Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells

Abstract

Base editors show promise for treating human genetic diseases, but most current systems use deaminases, which cause off-target effects and are limited in editing type. In this study, we constructed deaminase-free base editors for cytosine (DAF-CBE) and thymine (DAF-TBE), which contain only a cytosine-DNA or a thymine-DNA glycosylase (CDG/TDG) variant, respectively, tethered to a Cas9 nickase. Multiple rounds of mutagenesis by directed evolution in Escherichia coli generated two variants with enhanced base-converting activity—CDG-nCas9 and TDG-nCas9—with efficiencies of up to 58.7% for C-to-A and 54.3% for T-to-A. DAF-BEs achieve C-to-G/T-to-G editing in mammalian cells with minimal Cas9-dependent and Cas9-independent off-target effects as well as minimal RNA off-target effects. Additional engineering resulted in DAF-CBE2/DAF-TBE2, which exhibit altered editing windows from the 5′ end to the middle of the protospacer and increased C-to-G/T-to-G editing efficiency of 3.5-fold and 1.2-fold, respectively. Compared to prime editing or CGBEs, DAF-BEs expand conversion types of base editors with similar efficiencies, smaller sizes and lower off-target effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and evolution of CDG-nCas9/TDG-nCas9 in E. coli.
Fig. 2: Evaluation of the most efficient CDG-nCas9s/TDG-nCas9s in E. coli.
Fig. 3: Characterization of DAF-CBE and TBE editing activities in HEK293T cells.
Fig. 4: Comparison of DAF-CBE with CGBEs and DAF-TBE with PEs.
Fig. 5: Construction of pathogenic SNVs by DAF-BEs in hiPSCs.
Fig. 6: Engineering DAF-BEs by redesigning the fusion of glycosylase variants and nCas9.

Similar content being viewed by others

Data availability

The high-throughput sequencing data have been deposited in the National Center for Biotechnology Information database with accession codes PRJNA900229 and PRJNA1001163 (refs. 42,43). Source data for Figs. 24 and 6 and Supplementary Figs. 4 and 5 are presented with the paper. There are no restrictions on data availability. Source data are provided with this paper.

References

  1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  Google Scholar 

  3. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Tong, H. et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat. Biotechnol. 41, 1080–1084 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, L. et al. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01821-9 (2023).

  8. Tong, H. et al. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl Sci. Rev. 10, nwad143 (2023).

    Article  PubMed Central  Google Scholar 

  9. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rees Holly, A., Wilson, C., Doman Jordan, L. & Liu David, R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  Google Scholar 

  14. Park, S. & Beal, P. A. Off-target editing by CRISPR-guided DNA base editors. Biochemistry 58, 3727–3734 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161 (2008).

    Article  CAS  Google Scholar 

  16. Kantor, A., McClements, M. E. & MacLaren, R. E. CRISPR-Cas9 DNA base-editing and prime-editing. Int. J. Mol. Sci. 21, 6240 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  17. Mol, C. D. et al. Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80, 869–878 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Kavli, B. et al. Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. 15, 3442–3447 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  19. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koblan, L. W. et al. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat. Biotechnol. 39, 1414–1425 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  CAS  Google Scholar 

  23. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, B. et al. Sequence motifs and prediction model of GBE editing outcomes based on target library analysis and machine learning. J. Genet. Genomics 49, 254–257 (2022).

    Article  PubMed  Google Scholar 

  25. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verloes, A., et al. WDR62 Primary Microcephaly. In GeneReviews® (eds Adam, M. P. et al.) (Univ. of Washington, 1993).

  27. Elborn, J. S. Cystic fibrosis. Lancet 388, 2519–2531 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, T. P. et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626–631 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  29. Jiang, G. et al. Molecular mechanism of the cytosine CRISPR base editing process and the roles of translesion DNA polymerases. ACS Synth. Biol 10, 3353–3358 (2021).

    Article  CAS  Google Scholar 

  30. Wang, Y. et al. Engineering of the translesion DNA synthesis pathway enables controllable C-to-G and C-to-A base editing in Corynebacterium glutamicum. ACS Synth. Biol. 11, 3368–3378 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao, J. et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab. Eng. 17, 42–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Feng, X., Zhao, D., Zhang, X., Ding, X. & Bi, C. CRISPR/Cas9 assisted multiplex genome editing technique in Escherichia coli. Biotechnol. J. 13, e1700604 (2018).

    Article  PubMed  Google Scholar 

  35. Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239–250 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  36. Wang, X. et al. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J. Cell. Mol. Med. 21, 3044–3054 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  37. Chow, R. D., Chen, J. S., Shen, J. & Chen, S. A web tool for the design of prime-editing guide RNAs. Nat. Biomed. Eng. 5, 190–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hwang, G.-H. et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics 19, 542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, N. et al. Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Mol. Ther. 30, 2452–2463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, L. et al. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat. Cell Biol. 23, 552–563 (2021).

    Article  PubMed  Google Scholar 

  42. CBC/TBC editing data: development of two new base editors. National Institutes of Health. National Library of Medicine. National Center for Biotechnology Information. BioProject PRJNA900229 (2022).

  43. DAF-BE: the DAF (deaminase free)-CBE/TBE efficiently converts C/T to G in mammalian cells. National Institutes of Health. National Library of Medicine. National Center for Biotechnology Information. BioProject PRJNA1001163 (2023).

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (2019YFA0904900); the National Natural Science Foundation of China (32225031, 32171449, 32271483, 32001041 and 81903776); the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-017); the Youth Innovation Promotion Association, Chinese Academy of Sciences (2022177); and the Tianjin Natural Science Foundation (20JCYBJC00310). The authors thank Zibing Jin (Capital Medical University, China) for providing hiPSCs.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and C.B. designed the research, analyzed data and wrote the manuscript. L.Y. and D.Z. designed the research, performed experiments, analyzed data and wrote the manuscript. J.L. and S.L. designed the research. Y.W., B.L., X.H., H.W., Z.W., X.L. and Y.L. performed experiments. Y.Y. and Y.L. analyzed data.

Corresponding authors

Correspondence to Xueli Zhang or Changhao Bi.

Ethics declarations

Competing interests

X.Z., C.B., L.Y. and D.Z. jointly filed patent applications on DAF-BEs.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Supplementary Tables 1–9 and Supplementary Sequences 1–3

Reporting Summary

Supplementary Data 1

Statistical Source Data

Supplementary Data 2

Statistical Source Data

Source data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Zhao, D., Li, J. et al. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-023-02050-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-02050-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing