDR)-based 
methods or high-throughput, nonphysiological gene overexpression 
systems1–7. While powerful, the former approach lacks scalability and 
generality due to the requirements of HDR and its limitation primar-
ily to actively dividing cells. Gene overexpression systems have fewer 
requirements and are scalable, but fail to physiologically recapitulate 
the biology driven by these variants due to the absence of endogenous 
gene regulation mechanisms, many of which are not known for genes 
of interest. The recent development of precision genome editing tools, 
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about the effects of particular p53 variants, including misclassifying 
certain variants as noncausal or otherwise benign.

To tackle this question, we generated and screened a library of 
>28,000 pegRNAs targeting >1,000 TP53 variants observed across 
>40,000 cancer patients20—the largest set of endogenous TP53 variants 
studied so far. We included SNVs, insertions and deletions observed in 
patients, putative neutral silent substitutions as controls and a panel of 
random indels to increase the functional search space. These experi-
ments identified alleles that impact p53 function in mechanistically 
diverse ways. We discovered that certain types of endogenous variants, 
particularly those found in the p53 oligomerization domain (OD), 
display opposite phenotypes when tested with exogenous overexpres-
sion systems. Collectively, these results highlight the physiological 
importance of gene dosage in shaping native protein stoichiometry and 
protein–protein interactions, and establish a powerful computational 
and experimental framework for studying diverse types of genetic vari-
ants at scale. To ensure widespread accessibility of this resource for the 
scientific community, we provide a publicly available Python package, 
Prime Editing Guide Generator (PEGG) (https://pegg.readthedocs.io/
en/latest/), as a tool to generate prime editing sensor libraries.

Results
High-throughput design of prime editing sensor libraries
A principal limitation of using prime editing to systematically investigate 
genetic variants is the inherent variability in editing efficiency among 
different pegRNAs10,21–23. A number of computational tools for pegRNA 
design have been developed24–33, including machine-learning algorithms 
that can nominate sets of pegRNAs predicted to produce high efficiency 
edits. However, even pegRNAs generated by these predictive algorithms 
require extensive experimental validation, and their editing activity 
is not guaranteed to correlate strongly across different cell types. We 
hypothesized that coupling pegRNAs with ‘sensors’—artificial copies of 
their endogenous target sites—would allow us to systematically identify 
high efficiency pegRNAs while controlling for the confounding effects 
of variable editing efficiency in a screening context (Fig. 1b).

Synthetic sensor-like target sites have been used previously by our 
group and others to control for base editing gRNA editing efficiencies 
while defining the relative fitness of variants in genetic screens14,34. 
Several studies have applied a similar strategy to both base and prime 
editing technologies to identify features of efficient gRNAs or pegRNAs 
and train predictive algorithms21,32,33,35–37. However, this approach has 
yet to be applied for high-throughput phenotypic screening of endog-
enous genetic variants with prime editing, probably due in part to the 
lower editing efficiency of prime editing relative to base editing. We 
reasoned that a sensor-based prime editing screening approach could 
be powerful to discriminate bona fide endogenous variants from unde-
sired editing outcomes that enrich or deplete in a screen. Moreover, 
the sensor approach would theoretically overcome the limitations of 
assessing variants at different genetic sites in parallel by eliminating 
the need to sequence several endogenous loci.

including base editing and prime editing, allows variants to be modeled 
in their native, endogenous genomic context with increased editing 
efficiency and theoretically higher throughput8–10.

Prime editing10 can be used to generate effectively any type of 
small mutation, including all SNVs and small insertions and deletions 
(indels). Prime editors are directed to engineer a mutation of interest 
by the instructions encoded in a prime editing guide RNA (pegRNA), 
which contains both a protospacer (the ‘search’ sequence) and a 3′ 
extension sequence (the ‘replace’ sequence that dictates the muta-
tion installed at the site). The modular search-and-replace ability of 
prime editing has been leveraged to interrogate endogenous variants 
in high-throughput methods11–13. In these approaches, libraries of 
pegRNAs are delivered transiently or stably to cells expressing prime 
editors, and the fitness of variants is assessed by determining the 
relative distribution of endogenous alleles and/or pegRNAs. While 
powerful, these approaches have important limitations for screening 
applications, including reliance on a small number of variant-specific 
pegRNAs with unknown editing performance, inability to quantita-
tively assess endogenous genome editing at scale, and potential over-
representation of undesired indels due to using PE3, a prime editor 
system that uses an additional guide RNA that nicks the nonedited 
strand to increase editing efficiency10.

With these challenges in mind, we sought to develop an integra-
tive computational and experimental framework for high-throughput 
design, screening and deconvolution of pegRNA libraries to inter-
rogate a diverse spectrum of genetic variants. This includes pairing 
each pegRNA with a variant-specific synthetic ‘sensor’ site14 that reca-
pitulates the native architecture of the endogenous target locus. This 
sensor-based approach links pegRNA identity to editing outcomes 
for simultaneous high-throughput quantification of pegRNA editing 
activity and empirical calibration of screening data.

We chose the p53 transcription factor as a prototype to test this 
approach for investigating the biological impact of specific genetic var-
iants. Notably, TP53 is the most frequently mutated gene in cancer and 
exhibits extensive allelic variation, leading to the generation of altered 
proteins that can produce functionally distinct phenotypes. Whether 
distinct variants of TP53 (and other genes) encode proteins with dif-
fering functional activities that influence cancer phenotypes remains 
controversial and technically challenging to investigate, particularly 
at scale. Several studies have used orthogonal cDNA-based exogenous 
overexpression systems to probe the fitness of p53 variants in human, 
mouse and yeast systems6,7,15,16. However, given the artificial nature of 
these screens, which rely on expression of variants at supraphysiologi-
cal levels, we hypothesized that these strategies could misrepresent 
one or more phenotypes associated with p53 variants. Artifacts that 
stem from exogenous overexpression systems could be particularly 
relevant when studying proteins like p53 because p53 functions as a 
tetramer whose expression and degradation is tightly controlled by 
the cell17–19. Thus, we reasoned that alterations to the stoichiometric 
balance of p53 via overexpression could lead to erroneous conclusions 

Fig. 1 | High-throughput design and evaluation of a TP53 prime editing sensor 
library. a, Schematic of our overall approach. We aim to engineer variants 
observed in patients with high throughput to perform functional screens in 
diverse contexts, elucidating variant functions to improve our ability to stratify 
and treat patients. b, Schematic of the sensor framework, which links each 
pegRNA to its editing outcome at the endogenous locus. c, We used PEGG to 
generate a TP53 prime editing sensor library targeting >1,000 cancer-associated 
TP53 variants with a median of 30 pegRNAs per variant. d, Heatmap visualization 
of the pegRNAs included in the TP53 sensor library, which includes SNVs, indels 
and silent substitutions. e, Correlation between editing at the sensor and 
endogenous locus in eight TP53-targeting pegRNA-sensor pairs at day 3 (D3) and 
day 7 (D7) posttransduction. f, Schematic of the screening protocol. The prime 
editing sensor library is transduced into cells constitutively expressing PEmax, 
and screening is performed in the presence or absence of the small molecule 

Nutlin-3. g, The average correct editing percentage among all pegRNAs in the 
library (left) or when considering only the most efficient pegRNA for each variant 
(right) at various timepoints in both conditions for pegRNA-sensor pairs with 
at least 100 sequencing reads; n = 3 biologically independent replicates. Data 
are presented as mean values with a 95% confidence interval. h, Rank plot of the 
correct editing percentage of the most efficient pegRNA per variant, as assayed 
at the sensor locus, at each timepoint. Source data and code to reproduce this 
figure can be found at https://github.com/samgould2/p53-prime-editing-sensor/
blob/main/figure1.ipynb. AD1/2, activation domain 1/2; BlastR, blasticidin 
selection marker; CTD, C-terminal domain; DEL, deletions; EIF1α, eukaryotic 
initiation factor 1 alpha; INS, insertions; nCas9, nicking Cas9; NLS, nuclear 
localization signal; PRR, proline rich region; Puro, puromycin selection marker; 
P2A, peptide 2ART, reverse transcriptase; STOP, U6 polyT termination sequence; 
tevo, tevopreQ1; U6, U6 promoter.
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To test this approach, we first needed to build a computational  
tool capable of designing and ranking pegRNAs for thousands of 
genetic variants, while automatically generating a paired sensor site.  

To address this unmet need, we built and publicly released PEGG 
(Extended Data Fig. 1a)—a Python package that enables high- 
throughput design of prime editing sensor libraries38 (available at 
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https://pegg.readthedocs.io/en/latest/). PEGG is compatible with a 
range of mutation input formats, including all of the datasets on the 
cBioPortal, ClinVar identifiers and custom mutation inputs39,40.

We chose the TP53 tumor suppressor gene as a prototype to estab-
lish and credential a scalable prime editing sensor-based screening 
approach for a number of reasons. First, TP53 is the most frequently 
mutated gene in human cancer, with ~50% of patients suffering from 
tumors harboring a mutation within the TP53 gene while the rest often 
inactivate the p53 pathway through other mechanisms. Second, thou-
sands of unique TP53 mutations have been identified in cancer patients, 
including eight or so ‘hotspot’ alleles in specific residues that exhibit 
the highest mutational frequencies19. Although p53 has been studied 
for decades, there have been few systematic studies, and those have 
been hampered by reliance on artificial overexpression of mutant 
p53 proteins, unrepresentative cell lines and/or a limited spectrum of 
mutations evaluated6,7,15,16. These and other studies have sparked con-
troversy in the field over whether any mutant p53 proteins are endowed 
with activities that go beyond LOF or dominant negative activity to 
achieve GOF or neomorphic status. These are important questions 
that extend beyond TP53 because mutant GOF proteins generated 
by cancer-associated variants, and the phenotypes they produce, 
could represent attractive therapeutic targets. Finally, prime editing 
sensor-based screening could be scaled up and broadly deployed to 
identify causal genetic variants implicated in cancer and other diseases 
with a strong genetic association.

With the above goals in mind, we first sought to generate a library 
of pegRNAs targeting TP53 variants. To generate this library, we selected 
variants from the MSK-IMPACT database, which uses deep exon 
sequencing of patient tumor samples to identify cancer-associated 
variants20. From this database of over 40,000 patients, we chose all 
observed SNVs in p53, as well as frequently observed insertions and 
deletions, along with a collection of random indels (Extended Data 
Fig. 1b). We reasoned that including several pegRNAs with different 
protospacers and combinations of pegRNA properties for each vari-
ant would allow us to scan the pegRNA design space more thoroughly 
to identify highly efficient guides for robust statistical analysis of 
variant phenotypes. To accomplish this, we used PEGG to produce 30 
pegRNA designs per variant (for pegRNAs with a sufficient number of 
accessible PAM sequences) with varying reverse transcription template 
(RTT) (10–30 nucleotides) and primer binding site (PBS) lengths (10–15 
nucleotides) coupled to canonical ‘NGG’ protospacers. The generated 
pegRNA designs were ranked based on a composite ‘PEGG score’ that 
integrates literature best practices for pegRNA design (Extended Data 
Fig. 1a and Supplementary Table 1).

PEGG also generated silent substitution variants as neutral internal 
controls for the screen, and we filtered pegRNAs to exclude protospac-
ers with an MIT specificity score below 50 to reduce the probability of 
off-target editing41 (Extended Data Fig. 1e). In addition, these pegRNA 
designs included an epegRNA motif—tevopreQ1—an RNA pseudoknot 
located at the 3′ end of the pegRNA that improves editing by preventing 
degradation of the guide22. Even after these relatively stringent filtra-
tion steps, we were able to generate pegRNA designs for more than 95% 
of the input variants, resulting in a library of >28,000 pegRNAs (Fig. 1c,d 
and Extended Data Fig. 1c,d). Each pegRNA in the library is also paired 
with a 60-nucleotide long variant-specific synthetic ‘sensor’ that is 
generated by PEGG and included in the final oligonucleotide design. 
Every sensor is designed to recapitulate the native endogenous target 
locus, thereby linking pegRNA identity to editing outcomes (Fig. 1b).

To test the efficacy of using the sensor as a readout of editing at the 
endogenous locus, we randomly selected eight TP53 variant-specific 
pegRNA sensors generated during the process of library preparation. 
We generated lentivirus for each of these prime editing sensor con-
structs and performed separate transductions into cells expressing 
PEmax. At 3- (3D) and 7-days posttransduction (D7), we harvested 
genomic DNA and amplified both the pegRNA–sensor cassette and 

the endogenous locus targeted by each pegRNA. Analysis of editing 
at the sensor and endogenous locus revealed a very high correlation 
between the sensors and endogenous sites (Spearman correlation 
≥0.9; Fig. 1e). In general, the prime editing sensor seems to slightly 
overestimate the editing activity at the endogenous locus, probably 
in part due to differences in locus chromatin accessibility42, but the 
ranking of pegRNA editing efficiencies is largely preserved, validating 
our sensor-based approach.

High-throughput interrogation of TP53 variants
Next, we screened our library of variants in TP53 wild type (WT) A549 
lung adenocarcinoma cells stably expressing PEmax21. To measure 
the prime editing activity of this cell line, we generated and trans-
duced these cells with a modified all-in-one lentiviral version of the 
fluorescence-based PEAR reporter43, validating that the cells displayed 
strong editing activity (Extended Data Fig. 2a). We then introduced 
the lentiviral TP53 sensor library into these cells at a low multiplicity 
of infection and in triplicate while ensuring a library representation of 
>1,000× at every step of the sfcreen. At 4 days posttransduction (D4), 
we split the populations into untreated or Nutlin-3-treatment arms  
(Fig. 1f). Nutlin-3 is a small molecule that inhibits MDM2 to activate 
the p53 pathway, which can be used to select for TP53 mutations that 
promote bypass of p53-dependent cell cycle arrest and apoptosis44. We 
hypothesized that this treatment group may increase the signal-to-noise 
ratio between TP53 variants with putative loss-of-function (LOF) or 
gain-of-function (GOF) activities and benign variants. We allowed the 
screen to progress for 34 days (D34), harvesting cell pellets from each 
replicate and treatment arm at several timepoints (Extended Data  
Fig. 2b). Genomic DNA extracted from each sample was used to amplify 
the pegRNA–sensor cassettes, which were subjected to next-generation 
sequencing (NGS) to simultaneously assess enrichment/depletion of 
pegRNAs and their editing activity and outcomes at the sensor target 
site (Extended Data Fig. 2c,d).

The average editing efficiency among all pegRNAs in the library 
increased in a time-dependent manner, peaking at ~8% in the final 
timepoint. In general, we observed low indel rates and strong correla-
tion in sensor editing among replicates (Fig. 1g and Extended Data  
Fig. 3a–d). Strikingly, selecting only the most efficient pegRNA design 
for each variant led to a twofold increase in the average editing effi-
ciency, highlighting the utility of the sensor for systematic empirical 
identification of high efficiency pegRNAs (Fig. 1g and Extended Data 
Fig. 3e–g). Cells with higher editing efficiency also exhibited stronger 
Nutlin-3 bypass in the Nutlin-3-treatment arm (Fig. 1g). Based on the 
assessment of editing at the sensor locus, we were able to identify 
active pegRNAs (≥2% editing efficiency) for more than half of the TP53 
variants included in the library. This includes highly efficient pegRNAs 
that install the desired edit with over 20% efficiency for more than 20% 
of the variants (Fig. 1h). These validated pegRNAs could be further 
engineered with silent mutations that evade mismatch repair to boost 
overall editing efficiency21.

The size and diversity of this library also allowed us to examine 
features of highly efficient pegRNAs that broadly recapitulated previ-
ous observations32,33,37,45. Correlation analysis between various pegRNA 
features and editing efficiency across all timepoints identified the 
estimated on-target activity of the protospacer (as predicted by Rule 
Set 2)46 as the single largest determinant of prime editing efficiency 
(Fig. 2a). In addition, the distance between the edit and the nick intro-
duced by nCas9 was correlated negatively with editing efficiency, 
while the length of the postedit homology was correlated positively 
with editing efficiency (Fig. 2a). Thus, edits closer to the nick and with 
larger postedit homology were more efficient, consistent with previ-
ous findings32,33,37,45.

Notably, the PEGG Score, which is a weighted linear combination 
of pegRNA features based on literature best practices, correlated 
more strongly with prime editing efficiency than any other single 
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feature, achieving a Spearman correlation of up to 0.4 (Fig. 2a–c). 
Although this correlation is modest relative to published predictive 
models32,33,37, the PEGG score is a simple, unbiased and cell type/
organism-agnostic prediction of pegRNA activity that could comple-
ment machine-learning-based predictions of prime editing activity, 
which may vary due to training on particular cell types.

To further analyze the differences in prime editing activity among 
the 173 protospacers spanning the TP53 locus, we visualized the number 
of pegRNAs that utilized each protospacer and the average editing 
efficiency at each protospacer (Fig. 2d). This analysis suggests that 

only a subset of protospacers can be used to generate high efficiency 
pegRNAs, while other protospacers retain little-to-no editing activ-
ity. We also found that pegRNAs that introduce edits that disrupt the 
protospacer or PAM sequence tend to be more efficient (Fig. 2e). Rela-
tive to the nick created by nCas9, SNVs introduced at the +1–3 position, 
which mutate the protospacer, and at the +5–6 position, which mutate 
the guanine bases in the NGG PAM, display increased editing activity. 
In contrast, edits introduced at the +4 position, corresponding to the 
‘N’ in the ‘NGG’ PAM sequence, display reduced editing, probably due 
to their failure to disrupt the PAM sequence (Fig. 2e).
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Finally, we trained a random forest regressor to predict pegRNA 
efficiency (Extended Data Fig. 4a). Even with a restricted set of features, 
this algorithm was able to predict pegRNA activity with a Spearman 
correlation of ~0.6, comparable with other, more complex algorithms 
used to predict PE activity32,33,37 (Extended Data Fig. 4b). Analysis of 
the relative feature importance of this random forest model was again 
consistent with previous findings, and highlighted the GC content of 
the PBS as another important determinant of editing not identified 
with simple correlation analysis (Fig. 2f). These results demonstrate 
that large-scale, gene-specific prime editing sensor screening data-
sets can also provide insight into the determinants of high efficiency 
prime editing, even though these libraries were not designed with that 
objective in mind.

Sensor-based calibration identifies pathogenic TP53 variants
To assess the relative fitness conferred by engineered TP53 variants, we 
used the MAGeCK pipeline to normalize read counts among replicates 
and quantify the log2 fold change (LFC) and false discovery rate (FDR) 
of pegRNAs in the library47. While the LFC in pegRNA counts was highly 
correlated in replicates from the untreated and Nutlin-3-treated arms 
of the screen, respectively, the correlation among replicates between 
the two conditions was modest, suggesting that treatment-dependent 
biological effects were occurring (Extended Data Figs. 3a and 5). We 
then used the sensor target site as a quantitative proxy for editing 
efficiency at the endogenous locus to systematically filter pegRNAs 
based on their empirical editing efficiency and precision (Fig. 3a and 
Extended Data Fig. 6a–d). As expected, the number of significantly 
enriched or depleted pegRNAs in ‘sensor-calibrated’ datasets decreased 
as we increased the editing activity threshold (Fig. 3b). These results 
demonstrate that our sensor-based approach allows empirical removal 
of pegRNAs that exhibit potentially spurious enrichment or depletion, 
and low and/or undesired editing activity, retaining pegRNAs that are 
more likely to introduce the variants of interest with high efficiency 
and precision. Based on these results, we decided to focus our statis-
tical analyses on a dataset composed of pegRNAs with ≥10% editing 
efficiency to minimize the confounding effects of imprecise editing 
(Fig. 3c–g).

As hypothesized, the dynamic range in the Nutlin-3-treated arm 
of the screen was considerably higher than in the untreated arm, with 
pegRNAs more strongly enriching and depleting in the presence of 
Nutlin-3 (Fig. 3c,d). Treatment with Nutlin-3 also selected for cells 
with higher-efficiency editing, improving the resolution of the screen  
(Fig. 3c,d). Editing of sensor loci continued throughout the screen due 
to the constitutive expression of PEmax, with sensor editing increas-
ing fourfold on average from D4 to D16, and twofold from D16 to D34. 
However, sensor editing rates among negatively selected (LFC < −1), 
unselected (−1 ≤ LFC ≤ 1) and positively selected (LFC > 1) pegRNAs 
remained constant all throughout the screen (Extended Data Fig. 7). 
These results indicate that any differences in editing rate among the 

pegRNAs or cells in the population were unlikely to contribute to the 
results of the screen and were instead controlled internally.

Several putative pathogenic TP53 variants, including R196P and 
R267P, were strongly enriched in both treatment arms, with sev-
eral pegRNAs per variant appearing as top hits (Fig. 3e,f). Given the 
higher dynamic range of the Nutlin-3 treatment arm, as well as the 
possibility that this treatment biases towards the discovery of domi-
nant negative TP53 mutations2,6,16, we focused our analyses on this 
treatment group. Several TP53 variants showed significant enrich-
ment in the Nutlin-3-treatment group, including SNVs and indels in 
the C-terminal half of the DNA-binding domain (DBD) and the OD  
(Fig. 3f). This includes several variants at residues 248 and 249, which 
are known mutational hotspots in p53 and commonly observed in 
cancer patients and individuals with the Li–Fraumeni cancer predis-
position syndrome17. We also identified strongly depleting variants in 
the DBD that may retain WT p53 transcriptional activity or fail to exert 
a dominant negative effect on the p53 tetramer (Fig. 3f). Collectively, 
these results validate the utility of our approach and dataset to accu-
rately identify functionally diverse pathogenic TP53 variants.

Interestingly, the most commonly observed TP53 mutation in 
human cancer, R175H, did not show strong enrichment despite the 
existence of several R175H pegRNAs exhibiting ≥10% editing efficiency. 
In fact, most of the top enriching variants we identified were not in 
known mutational hotspots19, suggesting that other types of variants 
can produce stronger phenotypes. These include the top hit—an inser-
tion of a histidine between residues 254 and 255—as well as R196P 
and several variants in the OD (F328L, N345S, A347P) (Fig. 3f). These 
observations are consistent with the possibility that a subset of TP53 
hotspot mutations are observed in part due to disproportionately 
high mutagenesis rates at the genomic level due to extrinsic and intrin-
sic factors, such as tobacco smoke and APOBEC (apolipoprotein B 
mRNA editing catalytic polypeptide-like) activity, rather than only 
to the fitness advantage conferred by these variants relative to other 
TP53 mutations6,19. An alternative explanation to these observations 
is that the hotspot variants were simply not efficiently engineered 
by the pegRNAs used in our screen. Although this was true for sev-
eral hotspot variants, even hotspots with several efficient pegRNA 
designs (for example, R248Q, Y220C, G245S) were outcompeted by 
other, less frequently observed variants (Extended Data Fig. 8a–c). This 
includes rare-variant-encoding pegRNAs that outcompete hotspot 
variant-encoding pegRNAs with similar or identical empirical editing 
frequencies (Extended Data Fig. 8a–c). Even at the frequently mutated 
codon 248, the two most commonly observed substitutions, R248Q 
and R248W, were outcompeted in the screen by the rarer substitutions 
R248P and R248G (Extended Data Fig. 8d,e). These results suggest that 
the spectrum of cancer-associated TP53 mutations is mechanistically 
diverse and probably arises through the contextual combination of 
disproportionate mutagenesis rates and phenotypic selection of func-
tionally important codons and their cognate residues.

Fig. 3 | High-throughput prime editing sensor screens identify pathogenic 
TP53 variants. a, Schematic of the sensor-calibrated filtration approach, where 
the editing rate of a pegRNA is determined by the sensor locus and pegRNAs 
below a given editing threshold are filtered. b, Number of significantly enriching 
or depleting pegRNAs (FDR < 0.05) as a function of the minimum correct editing 
percentage threshold at D34 in both conditions. c, LFC of each pegRNA ≥10% 
editing with at least ten sensor reads at D34 relative to D4 in the untreated 
condition, with pegRNAs colored by editing efficiency. d, Same as  
c, but for the Nutlin-treated condition. e, Plot as in a, but with pegRNAs  
colored by variant type. Enriching pegRNAs with LFC ≥ 2 and FDR < 0.05 labeled. 
Depleting pegRNAs with FDR < 0.05 labeled. f, Plot as in b, but with pegRNAs 
colored by variant type. Selected enriching pegRNAs with FDR < 0.05 labeled. 
Depleting pegRNAs with FDR < 0.05 labeled. g,h, Boxplots of LFC in pegRNAs 
at D34 in Nutlin-treated condition separated by variant class for pegRNAs ≥10% 
editing and ≥20% editing. Statistics shown for two-sided t-test with Bonferroni 

correction. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001; NS, not significant 
(P > 0.05). g, Nonsense versus missense (P = 0.02996), versus INS (P = 0.05716), 
versus DEL (P = 1.0), versus silent (P = 0.0002895). h, Nonsense versus missense 
(P = 0.009422), versus INS (P = 0.02487), versus DEL (P = 1.0), versus silent 
(P = 0.001592). i, Boxplot of the LFC at D34 in the Nutlin-treated condition for 
pegRNAs ≥20% editing with annotated residue functions. In all boxplots (g–i), 
boxes indicate the median and interquartile range (IQR) for each sample with 
whiskers extending 1.5× IQR past the upper and lower quartiles. LFC calculated 
from the median values across n = 3 biologically independent samples using 
MAGeCK. j, Spearman correlation between LFC of SNV-generating variants and 
CADD score at D34 in both conditions, as a function of the minimum correct 
editing threshold. k, Sensor editing for selected pegRNAs at D34 in the Nutlin-
treated condition. Source data and code to reproduce this figure can be found  
at https://github.com/samgould2/p53-prime-editing-sensor/blob/main/ 
figure3.ipynb.
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Bulk quantification of pegRNAs grouped by variant class also 
revealed that nonsense variants were significantly more enriched 
compared with missense and silent variants. This is evident at 

several thresholds of pegRNA activity (Fig. 3g,h). As expected, silent 
variants tend to deplete, particularly when considering pegRNAs 
at higher threshold for editing efficiency (≥20%), bolstering our 
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confidence in the fidelity of the screen (Fig. 3h). Using available anno-
tations of p53 residue function48, we also found that, as expected,  
variants in DNA-binding/contacting residues displayed strong enrich-
ment (including residues 248 and 273) (Fig. 3i). Intriguingly, certain 
variants involved in tetramerization and transactivation (for exam-
ple, L22V) were also strongly enriched, despite the low frequency 
of mutation in these residues (Fig. 3i). Other observations are more 
difficult to interpret, such as the large variance in the enrichment of 
mutations that affect residues involved in zinc binding, or the fact 
that variants in partially exposed residues tended to deplete while  
those in buried and exposed residues tended to enrich (Fig. 3i). Alto-
gether, these observations suggest that there is a large, underap-
preciated phenotypic variance in the relative fitness conferred by 
distinct TP53 variants—not all p53 variants are one and the same, a 

concept that is likely relevant across many other genes and more 
broadly in biology.

We also sought to quantify the degree of concordance between 
our screening results and widely used metrics of variant deleterious-
ness. To do so, we used the combined annotation-dependent deple-
tion (CADD) score, which integrates evolutionary conservation of 
residues with other metrics of pathogenicity to generate a CADD score, 
with higher scoring variants predicted to be more deleterious49. We 
observed a low correlation between CADD score and enrichment of 
all SNV-specific pegRNAs. However, the correlation between CADD 
score and variant-specific fitness increased dramatically when we used 
sensor target sites to restrict our analysis to variants generated by high 
efficiency pegRNAs (Fig. 3j). We achieved a Spearman correlation of 
~0.3 when considering Nutlin-3-treated pegRNAs with ≥15% editing 
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Fig. 4 | Sequencing of TP53 validates the prime editing sensor approach.  
a, Schematic of the sequencing of the TP53 locus. Regions within exons 6, 7 and 
10 were sequenced from genomic DNA extracted at D4 and D34 in the untreated 
and Nutlin-treated arm of the screen. b, Correlation between the LFC in pegRNA 
counts and the LFC of endogenous variants at the TP53 locus for D34 versus D4 of 
the untreated arm of the screen at different thresholds of pegRNA editing activity. 
c, Correlation between the LFC in pegRNA counts and the LFC of endogenous 
variants at the TP53 locus for D34 versus D4 of the Nutlin-treated arm of the 

screen at different thresholds of pegRNA editing activity. d, Spearman correlation 
between the LFC in pegRNA counts and the LFC of endogenous variants at the 
TP53 locus as a function of the minimum sensor correct editing threshold for 
D34 untreated (blue) and D34 Nutlin-treated (red) samples. e, The percentage of 
variants detected (≥500 counts) at the TP53 locus at D34 (untreated) for variants 
with pegRNAs at different minimum sensor correct editing thresholds. Source 
data and code to reproduce this figure can be found at https://github.com/
samgould2/p53-prime-editing-sensor/blob/main/figure4.ipynb.
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activity, and >0.4 when considering pegRNAs ≥50% editing (Fig. 3j). 
Across all minimum pegRNA editing activity thresholds, the CADD 
score correlated more strongly with fitness of Nutlin-3-treated pegR-
NAs to the untreated condition. These results emphasize the significant 
advantage of including sensor target sites in prime editing screening 
libraries to quantitatively assess pegRNA efficiency and reinforce the 
ability of Nutlin-3 to effectively pull out genuine LOF and putative 
neomorphic and separation-of-function TP53 variants (Fig. 3j,k).

Sequencing of endogenous TP53 validates sensor approach
The above results demonstrate that sensor-calibrated quantification 
of pegRNA enrichment and depletion can be used to identify bona fide 
pathogenic TP53 variants. However, these analyses do not rule out the 
possibility that these changes are independent of true editing at the 
endogenous TP53 locus. To formally test whether prime editing sensor 
screens can faithfully quantify the effects of variants engineered at 
endogenous loci, we performed targeted next-generation sequenc-
ing of specific regions in exons 6, 7 and 10 of TP53 using genomic DNA 
extracted from untreated and Nutlin-treated cells from D4 and D34 
timepoints (Fig. 4a). We reasoned that sequencing the native TP53 
locus would allow us to directly compare the fold change in pegRNA 
counts with the fold change of variants installed at defined targeted 
sites within endogenous TP53.

Unlike nonsensor-based prime editing screens, which are likely to 
suffer from extensive noise during enrichment due to the difficulty of 
designing high efficiency pegRNAs, our sensor-based prime editing 
screen could be denoised empirically by filtering for pegRNAs that 
edited their cognate sensor above a given editing threshold. Indeed, 
we observed no correlation between the LFC in pegRNA counts with 
the corresponding LFC of endogenous variants engineered in the 
native TP53 locus when considering all pegRNAs (Fig. 4b–d). However, 
taking advantage of the sensor site to filter out pegRNAs below a given 
correct editing threshold dramatically reduced the noise in these data 
and revealed a strong correlation between the fold change in pegRNA 
counts and endogenous variant counts (Fig. 4b–c). This correlation 
increased monotonically as the minimum correct editing threshold 
increased, reaching a Spearman correlation >0.4 in the untreated 
arm and >0.5 in the Nutlin-treated arm of the screen when using a 
minimum correct editing threshold of 50% (Fig. 4d). We note that this 
is probably an underestimate of correlation on a per variant basis, as 
several pegRNAs with variable editing efficiencies are being compared 
directly with a single endogenous genomic site. Importantly, edited 
exonic sites targeted by top enriching pegRNAs (for example, R196P, 
A347P, I254_I255insH) were also enriched significantly relative to their 
WT counterparts and correlated strongly with their respective pegRNA 
counts. We were also able to detect nearly all of the variants engineered 
by active pegRNAs (≥500 counts per variant and ≥1% correct sensor 
editing), and the detectable fraction reached saturation when con-
sidering pegRNAs producing ≥14% editing at the sensor site (Fig. 4e). 
Altogether, these results emphasize the need to integrate quantitative, 
sensor-like approaches to accurately extract true signal from the high 
levels of noise that are inherent in large-scale prime editing screens. 

Indeed, our analysis demonstrates that screening pegRNAs without 
any empirical quantification of their editing activity invariably leads to 
spurious conclusions concerning the fitness of the variants that those 
pegRNAs are intended to engineer.

Functional validation of pathogenic TP53 variants
The above data demonstrate that pegRNA-specific sensor modules 
can be used to rigorously calibrate screening results to limit the 
analysis of variant fitness effects only to highly efficient pegRNAs. 
Though suggestive, these results do not formally prove that top 
scoring pegRNAs are enriched due to the introduction of defined 
genetic variants at the endogenous target locus and that these drive 
the observed biological differences. To test this, we selected a cohort 
of 29 pegRNAs that significantly enriched or depleted in the screen, 
or that generated commonly observed ‘hotspot’ mutations (Fig. 5a 
and Extended Data Fig. 9a). This set of pegRNAs targeted residues 
that spanned the TP53 locus and also included two control pegRNAs 
that install silent edits (Fig. 5a). In all, this validation set included low, 
medium and high efficiency pegRNAs spanning a range of 0–86% 
correct editing percentages, as measured by their respective sensor 
sites (Extended Data Fig. 9a). We transduced A549-PEmax cells with 
lentiviruses encoding individual pegRNAs and allowed editing to 
occur for 7–10 days, based on the kinetics of editing we observed 
previously (Fig. 1f). We then mixed each individual population of 
sequence-verified isogenic A549-PEmax-pegRNA cells with parental 
TP53 WT A549-PEmax cells and performed longitudinal fluorescence 
competition assays in the presence or absence of Nutlin-3 (Fig. 5b). 
We used the red fluorescent protein (RFP) fluorophore linked to each 
pegRNA vector to track the relative fitness of pegRNA cells (RFP+) 
compared with parental cells (RFP−) (Fig. 5c). These competition 
assays proceeded for 2 weeks, with flow cytometry readings taken 
every 7 days for each replicate (Extended Data Fig. 9b). We then 
calculated the difference in the RFP+ cell fraction (∆RFP%) for each 
pegRNA between the profiled timepoints and the initial timepoint 
in both conditions (Fig. 5d). Consistent with our screening results, a 
significant fraction of pegRNAs showed enrichment in the presence of 
Nutlin-3, often reaching complete saturation (Fig. 5d). Overall, there 
was strong concordance between the enrichment in cells observed 
in both treatment conditions in the screen and in these competi-
tion assays, supporting the reproducibility of the screening results  
(Fig. 5e,f). Importantly, we observed a significantly strong enrichment 
of cells expressing pegRNAs designed to engineer variants in the OD, 
including A347P and N345S (Fig. 5e,f).

The above results indicate that cells harboring a number of 
pegRNAs designed to engineer diverse types of TP53 variants have 
an increased fitness. However, these results do not rule out the pos-
sibility that these pegRNAs confer increased fitness through indel 
generation, rather than through their encoded edits. To assess this, 
we performed targeted NGS of each endogenous target loci in pure 
A549-PEmax-pegRNA cell lines (that is, before mixing with the paren-
tal population). Comparison of the endogenous editing observed in 
these cell lines with the corresponding sensor editing observed in 

Fig. 5 | Functional validation of pathogenic TP53 variants identified with 
prime editing screening. a, LFC of 29 pegRNAs selected for validation at D34 
in the Nutlin-treated condition. Variants with insufficient control counts (I195T, 
E285K, G325A, Y327Ter, A347D) are represented by LFC = 0. b, Schematic of 
the competition assay methodology. A549-PEmax cells are transduced with 
individual pegRNAs with an mScarlet fluorescent marker. After 7–10 days, these 
A549-PEmax-pegRNA cells are mixed with parental, uncolored A549-PEmax 
cells and split into untreated or Nutlin-treated conditions. Flow readouts of the 
RFP+ cell fraction are then taken at several timepoints. c, Selected representative 
competition assays show the change in the RFP+ cell fraction in the presence 
(orange) or absence (blue) of Nutlin-3. Data are presented as mean values at 
each timepoint, with a 95% confidence interval. d, ∆RFP% from the D0 to the 

D7 and D4 timepoints for each variant in the presence or absence of Nutlin-3; 
n = 3 biologically independent replicates performed per condition. Data are 
presented as mean values with a 95% confidence interval. e, Scatterplot of the 
LFC of Nutlin-treated pegRNAs at D34 of the screen, and the corresponding 
∆RFP% at D7 in the competition assay. Points colored by endogenous editing 
percentage, with ‘X’ indicating no endogenous editing data. f, Same as e but for 
the untreated condition. g, Scatterplot of sensor editing percentage at D16 and 
the corresponding endogenous editing percentage of pure A549-PEmax-pegRNA 
cell lines for pegRNAs included in competition assays. Source data and code to 
reproduce this figure can be found at https://github.com/samgould2/p53-prime-
editing-sensor/blob/main/figure5.ipynb. rp, Pearson correlation; rs, Spearman 
correlation.
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the untreated arm of the screen at a similar timepoint (D16) revealed 
a strong correlation, with on-target editing observed for almost all 
pegRNAs (Fig. 5g).

Another potential application of our approach is to combine 
high-throughput prime editing with drug treatments to identify vari-
ant–drug interactions that could be exploited to develop allele-specific 
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therapies. This is particularly relevant today because recent advances 
in rational drug design have shown that small molecules targeting spe-
cific mutant proteins (including those produced by oncogenic point 
mutant KRAS alleles) can have therapeutic potential50. To test whether 
our approach could be used to identify variant-specific therapeutic 
sensitivities, we tested two small molecules that have been shown 
to exhibit mutant-p53-specific effects, COTI-2 and PK7088, in cells 
transduced with lentiviruses encoding R175H- and Y220C-targeting 
pegRNAs, respectively51–53. Both of these treated populations showed 
depletion in the RFP+ cell fraction (Extended Data Fig. 9c). In par-
ticular, the COTI-2 treatment arm showed significant depletion of 
R175H-pegRNA cells (Extended Data Fig. 9c). These results demonstrate 
that prime editing sensor screens could be used to systematically iden-
tify variant-specific vulnerabilities to diverse therapies, augmenting 
cDNA-based approaches for performing similar screens54.

Prime editing reveals new pathogenic variants
High-throughput functional genomics approaches have been used 
previously to investigate TP53 mutations. For instance, Giacomelli et al. 
performed deep mutational scanning of TP53 variants using exogenous 
overexpression of mutant TP53 cDNAs in A549 cells in the presence or 
absence of Nutlin-3, concluding that most TP53 mutations probably 
arise as a consequence of endogenous mutational processes that select 
for dominant negative and LOF activity6. A follow-up study integrated 
this method with HDR-based modeling of six TP53 hotspot mutations 
in human leukemia cells and concluded that missense mutations in 
the TP53 DBD act mainly through dominant negative activity2. More 
recently, Ursu et al. employed a modified version of Perturb-seq to 
interrogate the transcriptional effects of 200 mutant TP53 cDNAs in 
A549 cells by single-cell RNA-sequencing, also concluding that most of 
these disrupt p53 activity through LOF and dominant negative effects16. 
In contrast, another study used a similar approach in H1299 and HCT116 
cell lines to interrogate variants in the TP53 DBD through parallel in vitro 
and in vivo experiments, concluding that certain hotspot mutations 
confer a higher proliferative advantage in vivo, probably through GOF 
mechanisms7. A number of studies in both mice and humans have also 
demonstrated that certain TP53 variants, including hotspot mutations 
at residues R175, R248 and R273, can produce phenotypes consistent 
with neomorphic/GOF activities55. These include promoting aberrant 
self-renewal of hematopoietic stem cells56, sustaining tumor growth57,58 
and promoting metastatic dissemination59–62, among others55. As such, 
there is much controversy in the field regarding the precise cellular and 
molecular activities of cancer-associated TP53 mutations—the most 
common genetic lesions observed across all types of cancer.

We hypothesized that cDNA screening approaches are biased in 
favor of detecting dominant negative activities due to their reliance 
on supraphysiological overexpression of mutant proteins. This is 
particularly relevant for studying the active p53 transcription factor, 
which is a tetrameric protein composed of a dimer of dimers18. As 

such, we postulated that mutant overexpression studies in WT TP53 
cells, including A549, may fail to detect mutant allele-specific activi-
ties and phenotypes that may be sensitive to gene dosage and protein 
stoichiometry. To test this hypothesis, we reanalyzed our data to per-
form comparative bioinformatic analyses with the dataset generated 
by Giacomelli et al.6, as their experiments were also carried out in WT 
TP53 A549 cells treated with Nutlin-3. First, we plotted the Z-scores of 
SNV-generating pegRNAs (≥10% editing) against the Z-scores of the cor-
responding variants expressed from cDNAs (Fig. 6a). Supporting our 
hypothesis, variants in the OD of p53 tended to deplete (that is, Z-score 
<0) when expressed from cDNAs, but often enriched significantly when 
expressed from the endogenous locus (Fig. 6a,b). To investigate this 
difference further, we calculated the difference in Z-scores (∆Z-score) 
between each pegRNA–cDNA pair by subtracting the cDNA Z-score 
from the prime editing Z-score. This analysis revealed a significantly 
higher ∆Z-score for endogenous variants in the OD relative to other 
domains of p53 (Fig. 6c)—a pattern that consistently held at several 
thresholds of pegRNA activity (Extended Data Fig. 10a) and even when 
we restricted our analysis solely to the most efficient pegRNA for each 
variant (Fig. 6d and Extended Data Fig. 10b).

Some of the most impactful variants in the p53 OD are observed 
frequently in individuals with Li–Fraumeni syndrome, who carry ger-
mline TP53 variants that predispose them to cancer. Two independent 
studies by the Prives and Lozano laboratories recently showed that p53 
proteins harboring A347D mutations (in the OD) form stable dimers 
instead of tetramers, and that these dimeric p53 proteins exhibit neo-
morphic activities63,64. Visualizing the residue-averaged ∆Z-scores 
on the structure of the p53 OD65 further highlights the extensive dif-
ferences in the behavior of endogenous variants as compared with 
exogenous (cDNA) variants in this domain (Fig. 6e).

To further investigate the phenotypic differences between 
endogenous and exogenous TP53 variants, we performed fluores-
cence competition assays with Nutlin-treated A549-PEmax cells trans-
duced with pegRNAs or matched cDNAs representing specific variants 
spanning the TP53 DBD and OD regions. We also included a num-
ber of important controls for each approach, including silent-edit- 
or no-edit-inducing pegRNAs that targeted the same loci as their 
matched variant-inducing pegRNAs, as well as empty vector and 
WT cDNA constructs. We found a strong agreement between the 
behavior of mutant TP53 cDNAs tested in competition assays and 
their corresponding Z-scores in the Giacomelli et al. screen6, validat-
ing our assay (Fig. 6f). However, comparing the enrichment of cells 
harboring endogenous variants engineered with pegRNAs relative 
to those expressing exogenous variant cDNAs revealed large differ-
ences in the behavior conferred by endogenous and exogenous TP53 
mutations (Fig. 6g and Extended Data Fig. 10c). Variants in the DBD 
behaved similarly across both systems, with the exception of R110P 
and L145P, which enriched only in the cDNA group. However, all OD 
variants failed to enrich when tested with cDNAs, but three-quarters 

Fig. 6 | Comparative analysis of prime editing and cDNA screening datasets 
of TP53 variants reveals pathogenic variants in the OD. a, Scatterplot of prime 
editing Z-score for pegRNAs ≥10% editing at D34 in the Nutlin-treated condition, 
and the corresponding cDNA variant Z-score in the p53-WT background in the 
presence of Nutlin, colored by p53 domain. b, cDNA (red) and prime editing 
(blue) Z-scores for pegRNAs/variants located in the OD. The pegRNA with the 
highest Z-score is labeled. c, The difference in Z-scores between prime editing 
and cDNA screens (∆Z-score) for pegRNAs ≥10%, separated by p53 domain. OD 
versus DBD (P = 6.025 × 10−85), versus PRR (P = 1.396 × 10−26), and versus TAD 
(P = 3.684 × 10−15). d, Boxplot of the Z-scores for variants in the cDNA and prime 
editing screens (P = 1.192 × 10−6), considering only the most efficient pegRNA 
for each variant. Statistics for c and d shown for two-sided t-test with Bonferroni 
correction. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001; NS, not significant 
(P > 0.05). In all boxplots (c and d), boxes indicate the median and IQR for each 
sample with whiskers extending 1.5× IQR past the upper and lower quartiles. All 

Z-scores were calculated from the LFC of each pegRNA, in turn calculated using 
MAGeCK from the median values across n = 3 biologically independent samples. 
e, Visualization of the residue-averaged ∆Z-scores on an NMR-structure of p53 
OD (PDB: 1OLG). f, Scatterplot of the cDNA Z-score of TP53 variants and the 
corresponding ∆RFP% of cDNAs tested with competition assays. g, Comparison 
of the ∆RFP% for cDNAs (D10) and corresponding pegRNAs (D14) for variants 
tested with competition assays. Points marked with ‘X’ indicate a replicate with 
an insufficient viable cell count (<500) to determine the RFP+%. In this case, 
the RFP+% was quantified as unchanged from the previous timepoint for the 
matched replicate. n = 3 biologically independent replicates performed per 
condition. Data are presented as mean values with a 95% confidence interval. 
Source data and code to reproduce this figure can be found at https://github.
com/samgould2/p53-prime-editing-sensor/blob/main/figure6.ipynb. EV, empty 
vector control; WT, wild type TP53 control.
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of OD variants displayed strong enrichment when engineered endoge-
nously using prime editing (Fig. 6g). Importantly, all controls behaved 
as expected, failing to enrich in the competition assays (Fig. 6g). 

These results support the hypothesis that certain variant-induced 
phenotypes can be observed accurately only when engineered and 
expressed in the endogenous genomic context.
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Collectively, our observations highlight gene dosage, protein 
stoichiometry and protein–protein interaction domains as important 
variables that must be taken into account when studying the enormous 
diversity of mutant alleles observed in human cancer. Failing to take 
these considerations into account might lead to the misclassification 
of bona fide pathogenic variants, including those identified in patients 
with hereditary cancer predisposition syndromes like Li–Fraumeni.

Discussion
Most genetic variants associated with various human diseases, 
including cancer, remain uncharacterized40. The development of 
CRISPR-based precision genome editing tools, including base and 
prime editing9,10, has opened the door to rigorous experimental inter-
rogation of disease-associated variants with single basepair resolution 
at unprecedented scale. However, these approaches, particularly prime 
editing, remain limited by the variance in editing efficiency among 
different pegRNAs.

Building on our previous work, we developed a prime editing 
sensor-based framework for engineering and screening variants that 
overcomes these limitations. Using this sensor-based approach, in 
which each pegRNA is coupled to an artificial version of its endogenous 
target site, we simultaneously identify enriched pegRNAs while empiri-
cally quantifying their editing efficiencies. This approach allows for 
the characterization of variants at several target sites while correcting 
for the potentially confounding differences in editing activity among 
distinct pegRNAs. To facilitate the creation of similar libraries by other 
researchers, we also built PEGG—a new computational tool for creating 
prime editing sensor libraries (https://pegg.readthedocs.io/en/latest/).

As a prototype for the prime editing sensor framework, we gener-
ated a library of pegRNAs targeting over 1,000 cancer-associated vari-
ants in TP53. We reasoned that p53 would be the most salient prototype 
for testing the efficacy of our prime editing sensor screening platform 
because of its central role in cancer development and progression, the 
various studies that have performed deep mutational scanning of p53 
whose data can provide direct sources of comparison and the ongoing 
controversy in the field as to whether most (if not all) TP53 mutations 
observed in cancer patients are functionally redundant.

With our sensor-based approach, we were able to systematically 
search the pegRNA design space and identify high efficiency pegRNAs, 
allowing us to install over half of the targeted TP53 variants. Although 
not the focus of the present study, the breadth and depth of our data-
set also allowed us to recapitulate many of the previous findings about 
the factors affecting pegRNA efficiency.

Analysis of the screening data revealed a wide range in the fitness 
of TP53 variants, challenging the idea that most p53 variants, particu-
larly those in the DBD, are functionally redundant. While we identified 
strongly enriching pegRNAs, including many that generated commonly 
observed ‘hotspot’ mutations at DNA-contacting residues, most of the 
strongly enriching pegRNAs encoded variants that are not located at 
mutational hotspots. Instead, a number of these mutations are less 
frequently observed in patients and remain poorly understood, despite 
the fact that they collectively affect thousands of patients globally 
every year. These include variants located within the OD of p53, which 
were functionally validated with follow-up experiments, and some 
of which were recently shown to be bona fide pathogenic variants in 
humans with Li–Fraumeni syndrome63,64.

Comparison between our screening data and a previous study that 
also screened TP53 variants in A549 cells and in the presence of Nutlin-3 
but instead used cDNA-based overexpression libraries revealed a statis-
tically significant enrichment of endogenous—but not overexpressed—
variants located in the p53 OD. We further validated this finding with 
functional assays comparing the behavior of cells harboring exogenous 
or endogenous TP53 variants. This comparison highlights the potential 
limitations of cDNA-based screening approaches, particularly when 
studying variants at sites of protein–protein interactions, underscoring 

the need to study variants in their native context to access their true 
biology. Together, our data suggest that stoichiometric imbalances 
produced by cDNA overexpression could lead to the misclassification 
of genetic variants as noncausal or otherwise benign. Our findings thus 
offer a cautionary note when using exogenous overexpression systems 
to interpret pathogenic alleles, and highlight the importance of using 
strategies like the one described in this work to investigate variants of 
interest in their native genomic contexts whenever possible.

More broadly, our study provides a conceptual blueprint and 
a modular set of experimental and computational tools that can be 
applied to evaluate diverse types of genetic variants in their native 
endogenous genomic contexts with high-throughput prime editing. 
For example, the prime editing sensor strategy described here could 
be used to investigate the influence of endogenous coding variants on 
drug resistance or other cancer-relevant cellular phenotypes, while 
maintaining native levels and regulation of the proteins of interest. 
Alternatively, our approach could be applied to interrogate the effects 
of noncoding variants at diverse loci, assessing gene regulatory biology 
not easily amenable to other screening approaches.

Future prime editing sensor screening efforts could incorporate 
improved prime editors and pegRNAs, as well as higher-efficiency 
prime editing systems and strategies like PE3 and PE4 (ref. 10,21). These 
studies could also be performed in vivo, for example, by delivering com-
pact libraries of mismatch repair-evasive pegRNAs into mice express-
ing prime editors66 or by codelivery of smaller prime editors, such as 
PE6a23. Taken together, we envision that our approach will expand our 
understanding of pathogenic gene variants and help match patients 
suffering from genetic diseases with effective therapies.
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Methods
Experimental materials and methods
Plasmids and pegRNA cloning. All plasmids were generated using 
Gibson Assembly strategies67 using NEBuilder HiFi DNA Assem-
bly Master Mix (NEB cat. no. E2621) following the manufacturer’s  
protocol. All new plasmids, along with detailed maps and sequences, 
will be made available through Addgene. The PEmax coding  
sequence in Lenti-EFS-PEmax-P2A-Puro was obtained from 
pCMV-PEmax (Addgene, cat. no. 174820)21. The lentiviral plas-
mid used to clone and express prime editing sensor libraries was  
assembled by transferring the U6-sgRNA-EFS-Blast-P2A-TurboRFP 
cassette from pUSEBR (ref. 14) into the higher titer pLV backbone68. 
Lenti-PEAR-mCherry—a modified all-in-one lentiviral version of 
the PEAR reporter43—was also cloned using Gibson Assembly and  
used to test the editing activity of A549-PEmax cells. The 
Lenti-UPEmS-tevo plasmid is a modified version of the UPEmS 
vector66 that contains the tevopreQ1 motif22. This plasmid was 
used to assemble pegRNAs via Golden Gate Assembly66 for 
follow-up pegRNA validation experiments. Human WT or mutant 
TP53 cDNAs were cloned into pCDH-EF1-MCS-IRES-RFP (System 
Biosciences, cat. no. CD531A-2) using primers EcoRI-TP53-Fwd 
(5′-CAGTCAGAATTCGCCACCATGGAGGAGCCGCAGTCAG-3′) 
and BamHI-TP53-Rev (5′-CTGACTGGATCCTCAGTCTGAGTCAG 
GCCCTTCTGTCTTGAAC-3′). Fragments encoding each cDNA were 
obtained from Twist Biosciences (Supplementary Table 1).

Virus production. Lentiviruses were produced by cotransfection of 
HEK293T cells with the relevant lentiviral transfer vector and packaging 
vectors psPAX2 (Addgene, cat. no. 12260) and pMD2.G (Addgene, cat. 
no. 12259) using Lipofectamine 2000 (Invitrogen, cat. no. 11668030). 
Viral supernatants were collected at 48- and 72-h posttransfection and 
stored at −80 °C.

Drug treatments
Nutlin-3 (Selleck Chemicals, cat. no. S1061) was dissolved in dimethyl-
sulfoxide at a stock concentration of 10 mM and used at a final concen-
tration of 10 μM. PK7088 (Aobious cat. no. AOB4255) was diluted to a 
final concentration of 200 μM from a stock concentration of 10 mM. 
COTI-2 (MedChemExpress cat. no. HY-19896) was dissolved in dimethyl-
sulfoxide to a stock concentration of 10 mM and added to a final con-
centration of 1 μM.

Flow cytometric analyses
Fluorescence-based measurements for the validation of prime editing 
activity with PEAR and for competition assays were performed using 
the BD FACSCelesta Cell Analyzer in tube or plate reader format, with 
BD FACSDiva v.9.0 software used for data collection. Downstream 
analysis was performed using FlowJo v.10.9.0 to identify single cells 
and quantify fluorescence.

Generation of A549-PEmax cell lines
To generate A549 cells stably expressing PEmax, we trans-
duced a 15-cm plate with 2.5 million cells with freshly harvested 
EFS-PEmax-P2A-puromycin lentivirus, and selected cells with 10 μg ml−1 
of puromycin at 72 h posttransduction. To assess the prime editing 
efficiency of these cells, we transduced 250K A549-PEmax cells in tripli-
cate in six-well plates with Lenti-PEAR-mCherry—a modified, all-in-one 
lentiviral PEAR construct where green fluorescent protein is turned on 
in the event of successful prime editing. Based on the PEAR reporter 
activity, we noticed that prime editing activity was not sufficiently high 
in these cells. We then retransduced these cells with successive rounds 
of freshly harvested EFS-PEmax-P2A-Puromycin lentivirus. Repeating 
the PEAR reporter assay revealed a substantial increase in prime editing 
activity (Extended Data Fig. 2a). This A549-PEmax ‘v2’ cell line was used 
throughout the present study.

Cloning of p53-sensor library
The oligonucleotide library was ordered from Twist Biosciences. The 
lyophilized library was resuspended in 100 μl of TE buffer (pH 8.0) 
and diluted to create 1 ng μl−1 stocks. We performed n = 32 PCR 
reactions with NEBNext High-Fidelity 2× PCR Master Mix (cat. no. 
M0541S) to amplify the library with the following primers at a low 
cycle count: forward 5′-CATAGCGTACACGTCTCACACCG, reverse 
5′-GTGCCGTTGACGACCGGATCTAGAATTC. These PCR reactions were 
pooled and purified using the Qiagen PCR purification kit following the 
manufacturer’s protocols, with 10 μl of 3 M Na acetate pH 5.2 added for 
every five volumes of PB used per one volume of PCR reaction. The library 
was digested with Esp3I (NEB) and EcoRI-HF (NEB), pooled and purified. 
Subsequently, n = 16 ligations were performed using 300 ng of digested 
and dephosphorylated Trono-BR backbone and 3 ng of digested insert 
with high concentration T4 DNA Ligase (NEB, cat. no. M0202M). The liga-
tion reactions were precipitated using QuantaBio 5PRIME Phase Lock Gel 
tubes before being resuspended in 3 μl of EB Buffer per four precipitated 
reactions. These precipitated ligation reactions were electroporated into 
Lucigen Endura ElectroCompetent cells (cat. no. 60242-2) before being 
plated on LB-carbenicillin plates and incubated at 37 °C for 16 h. Library 
representation was assessed at this step via serial dilution plating, display-
ing a representation on the order of 400×. We also picked 30 random 
colonies from these serial dilution plates to assess the fidelity of library 
cloning and to test a random set of pegRNAs. We scraped the plates and 
collected the bacteria in 250 ml of LB-ampicillin per four plates, before 
incubating for 2 h at 37 °C, collecting the bacteria by centrifugation, and 
proceeding to perform a Qiagen Maxiprep, following the manufacturer’s 
protocol. Lentivirus was generated via the aforementioned protocol, and 
viral titer was determined through serial dilutions of virus, transductions 
in 12-well plates with one million A549-PEmax cells, and measurement 
of the RFP-positive cell fraction at 72-h posttransduction. For extended 
protocol information, see Supplementary Protocol 1.

Screening protocol
For each replicate, 110 million A549-PEmax cells were combined with 
an appropriate amount of p53-sensor virus to achieve a multiplicity of 
infection < 1. To this mix, puromycin was added to a final concentration 
of 10 μg ml−1 and polybrene transfection reagent (Sigma-Aldrich, cat. 
no. TR-1003) was added to a final concentration of 8 μg ml−1 in F-12K 
(Gibco, cat. no. 21127030) medium supplemented with 10% FBS and 
1× Penicillin-Streptomycin (ThermoFisher). This mix was plated into 
nine 12-well plates per replicate. At 24-h posttransduction, each 12-well 
plate was expanded to a 15-cm plate, with medium supplemented with 
10 μg ml−1 puromycin and 10 μg ml−1 blasticidin S. These puromycin 
and blasticidin S concentrations were maintained throughout the 
screen. At 72-h posttransduction, each 15-cm plate was expanded to two 
15-cm plates. At 96-h posttransduction, each replicate was replated at 
≥1,000× representation (≥29 million cells) for the untreated arm and 
the Nutlin-3 treatment arm. For the Nutlin-3 treatment arm, Nutlin-3 
was added to a final concentration of 10 μM. At this timepoint, a cell pel-
let was taken for gDNA extraction. All cell pellets included ≥29 million 
cells (1,000× representation) and were stored at −80˚C. Subsequently, 
every 3 days, the cells were split, and replated at 1,000× representa-
tion. At each timepoint, a cell pellet was taken if there were a sufficient 
number of cells to allow for 1,000× representation. This process was 
repeated until the screen was terminated at D34 posttransduction.

Genomic DNA extraction
Genomic DNA from the D4, D16, D25 and D34 timepoints of the screen 
was extracted using the Qiagen Genomic Tip/500G following the manu-
facturer’s protocol. Genomic DNA was resuspended in 200 μl of TE 
Buffer, pH 8.0. Concentrations were measured using a NanoDrop 2000 
(ThermoFisher) and were normalized to 1 μg μl−1. For the competition 
assays (Fig. 5), genomic DNA was extracted using the DNeasy Blood and 
Tissue Kit (Qiagen), following the manufacturer’s protocol.
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NGS sample preparation
We performed n = 30 PCR1 reactions per sample using Q5 High-Fidelity 
2× Master Mix (NEB, cat. no. M0429S) with 10 μg of genomic DNA 
to maintain ≥1,000× representation. Up to four PCR reactions were 
pooled and purified using the Qiagen PCR purification kit following 
the manufacturer’s protocols. These reactions were then gel purified 
(Qiagen Gel Extraction Kit), pooled and measured using the NanoDrop 
2000 (ThermoFisher). We performed n = 4 PCR2 reactions per sample 
using 10 ng of PCR1 as a template in each reaction. We PCR-purified 
and then gel purified these samples and eluted in 30 μl of EB Buffer.  
These samples were then submitted for sequencing. The PCR1 and 
PCR2 strategies and the deconvolution protocol are described in 
Supplementary Protocol 2. All primers are listed in Supplementary  
Table 1. A similar PCR1/2 strategy was used for preparation of endog-
enous TP53 amplicons for NGS with the Singular G4 sequencing system 
(Figs. 4 and 5). These protocols are described thoroughly in Sup-
plementary Protocol 2 and the associated primers can be found in 
Supplementary Table 1.

Next-generation sequencing
We performed Amplicon-EZ sequencing (Azenta) for analysis of the 
correlation between sensor and endogenous editing (Fig. 1d). For the 
NGS of the p53-sensor library, we used the NovaSeq S1 200 sequenc-
ing system (NovaSeq 6000) with a custom sequencing primer set to 
amplify the protospacer, 3′ extension, sensor sequence and sample 
barcode in separate reads. All other NGS data were generated using 
the Singular G4 Sequencer (2 × 150 paired-end) with stock primers. All 
sequencing primers are listed in Supplementary Table 1. The custom 
sequencing approach for the NovaSeq 6000 is diagrammed in Sup-
plementary Protocol 2.

Golden Gate assembly of UPEmS pegRNAs for follow-up 
validation
For follow-up validation of pegRNAs, individual pegRNAs were cloned 
via Golden Gate assembly into the Lenti-UPEmS-tevo backbone (gen-
erated by the present study). Golden Gate assembly was performed 
with annealed spacer oligonucleotides, annealed and phosphorylated 
scaffold oligonucleotides, and annealed 3′ extension oligonucleotides 
using NEB BsmBI Golden Gate enzyme mix, before being transformed, 
mini-prepped (Qiagen) and validated via whole-plasmid sequencing 
(Primordium). For full protocol details, see Supplementary Protocol 
3. The full list of oligonucleotides used for cloning can be found in 
Supplementary Table 1.

Competition assays
To generate variant p53 lines, we seeded 100,000 A549-PEmax cells 
in six-well plates and added UPEmS lentivirus corresponding to 
each variant. To achieve saturation editing, we waited 7–10 days,  
expanding the cells to a 10-cm plate when they reached conflu-
ence, and took a cell pellet for gDNA extraction to assess editing. 
At this point, we mixed 250,000 variant (RFP+) cells with 750,000 
untransduced A549-PEmax cells, and plated 50,000 cells in triplicate 
in six-well plates. For drug-treated conditions (Nutlin-3, COTI-2, 
PK7088), the compound was added to the appropriate concentration. 
Remaining cells were used for flow analysis and to generate a t = 0 cell 
pellet. At D7 and D14, we assessed the RFP+ fraction of the cells via flow 
cytometry. The flow gating strategy is displayed in Supplementary 
Fig. 1. For these analyses, we applied a stringent threshold of ≥500 
quantifiable events (that is, single cells) because we found that sam-
ples with ≤500 quantifiable events, which were typically observed in 
cells treated with Nutlin-3 that underwent cellular senescence and/
or apoptosis, were insufficient to accurately calculate the RFP+ cell 
fraction. In these cases, we assumed that the RFP+ cell fraction was 
unchanged from the previous timepoint, akin to a standard 3T3/
proliferation assay.

Analytic/computational methods
Selection of TP53 variants and prime editing sensor library genera-
tion with PEGG. To select a cohort of TP53 variants for generating a 
prime editing sensor library, we used the MSK-IMPACT database20. We 
chose all SNVs observed in patients, as well as a collection of observed 
and random indels to increase the diversity of edits (Extended Data 
Fig. 1b). In addition, PEGG automatically generated 95 neutral/silent 
variants that tiled the TP53 locus to act as internal controls in the screen.

PEGG generated a maximum of 30 ranked pegRNA designs per 
variant with RTT lengths of 10, 15, 20, 25 and 30 nucleotides, and PBS 
lengths of 10, 13 and 15 nucleotides coupled to ‘NGG’ protospacers. 
A ‘G’ was appended to the start of each 20-nucleotide protospacer 
to improve U6 promoter-mediated transcription. After PEGG gener-
ated these pegRNA designs, we further filtered the library to exclude 
pegRNAs containing polyT termination sequences (≥4 consecutive Ts),  
EcoRI and Esp3I sites, and protospacers with an MIT specificity score 
less than 50. In addition, each pegRNA oligo included a matched,  
60 nt sensor locus that was generated automatically by PEGG and used 
to link each pegRNA to its editing outcome.

For full details of generating a prime editing sensor library using 
PEGG, visit https://pegg.readthedocs.io/en/latest/.

Analysis of the p53-sensor screen. The p53-sensor sequencing 
results were demultiplexed into separate fastq files based on the sam-
ple barcode. Next, using a custom analysis script, we filtered reads 
with an average Phred quality score below 30, and identified pegRNAs 
based on the protospacer and 3′ extension sequences. Sequences 
with no matching protospacer or 3′ extension were discarded, and 
sequences with mismatched protospacer and 3′ extension sequences 
were discarded and classified as recombination events. Sequences with 
matching protospacer and 3′ extension sequences were used to gener-
ate pegRNA counts tables that were subsequently used for MAGeCK 
analysis (v.0.5.9) of pegRNA enrichment/depletion.

To classify editing outcomes at the sensor locus, we first deter-
mined whether recombination had occurred to decouple the pegRNA 
from its matched target sequence. To do so, we used the first and last 
five nucleotides of the sensor sequence as a barcode to detect recom-
bination. Sensor reads with the first and last five nucleotides of the read 
matching the appropriate pegRNA were classified as correct sensor 
reads, while those with the first and last five nucleotides matching 
other pegRNAs were classified as recombination events and discarded. 
We noted that recombination between the pegRNA and sensor was 
observed at a higher rate when the protospacer was in the same orien-
tation as the sensor, prompting us to update PEGG to automatically 
place the sensor sequence in the reverse orientation to reduce recom-
bination in future PE sensor libraries (Extended Data Fig. 2e,f). Reads 
with the first and last five nucleotides with no match were classified as 
potential indels and retained. For each sample, the sensor reads that 
were not recombined were demultiplexed into separate fastq files for 
each pegRNA. We then used Crispresso2 (ref. 69) to classify editing 
outcomes, excluding the first and last five nucleotides of the sensor 
read from the quantification window. To determine the background 
subtracted correct editing percentage, we subtracted the correct 
editing percentage observed in the plasmid library from the correct 
editing percentage observed at a given timepoint, although we note 
that for plasmids with at least ten sensor reads, the median correct 
editing percentage was 0%, the average correct editing percentage was 
<0.1% and the maximum observed correct editing percentage was 8.7%.

For analysis of enrichment/depletion of pegRNAs, we used the 
MAGeCK algorithm47, with the D4 sample designated as the control 
timepoint. We then filtered to exclude pegRNAs with a control count 
mean <10 reads to reduce spuriously enriching pegRNA hits. For 
direct comparison with the cDNA libraries, the LFC values produced 
by MAGeCK were transformed into Z-Scores using the standard Z-score 
formula including all pegRNAs under consideration.
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Processing and analysis of TP53 endogenous amplicon NGS 
sequencing. The sequencing files were automatically demultiplexed 
into separate fastq files based on the sample barcode. Next, we trimmed 
the sequences from 150 nucleotides to 100 nucleotides, to allow the 
sequences to be joined. The sequences were joined using the fastq-join 
(v.1.3.1) algorithm with the default parameters enabled70.

For analysis of genomic DNA amplified from the screen (Fig. 4), we 
then used custom analysis scripts to generate counts tables for all of the 
unique sequences, merge matching samples from different flow cells 
and determine the HGVSp and HGVSc of each sequence. To determine 
the LFC of each variant at these endogenous loci, we first filtered to 
exclude undesired variants (that is, those not targeted by pegRNAs in 
the library) and created counts tables for D4, D34 (untreated) and D34 
(Nutlin-treated) for each of the three amplicons. For each amplicon, 
we used MAGeCK to normalize read counts between samples and 
determine the LFC of each variant. We then filtered endogenous vari-
ants with a control count of fewer than ten reads to reduce spuriously 
enriching variants. These MAGeCK tables from the different amplicons 
were concatenated to perform downstream analysis, comparing the 
endogenous variants with the pegRNA–sensor sequencing results. In 
addition, we performed sequencing of the WT A549-PEmax cell line, 
which confirmed the WT status of the regions amplified.

For analysis of genomic DNA amplified from the individually trans-
duced A549-PEmax-pegRNA cells generated for competition assay 
testing (Fig. 5), we used Crispresso2 to classify editing outcomes, 
excluding the first and last five nucleotides of the sensor read from 
the quantification window69.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data from the screen is deposited in the Sequence 
Read Archive under accession PRJNA1014453. All other processed 
datasets and source data are available at the following GitHub reposi-
tory: https://github.com/samgould2/p53-prime-editing-sensor. 
MSK-IMPACT clinical sequencing data was accessed from the cBioPortal 
(https://cbioportal.org). Data for the Giacomelli et al.6 cDNA compari-
son was accessed from Supplementary Table 3 in the corresponding 
manuscript (https://doi.org/10.1038/s41588-018-0204-y).

Code availability
All analysis scripts, as well as Jupyter notebooks for generating each 
figure that appears in the paper, are available at the following GitHub 
repository: https://github.com/samgould2/p53-prime-editing-sensor. 
Further documentation and installation instructions for PEGG are 
available at https://pegg.readthedocs.io/en/latest/.
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Extended Data Fig. 1 | Generation of a TP53 prime editing sensor library with 
PEGG. a, Schematic of the PEGG pipeline. PEGG takes as input a list of mutations 
from the cBioPortal, ClinVar identifiers, or custom mutations sets, and produces 
user-defined pegRNA designs ranked by PEGG score, custom sensor oligos, 
and visualization tools. PEGG filters pegRNAs with polyT sequences as well as 
designs containing restriction sites used for cloning. With the library design 
feature, PEGG can also automate the aggregation of variants located in genes of 
interest, and automatically design a defined fraction of silent variant-generating 

pegRNAs. b, Breakdown of the TP53 variants input to PEGG for sensory library 
design. c, The fraction of input variants amenable to prime editing (that is, able 
to generate ≥ 1 pegRNA), separated by variant type. d, Histogram of the number 
of pegRNA designs per variant. e, Histogram of the MIT specificity score of the 
protospacers for the pegRNAs included in the library. The library was filtered 
to exclude pegRNAs containing a protospacer with an MIT specificity score less 
than 50.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Optimization, screening, and deconvolution of the 
TP53 prime editing sensor library. a, Assessment of the prime editing activity 
of A549-PEmax cell lines using a modified all-in-one PEAR reporter, where GFP is 
turned on in the event of successful prime editing. Three replicates each of A549 
WT (gray), A549-PEmax v1 (blue), which underwent a single transduction with 
EFS-PEmax-P2A-Puro, and A549-PEmax v2 (pink), which underwent multiple 
rounds of transduction with EFS-PEmax-P2A-Puro, are shown, along with the 
quantification of GFP-positive cells. b, Cumulative population doublings 
during the course of the screen of each of the replicates in the untreated and 
Nutlin-treated conditions. c, Identification and counting of pegRNAs in each 
replicate and time-point from high quality reads (Q > 30). Correct ID = reads with 
matching protospacer and 3′ extension. Recombined = reads with mismatched 

protospacer and 3′ extension. No match = reads with no matching sequence for 
protospacer or 3′ extension. Unaligned = reads with no identifiable tevopreQ1 
sequence. Plasmid = Plasmid Library. d, Count of correctly identified pegRNAs in 
each replicate and time-point. e, Extraction of the sensor locus from reads with 
correctly identified pegRNAs. Extracted sensor = sensor read matches pegRNA 
identification and is thus extracted and saved. Recombined = sensor read does 
not match pegRNA (discarded). Unaligned = no polyT-tevopreQ1 sequence 
found. f, Sensor recombination rate as a function of protospacer orientation. 
When the protospacer is on the positive strand (+) of the sensor (blue), the 
recombination rate increases compared to when the protospacer is on the 
negative strand (−) of the sensor.
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Extended Data Fig. 3 | The TP53 prime editing sensor screen is highly 
reproducible with low indel rates. a, Pearson correlation in raw pegRNA counts 
among each replicate and time-point. Plasmid = plasmid library. b, Spearman 
correlation in sensor correct editing percentage among each replicate and 
time-point for pegRNAs with at least 10 sensor reads. c, Median indel percentage 
among active pegRNAs (≥1% editing) for each time-point and condition. Data 
are presented as mean values with a 95% confidence interval. d, Boxplot of indel 
frequency among active pegRNAs (≥1% editing) for each replicate and time-point. 

Lower quartile = 0% for all replicates (not visible). Boxes indicate the median and 
interquartile range (IQR) for each sample with whiskers extending 1.5 × IQR past 
the upper and lower quartiles. N = 3 biologically independent replicates in each 
condition shown in (c-d). e, Histogram of pegRNA editing efficiency in the  
Nutlin-treated Day 34 samples. f, Histogram of pegRNA editing efficiency  
of the most efficient pegRNA for each variant in the Nutlin-treated Day 34 
samples. g, Comparative PDF of all pegRNAs and the most efficient pegRNA for 
each variant.
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Extended Data Fig. 4 | Training a random forest regressor to predict pegRNA 
efficiency. a, A random forest regressor was trained on a restricted set of  
pegRNA features using 70% of the variants in the untreated condition of Day 16  
replicate 1. There was no overlap between the variants used for training and 
testing. The performance on the held-out test set is shown (spearman correlation 

= 0.61). b, Assessment of the performance of the random forest regressor in 
predicting editing activity at each time-point. Again, only variants in the test set 
are considered. Each dot represents a separate replicate. Spearman correlation 
between predicted and actual editing is shown in blue, pearson correlation in gray.
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Extended Data Fig. 5 | Correlation in pegRNA LFC among conditions and 
time-points. Each panel is a density plot of the LFC in pegRNAs at each time-
point/condition (that is x-axis = LFC of the pegRNAs corresponding with that 

column’s sample, and y-axis = LFC of the pegRNAs corresponding with that row’s 
samples). Replicates were merged using MAGeCK to generate a single (median) 
LFC for each pegRNA at each time-point. Rs = spearman correlation.
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Extended Data Fig. 6 | Filtration of screening data by sensor editing 
efficiency. The LFC of a, pegRNAs ≥ 0% editing b, pegRNAs ≥ 20% editing  
c, pegRNAs ≥ 40% editing d, pegRNAs ≥ 60% editing, with at least 10 sensor reads 
at Day 34 relative to Day 4 in the Nutlin-treated condition, with pegRNAs colored 

by editing efficiency (left) and colored by variant type (right). Selected enriching 
pegRNAs with FDR < 0.05 labeled and depleting pegRNAs with FDR < 0.05 
labeled. Blue = SNV, Green = INS, Purple = DEL, Gray = Silent.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Sensor editing continues over time, independent of 
selection. a, Log2 fold change in pegRNA correct editing percentage relative 
to Day 4, with pegRNAs split into groups by LFC in pegRNA counts at the final 
time-point. Data shown for pegRNAs ≥ 1% editing and with ≥ 100 sensor reads at 
all time-points in the untreated condition. LFC calculated using MAGeCK from 
the median values across n = 3 biologically independent samples. In all boxplots, 

boxes indicate the median and interquartile range (IQR) for each sample with 
whiskers extending 1.5 × IQR past the upper and lower quartiles, with outliers 
indicated with circles. b, Same as (a), but with fold change in editing normalized 
to Day 16. c, Same as (a), but for the Nutlin-treated condition. d, Same as (b), but 
for the Nutlin-treated condition.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Analysis of TP53 hotspot variant editing & fitness.  
a, Scatterplot of pegRNA sensor correct editing percentage and LFC at Day 34 
in the untreated arm of the screen. Top 20 hotspot variant pegRNAs colored in 
red. Linear regression line displayed. b, Same as (a), but for the Nutlin-treated 
condition. c, Sensor correct editing percentage for the top 20 most frequently 
observed hotspot variants, with pegRNAs with a LFC ≥ 2 highlighted in orange, 

and observed occurrences in MSK-IMPACT dataset shown in right panel.  
d, Sensor correct editing percentage at Day 34 in the Nutlin-treated condition for 
the R248 mutants, with pegRNAs with a LFC ≥ 2 highlighted in orange. 
 e, Scatterplot of sensor correct editing percentage at Day 34 in the Nutlin-treated 
condition for the R248 mutants, plotted against the LFC at the same time-point 
and condition. Hotspot variants (R248Q & R248W) highlighted in red.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02172-9

Extended Data Fig. 9 | Competition assays functionally validate the 
pathogenicity of TP53 variants identified with prime editing screens. 
a, Detailed information on pegRNAs selected for follow-up evaluation with 
competition assays. Cells marked with ‘X’ indicate insufficient sensor reads (<10) 
to determine editing percentage, or insufficient Day 4 control pegRNA counts 
(<10) to determine LFC. b, Full competition assay results for assayed pegRNAs. 

Points marked with ‘X’ indicate a replicate with an insufficient viable cell count 
(<500) to determine the RFP+ %. In this case, the RFP+ % was quantified as 
unchanged from the previous time-point for the matched replicate.  
c, Competition assay results for variant-specific therapeutics. In (b-c), data are 
presented as mean values at each time-point, with a 95% confidence interval.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02172-9

Extended Data Fig. 10 | Comparative analysis of prime editing and cDNA 
screening datasets of TP53 variants reveals pathogenic variants in the 
oligomerization domain. a, The difference in Z-scores between prime editing 
and cDNA screens (∆Z-score) for pegRNAs ≥ 30% editing, separated by p53 
domain. Statistics shown for two-sided t-test with Bonferroni correction. OD vs. 
DBD (p = 3.255e-50), vs. PRR (p = 3.158e-17), vs. TAD (p = 2.085e-11). * = p-value 
≤ 0.05, ** = p-value ≤ 0.01, *** = p-value ≤ 0.001, **** = p-value ≤ 0.0001, ns = not 
significant (p-value > 0.05). Boxes indicate the median and interquartile range 

(IQR) for each sample with whiskers extending 1.5 × IQR past the upper and lower 
quartiles. All z-scores were calculated from each pegRNA’s LFC, in turn calculated 
using MAGeCK from the median values across n = 3 biologically independent 
samples. b, Z-scores for variants in the cDNA (red) and prime editing (blue) 
screens, considering only the most efficient pegRNA for each variant with an 
editing efficiency ≥ 10%. c, Scatterplot of the cDNA ∆RFP % (day 10) and pegRNA 
∆RFP % (day 14) for variants tested with competition assays. rp = Pearson 
correlation; rs = Spearman correlation.
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