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Quality assessment of gene repertoire 
annotations with OMArk

Yannis Nevers    1,2 , Alex Warwick Vesztrocy1,2, Victor Rossier1,2,3, 
Clément-Marie Train1, Adrian Altenhoff    2,4, Christophe Dessimoz1,2 & 
Natasha M. Glover1,2

In the era of biodiversity genomics, it is crucial to ensure that annotations 
of protein-coding gene repertoires are accurate. State-of-the-art tools to 
assess genome annotations measure the completeness of a gene repertoire 
but are blind to other errors, such as gene overprediction or contamination. 
We introduce OMArk, a software package that relies on fast, alignment-free 
sequence comparisons between a query proteome and precomputed gene 
families across the tree of life. OMArk assesses not only the completeness 
but also the consistency of the gene repertoire as a whole relative to closely 
related species and reports likely contamination events. Analysis of 1,805 
UniProt Eukaryotic Reference Proteomes with OMArk demonstrated strong 
evidence of contamination in 73 proteomes and identified error propagation 
in avian gene annotation resulting from the use of a fragmented zebra finch 
proteome as a reference. This study illustrates the importance of comparing 
and prioritizing proteomes based on their quality measures.

Sequencing many species from diverse taxa will drastically improve 
comparative genomics methods and our ability to elucidate when 
and how genes and species evolved1, provided the data truly reflect 
biological reality. This process necessitates rigorous quality control. 
Robust quality standards for genome assembly have been defined by 
sequencing initiatives, but improved metrics for genomic features, 
especially protein-coding genes, are needed2. These standards should 
assess gene repertoire completeness, accuracy of gene models, absence 
of misannotated non-coding sequences and contamination. A few 
methods, based on conserved gene markers, can be used to measure 
the completeness of a gene repertoire (for example BUSCO3,4, EukCC5, 
DOGMA6 and CheckM7) and to some extent contamination from other 
species (for example EukCC and CheckM). Other quality indicators, 
such as the UniProt Complete Proteome Detector, flag annotations 
with an unexpected number of protein-coding genes8. However, no 
existing methods estimate the extent of spurious annotation, which 
is common in publicly available genomes9.

We present OMArk, a method for eukaryotic proteome qual-
ity assessment. OMArk rapidly places query protein sequences into 
known gene families and compares them to the expected families of 

the species’ lineage. OMArk outputs multiple complementary quality 
statistics for the query proteome (Fig. 1a). First, it estimates the com-
pleteness, based on the proportion of expected conserved ancestral 
genes present. This is similar to BUSCO but also considers conserved 
multicopy genes. Second, OMArk estimates the taxonomic consist-
ency (i.e., the proportion of protein sequences placed into known gene 
families from the same lineage). Sequences placed into gene families 
from other taxa or not placed at all may be contaminant or erroneous 
sequences. Thus, OMArk assesses proteome quality by evaluating not 
only what is expected to be there but also what is not expected to be 
there—contamination and dubious proteins. This feature, to our knowl-
edge, is not fully provided by any existing methods. We demonstrate 
OMArk’s accuracy in estimating multiple quality metrics on proteomes 
with artificially introduced errors and in real-use cases.

Results
Software overview
OMArk is available as an open source command-line tool and a web 
server. The command-line tool is distributed as a python package on 
Anaconda, PyPI and GitHub (https://github.com/DessimozLab/OMArk). 
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Ancestral reference lineage identification. Based on the main taxon 
placement, or a user-specified taxonomic identifier, OMArk selects 
an ancestral lineage: the most recent taxon that contains the species 
of interest and at least five species in the OMA database (Fig. 2c). The 
selected ancestral lineage is provided in OMArk’s output.

Completeness assessment. OMArk selects all gene families that 
were present in the common ancestor of the ancestral lineage and 
still are present in at least 80% of its extant species (conserved reper-
toire; Fig. 2d). The presence of these gene families serves as a proxy for 
its proteome completeness. OMArk reports the number of selected 
gene families, their identifiers and the proportion of the conserved 
gene families that are found in the query proteome as a single copy or 
duplicated (multiple copies) or are missing (Fig. 2e). An incomplete 
proteome would have a high proportion of missing gene families.

Contrary to BUSCO, the conserved genes are not necessarily 
expected to exist in single copies in extant genomes, although they 
were likely a single gene in the lineage’s ancestor. Thus, duplicated 
genes are classified as ‘expected’ if they correspond to a known dupli-
cation that occurred after the ancestral lineage’s speciation or ‘unex-
pected’ otherwise. If the ancestral lineage has a lower ploidy level 
than the query species due to subsequent whole-genome duplication 
(WGD; for example, ancestral diploid compared to a tetraploid), then 
the query proteome will appear as massively duplicated. Users should 
interpret the results in the context of their query species’ ploidy.

Consistency assessment. The main advantage of OMArk is that it eval-
uates the consistency of all the genes in the query proteome compared 
to what is known for its lineage, both taxonomically and structurally.

In addition to a query proteome, it needs only a precomputed OMAmer 
database, which is available for download from the OMA browser10.

The web server (https://omark.omabrowser.org) lets users upload 
a FASTA file of their proteome of interest and visualize or download 
the results once the computation is done, typically within 35 min for a 
proteome of 20,000 sequences. Additionally, users can interactively 
browse and compare precomputed OMArk results for over 8,000 
annotation sets from the National Center for Biotechnology Informa-
tion (NCBI), Ensembl and UniProt.

Query protein placement. OMArk takes as input a proteome FASTA 
file in which each gene is represented by at least one protein sequence. 
OMArk starts with OMAmer11, a fast k-mer-based method that assigns 
proteins to gene families and subfamilies (Fig. 2a), represented as 
hierarchical orthologous groups (HOGs)12. These gene families are 
predefined in the OMA database13 using over 2,500 species but could 
in principle be used with other databases using the HOG concept.

Species identification. To infer the species composition of the query 
proteome, OMArk tracks the protein placement into gene families and 
their taxa of origin (Fig. 2b). Ideally, a species’ proteome will have place-
ments only into gene families from its ancestral lineage. For example, 
human genes will have originated at the common ancestor of primates, 
mammals and vertebrates, but not rodents. OMArk starts from this 
assumption and identifies paths in the species tree where placements 
are overrepresented, and it then selects the most recently emerged 
clade as the inferred taxon. If multiple paths are overrepresented, 
OMArk reports the most populated as the main taxon and all others 
as contaminants.
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Fig. 1 | Summary of OMArk proteome quality statistics. a, Schematic 
overview of the OMArk concept and output. OMArk provides two main quality 
assessment categories: completeness assessment and consistency assessment. 
Completeness assessment is based on the overlap of the query proteome with a 
conserved ancestral gene set of the species’ lineage. OMArk classifies genes in the 
query proteome that are found in a single copy or multiple copies (duplicated) 
or missing. Completeness assessment is similar to methods like BUSCO but also 
considers conserved genes that are in multiple copies. Consistency assessment  
is based on the proportion of query proteins placed in gene families of the  
correct lineage (consistent), gene families of an incorrect lineage  
(either randomly (Inconsistent) or to specific species (contamination)) and 

placed in no gene families at all (unknown). b, An example of OMArk’s graphical 
output for the model organism zebrafish (Danio rerio). The top of the stacked bar 
plot represents the completeness assessment and shows genes that are found in a 
single copy (dark green; here: 91.78%), duplicated (light green, 4.85%) or missing 
(red, 3.37%). The lower part of the bar plot represents the consistency assessment 
and shows taxonomically consistent genes (blue, 96.31%), taxonomically 
inconsistent genes (violet, 0.65%), contaminants (orange; none in this example) 
or genes with no detected homology (unknown; black, 3.04%). All categories 
annotated with hashes correspond to the proportion of partial mappings (black 
hashes) and fragmented genes (white hashes).

http://www.nature.com/naturebiotechnology
https://omark.omabrowser.org


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02147-w

Taxonomic consistency classifies query proteins based on their 
taxonomic origin by comparing them to the lineage’s known gene 
families (lineage repertoire; Fig. 2d). Proteins fitting this lineage rep-
ertoire are classified as consistent, whereas those that fit outside are 
classified as either inconsistent or contaminant (Fig. 2f). The contami-
nant category contains all inconsistent placements that are closer to 
a contaminant species than to the main species, as determined by the 
species identification step. Proteins with no gene family assignment 
are classified as unknown.

Structural consistency classifies query proteins based on sequence 
feature comparisons with their assigned gene family. Proteins only 
sharing k-mers with their gene families over part of their sequence 
are labeled partial mappings, whereas proteins with lengths less than 
half their gene family’s median length are labeled fragments (Fig. 2f).

Taxonomic and structural consistency are complementary parts 
of the consistency assessment performed over the whole proteome 
and help identify annotation errors, a feature lacking in most quality 
assessment methods. A proteome with a high proportion of consistent 
proteins indicates more reliable annotation. Conversely, a high propor-
tion of partial mappings and fragments indicates potential gene model 
inaccuracies. Inconsistent proteins suggest either gene families not 
previously identified in the target clade or, if they are primarily partial 
or fragments, sequences with biased composition. Similarly, unknown 
proteins may be sequences without close homologs or annotation 
errors. Thus, not all proteins classified as inconsistent or unknown 
are necessarily errors, but an unusually high proportion may indicate 
a systematic error in the annotation.

An example of the OMArk output for the Danio rerio proteome 
shows it has a high completeness (96.6%) and consistency (96.3%), as 
expected for a well-curated model species (Fig. 1b).

Validation on simulated proteomes
To evaluate OMArk’s ability to provide accurate quality assessment, 
we simulated cases of genome incompleteness, erroneous sequences, 
gene fragmentation or fusion, and cross-species contamination. We 
used two datasets of eukaryotic proteomes (Supplementary Table 1): 
a dataset comprising nine model species known for their high qual-
ity (model dataset) and a dataset including 16 species representing 
eukaryotic diversity and absent from the reference OMA database 
(representative dataset).

Simulated incompleteness. For each proteome in the datasets, we 
simulated incompleteness by removing varying percentages (10%–
90%) of random proteins. OMArk’s results closely approximate the 
simulated completeness in most cases, although it tends to overesti-
mate it (Fig. 3a and Supplementary Figs. 1 and 2). The error margin is 

lower in the model dataset (+2.3% on average) than in the representative 
dataset (+9.9% on average). For both datasets, OMArk’s performance 
is similar to BUSCO’s, but BUSCO overestimates completeness by a 
slightly smaller margin (+2.1% and +6.1% on average for the model and 
representative datasets, respectively; Supplementary Figs. 1 and 2).

Both methods overestimate completeness in species with a high 
number of duplicated genes. This effect is expected, as reporting them 
as missing requires all copies to be absent. This trend is more pro-
nounced in OMArk, because OMArk does not require conserved genes 
to be in a single copy in extant species, resulting in a more inclusive set 
of conserved gene families. Thus, because OMArk reports more dupli-
cates, it overestimates completeness more than BUSCO. This trend is 
observed in both datasets but especially the representative dataset, as 
these proteomes have a higher average proportion of duplicated genes 
(8.4% for the representative dataset versus 2% for the model dataset).

This high level of detected duplication in the representative 
dataset can be explained by the selected ancestral lineages, which 
are more distantly related than those selected in the model dataset. 
Thus, ancestral gene families in the representative dataset may have 
had more time to undergo duplication. Furthermore, WGD events that 
occurred after the ancestral lineage can lead to high levels of reported 
duplication in OMArk and BUSCO. A striking example is the Hibiscus 
syriacus proteome, where OMArk reports nearly 70% of the genes as 
duplicates. These results are due to H. syriacus being a tetraploid, 
having undergone two WGD events after the last Malvaceae common 
ancestor14. Because the Malvaceae clade was selected as the ancestral 
lineage by OMArk, the higher number of duplicates corresponds to the 
genes that were retained as two copies or more after the WGD.

Simulated erroneous sequences. We simulated erroneous sequences 
by adding randomly generated sequences, from 10% to 90% of the 
proteome, to each proteome in the model and representative data-
sets. As a result, there was a corresponding increase in the propor-
tion of Unknown proteins, given that these added sequences lacked 
detectable homologs (Fig. 3b). In all simulations, OMArk detected 
the expected proportion of taxonomically and structurally consist-
ent genes, indicating that this category accurately represents the 
proportion of high-confidence coding sequences. Results were similar 
whether the sequences were generated from random nucleotides or 
designed to resemble the target species’ proteins (Supplementary 
Results: Simulation Results and Supplementary Figs. 3–6).

Simulated fragmentation. We simulated fragmented proteomes 
by randomly selecting sequences and then randomly removing 
between 10% and 90% of their length, ranging from 10% to 90% of the 
proteome. OMArk identified an increasing proportion of fragmented, 

Fig. 2 | Overview of the OMArk methodology. a, Sequences from the query 
proteome are placed into known HOGs using the k-mer-based fast-mapping 
method OMAmer. Shown is a gene tree with nested gene families (HOGs), 
delineated by speciation and duplication events. OMAmer provides accurate 
placement of protein sequences in their correct subfamily. b, The specific 
taxon of the query species is automatically determined by OMArk. Here, the 
species tree is shown, with protein placements represented by red dots. The 
size of the dots is logarithmically proportional to the number of placements in 
a typical scenario but simplified for this schema. The path to the query taxon 
(blue) is inferred based on the maximal number of placements, and the path(s) 
to contaminant taxa (gold) are determined as those with more placements than 
expected by chance. c, OMArk defines the ancestral reference lineage for a given 
query species as the most recent taxonomic level, including the species, and 
that is represented by at least five species in the OMA database. Here, a species 
tree is shown with colored bars representing individual genes. d, The conserved 
and lineage-specific gene sets. The conserved repertoire contains all the HOGs 
defined at the reference ancestral level that cover at least 80% of the species 
in the clade. These are gene families inferred to be present since the common 

ancestor. The lineage repertoire is a superset of the conserved repertoire, with 
the addition of genes that originated later in the lineage and are still present 
in at least one species in the OMA database. In the repertoires, genes from the 
different species are grouped into their HOGs. e, OMArk assesses completeness 
by comparing the conserved ancestral repertoire to the query protein sequences 
and classifying them as single copy, duplicated or missing. f, OMArk assesses 
consistency by comparing the query protein sequences to the lineage repertoire 
and classifying them as taxonomically consistent, inconsistent, unknown or 
contaminant. OMArk also assesses gene model structure by classifying query 
proteins as partial mapping or fragment. Shapes of species shown in a and b 
reprinted from Phylopic (www.phylopic.org). Silhouettes of Homo sapiens and 
Canis familiaris dingo by T. M. Keesey (public domain), Pongo abelii by Gareth 
Monger (CC-BY 3.0), Pan troglodytes by J. Lawley (public domain) and Xenopus 
laevis by Ian Quigley (CC-BY 3.0). Silhouettes of Saccharomyces cerevisiae 
by W. Decature (public domain), Laccaria by R. Percudani (public domain), 
Caenorhabditis elegans by J. Warner (public domain) and Mus musculus by  
S. Miranda-Rottman (CC-BY 3.0).
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taxonomically consistent proteins, reaching up to half the known num-
ber of fragmented sequences. This result is expected, as OMArk only 
identifies fragments that are less than half the gene family’s median 
protein length and thus will not detect fragments that are 51% to 90% 
of the original protein size. Given the modified expected fragmenta-
tion detection rate (only half the simulated fragments), there is only a 
slight underestimation of consistent, nonfragmented proteins: 0.6% 
for the model dataset and 1.8% for the representative dataset (Fig. 3c 
and Supplementary Figs. 7 and 8). We also detected a slight increase 
in unknown proteins, possibly because these fragments are too short 
to be detected as homologs of existing genes.

Simulated fusion. We simulated cases of fused protein-coding genes by 
merging pairs of randomly selected proteins, ranging from 10% to 90% 
of the proteome, and added them to the proteomes while removing 
the original proteins. We expected that OMArk would associate these 
fused proteins to one of the existing HOGs but as a partial match, as only 
part of the sequence would be in common with the HOG. However, the 
increase in partial mappings as the proportion of fused genes rises was 
less than expected. The proportion of structurally and taxonomically 
consistent genes was on average 17.6% higher than expected for the 
model dataset and 13% higher than expected for the representative 
dataset (Fig. 3d and Supplementary Figs. 9 and 10).
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Simulated contamination. We simulated contamination by introduc-
ing sequences from bacteria, fungi, microbial eukaryotes or humans to 
the model and representative datasets. OMArk accurately identified 
the taxonomic origin of the contaminant, though its sensitivity varied, 
especially with a low number of contaminant proteins. For bacterial 
and fungal sources, contamination became detectable with as few 
as ten contaminant proteins, corresponding to ~10 kbp contaminant 
bacterial DNA or ~25 kbp fungal DNA. Contamination was reliably 
detected at 50 or more contaminant proteins (~50 kbp bacterial DNA, 
~125 kbp fungal DNA). However, for other eukaryotic species, precise 
contamination detection required at least 100 to 200 contaminant 
proteins (~200–700 kbp free-living unicellular eukaryote DNA). OMArk 
missed contamination when the contaminant had no close relative in 
OMA or was too closely related to the contaminated species (Supple-
mentary Table 2; Supplementary Results: Contamination simulation). 
Specifically, OMArk only detected human sequence contamination in 
vertebrates at high levels (1,000 proteins; ~150 Mpb human DNA) and 
not at all in mammals.

OMArk results for 1,805 eukaryotic reference proteomes
Comparing protein-coding gene annotations between closely related 
species, including one ‘gold standard,’ is essential to assess annota-
tion quality2. Thus, we ran OMArk on a set of 1,805 Eukaryotic UniProt 
proteomes to serve as a reference dataset (Fig. 4 and Supplementary 
Table 3). We provide quality assessments for major clades and detailed 
analyses of specific proteomes with low-quality results in Supplemen-
tary Results: Results on UniProt Reference Proteomes. All results can 
be visualized on the OMArk web server (https://omark.omabrowser.
org) and compared to those of closely related species.

OMArk and BUSCO comparison
We compared OMArk and BUSCO for assessing completeness for the 
1,805 Eukaryotic UniProt Reference Proteomes. We define complete-
ness as the total percentage of conserved genes from either BUSCO or 
OMArk that are classified as single copy, duplicated copies or fragments 
in the query proteome (that is, not missing). Note that this differs from 
BUSCO’s definition of completeness, which does not include frag-
ments. OMArk and BUSCO yield similar results overall, with a Pear-
son correlation of 0.86 for completeness across the 1,805 proteomes  
(Fig. 5). Disparities are expected, as OMArk considers both single-copy 
and multicopy genes, whereas BUSCO is restricted to single-copy genes. 
For 57% of the proteomes, BUSCO versus OMArk completeness differed 
by 5% or less. Where the difference was larger, proteomes considered 
more complete by OMArk typically exhibited more fragments, indicat-
ing OMArk’s ability to identify fragmented proteins without categoriz-
ing them as missing.

The proteome’s lineage also influenced the disparity in complete-
ness scores between BUSCO and OMArk. Certain BUSCO lineages, such 
as Liliopsida and Stramenopiles, were often deemed as more complete 
by BUSCO, whereas lineages such as Aves and Nematoda tended to be 
deemed as more complete by OMArk (Supplementary Fig. 14). This 
bias may stem from the number of ancestral genes assessed, as fewer 
BUSCO genes or conserved HOGs generally resulted in higher BUSCO 
completeness. Conversely, a higher number of BUSCO genes or con-
served HOGs resulted in higher OMArk completeness. Additionally, 
when OMArk deemed a proteome as more complete, the OMA database 
typically had fewer species in the relevant clade than for proteomes 
where BUSCO estimated a higher completeness (Supplementary  
Table 7). Thus, the lineage and consequently the number of conserved 
genes used for assessment affects completeness in both BUSCO and 
OMArk. A larger set of conserved genes and more species in the lineage 
of interest likely lead to more accurate completeness assessments.

Runtime comparison over the same set of proteomes showed 
OMArk is generally faster in terms of total CPU time, with an average 
of 9.2 min per proteome for OMArk versus 25.2 min per proteome for 
BUSCO for all 1,805 proteomes. BUSCO’s runtime largely depends 
on the number of BUSCO genes used in the assessment, whereas 
OMArk’s runtime depends mainly on the number of proteins in the 
query proteome.

These results highlight the biases inherent in each tool. Ultimately, 
we advise to use both software packages to obtain the most informative 
gene repertoire quality assessment. More comparisons are detailed 
in the Supplementary Results: Comparison with BUSCO on UniProt 
Reference Proteomes.

Contamination in public databases
OMArk detected 124 contamination events across 79 of 1,805 pro-
teomes, some with multiple contaminating species (list in Supple-
mentary Table 4). Two of them, Ricinus communis and Lupinus albus, 
were found to be contaminated by ten and seven species, respectively 
(mostly bacteria and one fungus), indicating that extreme cases of 
contamination persist in public databases. We independently veri-
fied each contamination case using BLAST and BlobToolKit Viewer  
(Supplementary Table 4) and confirmed 117 (93.6%) of the contamina-
tion events in 73 species.

Error propagation in some avian proteomes
We detected widespread presence of fragmented genes in the 234 avian 
species from the UniProt Reference Proteomes (median proportion of 
taxonomically consistent fragments: 18.3%, standard deviation: 4.8%). 
However, this was not observed in well-studied birds such as chicken 
(Gallus gallus; proportion of taxonomically consistent fragments: 

Fig. 3 | OMArk results for simulated proteomes. a–d, Three example species 
of the model dataset (left) and the representative dataset (right) are shown for 
each simulation. Each simulated error in panels a–d was applied to 10%–90% of 
the proteome (x axis). a, Simulated incompleteness. OMArk (top) and BUSCO 
(bottom) results for the datasets. Colors represent the part of the conserved 
gene set found in a single copy (green) or duplicated (light green) or are missing 
(red). The simulated completeness corresponds to the percentage of the genome 
that has been randomly selected in each simulation. Horizontal black lines show 
the expected completeness (that is, the measured completeness for the source 
proteome). b, Erroneous sequence simulation. Colors represent proteins which 
map to the correct lineage (consistent, blue), to another lineage (Inconsistent, 
violet) or have no homologs (unknown, black). Hashes indicate structural 
inconsistency relative to the gene family (either partial mapping (black hashes)  
or fragmented genes (white hashes)). The appended error (x axis) corresponds 
to the quantity of erroneous sequences that was added to the proteome as a 
percentage of its original protein number. Horizontal red lines indicate the 
expected number of structural and taxonomically consistent genes, considering 
the proportion in the source proteome and the known introduced error.  

c, Fragmented sequence simulation. The x axis corresponds to the percent of 
the proteome that has been fragmented. The pool of artificially fragmented 
genes are cut randomly to be between 10% and 90% of the original length of the 
protein. Horizontal red lines indicate the expected number of nonfragmented 
taxonomically consistent genes, considering the proportion in the source 
proteome and the known fragment rates; horizontal pink lines indicate this 
proportion if half of the fragments are detected. d, Fused sequence simulation. 
The x axis corresponds to the percent of the proteome that has been fused. Pairs 
of proteins are selected randomly and appended together to simulate fusion. 
The fused protein gets added to the proteome while the original proteins get 
removed. Horizontal red lines indicate the expected number of structural and 
taxonomically consistent genes, considering the proportion in the source 
proteome that have been fused. Ancestral lineages for the six shown species are 
Homo sapiens, Hominidae; Drosophila melanogaster, melanogaster subdivision; 
Arabidopsis thaliana, Brassicaceae; Mytilus coruscus, Lophotrochozoa; 
Reticulomyxa filosa, SAR (Stramenopiles-Alveolata-Rhizaria) supergroup; and 
Hibiscus syriacus, Malvaceae.

http://www.nature.com/naturebiotechnology
https://omark.omabrowser.org
https://omark.omabrowser.org


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02147-w

2.4%; Supplementary Fig. 18). The proportions of fragments depended 
mainly on the source of the proteome. Most of the highly fragmented 
proteomes originated from the same source, the Bird 10 K consortium 

annotation pipeline15, and tended to have fragments in the same gene 
families, suggesting systematic bias (Supplementary Figs. 19 and 20; 
Supplementary Results: Analysis of avian proteomes). Annotations 
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for these genomes were performed using, among other sources of 
evidence, homology from the Ensembl 85 (ref. 16) annotation of 
zebra finch15 (Taeniopygia guttata; taeGut3.2.4 assembly). OMArk 
also detected a high proportion of fragments in this older version of 
the zebra finch proteome (proportion of taxonomically consistent 
fragments: 20.3%), but not in the latest version (0.5% of taxonomically 

consistent fragments; Ensembl 99 + ; bTaeGut1_v1.p assembly). Further-
more, a high proportion of genes fragmented in the Bird 10 K proteomes 
were also fragments in the older zebra finch proteome (Supplementary 
Fig. 21). These results suggest fragments in these bird proteomes likely 
result from propagation from the fragmented taeGut3.2.4 proteome.

Selection of high-quality proteomes among close species
OMArk’s quality assessment depends on the selected ancestral line-
age. Thus, a best practice is to compare the results to species shar-
ing the same ancestral lineage. We illustrate this by comparing the 
OMArk results of a model species, Mus musculus, with its close relatives 
within the Myomorpha clade, a group of mouse-like rodents (Fig. 6a). As 
expected, the well-curated species Mus musculus and Rattus norvegicus 
scored best, both in completeness and consistency. Several other spe-
cies in the clade exhibited noticeable quality issues, despite being in 
the OMA database and contributing to the ancestral reference HOGs  
(for example, Cricetulus griseus). We observed similar patterns for other 
model organisms consistently ranking as the best proteomes in their 
clade (detailed in Supplementary Results: Comparison of proteomes 
from closely related species; Supplementary Figs. 22–30).

These results demonstrate OMArk’s ability to identify the 
best-quality proteome in any clade of interest, which is useful for 
selecting representative genomes and for improving annotation of 
nonmodel species.

Assembly and annotation comparisons
OMArk can be used to compare gene repertoires from different 
assemblies or annotations of the same species, aiding in benchmark-
ing annotation methods or gauging improvement in gene repertoire 
completeness and consistency over time. To illustrate, we ran OMArk 
on newer versus older assemblies or annotations for species with docu-
mented changes between the Ensembl Metazoa releases 53 and 5417. 
This corresponds to 11 protostome species with annotations on dif-
ferent assembly versions and seven nematode species with different 
annotations on the same assembly (Supplementary Table 5).

2. Metamonada
1. Rhodophyta 3. Discoba

4. Hacrobia
5. Amoebozoa
6. Apusozoa

7. Other Opisthokonta

Viridiplantae SAR ProtostomiaDeuterostomia
Other
FungiBasidiomycotaAscomycota1,234 567

Other
Metazoa

Pe
rc

en
ta

ge
 o

f
pr

ot
eo

m
e

80

100

60

40

20

Unknown
Inconsistent

Consistent

Contamination

Consistency

Pe
rc

en
ta

ge
 o

f
co

ns
er

ve
d 

H
O

G
s

100

20

0

40

60

80

Single

Duplicated

Missing

Completeness

N
um

be
r o

f
 p

ro
te

in
s

120,000

80,000

60,000

100,000

40,000

20,000

Protein 
number

Fig. 4 | OMArk results on 1,805 eukaryotic UniProt reference proteomes. 
Bar graphs of the number of canonical proteins in each proteome (top). 
Completeness assessment showing the proportion of conserved genes (green) 
in the proteome, with a breakdown among single-copy (light green), duplicated 
(dark green) and missing (red) genes in all proteomes (middle). Consistency 

assessment showing the proportion of accurately mapped proteins (consistent; 
blue), incorrectly placed proteins (Inconsistent; purple), contaminant proteins 
(orange) and proteins with no mapping (unknown; black) (bottom). Genomes are 
ranked by taxonomy, with major eukaryotic taxa shown on a taxonomic tree at 
the bottom.

0
0

20

20

40

40

60

60

OMArk completeness (%)

BU
SC

O
 c

om
pl

et
en

es
s 

(%
)

O
M

Ark fragm
ent (%

)

80

80

100

0

5

10

15

20

25

30

35

100

Fig. 5 | Comparison of mapped proteins between OMArk and BUSCO. Each 
point on the scatterplot is one of the 1,805 Eukaryotic UniProt Reference 
Proteomes assessed by both methods. The x axis is the percentage of the 
conserved set of ancestral genes found in the query proteome by OMArk. 
The y axis is the percentage of BUSCO genes found in the query proteome by 
BUSCO. Both completeness scores include duplicated and fragmented proteins. 
Proteomes are colored by the percentage of fragments found in the proteome, as 
determined by OMArk.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02147-w

When comparing OMArk results across different annotation ver-
sions of the same assembly, we observed minor changes (less than 
1% for most metrics), likely due to incremental annotation updates 
affecting few genes. Nevertheless, we still detected a trend toward 
fewer duplicated genes and more consistent genes (Supplementary 
Results: Assembly and annotation comparisons).

Comparing annotations on different assemblies, OMArk detects 
noticeable improvement in completeness and/or in structurally and 
taxonomically consistent genes for all but one species, but not always in 
both (Supplementary Results: Assembly and annotation comparisons; 
Supplementary Table 9). For instance, B. impatiens and Acyrthosiphon 
pisum showed a slight decline in completeness (−1.21% and −0.73%, 
respectively) but a large rise in taxonomically and structurally con-
sistent genes (+17.34% and +21.06%, respectively; Fig. 6b). In contrast, 
Crassostrae gigas exhibited an increase in completeness (+4.38%) and 
a decrease in consistency (−9.16%).

OMArk also detected the removal or decrease in contamination for 
three species (Schistosoma mansoni, A. pisum and Glossina fuscipes), 
as well as new contamination introduced in Teleopsis dalmanni’s latest 
assembly. Most of the observed changes had no clear correlation with 
improvement in assembly quality metrics, except the proportion of 
fragmented genes decreasing with a higher N50 (Pearson correlation: 
0.85, P value: 0.002). Our results indicate that new assemblies generally 
improved gene set quality, changed contamination status and reduced 
fragmented gene models due to higher assembly contiguity. However, 
these new assemblies were not necessarily annotated in the same way, 
making it difficult to discern whether observed changes are due to 
improved assemblies or to improvements in annotation procedures.

Finally, we compared 1,200 pairs of protein-coding gene annota-
tions, each pair including one annotation from Ensembl and the other 

from the NCBI (GenBank and RefSeq), both derived from the same 
assembly. We analyzed the differences in OMArk and BUSCO results for 
all these pairs of annotations (Supplementary Tables 6 and 8 and Sup-
plementary Fig. 32). NCBI proteomes generally exhibited higher com-
pleteness (+1.39%), fewer proteins with no known homologs (−0.64% 
unknown) and fewer structurally inconsistent proteins (−0.18% partial 
mapping and −0.64% fragments). Conversely, Ensembl proteomes 
exhibited a slightly lower taxonomic inconsistency (−0.09%).

Because OMArk’s underlying OMA database predominantly 
sources its proteomes from Ensembl (74% of Eukaryotic proteomes, 
Supplementary Fig. 31), we hypothesized this might introduce a bias. 
We tested this by comparing results on a subset of annotation pairs 
from species in OMA sourced from Ensembl to the rest of dataset. In 
this subset, proteomes from Ensembl had fewer detected fragments 
(−0.27%), fewer partial mapping proteins (−0.28%) and fewer taxo-
nomically inconsistent proteins (−0.28%) than NCBI proteomes. These 
differences confirm that OMArk is slightly biased due to the reference 
proteomes’ origin. Thus, NCBI proteomes may appear slightly worse 
than they actually are, not necessarily due to quality issues but due 
to discrepancies in gene models predictions compared to Ensembl. 
However, the quantitative impact of such bias is minimal and unlikely 
to obscure any major annotation quality issues.

Overall, our findings highlight OMArk as a valuable tool for track-
ing improvements in genome assembly and annotation. By analyz-
ing other metrics beyond completeness, OMArk can detect changes 
toward overall better gene sets, even when the completeness decreases. 
Furthermore, OMArk is effective for comparing different methods 
or sources of annotation, although users should note that minor dif-
ferences between proteomes could be attributed to a bias induced by 
OMArk’s reference proteomes.
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Discussion
OMArk, leveraging the OMA database and k-mer-based fast gene 
family placement, evaluates the quality of protein-coding gene anno-
tations. Our results on simulated incomplete genomes and on real pro-
teomes demonstrates OMArk’s completeness measure is comparable 
to BUSCO. This finding is not surprising, as both methods assess the 
presence or absence of near universally conserved genes in a lineage. 
However, there are several key differences. OMArk not only focuses 
on single-copy conserved genes but also includes gene families that 
underwent duplication. Second, BUSCO uses hidden Markov model 
profiles to map query genes to their conserved gene families, a method 
more accurate but slower than the k-mer mapping exploited by OMArk. 
Finally, OMArk does not rely on a prespecified dataset of conserved 
genes but automatically chooses them depending on the query spe-
cies’ taxonomic lineage.

OMArk assesses proteome consistency using a broader selection 
of orthologous groups than conserved ones, and proteins placed into 
gene families that are taxonomically consistent with the species of 
interest can be more confidently considered as true coding genes. 
Moreover, we can assess the quality of their gene structures by compar-
ing to known sequences in the same family. However, there are a few 
caveats when interpreting OMArk results: gene consistency with the 
same lineage is expected only in species with predominantly vertical 
gene family inheritance and if the chosen family is well sampled and 
of good quality in our reference database.

Like most orthology databases, OMA, OMArk’s reference database, 
has uneven taxonomic sampling. For instance, mammals are overrep-
resented relative to total biodiversity, whereas free-living unicellular 
eukaryotes are underrepresented. OMA is actively maintained and 
has a release cycle of under a year, focusing on improving coverage for 
underrepresented species while including only high-quality data. Con-
sequently, OMArk’s resolution is expected to improve as more diverse 
genomes are included. When choosing a reference lineage, OMArk 
selects the most specific clade with a sufficient number of species. 
However, an excessively broad clade may lack accuracy (most genes 
being consistent and few genes needed for completeness), whereas 
an excessively narrow clade may not be generalizable. OMArk issues 
warnings for ancestral lineages at the genus level or below and the 
phylum level and above and allows users to select the taxonomic rank 
for an ancestral lineage. We recommend that users be mindful of OMA’s 
species coverage for the ancestral lineage and interpret the results 
critically in this context.

OMArk’s completeness and consistency metric assume that pro-
teomes in OMA accurately reflect the ‘real’ gene content of the spe-
cies in the clade, which may not always hold true beyond a few highly 
curated species. Any proteome will likely carry bias from its annota-
tion method. Such a bias impacts OMArk because many eukaryotic 
proteomes in OMA were downloaded from Ensembl. Although these 
are high-quality annotations, OMArk consequently is slightly biased 
towards Ensembl’s and similar gene prediction pipelines. Comparisons 
with NCBI show that some proteins not predicted by these pipelines will 
appear as inconsistent, and other valid gene structure predictions may 
be classified as partially mapping or fragmented. Although this effect 
is minor, users should be careful of such bias when comparing annota-
tions. Finally, OMArk reports possible contamination, which should 
help genome annotators to flag contamination cases and reassess 
their genomic data. However, users should be aware of a few caveats. 
OMArk has a low sensitivity to contamination from human sequences or 
from eukaryotes from lowly sampled clades, and it is limited to coding 
regions. Furthermore, OMArk cannot discriminate between contami-
nation and recent horizontal gene transfer. Using the list of potential 
contaminants, annotators can identify the corresponding contigs in the 
genome assembly for validation. Nevertheless, we recommend using 
assembly-level dedicated methods18 such as BlobToolKit19 to perform 
in-depth analysis and correction of genome assemblies.

OMArk provides a comprehensive proteome quality assessment, 
aiding annotators in improving gene annotation and enabling users to 
select high-quality proteomes for their investigations. We hope OMArk 
will help improve the quality of existing and newly produced gene sets, 
advancing the field of genomic research.
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Methods
OMAmer placement
The OMAmer database used in this study was generated from the 
November 2022 release of the OMA database10. Placements were made 
with OMAmer version 2.0.0, using default parameters. Root HOGs  
(that is gene families) with five or less proteins and a species coverage 
(the proportion of species in the clade with a gene in the HOG) lower 
than 0.5 were excluded, as they are most likely spurious.

Overview of the OMArk algorithm
All analyses shown here were performed with OMArk version 0.3. The 
OMArk software takes the following as minimum input: 1) the output 
of the OMAmer placement for a whole proteome, whereby proteins of 
these proteomes are placed in HOGs, and 2) the path to the correspond-
ing OMAmer database.

Optionally, OMArk can take the NCBI taxonomy ID of the pro-
teome’s species which will be used to select its ancestral lineage; oth-
erwise, its taxa will be inferred automatically (see 'Automatic species 
identification and contamination assessment' below). The FASTA file of 
the query proteome is also an optional input, which may be used to gen-
erate output FASTA files for inconsistent, contaminant and unknown 
proteins. Finally, if the proteome contains multiple isoforms per gene, 
an additional option (-i) allows the user to provide a comma-separated 
file where all protein identifiers corresponding to a single gene are writ-
ten on the same line. Only one isoform will be selected for completeness 
and consistency assessment, based on the OMAmer placement score 
as detailed in the section ‘Isoform selection’ below.

Isoform selection. If the target proteome contains more than one 
protein by gene, and an isoform file was provided by the user, OMArk 
will automatically select the sequence with the best match in the 
OMAmer database. This selection is based on the hit’s ‘family P’ (from 
OMAmer), which represents the negative natural logarithm of the P 
value of having as many or more k-mers in common under a binomial 
distribution. This helps ensure that gene model comparison will 
happen between similar isoforms. OMArk selects the isoform with 
the lowest P value as the isoform of reference. The list of selected 
isoforms is then provided in OMArk’s output in a file with the suffix 
_selected_isoform.txt.

Automatic species identification and contamination assessment. 
The taxonomic distribution of HOGs in the query proteome can be used 
to automatically detect the species from which they come from. OMArk 
does this by using the nonredundant list of HOGs in which proteins of 
the query proteomes were placed and extracting the taxonomic level 
where each HOG is defined (that is, the taxonomic node after emer-
gence or duplication of the gene family). This step is used to obtain 
the number of mappings to each clade in the tree of life, which we call 
clade occurrence N.

To reduce noise due to incorrect mapping, which is more com-
mon in broad clades with a large number of HOGs, we divide the clade 
occurrence by the number of total HOGs defined at each level to obtain 
a normalized clade occurrence N. In the presence of only one species 
and no noise, we assume the most likely placement would be the clade 
with the highest normalized clade occurrence, with all its parent clades 
having an equal or lower normalized occurrence count.

The OMArk algorithm uses this assumption and implements a few 
corrections to account for noise in HOG placement and allow for more 
than one species in the proteome, in case of contamination. First, all 
clades with an occurrence of more than two are used to construct a 
simplified taxonomic tree containing only branches leading to these 
clades. The tree structure itself is derived from the OMA underlying 
taxonomy, which used until now the NCBI taxonomy20.

The OMArk algorithm for species identification is a recursive 
postorder traversing function. At each leaf, it returns the leaf clade as 

likely placement, with occurrence Nleaf and normalized occurrence N′leaf 
of the taxonomic level. At each node, it compares the occurrence scores 
of the current node to the most likely placements of its children. To be 
considered relevant, a child’s placement has to satisfy:

•	 Nchild > Nnode × Dnode,child, where Dx,y represents the proportion  
of HOGs defined in clade x that have a child defined in clade y.  
A high value represents a high duplication rate in the branch 
leading from x to y. This condition controls for high duplication 
numbers in the branch leading to some lineages (for example, 
ancestral WGD), which favor overspecific placement into  
those clades.

•	 N′
child > N

′
node × |Schild|/|Snode|, where | Sx| is the number of species in 

clade x. This condition controls for sampling imbalance in 
lineages that favor overspecific placement in larger clades.

If only one child is considered relevant, it is returned as the most 
likely taxon. If more than one is considered relevant, all are returned 
as likely taxa. If no child is considered relevant, only the current node 
is returned as likely taxon. After traversal, this module outputs a list of 
independent clades which have more hits than expected by chance.

For each clade with more placements than expected, we select all 
proteins that can be unambiguously attributed to these clades (that is, 
all proteins that map to a HOG defined at a node in the subtree leading 
to its first common ancestor with any other clade in the list). The clade 
with the most proteins is considered as the most likely main taxon and 
the other as contaminants. In the case when OMArk detects multiple 
possible contaminant species for a protein based on its placement, it 
will report the protein as ‘ambiguous contaminant’ sequences. This fea-
ture possibly overestimates the proportion of contaminant sequences, 
especially in presence of spurious hits (that would otherwise be in 
the inconsistent category), but ensures most of the contaminants are 
included in the category.

Completeness assessment. The completeness assessment measures 
the proportion of HOGs that are expected to be conserved in the spe-
cies’ lineage. This assessment is done by first selecting the ancestral 
lineage of the species, defined as the most recent taxonomic level 
including the species and represented by at least five species in the 
OMA database. Then, OMArk defines the ancestral ‘conserved reper-
toire’ of the query species: all the HOGs defined at this ancestral level 
that cover more than 80% of the species in the clade.

Because a HOG at the selected taxonomic level represents a 
single ancestral gene, conserved HOGs are classified as one of the 
following:

•	 Single copy if one protein in the query proteome maps to it. To 
be robust to minor errors in phylogenetic placement, a single 
underspecific hit (placement in a parent HOG; Fig. 2a) or a single 
overspecific hit (placement in a child HOG) is sufficient to con-
sider a conserved HOG as single copy.

•	 Duplicated if more than one query protein maps to it. A dupli-
cated, conserved HOG is further classified as unexpected if 
multiple proteins are all placed into the ancestral HOG itself 
(that is, no evidence of such duplication exists in the OMA 
database) or expected if the proteins were placed into subfami-
lies of the HOG (that is, the duplication event is documented  
in the database).

•	 Missing if no proteins in the query genome are placed into it.

Consistency assessment. The consistency assessment evaluates 
the query proteome quality, again depending on the placement of its 
proteins into HOGs and the taxonomic level at which these HOGs are 
defined. Here, OMArk uses a ‘lineage repertoire’ of the query species: 
all the HOGs from the conserved ancestral repertoire plus those that 
originated later on and are still present in at least one species of the 
lineage. It uses this lineage repertoire to classify proteins as:
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•	 Unknown proteins are those that were not placed into  
existing HOGs. They correspond to either errors in the  
annotation or to gene families with no detectable counterpart  
in OMA (due to falling in sparsely sampled clades or being a  
novel protein).

•	 Consistent proteins are those that were placed into a HOG con-
sistent with the reference lineage: the HOG has a representative 
of at least one species from the lineage, whether it was present  
in the common ancestor of the reference lineage or emerged in 
its descendants.

•	 Contaminant proteins are those that map to a lineage of 
another species which has been detected as a likely contami-
nant by the contaminant detection module of OMArk (see 
‘Automatic species identification and contamination assess-
ment’ in Methods).

•	 Inconsistent proteins are those that were placed into HOGs from 
other parts of the tree of life and for which there is no evidence 
the gene families existed in the selected lineage or in any con-
taminant lineage. They are likely to correspond to gene families 
that were not observed in those species before or to be incorrect 
protein sequences.

For the proteins that map to existing HOGs, an additional charac-
terization is provided:

•	 Partial mappings are proteins from which less than 80% of the 
sequence overlaps with their target root HOG, that is, at least 
20% of the sequence at the extremity of the protein has no k-mer 
in common with the root HOG.

•	 Fragments are sequences that are not partial hits but whose 
length is <50% of the median length of sequences in the HOG it 
was placed to.

Acquisition of proteome data
Reference proteomes were downloaded from UniProtKB8 on 10 Feb-
ruary 2022 (version April 2021). Assembly data for this dataset were 
kindly provided by the UniProt Reference Proteome team and are 
available in Supplementary Table 3. Ensembl Metazoa proteomes 
were downloaded from their ftp website from version 52, 53 or 54 of 
the database (version number is reported in Supplementary Table 5).  
Data for the comparison of Ensembl and NCBI annotations were down-
loaded separately for each database. Ensembl proteomes were down-
loaded from Ensembl FTP for version 110 of the Main Ensembl website 
and version 57 of Ensembl Plants, Ensembl Metazoa, Ensembl Fungi 
and Ensembl Protists. NCBI proteomes were downloaded via the NCBI 
Datasets python API in August 2023, requesting genomes with annota-
tion and downloading GFF and proteins files. Isoform files were gener-
ated for the Ensembl proteomes using the gene information in FASTA 
header: NCBI isoforms files were created using the gene and protein 
information in the corresponding GFF files.

Generation of simulated proteomes
Two datasets were used to assess the effect of introducing errors into 
proteomes on OMArk quality scores. These two datasets of real pro-
teomes were used as the basis of the simulation: model proteomes and 
taxonomically representative proteomes. Model proteomes corre-
spond to model eukaryotic species whose proteomes are assumed to be 
of high quality. Representative proteomes were selected under several 
criteria: they represent the major eukaryotic taxonomic divisions (two 
of each when possible), they must not be present nor have species of 
the genus represented in the OMA database (to avoid circularity) and 
they must have the best score possible for the aspect of OMArk qual-
ity measures (mainly, few missing genes and a higher proportion of 
consistency from other species of their division). Both lists of species 
are available in Supplementary Table 1.

These source proteomes were manipulated in six ways, each simu-
lating a case of spurious annotation:

•	 Missing genes. For each proteome, only a fraction of the proteins 
were kept at random. This was repeated independently ten times 
with different proportions of the proteome kept, from 10% to 
90% by increments of 10%.

•	 Erroneous sequences. Errors in gene annotation were simulated 
from randomly generated nucleic sequences, from an equiprob-
able distribution of each base (25% of chance to draw A, T, G 
and C). The sequences were generated by increments of three, 
representing codons in the open reading frame, until a stop 
codon appeared. The resulting sequences were then translated 
into proteins and kept if their length was more than 20 amino 
acids. These sequences, independently generated in each simu-
lation, were then added to each proteome proportionally to the 
original number of proteins in it, from 10% to 90% by increments 
of 10%.

•	 Amino acid distribution-aware erroneous sequences. More 
realistic erroneous sequences were generated by computing 
the empirical distribution of amino acid in all proteins of the 
source proteome (treating stop codons as an additional amino 
acid) then sampling random characters from this distribution. 
This generated proteins with similar amino acid distribution 
and average length as the proteins in the target proteomes. 
These sequences, independently generated in each simulation, 
were then added to each proteome proportionally to the origi-
nal number of proteins in it, from 10% to 90% by increments  
of 10%.

•	 Fragmented sequences. We simulated fragments in the proteome 
by selecting random proteins in it, and removing part of the 
sequences randomly from between 10% and 90% of its length. 
The part was removed from either the C-terminal or N-terminal 
end, randomly with equal probability of each. This was repeated 
with different sequences until a target proportion of the pro-
teome size. This process was done independently ten times for 
each proteome, for 10% to 90% of the proteome, by increments 
of 10%.

•	 Fused sequences. We simulated fused protein sequences  
by randomly selecting pairs of proteins in the proteome  
and appending them to one another: Before the simulated 
fusion, we removed between 0% to 20% of one protein at  
the C-terminal end and 0% to 20% of the other at the N-terminal 
end. The merged protein was added to the proteome while 
the two original proteomes were removed. This process was 
repeated until a target proportion of the proteome size was 
reached. This step was done independently ten times for  
each proteome, for 10% to 90% of the proteome, by increments 
of 10%.

•	 Contamination. A list of eukaryotic and bacterial proteomes, 
either from common contaminants in genomic data or  
microscopic species from a variety of clades were selected  
as contaminant proteomes. Then, a fixed number of  
proteins (10, 20, 50, 100, 200, 500 and 1,000) were drawn  
randomly without replacement independently from the  
contaminant proteomes and added to the complete  
source proteomes.

BUSCO comparisons
BUSCO3 v.5.2.2 was run on UniProt Reference Proteomes and simulated 
data, using the odb10 version of the BUSCO dataset of the most spe-
cific lineage possible covering the target proteome and with default 
options. The corresponding dataset is available in Supplementary 
Table 3. The summarized result for the BUSCO run was then extracted 
from the summary file.
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Avian proteome fragment analysis
To compare fragmented sets between all avian UniProt Reference 
Proteomes, we first queried the OMArk results for the proteins clas-
sified as lineage consistent fragments and then used the OMAmer  
placement file to obtain the gene families to which they were associ-
ated. To avoid biasing the comparisons in the presence of duplication, 
we associated each gene name to their whole gene family identifier 
(root HOG) rather than to their subfamilies. The overlap between 
fragmented gene sets between two species was computed by directly 
comparing sets of their associated gene families using the following 

formula, for two sets A and B: 
|A∩B|

min(|A|,|B|). The denominator was chosen 

to be the cardinality of the smallest set in order to not underestimate 
overlap in the smallest sets.

The zebra finch proteome was downloaded from the Ensembl 
archive for version 85 of the database. Overlap with the zebra finch 
taxonomically consistent fragment set was done as above but using 
the cardinality of the target proteome’s fragmented gene family set 
as the denominator.

Comparisons of NCBI and Ensembl proteomes
OMAmer and OMArk were run using FASTA and isoform files as input, 
along with the NCBI taxid of the proteome. We ran BUSCO with a FASTA 
file and the odb10 version of the BUSCO dataset, selecting the most 
specific lineage possible that covers the target proteome, and applied 
default parameters. Proteomes were matched to an assembly using 
either metadata downloaded from NCBI or downloaded from a spe-
cies information file available on the Ensembl website. For NCBI and 
Ensembl proteomes with matching assemblies, we made pairwise com-
parisons for each OMArk value in the completeness and consistency 
assessment. When a species had an available proteome in OMA sourced 
from Ensembl, as per the OMA November 2022 release information, we 
marked these accordingly to assess bias in OMArk results.

Runtimes of BUSCO and OMArk
BUSCO v5.2.2 and the OMArk pipeline (OMAmer v2.0.0 and OMArk 
v0.3.0) were run on the 1,805 UniProt Reference proteomes using a 
Snakemake pipeline21 and a Slurm scheduler. BUSCO and OMAmer were 
run with default parameters. We launched OMArk with a taxonomic 
identifier and an optional FASTA file. We ran BUSCO in offline mode 
with the required lineage folders available locally. All software was 
configured to run in serial mode, using only one thread. We obtained 
the job performance, including CPU time for each software on each 
proteome, from the Slurm scheduler efficiency report with the ‘seff’ 
command on each Slurm job. All computation was performed on the 
UNIL high-performance computer Curnagl, a 96-node cluster based 
on AMD Zen2/3 CPUs. 15 GB memory was requested for OMAmer; 10 
GB for OMArk and 25 GB for BUSCO, which was enough to avoid any 
out-of-memory errors. All data were read and written on an 150 TB 
SSD-based scratch system.

Additional analysis
The additional analyses were performed in Python (v. 3.9.5) within 
a Jupyter Notebook. Plots were created using the matplotlib (ver-
sion 3.4.2)22 and the Seaborn23 (v0.11.2) libraries. Notebooks used 
for this paper are available in the associated Zenodo archive. The 
Notebook “Human_missing_genes.ipynb” is for investigating human 
genes deemed as missing and the Notebook “blobtoolkit_contamina-
tion_check.ipynb” is for validating OMArk contamination results with 
BlobToolkit. Other companion Notebooks are available on OMArk 
GitHub repository, in the utils folder. “Contextualize_OMA.ipynb” 
allows investigation of OMArk’s missing and fragmented genes using 
OMA public data (sequences and synteny) and provides instructions to 
perform assembly completeness assessment. The Notebook “Explore_
Data.ipynb” allows visualization of many OMArk results at once.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
UniProt Reference proteomes were downloaded from UniProtKB on 
1 February 2022 (version 04/2021) through their ftp server. Ensembl 
Metazoa proteomes were downloaded from their ftp website from 
version 52, 53 and 54. NCBI proteomes were downloaded in August 
2023 through the NCBI datasets python library, and proteomes from 
Ensembl 110 and Ensembl databases 57 were downloaded through 
their respective ftp websites. All datasets used and generated during 
the study and Supplementary Table files are made available through 
Zenodo (https://doi.org/10.5281/zenodo.10034236)24. Precomputed 
results for UniProt, GenBank and Ensembl are made available through 
the OMArk web server (https://omark.omabrowser.org). Source data 
are provided with this paper.

Code availability
OMArk is available on GitHub (https://github.com/DessimozLab/
OMArk) and as a python package on PyPI and Anaconda. OMArk ver-
sion 0.3.0 and OMAmer version 2.0.0 that were used for all analyses 
are available on Zenodo (https://doi.org/10.5281/zenodo.10474466)25.
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