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Integrating single-cell datasets produced by multiple omics technologies

is essential for defining cellular heterogeneity. Mosaic integration, in
which different datasets share only some of the measured modalities,
poses major challenges, particularly regarding modality alignment and
batch effect removal. Here, we present a deep probabilistic framework

for the mosaicintegration and knowledge transfer (MIDAS) of single-cell
multimodal data. MIDAS simultaneously achieves dimensionality reduction,
imputation and batch correction of mosaic data by using self-supervised
modality alignment and information-theoretic latent disentanglement.
We demonstrate its superiority to 19 other methods and reliability by
evaluatingits performancein trimodal and mosaic integration tasks. We
also constructed a single-cell trimodal atlas of human peripheral blood
mononuclear cells and tailored transfer learning and reciprocal reference
mapping schemes to enable flexible and accurate knowledge transfer from
the atlas to new data. Applications in mosaic integration, pseudotime
analysis and cross-tissue knowledge transfer on bone marrow mosaic
datasets demonstrate the versatility and superiority of MIDAS. MIDAS is
available at https://github.com/labomics/midas.

Recently emerged single-cell multimodal omics (scMulti-omics)
sequencing technologies enable the simultaneous detection of mul-
tiple modalities, such as RNA expression, protein abundance and chro-
matin accessibility, in the same cell”. These technologies, including
the trimodal DOGMA-seq’ and TEA-seq* and bimodal CITE-seq’ and
ASAP-seq’, among many others®™, reveal not only cellular heterogene-
ity at multiple molecular layers, enabling more refined identification
of cell characteristics, but also connections across omes, providing
a systematic view of ome interactions and regulation at single-cell
resolution. Theinvolvement of more measured modalities in analyses
ofbiological samplesincreases the potential for enhancing the under-
standing of mechanisms underlying numerous processes, including cell
functioning, tissue developmentand disease occurrence. The growing

size of scMulti-omics datasets necessitates the development of new
computational tools to integrate massive high-dimensional datagener-
ated from different sources, thereby facilitating more comprehensive
and reliable downstream analysis for knowledge mining"*'?. Such ‘inte-
grative analysis’also enables the construction of alarge-scale single-cell
multimodal atlas, whichis urgently needed to make full use of publicly
available single-cell multimodal data. Such an atlas can serve as an
encyclopedia, allowing researchers the ability to transfer knowledge
to their new data and in-house studies™ ™.

Several methods for single-cell multimodal integration have
recently been presented. Most of them have been proposed for the
integration of bimodal data®®~>*. Fewer trimodal integration meth-
ods have been developed. MOFA+** has been proposed for trimodal
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Fig.1| Overview of the MIDAS framework. a, Functionality of the MIDAS help disentangle the latent variables. ¢, Two strategies are developed for MIDAS
framework. b, MIDAS assumes that each cell’s measured counts and batch to achieve reference-to-query knowledge transfer, where model transfer uses a
ID are generated from biological state and technical noise latent variables pretrained model for data-efficient integration, and label transfer reciprocally
and uses the VAE to implement model learning and latent variable inference. maps the reference and query datasets onto the latent space for automatic cell
Self-supervised learning is used to align different modalities on latent space annotation.

through joint posterior regularization, and information-theoretic approaches

integration with complete modalities, and GLUE* hasbeendeveloped  in mosaic-like data. The mosaic-like data are increasing rapidly and
fortheintegration of unpaired trimodal data (thatis, datasetsinvolving  are predictably prevalent. Mosaic integration methods are urgently
single specific modalities). needed to markedly expand the scale and modalities of integration,

Allofthese currentintegration methods have difficultyinhandling  breaking through the modality scalability and cost limitations of exist-
flexible omics combinations. Due to the diversity of scMulti-omicstech-  ing scMulti-omics sequencing technologies. Most recently, scVAEIT?,
nologies, datasets from different studies ofteninclude heterogeneous  scMoMaT?”, StabMap?® and Multigrate” have been proposed to tackle
omics combinations with one or more missing modalities, resulting  this problem. However, these methods are not capable of aligning

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-02040-y

modalities or correcting batches, which results in limited functions
and performances. Therefore, flexible and general multimodal mosaic
integration remains challenging®***. One major challenge is the rec-
onciliation of modality heterogeneity and technical variation across
batches. Another challenge is the achievement of modality imputation
and batch correction for downstream analysis.

To overcome these challenges, we developed a probabilistic frame-
work, MIDAS, for the mosaic integration and knowledge transfer of
single-cell multimodal data. By using self-supervised learning® and
information-theoretic approaches*, MIDAS simultaneously achieves
modality alignment, imputation and batch correction for single-cell tri-
modal mosaic data. We further designed transfer learning and recipro-
cal reference mapping schemes tailored to MIDAS to enable knowledge
transfer. Systematic benchmarks and case studies demonstrate that
MIDAS canaccurately and robustly integrate mosaic datasets. Through
the atlas-level mosaic integration of trimodal human peripheral blood
mononuclear cell (PBMC) data, MIDAS achieved flexible and accurate
knowledge transfer for various types of unimodal and multimodal
query datasets. We also applied MIDAS to mosaic datasets of human
bone marrow mononuclear cells (BMMCs) and demonstrated the sat-
isfactory performance of MIDAS for mosaic data-based pseudotime
analysis and cross-tissue knowledge transfer.

Results

The MIDAS model

MIDAS is a deep generative model*>*° that represents the joint dis-
tribution of incomplete single-cell multimodal data with assay for
transposase-accessible chromatin (ATAC), RNA and antibody-derived
tags (ADT) measurements. MIDAS assumes that each cell’s multimodal
measurements are generated from two modality-agnostic and disen-
tangled latent variables (the biological state (that is, cellular hetero-
geneity) and technical noise (that is, unwanted variation induced by
single-cell experimentation)) through deep neural networks®. Itsinput
consists of amosaic feature-by-cell count matrix comprising different
single-cell samples (batches) and a vector representing the cell batch
IDs (Fig. 1a). The batches can derive from different experiments or
be generated by the application of different sequencing techniques
(for example, single-cell RNA-sequencing (scRNA-seq)*, CITE-seq’,
ASAP-seq® and TEA-seq*) and thus can have different technical noise,
modalities and features. The output of MIDAS comprises biological
state and technical noise matrices, which are the two low-dimensional
representations of different cells, and animputed and batch-corrected
count matrix in which modalities and features missing from the input
data are interpolated and batch effects are removed. These outputs
can be used for downstream analyses, such as clustering, cell typing
and trajectory inference™®.

MIDAS is based onavariational autoencoder (VAE)*’ architecture,
with a modularized encoder network designed to handle the mosaic
inputdataandinferthelatent variables and adecoder network that uses
thelatent variablesto seed the generative process for the observed data
(Fig.1b and Supplementary Fig. 1). MIDAS uses self-supervised learning
to align different modalities in latent space, improving cross-modal
inference in downstream tasks, such as imputation and translation.
Information-theoretic approaches are applied to disentangle the
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biological state and technical noise, enabling further batch correction.
Combining these elements into our optimization objective, scalable
learning and inference of MIDAS are simultaneously achieved by the
stochastic gradient variational Bayes*, which also enables large-scale
mosaic integration and atlas construction of single-cell multimodal
data. For the robust transfer of knowledge from the constructed atlas
to query datasets with various modality combinations, transfer learn-
ing and reciprocal reference mapping schemes were developed for
thetransfer of model parameters and cell labels, respectively (Fig. 1c).

MIDAS enables accurate trimodal rectangular integration

To compare MIDAS with state-of-the-art methods, we evaluated the per-
formance of MIDAS in trimodal integration with complete modalities,
asimplified form of mosaic integration, as few methods are designed
specifically for trimodal mosaicintegration. We named this task ‘rectan-
gularintegration’. We used two published single-cell trimodal human
PBMC datasets (DOGMA-seq’ and TEA-seq*; Supplementary Table 1)
withsimultaneous RNA, ADT and ATAC measurements for each cell to
construct dogma-full and teadog-full datasets. The dogma-full dataset
tookall fourbatches (LLL_Ctrl, LLL_Stim, DIG_Ctrl and DIG_Stim) from
the DOGMA-seq dataset, and the teadog-full dataset took two batches
(Wland W6) from the TEA-seq dataset and two batches (LLL_Ctrland
DIG_Stim) from the DOGMA-seq dataset (Supplementary Table 2).
Integration of each dataset requires the handling of batch effects and
missing features and preservation of biological signals, which is chal-
lenging, especially for the teadog-full dataset, as the involvement of
more datasets amplifies biological and technical variation.

Uniform manifold approximation and projection (UMAP
visualization showed that the biological states of different batches
were well aligned, their grouping was consistent with the cell-type
labels (Fig. 2a, left, and Supplementary Fig. 2a, left) and the technical
noise was grouped by batch and exhibited little relevance to cell types
(Fig.2b and Supplementary Fig. 2b). Thus, the two inferred latent vari-
ableswere disentangled well and independently represented biological
and technical variation.

Taking the inferred biological states as low-dimensional repre-
sentations of the integrated data, we compared the performance of
MIDAS with that of nine strategies derived from recently published
methods (Methods and Supplementary Table 3) in the removal of batch
effects and preservation of biological signals. UMAP visualization of the
integration results showed that MIDAS ideally removed batch effects
and also preserved cell-type information on both dogma-full and
teadog-full datasets, whereas the performance of other strategies was
not satisfactory. For example, BBKNN+average, MOFA+, PCA+WNN,
Scanorama-embed+WNN and Scanorama-feat+WNN did not mix dif-
ferent batches well, and PCA+WNN and Scanorama-feat+WNN pro-
duced cell clusters largely inconsistent with cell types (Fig. 2a and
Supplementary Fig. 2a).

In a quantitative evaluation of the low-dimensional repre-
sentations of different strategies performed with the widely used
single-cell integration benchmarking (scIB)* tool, MIDAS had the
highest batch correction, biological conservation and overall scores
for the dogma-full and teadog-full datasets (Fig. 2c and Supplementary
Fig. 2c). In addition, MIDAS preserved cell-type-specific patterns in
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Fig. 2| Evaluation and downstream analysis results obtained with MIDAS
onrectangular integration tasks. a, UMAP visualization of cellembeddings
obtained by MIDAS and nine other strategies in the dogma-full dataset. The left
two graphs show inferred latent biological states, and the right graphs show
dimensionality reduction results obtained with the other strategies; Mono,
monocytes. b, UMAP visualization of latent technical noise inferred by MIDAS in
the dogma-full dataset. ¢, scIB benchmarking of performance on the dogma-
full rectangular integration task. d, Correlation of fold changes in gene/protein
abundance and chromatin accessibility between raw and batch-corrected data.
e, UMAP visualization of the inferred latent biological states with manually

annotated cell types; DP, double positive; T, regulatory T cells. f, Expression
inconsistencies between proteins and their corresponding genesin B cells. The
left graph shows RNA and ADT fold changes, and the right graph shows the UMAP
visualization of imputed CD20 and MS4A1 expression. g, UMAP visualization of

B cell subclusters (left) and violin plots of imputed protein abundance across
subclusters (right). h, UMAP plot of CD4" naive T cell CO-0 and CO-1subclusters
from the dogma dataset. i, Single-cell modality contributions to CO clustering.
Thered rectangle highlights the greater contribution of the ATAC modality in
cluster CO-1.j, Modality contributions to the integrated clustering of CO-0 and
CO-1cells.
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batch-corrected RNA, ADT and ATAC data (Methods). For eachcell type, Manual cell clustering and typing based on the integrated
fold changes in gene/protein abundance and chromatin accessibility =~ low-dimensional representations and batch-corrected data from
in raw and batch-corrected data correlated strongly and positively MIDAS led to the identification of 13 PBMC types, including B cells,
(all Pearson’s r > 0.8; Fig. 2d). T cells, dendritic cells (DCs), natural killer (NK) cells and monocytes
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(Fig. 2e). We identified a distinct T cell cluster that highly expresses
CD4 and CD8simultaneously. We labeled this cluster as double-positive
CD4°CD8"T cells. This phenomenon was also reported in previous stud-
ies**. Another T cell cluster, containing mucosa-associated invariant
T cellsand y5 T cells, was distinct from conventional T cells and was
labeled unconventional T cells®.

As is known, multiple omes regulate biological functions syner-
gistically"?. MIDAS integrates RNA, ADT and ATAC single-cell dataand
hence facilitates the discovery of the intrinsic nature of cell activi-
ties in a more comprehensive manner. We found that all omics data
contributed greatly to the identification of cell types and functions
(Supplementary Fig. 3).

Systematic screening for expressioninconsistencies between pro-
teins and their corresponding genes, expected toreflect omeirreplace-
ability, atthe RNA and ADT levels demonstrated that several markersin
each cell type were expressed strongly in one modality and weakly in
the other (Fig. 2f and Supplementary Fig. 4). For instance, MS4A1, which
encodes aB cell-specific membrane protein, was expressed extremely
specifically in B cells, but the CD20 protein encoded by MS4AI was
rarely detected, confirming the irreplaceability of the RNA modality.
Wealso found that ADT could complement RNA-based clustering. For
example, the simultaneous expression of T cellmarkers (CD3 and CD4)
was unexpectedly observed in two subclusters of B cells (B2 and B3)
expressing canonical B cell makers (CD19, CD21and CD22; Fig. 2g). As
this phenomenon could not be replicated using RNA data alone, this
finding confirms theirreplaceability of the ADT modality. However, it
should be noted that certain technical issues of single-cell sequencing
may also lead to the emergence of these cells*.

Investigation of the uniqueness of chromatin accessibility in mul-
tiomics integration at the ATAC level showed that ATAC contributed
more than did ADT and RNA to the integration of asubcluster of CD4*
naive T cells (Methods and Fig. 2h-j). We took the ratio of peak number
of a cell to that of all cells as the representation of the cell accessibil-
ity level. RNA and ADT expression did not differ between these cells
and their CD4" naive T cell siblings, but lower accessibility levels were
observed at the ATAC layer (<0.02; Supplementary Fig. 5). Gene Ontol-
ogy enrichment analysis* indicated that the inaccessible regions are
related to T cell activation, celladhesion and otherimmune functions.
Therefore, we define this cluster as low chromatin-accessible (LCA)
naive CD4'T cells. Although this discovery needs to be verified further,
it demonstrates the multiomics integration capability of MIDAS.

MIDAS enables reliable trimodal mosaic integration

At present, trimodal sequencing techniques are stillimmature. Most
of the existing datasets are unimodal or bimodal with various modality
combinations. MIDAS is designed to integrate these diverse multi-
modal datasets, thatis, mosaic datasets. To evaluate the performance
of MIDAS on mosaic integration, we further constructed 14 incom-
plete datasets based on the previously generated rectangular datasets,
including dogma-full and teadog-full datasets (Methods and Supple-
mentary Table 2). Each mosaic dataset was generated by removing
several modality batch blocks from the full-modality dataset. We then
took therectangular integration results as the baseline and examined
whether MIDAS could obtain comparable results on mosaicintegration
tasks. We assessed the ability of MIDAS to perform batch correction,
modality alignment and biological conservation. Here, we also focused

on modality alignment because it guarantees accurate cross-modal
inference for processes such as downstream imputation and knowledge
transfer. For qualitative evaluation, we used UMAP to visualize the
biological states and technical noises inferred fromthe individual and
thejointinput modalities (Fig. 3a,b and Supplementary Figs. 6 and 7).
Taking the dogma-paired-abc dataset, for example, for eachmodality,
the biological states were consistently distributed across different
batches (Fig. 3a), whereas the technical noises were grouped by batches
(Fig.3b), indicating that the batch effects were well disentangled from
the biological states. Similarly, the distributions of biological states
and technical noises within batches were very similar across modalities
(Fig. 3a,b), suggesting that MIDAS internally aligns different modali-
ties in latent space. Moreover, the biological states of each cell type
were grouped together, and the cell-type silhouettes were consistent
across batches and modality combinations (Fig. 3a), reflecting robust
conservation of the biological signals after mosaic integration.

To quantitatively evaluate MIDAS on mosaic integration, we pro-
posed single-cell mosaic integration benchmarking (scMIB). scMIB
extends scIB with modality alignment metrics and defines each type
of metriconboth embedding (latent) space and feature (observation)
space, resulting in 20 metrics in total (Methods and Supplementary
Table4). The obtained batch correction, modality alignment, biological
conservationand overall scores for paired+full, paired-abc, paired-ab,
paired-ac, paired-bc and diagonal+full tasks performed with the dogma
and teadog datasets were similar to those obtained with rectangular
integration (Fig. 3c and Supplementary Fig. 8a). MIDAS showed moder-
ate performance inthe dogma- and teadog-diagonal tasks, likely due to
thelack of cell-to-cell correspondence across modalities in these tasks,
which can be remedied via knowledge transfer (see MIDAS enables
knowledge transfer across mosaic datasets).

scIB benchmarking showed that MIDAS, when given incom-
plete datasets (paired+full, paired-abc, paired-ab, paired-ac and
paired-bc for dogma and teadog), outperformed methods that
rely on the full-modality datasets (dogma- and teadog-full; Supple-
mentary Fig. 8b,c). Even with the severely incomplete dogma- and
teadog-diagonal+full datasets, the performance of MIDAS surpassed
that of most other methods.

We also compared MIDAS to scVAEIT, scMoMaT, Multigrate and
StabMap (Methods), which can handle mosaic datasets. UMAP visu-
alization of the low-dimensional cellembeddings showed that MIDAS
removed batch effects and preserved biological signals well on various
tasks, whereas the other four methods did notintegrate trimodal data
well, especially when missing modalities (dogma in Fig. 3d and Sup-
plementary Fig. 9 and teadog in Supplementary Fig. 9). To be specific,
MIDAS aligned the cells of different batches well and grouped them
consistently with the cell-type labels, whereas the other methods did
not mix different batches well and produced cell clusters largely incon-
sistent with cell types. scIBbenchmarking showed that MIDAS had sta-
ble performance ondifferent mosaic tasks, and its overall scores were
much higher than those of the other methods (dogmain Fig. 3e, teadog
inSupplementary Fig.10 and detailed scores in Supplementary Fig. 11).

Theidentification of cells’ nearest neighbors based onindividual
dimensionality reduction results and comparison of neighborhood
overlap among tasks showed that this overlap exceeded 0.75 for
most tasks, except dogma-diagonal, when the number of neighbors
reached 10,000 (Fig. 3f). Asimputed omics datahave beeninferred to

Fig. 3| Qualitative and quantitative evaluation of MIDAS’s performance on
mosaic integration tasks. a,b, UMAP visualization of the biological states

(a) and technical noises (b) inferred by MIDAS on the dogma-paired-abc
dataset. ¢, Benchmarking of MIDAS’s performance on dogma mosaic
integration tasks using our proposed scMIB. d, UMAP comparison of
embeddings on dogma-diagonal+full mosaic integration tasks. Cells in the top
row are colored by batch, and cells in the bottom row are colored by cell type.
e, Comparison of scIB overall scores on dogma mosaic integration tasks.

f, Consistency of dimensional reduction results from different tasks with those
from the dogma-full task measured by the overlap of cells’ nearest neighbors.
g, Consistency of gene regulation links in inferred (dogma-paired-abc DIG_Ctrl
batch) and raw (dogma-full DIG_Ctrl batch) RNA data. Values represent the
regulationimportance of gene-transcript factor pairs. h, Micro F1scores
reflecting the consistency of downstream-analyzed cell labels between mosaic
tasks and the dogma-full task.
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deteriorate the accuracy of gene regulatory inference in many cases*,

dogmadatasets. We validated the conservation of gene regulatory net-

we evaluated the consistency of downstream analysisresults obtained ~ worksintheimputed data. In the dogma-paired+full task, for example,

with the performance of different mosaic integration tasks with the

the regulatory network predicted from imputed data was consistent
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Fig. 4| Atlas-level mosaic integration and downstream analysis results
obtained with the application of MIDAS to trimodal PBMC data. a, UMAP
visualization of the biological states inferred by MIDAS with the PBMC mosaic
dataset across seven datasets. Cell-type labels are derived from Seurat labeling.
b, Labels of atlas cells annotated based on clustering of MIDAS embeddings.

¢, The distributions of raw protein levels of CD8 among CD8" cells labeled by

MIDAS and Seurat, respectively, from the DIG_Ctrl batch of the DOGMA-seq
dataset. d, Plateletsin the atlas (left) and a rare cluster of platelet-like cells in the
dogma (right) datasets. e, High-resolution clustering of monocyte types in the
atlas. f, LCA cells (red) in the atlas. Left, all LCA cells except those from the dogma
dataset; right, LCA cells from the dogma dataset.

with that predicted from the dogma-full data (Fig. 3g). These results
indicate that the modality inference performed by MIDAS is reliable.

The MIDAS-based annotation of cell types for the mosaic integra-
tion tasks and computation of their confusion matrices and micro F1
scores showed that the cell-type labels generated from theincomplete
datasets, except dogma-diagonal, were largely consistent with the
dogma-fulllabels, with allmicro F1scores exceeding 0.885 (Fig. 3h and
Supplementary Fig.12). The separation of monocytes and DCs was dif*-
ficultinsome mosaic experiments, mainly because the latter originate
from the former* and likely also because the monocyte populationin
the dogma dataset was small.

To demonstrate the robustness of MIDAS for real-world mosaic
integration, we tested MIDAS in more challenging cases, including
batches with various sequencing depths, batches with inconsistent
cell types and perturbations of hyperparameters (Supplementary
Note 1, Supplementary Figs.13-15and Supplementary Tables 5and 6).
We compared MIDAS with other competing methods on more omics
combinations and also benchmarked their computational costs

(Supplementary Note1land Supplementary Figs.16-18). All the results
show that MIDAS is a robust, versatile and efficient tool for single-cell
multimodal integration.

MIDAS enables atlas-level mosaic integration of PBMC data

We used MIDAS for the large-scale mosaic integration of 18 PBMC
batches frombimodal sequencing platforms (for example, 10x Multi-
ome, ASAP-seq and CITE-seq) and the 9 batches from the DOGMA-seq
and TEA-seq trimodal datasets (a total of 27 batches from 10 platforms
comprising 185,518 cells; Methods and Supplementary Table1and 9).
Similar to the results obtained with the dogma-full and teadog-full
datasets, MIDAS achieved satisfactory batch removal and biological
conservation. UMAP visualization showed that the inferred biological
states of different batches maintained a consistent PBMC population
structure and conserved batch-specific (due mainly to differences
in experimental design) biological information (Fig. 4a and Supple-
mentary Figs. 19 and 20a). In addition, the technical noise was clearly
grouped by batch (Supplementary Fig. 20b). These results suggest that
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Fig. 5| Qualitative and quantitative evaluation of MIDAS on knowledge
transfer tasks. a,b, UMAP visualization of the biological states inferred by the de
novo trained (a) and transfer-learned (b) MIDAS on the dogma-diagonal dataset.
¢, OverallscIB and scMIB scores reflecting transfer-learned and de novo trained
MIDAS performance on 14 dogma mosaic integration tasks; NA, not available.

d, UMAP visualization of the biological states obtained by reciprocal reference
mapping with 14 dogma mosaic datasets (columns 2-8). Column1shows the
dogma-full atlas integration. e, Label transfer micro F1scores representing
performance on 14 dogma mosaic query datasets.
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the biological states and technical noises were disentangled well and
that the data could be used reliably in downstream analysis.

Manuallabeling of cell types according to cluster markers achieved
largely consistent separation and annotation with automatic labeling
by Seurat”, which indicates the reliability of MIDAS for construct-
ing the atlas (Fig. 4b and Supplementary Fig. 20a). We also found
that MIDAS labeling seems more biologically meaningful when we
checked the CD8 protein level of CD8-labeled cells between the two
labeling systems (MIDAS and Seurat; Fig. 4c). Consistent with the
rectangular integration results (Fig. 2e), we identified all cell types
knowntobeintheatlas, including B cells, conventional T cell subsets,
double-positive T cells, NK cells, unconventional T cells and hemat-
opoietic stem cells (HSCs), demonstrating the robustness of MIDAS.
Theintegration of more datasets with MIDAS led to the identification
of rare clusters and high-resolution cell typing. For example, a group
of cells from the DOGMA-seq dataset aggregated into a much larger
cluster withrecognizable platelet markersinthe PBMC atlas (Fig. 4d).
Because platelets have no cell nuclei and are not expected to be pre-
sentinthe DOGMA-seq dataset, thisrare group of cells could motivate
researchersto perform further experiments tovalidateit. Inaddition,
the atlas contained more monocyte subclusters, including CD14",
CD16" and CD3"CD14" monocytes, than obtained with rectangular
integration (Fig. 4e). Other cell types present in more subclusters in
theatlasincluded CD158el" NK cells, CD4°CD138'CD202b" T cells and
RTKN2'CDS8" T cells (Supplementary Fig. 21a).

Mostbatchesin the atlas contained considerable numbers of LCA
cells (Fig. 4f and Supplementary Fig. 21b) with an accessibility level of
<0.02, as did the DOGMA-seq dataset (Fig. 2i). The chromatin acces-
sibility levels of cells in the atlas showed an obvious bimodal distribu-
tion, reflecting the existence of two ATAC patterns (Supplementary
Fig.21b).CD8' T cell, CD14" monocyte, NK cell, B celland other clusters
contained LCA cells (Fig. 4b,f), implying that LCA is common in vari-
ouscelltypes.

MIDAS enables knowledge transfer across mosaic datasets

To investigate the knowledge transfer capability of MIDAS, we repar-
titioned the atlas dataset into reference (for atlas construction) and
query (knowledge transfer target) datasets (Supplementary Table 9). By
removing DOGMA-seq from the atlas, we obtained areference dataset
named atlas-no_dogma. To test the flexibility of knowledge transfer,
we used DOGMA-seq to construct 14 query datasets: 1 rectangular and
7 mosaic trimodal datasets generated previously and 6 rectangular
datasets with fewer modalities (Methods and Supplementary Table 10).
Inconsideration of real applications, we defined model and label knowl-
edge transfer scenarios (Methods). In the model transfer scenario,
knowledge was transferred implicitly through model parameters via
transfer learning. In the label transfer scenario, knowledge was trans-
ferred explicitly through cell labels via reference mapping.

We assessed the performance of MIDAS in the model transfer
scenario. For the transfer-learned models, we used UMAP to visualize
theinferred biological states and technical noises and scMIB and scIB
for integration benchmarking and compared the results of different

tasks with those generated by de novo trained models. Transfer learning
greatly improved performance on the dogma-diagonal, dogma-atac,
dogma-rnaand dogma-paired-atasks, with performance levels on the
other tasks maintained (Fig. 5a-c and Supplementary Figs.22 and 23).
For example, the de novo trained model failed to integrate well in the
dogma-diagonal task due to lack of cell-to-cell correspondence across
modalities (Fig. 5a), whereas the transfer-learned model with atlas
knowledge successfully aligned the biological states across batches and
modalities and formed groups consistent with cell types (Fig. 5b). The
results obtained by transfer-learned models with all 14 datasets were
not only comparable (Supplementary Fig. 23a,b) but also superior to
those of many other methods that use the complete dataset (Fig. 5¢
and Supplementary Fig.23b).

To assess the performance of MIDAS in the label transfer sce-
nario, we compared the widely used query-to-reference mapping>®~,
reference-to-query mapping'***and our proposed reciprocal reference
mapping (Methods). For each strategy, we aligned each query dataset
to the reference dataset and transferred cell-type labels through the
k-nearest neighbors (kNN) algorithm, where the ground truth cell-type
labels were taken from the trimodal PBMC atlas annotated by MIDAS.
Visualization of the mapped biological states showed that recipro-
cal reference mapping with different query datasets yielded consist-
ent results, with strong agreement with the atlas integration results
obtained with the dogma-full dataset (Fig. 5d and Supplementary
Fig.24).Micro F1scores indicated that reciprocal reference mapping
outperformed the query-to-reference and reference-to-query map-
ping strategies for various forms of query data, achieving robust and
accurate label transfer and thereby avoiding the need for de novo
integration and downstream analysis (Fig. 5e).

Thus, MIDAS can be used to transfer atlas-level knowledge to
various forms of users’ datasets without expensive de novo training
or complex downstream analysis.

Application of MIDAS on BMMC mosaic data

To investigate the application of MIDAS in single-cell datasets with
continuous cell state changes, we constructed ahuman BMMC mosaic
dataset, denoted ‘bm’, by combining three distinct batches (ICA, ASAP
and CITE) obtained from publicly available scRNA-seq, ASAP-seq and
CITE-seqdatasets, respectively (Methods). The results of de novointe-
gration on bm showed that MIDAS accurately aligned different modali-
tiesand removed batch effects while preserving cell-type information
(Supplementary Fig.25a). Through comparison, we found that MIDAS
outperformed the other trimodal mosaicintegrationmethodsinboth
qualitative (Supplementary Fig. 25b) and quantitative (Supplementary
Fig.25c) results.

Next, we performed a pseudotime analysis of myeloid cells
based on the 32-dimensional latent variables generated by MIDAS
(Fig. 6a,b). The results showed that HSCs (marked by CD34 and
SPINK2) mainly differentiate into two branches. One branch cor-
responds to the precursor of megakaryocytes and erythrocytes
(marked by GYPA and AHSP), and the other branch differentiates into
granulocyte-macrophage progenitors through lymphoid-primed

Fig. 6 | Application of MIDAS on BMMC mosaic dataset. a, UMAP
visualization of the BMMC dataset labeled by Seurat; GMP, granulocyte-
monocyte progenitor; LMPP, lymphoid-primed multipotential progenitor;
MAIT, mucosal-associated invariant T cell; pDC, plasmacytoid DC; Mk,
megakaryocyte; RBC, red blood cell; cDC2, type 2 conventional DC.

b, UMAP visualization of the inferred trajectory and pseudotime based on
32-dimensional biological state latent representation in myeloid cells. c, UMAP
visualization colored by imputed gene expression of key cell-type markers.

d, Loess smoothed curve showing trends of C23 along with the pseudotime.

e, Box plots showing C23 values of each cell type in b sorted by the medians
(n=19,405). Inthe box plots, the center lines indicate the median, boxes
indicate the interquartile range, and whiskers indicate 1.5x interquartile range.

f, Heat map showing scaled expression of the top 20 positively and negatively
correlated genes of C23. g, Dot plot showing the top 10 significantly enriched
Gene Ontology biological process terms of the positively correlated genes of
C23 with clusterProfiler. Data were analyzed using a one-sided Fisher’s exact
test, and Pvalues were adjusted using the Benjamini-Hochberg method.

h, UMAP visualization of the biological states obtained by cross-tissue
reciprocal reference mapping between the PBMC atlas reference and the
BMMC query dataset. The BMMC cells are colored by cell types transferred
from the PBMC atlas using MIDAS (left) and by cell types annotated with Seurat
(right). i, Confusion plot showing the label transfer consistency in a cross-
tissue label transfer task on the BMMC mosaic dataset.
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multipotential progenitors and finally differentiates into monocytes
and DCs (marked by TYROBP and CTSS; Fig. 6¢). This differentiation
trajectory is consistent with the well-known developmental path-
ways of myeloid cellsin bone marrow*?, demonstrating that MIDAS’s

32-dimensional biological state latent variables can be applied to
trajectory inference of cell differentiation. It is worth noting that
the original data cannot be directly used for pseudotime analysis
because one batch lacks RNA modality.
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We further explored the possible biological meanings of each
dimension in latent space. Notably, latent dimension 23 (C23) cor-
responded to the pseudotime inferred by Monocle 3 (ref. 54) and cap-
tured agradual transition from HSCs to progenitor cells and finally to
mature cells (Fig. 6d,e). These results suggest that C23 summarized a
gene program contributing to cell development and differentiation.
We further calculated correlations between C23 and all genes within
the megakaryocyte and erythrocyte developing branch. The negatively
correlated genes included canonical HSC markers, such as SPINK2,
CD34 and GATAZ2 (Fig. 6f). Positively correlated genes included many
erythrocyte-related genes, such asAHSP, HBB and GYPA, that are dem-
onstrated to be involved in erythrocyte differentiation and function
by clusterProfiler> (Fig. 6g). These results showcase the ability of
MIDAS biological state latent variables to capture meaningful biologi-
calinformation.

To showcase the capability of MIDAS in cross-tissue knowledge
transfer, we used our constructed PBMC atlas as the reference data-
set and bm as the query dataset (Supplementary Table 9). First, we
performed experiments on model transfer and found that it yielded
comparable qualitative and quantitative performance to de novo
integration (Supplementary Fig. 26) while taking less than halfthe time
(modeltransfer:1.28 h; de novo integration: 2.61 h). Subsequently, we
conducted experiments on label transfer, which showed that MIDAS
successfully transferred cell-type labels from the PBMC atlas refer-
ence to the bm query dataset (Fig. 6h). MIDAS accurately identified
anunknown cell type in the query dataset, which turned out to be the
progenitor cell not present in the reference dataset (Fig. 6h,i).

Discussion
By modeling the single-cell mosaic data generative process, MIDAS
can precisely disentangle biological states and technical noises from
the input and robustly align modalities to support multisource and
heterogeneous integration analysis. MIDAS provides accurate and
robust results and outperforms other methods when performing
various mosaic integration tasks. It also integrates large datasets, as
demonstrated with the atlas-scale integration of publicly available
PBMC multiomics datasets. Moreover, MIDAS efficiently and flexibly
transfers knowledge from reference to query datasets, enabling con-
venient handling of new multiomics data. With superior performance
in dimensionality reduction and batch correction, MIDAS supports
accurate downstream biological analysis. In addition to enabling clus-
teringand cell-typeidentification for mosaic data, MIDAS can also assist
in pseudotime analysis for cells with continuous states, which will be
especially helpfulwhen no RNA omics dataare available. When transfer-
ring knowledge between different tissues, MIDAS is capable of aligning
heterogeneous datasets and identifying cell types and even new types.
Recently, several methods for single-cell multimodal integration
and knowledge transfer have been proposed (refer to Supplementary
Note 2 for a detailed discussion). However, MIDAS supports simulta-
neous dimensionality reduction, modality complementing and batch
correctioninsingle-cell trimodal mosaicintegration. MIDAS accurately
integrates mosaic data with missing modalities, achieving results com-
parable torectangular integration and superior to those obtained from
other methods. These distinct advantages of MIDAS derive from the
deep generative modeling, product of experts, information-theoretic
disentanglement and self-supervised modality alignment components
ofthe algorithm, which are specifically designed and inherently com-
petent for the heterogeneous integration of data with missing features
and modalities. In addition, MIDAS allows knowledge transfer across
mosaic data modalities, batches and even tissues in a highly flexible
andreliable manner, enabling researchers to conquer the vast bodies
of data produced with continuously emerging multiomics techniques.
We envision two major developmental directions for MIDAS. At
present, MIDAS integrates only three modalities. By fine-tuning the
model architecture, we can achieve the integration of four or more

modalities, overcoming the limitations of existing scMulti-omics
sequencing technologies. In addition, the continuous incorporation
of rapidlyincreasing bodies of newly generated scMulti-omics datais
needed to update the model and improve the quality of the atlas. This
processrequires frequent model retraining, which is computationally
expensive and time consuming. Thus, using incremental learning™ is
aninevitable trend to achieve continuous mosaic integration without
modelretraining.
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Methods

Deep generative modeling of mosaic single-cell multimodal
data

Forcellne N~ ={1,...,NywithbatchID s, € 3 ={1,..., B}, let x € N?" be
the count vector of size D™ from modality m and x,, = X hmene, be
the set of count vectors from the measured modalities
M, C M = {ATAC,RNA,ADT}. We define two modality-agnostic
low-dimensional latent variables ¢ € R” and u € R?“torepresent each
cell’s biological state and technical noise, respectively. To model the
generative process of the observed variables x and s for each cell, we
factorize the joint distribution of all variables as

px,s,c.u) = p(C)pw)p(slwpxic,u)
=pOpwp(siu) T px"|c,u) M

meM,
where we assume thatcand u areindependent of each other, the batch
IDsonly depends onuto facilitate the disentanglement of both latent
variables, and the count variables {x"},,,, from different modalities
are conditionalindependent givencand u.
Based on the above factorization, we define a generative model
forxandsas

p(c) = Normal (c|0,/) )
p(u) = Normal (u|0,)) (3)
m=gwo) )
pe(slu) = Categorical (s|m) 5
=g"(c.u;0™)form e M, (6)

Bernoulli (x’"|/lm) ifm = ATAC

Po(x™|c,u) = formem, (7)

Poisson (x™ Mm)ifm € {RNA,ADT}

where the priors p(c) and p(u) are set as standard Gaussians. The likeli-
hood py(s|u) is set as a categorical distribution with probability vector
m e A’ generated through a batch ID decoder g°, which is a neural
network with learnable parameters . The likelihood p,(x™|c, u) is set
as a Bernoulli distribution with mean A™ e [0,1]°* when m = ATAC and
as a Poisson distribution with mean A" € R when m € {RNA, ADT},
where A" is generated through a modality decoder neural network g”
parameterized by 8. To mitigate overfitting and improve generaliza-
tion, we share parameters of the first few layers of different modality
decoders {g"},,.,. (the gray parts of the decoders in Fig. 1b, middle).
The corresponding graphical modelis shown in Fig. 1b (left).

Giventhe observed data {x,,s,} .~ we aimto fit the model param-
eters 6 = {HS,{G'"}meM} and meanwhile infer the posteriors of latent
variables {c, u} for each cell. This can be achieved by using the stochastic
gradient variational Bayes"', which maximizes the expected evidence
lower bound (ELBO) for individual data points. The ELBO for each
individual data point {x,, s,} can be written as

ELBO (6, ;X,.. 5,)

A Pe(xmsnsC, ")
- Eq'p(c’u‘x"’s") [log qe(C.Uulx,,sn)

= Egy(culx,, s,) [108Pe0n Splc. )] = KL [gp(c.uix,. 5p) || ple.w)] (g

2 logpe(xiic, u)]

memM,

= Egy(c.uix,,s,) ["’gpo(sn'“) +

—KL [gg(c.upxy,s,) || plc,u)]

where g,(c, u|x,, s,), with learnable parameters ¢, is the variational
approximation ofthe true posterior p(c, u|x,, s,) andis typicallyimple-
mented by neural networks,andKL( - || - ) isthe Kullback-Leibler diver-
gence between two distributions.

Scalable variational inference via the product of experts

Let M = |m| be the total modality number. Because there are 2" -1)
possible modality combinations for the count data x,, = X'},,cac carr
naively implementing g,(c, ulx,, s,) inEq. (8) requires (2 - 1) different
neural networks to handle different cases of input (x,,, s,,), making infer-
ence unscalable. Let z = {c, u}. Inspired by Wu and Goodman®’, which
uses the product of experts to implement variational inference in a
combinatorial way, we factorize the posterior p(z|x,, s,) and define its
variational approximation g,(z|x,, s,) as follows:

_P(sa) P|s,) pExy)
P52 ( 11 poct ))”‘Z) o 1L 5

mem,

p(zlxn’ Sn) =

p(Sn) dp(2lsy) qp@xyy 9
PO 52) (ml;[ﬂn”("ﬁ )>”(z) @ AL T

= q¢(zlxn?sn)

where g,(z[s,) and g, (zlx}y) are the variational approximations of the
true posteriors p(z|s,) and p(zix?), respectively (see Supplementary
Note 3 for detailed derivation). Let g(ls,) = ~ % (";") and
Gpa) = = "";’f ) be the normalized quotients of distributions with
normallzmgconstants Cand C™, respectively. FromEq. (9), we further
acquire

qp(2Isp) Ge(2Ix7)
pP@ mgr pP@

=p@Cap(@lsy) [] Cmapixy)

memM,

x p@)p@sy) ] Geziei)

meM,

q¢(7.|x,-,, Sp) « p2)

10

where we set g,(21s,) and g, (zlx;}) to be diagonal Gaussians, resulting
in gy(2ls,) and gy (2zix}}) being diagonal Gaussians, which are defined as

Vi) = (50:9°) i)

Gy (2ls,) = Normal [z|g;,, diag (v},)] (12)
(Vi) = froa ™) form € M, (13)
Jpix7) = Normal [z|u, diag (V)| for m € M, (14)

where f°, with parameters ¢°, is the batch ID encoder neural network
for generating the mean g, and variance v;, of g,(zls,), and f", with
parameters @, is the modality encoder neural network for generating
the mean p” and variance v of g, (zix7). The operator diag( - ) converts
avector into a diagonal matrix.

In Eq. (10), because g,(2|x,, s,) is proportional to the product of
individual Gaussians (or ‘experts’), itself is a Gaussian whose mean
H, and variance v, can be calculated using those of the individual
Gaussians:

S
yn=(’;—g+ > 5:)0\/

meM,

1 1
v, :(1+v_f1+ > W)

. as)

meM,

where ¢ isthe Hadamard product.
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In doing this, g4(2ix,, s,) is modularized into (M +1) neural net-
works to handle (2" - 1) different modality combinations, increasing
the model’s scalability. Similar to the modality decoders, we also share
parameters of thelast few layers of different modality encoders {f™},,_ .
(the gray parts of the encoders in Fig. 1b, middle) to improve
generalization.

Handling missing features via padding and masking

For each modality, as different cells can have different feature sets
(for example, genes for RNA modality), itis hard to use a fixed-size
neural network to handle these cells. To remedy this, we first con-
vert x of variable size into a fixed-size vector for inference. For
modality m, let #"be the features of cellnand let ™ = |J %" be
the feature unlon of all cells. The missing features of cell n can then
be defined as f =gFm\ " We pad x’" of size D™ with zeros corre-

sponding to its missing features 7,, through a zero-padding
function h,

%y = h(?) (16)

where %7 is the zero-padded count vector of constant size D™ = |F™|.
The modallty encoding processis thus decomposed as

= o™
= (o™
- (o)

(u7.vz)
17)

where fmisthelatter part of the modality encoder to handle afixed-size
input ;. However, given the sampled latent variables {c,, u,}, to calcu-
late the likelihood pa(x™|c,., u,), we also need to generate amean A, of
variable size for x. To achieve this, we decompose the modality decod-
ing process as

:gm(cmun;em)
= 7 [87(Cort1;6™)]

(i)

where g’" is the front part of the modallty decoder to generate the
mean /l of fixed-size D™, and h* (the inverse function of h) is
the maskmg function to remove the padded missing features f
from /ln togenerate A,. Note that /ln canalso be taken as theimputed
values for downstream analyses (see ‘Imputation for missing modali-
ties and features’ and ‘Batch correction via latent variable
manipulation’).

(18)

Self-supervised modality alignment

To achieve cross-modal inference in downstream tasks, we resort to
aligning different modalities in the latent space. Leveraging
self-supervised learning, we first use each cell’s multimodal observa-
tion {{x7'},,c ¢, » Sn}to construct unimodal observations o Sudmenc, each
of which is associated with the latent variables 2" = {c", u™}. We then
constructapretext task, which enforces modality alignment by regular-
izing on the joint space of unimodal variational posteriors with the
dispersion of latent variables as a penalty (Fig. 1b, top right), corre-
sponding to amodality alignment loss

(i Xy, Sn) & S VZ)qpEXr, Sp)dZ )
= aEq, e, s)V@)

wherea > Oistheloss weight, z = {z"},,.,. isthesetoflatentvariables,
and g, (Zlx,, s, represents the joint distribution of unimodal variational
posteriors because

q¢(2lxn) Sn) qu({zm}memn lxn’ Sn)

H q¢(zm lxns Sn)

meM,

H q¢(zm Ix;[n) Sn)

meM,

(20)

InEq. (19), v(@) is the sum of squared deviations, which measures the
dispersion among different elements in z and is used to regularize
qp(2ix,,s,); itis defined as

va) 2y 2" -zl

meM,

(21

where z =

distance.
Note that the computation of g,z |x},s,) in Eq. (20) is efficient.

Because gy @™ X7}, s,) = qpIX7} . Sp)l.=,m according to Eq. (10), we have

z™ is the mean, and || - ||, is the Euclidean

\]V[ | ZmeM,,

Gp@IXy,s,) o p(2)Ge(2Isn)de@ixy) (22)
As the mean and covariance of each Gaussian term on the righthand
side of Eq. (22) was already obtained when inferring q,(z|x,, s,)
(Eq. (10)), the mean and covariance of g, (zlx};, s,) can be directly calcu-
lated using Eq. (15), avoiding the need of passing each constructed
unimodal observation to the encoders.

Information-theoretic disentanglement of latent variables
Tobetter disentangle the biological state cand the technical noise u,
we adopt an information-theoretic approach, the information bot-
tleneck (IB)**, to control information flow during inference. We define
two types of IB, where the technical IB prevents batch-specific infor-
mation being encoded into ¢ by minimizing the mutual informa-
tion (MI) between s and ¢, and the biological IB prevents biological
information being encoded into u by minimizing the Ml between x
and u (Fig. 1b, bottom right). Let I( -, - ) denote the MI between two
variables. We implement both IBs by minimizing the weighted sum
of I(s, ¢) and I(x, u),

px,u)

PG+ P10 = PEpts o108 7 |+ e [l

~ 3 Z[BE gy et 0 1082 O] + BKL[gp bty 1| p@)]
_ﬁXIquz(ulxn,Sn) [logpa(s,,|u)]] + const.
(23)

where &, B> 0 are the weights, and p;(sic) is alearned likelihood with
parameters i (see Supplementary Note 4 for the detailed derivation).
Minimizing [8/(s,c) + f*I(x,u)]is thus approximately equal to minimiz-
ing theIB loss I with respect to ¢ for all cells,

7IB(¢;xmsmﬁ)

= ﬁleq¢(c|x,,,s,,) [Ingi[(sn‘C)] + ﬂXKL [q¢(uLxm Sn) ” p(")]

B Eq, wix,.s,) [108 Pa(Sa|t)]

(24)

For p,(sic), we model it as p,(sic) = Categorical (s|x), where k = r(c; ) is
the probability vector and ris a classifier neural network parameterized
by A.Tolearn the classifier, we minimize the following expected nega-
tive log-likelihood with respect to 7,

Eptes) [= 108 P4(SI0)] = Epes)Epceis) [~ 108 Pa(sIC)]

Q

1
ﬁ Zn: [Ep(c\x",s,,) [_ Ingiz(sn |C)] (25)

Q

% Zn: Eqp(cltos,) [~ 108 P4(al0)]
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from which we can define a classifier loss

7’(i1;x,,,s,,,¢) 2 [Eq,,(c\x,,,s,,) [_Ingil(sn|C)] (26)

Tofurther enhance latent disentanglement for cross-modal infer-
ence, wealso apply IBs on the datagenerated from our self-supervised
tasks, that is, minimizing [S°/(s,c™) + *I(x™,u™)] for each modality m.
Similar to Egs. (23) and (24), this can be achieved by minimizing
IB(@;x, s,,n™), where ™ is the parameters of the classifier neural net-
work r*to generate the probability vector k™ = r*(c¢™; ™) for the likeli-
hood p,(sic™) = Categorical (s|k™). Together with the B loss of Eq. (24),
the total IBlossis defined as

B X, Spu 1) 2 TB(s X, 50, 0) + Y, IB(@ixT,5,.0™)

meM,

27

where n = {,{n1™},,c,c} - TO learn pya(sic™), we can also minimize
Ep(cn s) [~ l0g pym (sic™)} which corresponds to minimizing ¥ (g™ x, s, @)
according to Egs. (25) and (26). With the classifier loss of Eq. (26), we
define the total classifier loss as

l’(r[;x,,,s,,, ¢ = 2r(f1;xn’sn7¢) + Z ir(”m;ﬁ’sn’¢)

meM,

(28)

Training MIDAS
Totrainthe encoders and decoders of MIDAS, considering the training
objectives definedinEgs. (8), (19) and (27), we minimize the following

objective with respect to {6, ¢} for all observations {x,, s},

V0. ¢:x,,50.1) = 8O0, : x,,, 5,) + MO (: X, ) + IB(: X, S )
(29)

Here, the loss [F*° is defined based on the negative of the ELBO of
Eq.(8),thatis,

[FB0(0, ;X,,50) 2 —Eqg(culx,s,) | V108 Po(Salt) + EM log pp(x7y |c. u)
mem,

+KL [qQ(C9u|xn) Sn) ” p(C, U)]
(30)

where y>1is an additional weight that can be set to a higher value to
encourage u to encode more batch-specific information. In Eq. (29),
because the classifier parameters g are unknown and the learning of
dependson ¢, asinEq. (28), weiteratively minimize Egs. (28) and (29)
with stochastic gradient descent (SGD), forming the MIDAS training
algorithm (Algorithm1). To better guide the optimization of the IB loss
in Eq. (29) for disentangling latent variables, we increase the number
of updates (that is, with K> 1) of Eq. (28) for the classifier parameters
nin each iteration to ensure that these classifiers stay close to their
optimalsolutions.

Algorithm 1. The MIDAS training algorithm.
Input: Asingle-cell multimodal mosaic dataset {x,,, sp},,c
Output: Decoder parameters 8, encoder parameters ¢ and classifier
parametersn
(1) Randomly initialize parameters {0, ¢, n}
(2)foriterationt=1,2, ..., Tdo
(3) Sampleaminibatch {x,,s,}
where N, c v
(4) forstepk=1,2,...,Kdo
5) Freeze ¢p and update npvia SGD with loss
ﬁzneNll’(rI;xn, sn@) >SeeEq.(28)
(6) endfor
(7) Freezenandupdate {0, ¢} viaSGD with loss
ﬁznemlfg(e,cp;xn,sn,n) > See Eq. (29)
(8) end for

e, from the dataset,

Mosaic integration on latent space

A key goal of single-cell mosaic integration is to extract biologically
meaningful low-dimensional cell embeddings from the mosaic data
for downstream analysis, where the technical variations are removed.
Toachievethis, for eachcell, wefirst use the trained MIDAS to infer the
latent posterior g,(c, u|x,, s,) through Eq. (10), obtaining the mean
M, = {518} and variance v, = {v;,vi}. We then take the maximum
aposteriori (MAP) estimation of {c, u} as the integration result on the
latent space, which is the mean g, because g,(c, ulx,, s,) is Gaussian.
Finally, we take p¢, the MAP estimation of ¢, as the cellembedding.

Imputation for missing modalities and features

Based on the MAP estimation {u, u4} inferred from the single-cell
mosaic data (see ‘Mosaic integration on latent space’), itis straightfor-
ward to impute missing modalities and features. We first pass {u, u2}
tothedecoderstogenerate padded feature mean /if foreach modality
me M~X1i'§CEq- (18). We then sample from a Bernoulli distribution with
meanl, togeneratethe E%EUtEd é;ll'#c countsand from two Poisson
distributions withmeans A, and A, to generate the imputed RNA
and ADT counts, respectively.

Batch correction vialatent variable manipulation

Besides performing mosaicintegration on the latent space (see ‘Mosaic
integration on latent space’), we can also perform it on the feature
space, that is, imputing missing values and correcting batch effects
for the count data. Mosaic integration on feature space is important
because it is required by many downstream tasks, such as cell typing
and trajectory inference.

With thelatent variables’ MAP estimation {u¢, %}, we can perform
imputation and batch correction simultaneously by manipulating the
technical noise. Concretely, let ¢, = p& and u,, = u¥. We first calculate
the mean of u, withineachbatch b € 3

_ 1
up Z u,

[NVl nen,

€)Y

where N, c v istheset of cell IDs belonging to batch b. Next, we calcu-
late the mean of @, over all batches

u= (32)

® =

2y
b

We then look for the batch b with a mean i,. closest to @ and treat i,.
asthe ‘standard’ technical noise, where

b* =arg mbin Ila, —all, (33)

Finally, for each cell, we correct the batch effect by substituting u, with
a,. and pass {c,.d,.} to the decoders to generate imputed and
batch-corrected data (similar to ‘Imputation for missing modalities
and features’, but here we use {c,,a,.} instead of {c,, u,,} to correct the
batch effect).

Model transfer via transfer learning

When MIDAS has been pretrained on a reference dataset, we can con-
duct model transfer to transfer the model’s learned knowledge to a
query dataset through transfer learning; thatis, on the query dataset,
we fine-tune the pretrained model instead of train the model from
scratch. Because, compared to the reference dataset, the query dataset
can contain different numbers of batches collected from different
platforms, the batch ID-related modules need to be redefined. Thus,
during transfer learning, we reparameterize and reinitialize the batch
ID encoder and decoder {f, g} and the batch classifiers {r, {r"},,.,.}and

only fine-tune the modality encoders and decoders {f", g™}, 5.
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A core advantage of our model transfer scheme is that it can flex-
ibly transfer the knowledge of multimodal data to various types of
query datasets, even to those with fewer modalities, improving the
de novointegration of single-cell data.

Label transfer via reciprocal reference mapping and
kNN-based cell annotation

While model transfer implicitly transfers knowledge through model
parameters, label transfer explicitly transfers knowledge in the form of
datalabels. These labels can be different kinds of downstream analysis
results, suchas cell types, cell cycles or pseudotime. Through accurate
label transfer, we can not only avoid the expensive de novo integration
and downstream analysis but also improve label quality.

Reciprocal reference mapping. Typically, the first step of label trans-
ferisreference mapping, which aligns the query cells with the reference
cellssothatlabels canbe transferred reliably. For MIDAS, we can naively
achieve reference mapping in two ways: (1) mapping the query data
ontothereference space (thatis, applying the model pretrained on the
reference data to infer the biological states for the query data®**") and
(2) mapping the reference data onto the query space (that is, applying
the model fine-tuned on the query data (see ‘Model transfer via transfer
learning’) toinfer the biological states for the reference data'**?). How-
ever, the first way suffers from the ‘generalization problem’ because
the pretrained model is hard to generalize to the query data, which
usually contains unseen technical variations, whereas the second way
suffers from the ‘forgetting problem’ because the fine-tuned model
may lose information learned on the reference data, affecting the
inferred biological states.

To tackle both problems, we propose areciprocal reference map-
ping scheme, where we fine-tune the pretrained model on the query
dataset to avoid the generalization problem and meanwhile feed the
model with the historical data sampled from the reference dataset to
prevent forgetting. In doing this, the model can find amapping suitable
for both reference and query datasets and can then align them on the
latent space by inferring their biological states.

kNN-based cell annotation with novel cell-type identification.
Based on the aligned latent representations (embeddings), the kNN
classifier is used to transfer the reference labels to the query dataset.
When the query and reference datasets belong to the same tissue
(for example, PBMCs), we train the kNN classifier using the reference
embeddings and labels and then use it to classify the query cells.

However, if the query and reference datasets are from distinct tis-
sues (forexample, BMMCs versus PBMCs), we might encounter new cell
typesinthe query dataset that are not presentin the reference dataset.
To address this issue, we propose a strategy for novel cell-type detec-
tion. Specifically, we assign the label ‘query’ to all the query cells and
use the cellembeddings and labels from both the query and reference
datasets totrainthe kNN classifier. Subsequently, we use the classifier
to predict the class probabilities for the query cells.

To detect new cell types, we use a thresholding approach on the
predicted probabilities of the ‘query’ class, that is, we leverage a Gauss-
ian mixture model with two components to group the probabilitiesinto
two distinct clusters. This clustering process allows us to establish a
suitable threshold for the probabilities. For the cluster with a higher
mean, its cells have higher probabilities belonging to the ‘query’ class;
we consider these cells as unique to the query dataset and assign them
the label ‘unknown’. Conversely, for the cluster with alower mean, its
cells have lower probabilities belonging to the ‘query’ class; we consider
these cells to belong to the types present in the reference dataset and
assigneach of these cells the label of the class with the highest predicted
probability among all classes except the ‘query’ class.

The above kNN and Gaussian mixture model algorithms are imple-
mented by the KNeighborsClassifier function (n_neighbors =100 and

weights = ‘uniform’) and the GaussianMixture function (n_compo-
nents =2and tol =107*) fromthe scikit-learn® (v1.2.2) Python package,
respectively. Similar to model transfer (see ‘Model transfer via transfer
learning’), in label transfer, knowledge can also be flexibly and accu-
rately transferred to various types of query datasets.

Modality contribution to the integrated clustering

We assess the contribution of different modalities to clustering by
measuring the agreement between single-modality clustering and
multimodalities cell clustering. For each cell, the normalized consist-
ency ratio of the nearest neighbors in the single modal clustering and
multimodalities clustering is used to represent contribution of the
modalfor the finalintegrated clustering.

Regulatory network inference from scRNA-seq datasets

The GRNBoost2 algorithm* from the Arboreto (v0.1.5) Python pack-
age is used to infer the regulatory network from scRNA-seq datasets.
Weighted regulatory links between genes and transcription factors are
provided from GRNBoost2. The weights of shared links from different
data are compared to indicate the regulatory network retention.

Correlation of expression fold change values between raw and
batch-corrected data

Foreach cell type, expression fold change values of genes and proteins
are calculated against all other cells using the FoldChange functionin
the Seurat (v4.3.0) R package. The Pearson correlation coefficient is
used to measure linear correlations of fold change values between raw
and batch-corrected data.

Generating Seurat cell-type labels

Togenerate cell-type labels for both qualitative and quantitative evalu-
ation, we used the third-party tool Seurat to annotate cell types for
different datasets through label transfer. We took the CITE-seq PBMC
atlas from Hao et al.” as the reference set and used the FindTransferAn-
chors and TransferData functions in Seurat to perform label transfer,
where ‘cca’ was used as the reduction method for reference mapping.
For cells without raw RNA expression, we first used ATAC datato create
agene activity matrix using the GeneActivity function in the Signac®°
(v1.9.0) R package. The gene activity matrix was subsequently used
for label transfer.

Evaluation metrics

To evaluate the performance of MIDAS and the state-of-the-art tools
onmultimodalintegration, we use metrics from scIB on batch correc-
tionand biological conservation and also propose our own metrics on
modality alignment to better evaluate mosaic integration, extending
scIB to scMIB (Supplementary Table 4). Because mosaic integration
should generate low-dimensional representations and the imputed
and batch-corrected data, scMIB is performed on both embedding
space and feature space. To evaluate the batch correction and biologi-
cal conservation metrics onthe feature space, we convert theimputed
and batch-corrected feature into a similarity graph viathe PCA+WNN
strategy (see ‘Implementation of comparing methods’) and then use
this graph for evaluation. Our metrics for batch correction, modality
alignment and biological conservation are defined as follows.

Batch correction metrics. The batch correction metrics comprise
graphintegrationlocalinverse Simpson’sindex (iLISI; y!5! and y')),

embe feat

graph connectivity (3% and y% )and kNN batch effect test (kBET;
BT and ykBET), where yHS! | yE-  and yBET are defined in embed-

dingspaceand y-*, y&° and yk:!are defined in feature space.
GraphiLISI. The graph iLISI metric is extended from the iLISI®, which
is used to measure the batch mixing degree. TheiLISIscores are com-
puted based on kNN graphs by computing the inverse Simpson’s index
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for diversity. The scores estimate the effective number of batches pre-
sentin the neighborhood. iLISIranges from1to N, where N equals the
number of batches. Scores close to the real batchnumbers denote good
mixing. However, the typicaliLISIscoreis not applicable to graph-based
outputs. scIB proposed the graphiLISI, which uses a graph-based dis-
tance metric to determine the nearest neighbor list and avoids skews
ongraph-based integration outputs. ThegraphiLISIscores are scaled
to [0, 1], where O indicates strong separation, and 1 indicates perfect
mixing.

Graph connectivity. Graph connectivity is proposed by scIB toinspect
whether cells with the same label are connected in the kNN graph of all
cells. For each label ¢, we get the largest connected graph component
of c-labeled cells and divide the largest connected graph component
size by the population size of c-labeled cells to represent the graph
connectivity for cell label c. We then calculate the connectivity values
for all labels and take the average as the total graph connectivity. The
scoreranges from O to1. Ascore of 1 means thatall cells with the same
cellidentity from different batches are connectedin theintegrated kNN
graph, which also indicates the perfect batch mixing and vice versa.

kBET. The KBET® is used to measure batch mixing at the local level of
the kNN. Certain fractions of random cells are repeatedly selected
to test whether the local label distributions are statistically similar
to the global label distributions (null hypothesis). The kBET value
is the rejection rate over all tested neighborhoods, and values close
to O indicate that the batches are well mixed. scIB adjusts the kBET
with a diffusion-based correction to enable unbiased comparison on
graph-and non-graph-based integration results. KBET values are first
computed for each label and then averaged and subtracted from 1 to
getafinal KBET score.

Modality alignment metrics. The modality alignment metrics com-
prise modality averaged silhouette width (ASW; y*%), fraction of sam-
ples closer than the true match (FOSCTTM; yF°5¢™™) label transfer F1
(™), ATAC area under the receiver operating characteristic (AUROC;
yAUROC) RNA Pearson’s r (") and ADT Pearson’s r (*°™), where y*s",
YOSCT™ and '™ are defined in embedding space, and y*"*°¢, ™" and
y*PT are defined in feature space.

Modality ASW. The modality ASW is used to measure the alignment
of distributions between different modality embeddings. The ASW®
is originally used to measure the separation of clusters. In scIB, ASW
isalso modified to measure the performance of batch effect removal,
resultinginabatch ASW thatranges from O to1, where1denotes perfect
batch mixing, and O denotes strong batch separation. By replacing
batchembeddings with modality embeddings, we can define amodal-
ity ASWin the same manner as the batch ASW, where 1denotes perfect
modality alignment, and O denotes strong modality separation. For
MIDAS, the modality embeddings are generated by feeding the trained
model with each modality individually.

FOSCTTM.The FOSCTTM®*is used to measure the alignment of values
between different modality embeddings. Let y;25:"™be the FOSCTTM
foramodality pair {m,, m,};itis defined as

1 N1 N2
g - 4 (52 )
L L
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where Nis the number of cells, i and j are the cell indices, and e;" and

e are the embeddings of cell i in modalities m, and m,, respectively.
N{"is the number of cells in modality m, that are closer to /" than e/

is to €, and it is similar for M. We first get the embeddings of indi-
vidual modalities, calculate the FOSCTTM values for each modality
pair and then average these values and subtract it from 1to obtain a
final FOSCTTM score. Higher FOSCTTM scores indicate better modality
alignment.

Label transfer F1. The label transfer F1is used to measure the alignment
of cell types between different modality embeddings. This can be
achieved by testing whether cell-type labels can be transferred from
one modality to another without any bias. For each pair of modalities,
wefirstbuild a kNN graphbetween theirembeddings and then transfer
labels from one modality to the other based on the nearest neighbors.
Thetransferred labels are compared to the original labels by the micro
F1lscore, whichis defined as the label transfer F1. We take the F1score
averaged from all comparison pairs as the final label transfer F1score.

ATAC AUROC. The ATAC AUROC is used to measure the alignment of
different modalities in the ATAC feature space. It has been previously
used to evaluate the quality of ATAC predictions®. For each method to
beevaluated, wefirst use it to convert different modality combinations
that do not contain ATAC into ATAC features, respectively, calculate
the AUROC of each converted result by taking the true ATAC features
asthegroundtruth andfinally take the average of these AUROCs as the
final score. Taking MIDAS as an example, if ATAC, RNA and ADT dataare
involved, the evaluation is based on the combinations {RNA}, {ADT} and
{RNA, ADT}. For each combination, we feed the data into the trained
modelto generate theimputed data of all modalities {ATAC, RNA, ADT}
(see, Imputation for missing modalities and features’), where the gen-
erated ATAC features are used for AUROC calculation.

RNA Pearson’sr. The RNA Pearson’s rvalue is used to measure the align-
ment of different modalities in the RNA feature space. For each method
tobe evaluated, we first use it to convert different modality combina-
tions thatdo not contain RNA into RNA features, respectively, calculate
the Pearson’s rvalue between each converted result and the true RNA
features and finally take the average of these Pearson’s r values as the
final score.

ADT Pearson’sr.The ADT Pearson’s rvalue is used to measure the align-
ment of different modalitiesin the ADT feature space. The calculation of
the ADT Pearson’s rvalueis similar to that of the RNA Pearson’s rvalue.

Biological conservation metrics. The biological conservation metrics

comprise normalized MI (NMI; )N and yi™!), adjusted Rand index

(ARI; yA% and yR), isolated label F1 (). and yif!)and grapl(]
an

embe
cell-type LISI (cLISI; yt5! ‘and y<tSl), where yNMI = yARI iIFL

C
. X embed * feat embed” yembed’ yembed
yeust (aredefined inembedding space, and ypM, yAR, yit and ycBare

b N feat” yfeat’ yfeat
definedin feature space.

NMI. The NMl is used to measure the similarity between two cluster-
ing results, namely the predefined cell-type labels and the clustering
result obtained from the embeddings or the graph. Optimized Louvain
clustering is used here according to scIB. The NMI scores are scaled
to [0, 1], where O and 1 correspond to uncorrelated clustering and a
perfect match, respectively.

ARI. The ARI also measures the overlap of two clustering results. The
Rand index (RI°®) considers not only cell pairs that are assigned in
the same clusters but also ones in different clusters in the predicted
(Louvain clustering) and true (cell-type) clusters. The ARl corrects the
RIfor randomly correct labels. An ARl of 1represents a perfect match,
and O represents random labeling.

Isolated label F1. scIB proposes the isolated label F1score to evalu-
ateintegration performance, specifically focusing on cells with the
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label thatis shared by few batches. Cell labels presented in the least
number of batches are identified asisolated labels. The F1score for
measuring the clustering performance onisolated labels is defined
astheisolated label F1score. It reflects how well the isolated labels
separate from other cell identities, ranging from O to 1, where 1
means all the isolated label cells and no others are grouped into
one cluster.

Graph cLISI. The graph cLISlis similar to the graphiLISIbut focuses on
cell-type labels rather than batch labels. Unlike iLISI that highlights
the mixing of groups, cLISI values the separation of groups®. The
graph-adjusted cLISlisscaledto [0, 1], with a value of O corresponding
to low cell-type separation and a value of 1 corresponding to strong
cell-type separation.

Overall scores. scIB. We compute the scIB overall score using the batch
correction and biological conservation metrics defined either on the
embedding space (for algorithms generatingembeddings or graphs) or
the feature space (for algorithms generating batch-corrected features).
Following Luecken etal.”, the overall score yis the sum of the averaged
batch correction metricy""weighted by 0.4 and the averaged biologi-
cal conservation metric y°° weighted by 0.6,

ybatch - O/iuI)JSI +y§)C +y(l‘<)BET)/3
ybio = O}L\I)MI +y£)RI +yia|)F1 +yg)LlSI)/4

y =04 _ybatch +0.6 _ybio

(35

where w = embed for embedding or graph outputs, and w = feat for
feature outputs.

ScMIB. As an extension of scIB, the scMIB overall score y is computed
fromthebatch correction, modality alignment and biological conser-
vation metrics defined on both the embedding and feature space. Itis
the sum of the averaged batch correction metric y**"weighted by 0.3,
the averaged modality alignment metric y™°dweighted by 0.3 and the
averaged biological conservation metric y°° weighted by 0.4:

batch _ (4,iLISI gc kBET iLISI 8¢ kBET
Y - (yembed +yembed +yembed +yfeat +yfeat +yfeat )6

ymod - (yASW +yFOSCTTM +yItFI +yAUROC +yRNAr +yADTr)/6

bio _ (yNMI ARI ilF1 CLISI NMI ARI ilF1 CLISI
Y ~ Yembed +yembed +yembed +yembed +yfeat +yfeat +yfeat +yfeat )/8
y=03.ybach 1 0.3.ymod 4 04 . ybio

(36)

Datasets

Alldatasets of human PBMCs were publicly available (Supplementary
Table1). Count matrices of gene unique molecular identifiers (UMIs),
ATAC fragments and ADTs were downloaded for data analysis.

DOGMA dataset. The DOGMA dataset contains four batches profiled
by DOGMA-seq, which measures RNA, ATAC and ADT data simulta-
neously. Trimodal data from this dataset were obtained from Gene
Expression Omnibus (GEO)®” under accession ID GSE166188 (ref. 3).

TEA dataset. The TEA dataset contains five batches profiled by
TEA-seq, which measures RNA, ATAC and ADT data simultaneously.
Trimodal data from these batches were obtained from GEO under
accession ID GSE158013 (ref. 4).

TEA Multiome dataset. The TEA Multiome dataset measuring paired
RNA and ATAC data was obtained from GEO under accession ID
GSE158013 (ref. 4). This dataset contains two batches profiled by 10x
Chromium Single Cell Multiome ATAC + Gene Expression.

10x Multiome dataset. The 10x Multiome dataset measuring paired
RNA and ATAC data was collected from 10x Genomics (https://
www.10xgenomics.com/resources/datasets/)®s™"",

ASAP dataset. The ASAP dataset was obtained from GEO under acces-
sionID GSE156473 (ref. 3). Two batches profiled by ASAP-seq are used,
whichinclude ATAC and ADT data.

ASAP CITE dataset. The ASAP CITE dataset was obtained from GEO
underaccessionID GSE156473 (ref. 3). Two batches profiled by CITE-seq
are used, whichinclude RNA and ADT data.

WNN CITE dataset. The WNN CITE dataset measuring paired RNA
and ADT data was obtained from https://atlas.fredhutch.org/nygc/
multimodal-pbmc ref. 15. This dataset was profiled by CITE-seq. We
selected the eight PBMC batches generated before the administration
of HIV vaccine for integration.

BMMC mosaic dataset. The BMMC mosaic dataset included three
batches. The ICA batch measuring RNA data was obtained from https://
www.dropbox.com/s/xeStithwlxjxrfs/ica_bone_marrow.h5?dI=0
(ref.72), where thefirst batch (‘MantonBMI’) of the original datais used.
The ASAP batch measuring ADT and ATAC data was obtained from GEO
underaccessionID GSE156477 (ref. 3). The CITE batchmeasuring RNA
and ADT data was obtained from GEO under accession ID GSE128639
(ref.13).

Data preprocessing

The count matrices of RNA and ADT were processed via Seurat. The
ATAC fragment files were processed using Signac, and peaks were called
viathe Python package MACS2 (ref. 73;v2.2.7.1). We performed quality
control separately for each batch. Briefly, metrics of detected gene
number per cell, total UMInumber, percentage of mitochondrial RNA
reads, total protein tag number, total fragment number, transcription
start site score and nucleosome signal were evaluated. We manually
checked the distributions of these metrics and set customized criteria
tofilter low-quality cellsin each batch. The number of cells that passed
quality control ineach batch is shown in Supplementary Table 1.

For each batch, we adopted common normalization strategies
for RNA, ADT and ATAC data, respectively. Specifically, for RNA data,
UMI count matrices are normalized and log transformed using the
NormalizeData function in Seurat. For ADT data, tag count matrices
are centered log ratio normalized using the NormalizeData func-
tioninSeurat. For ATAC data, fragment matrices are term frequency
inverse document frequency normalized using the RunTFIDF func-
tionin Signac.

Tointegrate batches profiled by various technologies, we need to
create a union of features for RNA, ADT and ATAC data, respectively.
For RNA data, first, low-frequency genes are removed based on gene
occurrence frequency across all batches. We then select 4,000 highly
variable genes using the FindVariableFeatures function with default
parameters in each batch. The union of these highly variable genes is
ranked using the SelectIntegrationFeatures function, and thetop 4,000
genes are selected. In addition, we also retain genes that encode pro-
teins targeted by the antibodies. For ADT data, the union of antibodies
in all batches is retained for data integration. For ATAC data, we used
the reduce function in Signac to merge all intersecting peaks across
batches and then recalculated the fragment counts in the merged
peaks. The merged peaks are used for dataintegration.

Theinput datafor MIDAS are UMI counts for RNA data, tag counts
for ADT data and binarized fragment counts for ATAC data. For each
modality, the union of features from all batches are used. Counts
of missing features are set to 0. Binary feature masks are generated
accordingly, where 1and O denote presented and missing features,
respectively.
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Implementation of MIDAS
We implement the MIDAS architecture using PyTorch™. The sizes of
the shared hidden layers for different modality encoders are set to
1,024-128, whereas the sizes of the shared hidden layers for different
modality decoders are set to 128-1,024. Additionally, the sizes of the
biological state and technical noise latent variables are setto 32and 2,
respectively (refer to Supplementary Fig. 1and Supplementary Table
12 for details). Each hidden layer is constructed using four PyTorch
modules: Linear, LayerNorm, Mish and Dropout. Theinput and output
layers have different sizes depending on the datasets used (refer to Sup-
plementary Table 13 for details). To effectively reduce the number of
model parameters, similar to Wu et al.**, the input and reconstruction
layers for the ATAC modality are both split into 22 independent, fully
connected layers based on the genomic regions of different human
chromosomes (excluding sex chromosomes).

To train MIDAS, we set the modality alignment loss weight (a) to
50, the technical IB loss weight (5°) to 30, the biological IB loss weight
(B") to4 andthetechnical noise likelihood loss weight (y) to1,000. The
number of updates (K) of the batch classifiers {r, {r"},,.,.}in eachitera-
tionis set to 3. We split the dataset into training and validation sets in
aratio of 95:5. The minibatch size is set to 256, and we use the AdamW?
optimizer with alearning rate of 107 for implementing SGD. We train
the model for a maximum of 2,000 epochs and use early stopping to
terminate training. The dropout rates for all hidden layers are set to
0.2. All the hyperparameter settings for MIDAS training are listed in
Supplementary Table 14.

Implementation of comparing methods

We compared MIDAS with 19 recent methods on different trimodal
and bimodal integration tasks (see Supplementary Table 3 for an
overview). If a method cannot handle missing features for a certain
modality, we used the feature intersection of different batches of that
modality for integration. For a fair comparison, we set the size of the
low-dimensional representations generated by each method tobe 32,
the same as that of the biological states inferred by MIDAS. For other
settings of each method, if not specified, their default values were
used. For trimodal rectangular integration tasks, because few meth-
ods are directly applicable to ATAC, RNA and ADT trimodal data, we
decomposed therectangular integrationinto two steps, thatis, batch
correction for each modality independently and modality fusion for all
batch-corrected modalities. We then combined different batch correc-
tion and modality fusion methods to achieve rectangular integration,
resulting in nine different strategies in total.

Methods compared in trimodal rectangular integration tasks.
BBKNN+average. The Python package BBKNN" (v1.5.1) is used for batch
correction (embedding space), and graph averaging is used for modal-
ity fusion. For each batch, we use functions from Seurat to perform
dimensionality reduction on the count data. We first use RunTFIDF
and RunSVD functions to obtain the low-dimensional representation of
ATACdataand thenuse NormalizeData, ScaleDataand RunPCA functions
to obtain the low-dimensional representations of RNA and ADT data,
respectively. For the obtained low-dimensional representation of each
modality, we use the bbknn function of the Scanpy”” (v1.9.1) Python pack-
agetoremove thebatch effect and obtain a similarity graph. Finally, we
average the similarity graphs of different modalities to obtainthe output.

Harmony+WNN. The R package Harmony® (v0.1.1) is used for batch
correction (embedding space), and the WNN algorithm® of the Seu-
rat package is used for modality fusion. We use the same processing
method as BBKNN+average to obtain low-dimensional representations
of different batches of ATAC, RNA and ADT data, respectively. For the
obtained low-dimensional representation of each modality, we use
the RunHarmony function of the Harmony package to remove batch
effects. We then use Seurat’s FindMultiModalNeighbors function, that

is,the WNN algorithm, to fuse the low-dimensional representations of
different modalities to obtain the graph output.

LIGER+WNN. The R package LIGER”® (v1.0.0) is used for batch correc-
tion (embedding space), and WNN is used for modality fusion. For each
batch, we use Seurat’s RunTFIDF and ScaleData functions for ATAC
data normalization and the NormalizeData and ScaleData functions
for RNA and ADT data normalization. For each modality, we then use
the RunOptimizeALS and RunQuantileNorm functions of the LIGER
package for dimensionality reduction and batch effect removal. Finally,
we use the WNN algorithm FindMultiModalNeighbors function to fuse
the low-dimensional representations of different modalities to obtain
thegraphoutput.

MOFA+. The R package MOFA+** (v1.4.0) is used for simultaneous batch
correction (embedding space) and modality fusion. We first use the
same processing method as LIGER+WNN to normalize each modality
separately and then use the run_mofaand get_factors functions of the
MOFA+ package to achieve simultaneous batch effect removal and
modality fusion on the normalized data, obtaining low-dimensional
representations output.

PCA+WNN.Singular value decompositionis used for the dimensionality
reduction of ATAC data, and principal component analysis is used for
the dimensionality reduction of RNA and ADT data. No batch correc-
tionisapplied. WNN is then used for modality fusion. We use the same
processing method as BBKNN+average to obtain low-dimensional rep-
resentations of different batches of ATAC, RNA and ADT data, respec-
tively. We then use the WNN algorithm FindMultiModalNeighbors
function to fuse the low-dimensional representations of different
modalities to obtain the graph output.

Scanorama-embed+WNN. The Python package Scanorama’® (v1.7.2)
is used for batch correction (embedding space), and WNN is used for
modality fusion. For each modality, we use the integrate function from
the Scanorama package for dimensionality reduction and batch effect
removal. We then use the WNN algorithm FindMultiModalNeighbors
function to fuse the low-dimensional representations of different
modalities to obtain the graph output.

Scanorama-feat+WNN.Scanoramais used for batch correction (feature
space), and WNN is used for modality fusion. For each modality, we
perform batch correction using the correct function of the Scano-
rama package. For the batch-corrected count data, we then use the
PCA+WNN strategy to get the graph output.

Seurat-CCA+WNN. Seurat’s CCA” is used for batch correction (feature
space),and WNN is used for modality fusion. For each modality, we use
Seurat’s FindIntegrationAnchors function (reduction = ‘cca’), that is,
the CCA algorithm, to anchor different batches and use its Integrate-
Data function to correct batch effects. For the batch-corrected count
data, we then use the PCA+WNN strategy to get the graph output.

Seurat-RPCA+WNN.Seurat’sRPCA" is used for batch correction (feature
space),and WNN is used for modality fusion. It uses the same strategy
as Seurat-CCA+WNN, except that the FindIntegrationAnchors function
isapplied with reduction = ‘rpca’.

Methods compared in trimodal mosaic integration tasks.
Multigrate. The Python package Multigrate? (v0.0.2) is available at
https://github.com/theislab/multigrate. For data inputs, we took the
intersection of genesin scRNA-seqdata and proteinsin ADT dataacross
different batches. We processed the data using the default method of
Multigrate. The values of parameters KL and integ were set to 0.1 and
3,000, respectively.
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scMoMaT. The Python package scMoMaT? (v0.2.0) is designed to
integrate multimodal mosaic data. The code is available at https://
github.com/PeterZZQ/scMoMaT. We take the same preprocessed data
as MIDAS. For each modality, because scMoMaT does not handle miss-
ing features, we only use the intersected features of different batches
ofthe preprocessed data for integration. We set the minibatch size to
0.1 x Nfor training, where Nis the number of cells.

SCVAEIT. The Python package scVAEIT? is designed to integrate multi-
modal mosaic data. The codeis available at https://github.com/jaydul/
ScVAEIT. After filtering the low-quality cells and features as MIDAS
did, we size normalized and log normalized the counts of genes and
proteins separately while binarizing the peaks by changing allnonzero
valuestol.

StabMap. The R package StabMap?®® (v0.1.8) is designed to integrate
single-cell data with non-overlapping features. The code is available
athttps://github.com/MarioniLab/StabMap. To select suitable highly
variable features, we set different parameters for different modalities
(mean > 0.01and P < 0.05for RNA; mean > 0.25and P < 0.05 for ATAC;
mean >0.01and P< 0.1for ADT). In the case of diagonal integration,
because there are no shared features between different modalities,
we convert the ATAC regions into the nearest genes using the Clos-
estFeature function in Signac and convert the ADT proteins into the
corresponding genes. In addition, to obtain more shared features
between different modalities in diagonal integration, we relaxed the
conditions of highly variable features (mean > 0.01and P< 0.1for RNA;
mean > 0.25 and P < 0.05 for ATAC; all features for ADT). In diagonal
integration, we choose the RNA batch as the reference set; in other
cases, we choose the batch with the largest number of modalities as
the reference set.

Methods compared in bimodal (ATAC and RNA) integration tasks.
Cobolt. The Python package Cobolt” (v1.0.1) is designed to integrate
bimodal mosaic datafrom ATAC and RNA data. The code is available at
https://github.com/epurdom/cobolt. We take the same preprocessed
data as MIDAS and retain the intersected features of each modality
for different batches. For Cobolt to read, we store the preprocessed
data of each modality in each batch as a SingleData object. We set the
learning rateto 5 x 107,

Multivi. MultiVI* is designed to integrate bimodal mosaic data from
ATAC and RNA data. The code is integrated into the Python package
scvi-tools (v1.0.0), which is available at https://github.com/scverse/
scvi-tools. We take the same preprocessed data as MIDAS. For each
modality, we also retain intersected features of different batches. In
the model setup, we use batch_key to specify the cell modality and use
categorical_covariate_keys to specify the cell batch.

uniPort. The Python package uniPort* (v1.2.2) is designed to integrate
heterogeneous single-cellbimodal data. The codeis available at https://
github.com/caokail073/uniPort. Because uniPort supports horizontal,
vertical and diagonal integration, we combine all three integration
methods to achieve our tasks.

GLUE. The Python package GLUE* (v0.3.2) is designed for integrating
unpaired multimodal data (for example, scRNA-seq data, scATAC-seq
dataand snmC-seqdata) using graph-linked unified embeddings. Due
to GLUE’s inability to handle trimodal integration with ADT data, we
limited the evaluation to bimodal ATAC and RNA integration tasks.
The code is available at https://github.com/gao-lab/GLUE, whereas
the GTF file we used in the experiments can be obtained from https://
ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_43/
gencode.v43.annotation.gtf.gz. To remove batch effects, we set use_
batch =‘batch’in the experiments.

Methods compared in bimodal (RNA and ADT) integration tasks.
totalVl.totalVI® is designed to integrate bimodal mosaic data from
RNA and ADT data. The codeisintegrated into the Python package
scvi-tools (v1.0.0). As totalVI does not handle missing genes, we
took the intersection of genes in RNA data from different input
batches. For the ADT data, the union of proteins from different
batchesis used.

SCiPENN. The Python package sciPENN" (v1.0.0) is designed to integrate
bimodal datafrom RNA and ADT dataand s available at https://github.
com/jlakkis/sciPENN. Because sciPENN cannot handle missing genes,
wetook theintersection of RNA features and the union of ADT features
for differentinput batches.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All single-cell datasets of human PBMCs and BMMCs used in this
paper are publicly available. See Supplementary Table 1 for detailed
information.

Code availability
MIDAS was implemented using the Python (v3.8.8) package PyTorch
(v2.0.0) with code available at https://github.com/labomics/midas.
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