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Detection of mosaic and population-level 
structural variants with Sniffles2
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Dominic W. Horner    3,4, Medhat Mahmoud    1,2, Sairam Behera    1, 
Ester Kalef-Ezra    3,4, Mira Gandhi5, Karl Hong6, Davut Pehlivan2,7, 
Sonja W. Scholz    8,9, Claudia M. B. Carvalho    2,5, Christos Proukakis    3,4 & 
Fritz J. Sedlazeck    1,2,4,10 

Calling structural variations (SVs) is technically challenging, but using 
long reads remains the most accurate way to identify complex genomic 
alterations. Here we present Sniffles2, which improves over current methods 
by implementing a repeat aware clustering coupled with a fast consensus 
sequence and coverage-adaptive filtering. Sniffles2 is 11.8 times faster 
and 29% more accurate than state-of-the-art SV callers across different 
coverages (5–50×), sequencing technologies (ONT and HiFi) and SV types. 
Furthermore, Sniffles2 solves the problem of family-level to population-level 
SV calling to produce fully genotyped VCF files. Across 11 probands, we 
accurately identified causative SVs around MECP2, including highly complex 
alleles with three overlapping SVs. Sniffles2 also enables the detection 
of mosaic SVs in bulk long-read data. As a result, we identified multiple 
mosaic SVs in brain tissue from a patient with multiple system atrophy. The 
identified SV showed a remarkable diversity within the cingulate cortex, 
impacting both genes involved in neuron function and repetitive elements.

The role and biological impact of structural variations (SVs) have 
become evident1,2. SVs are loosely defined as 50-base pairs (bp) or 
larger genomic alterations that fall into five types (insertions, inver-
sions, deletions, duplications and translocations) or a combination of 
these types1. Given that this type of variant impacts the most number 
of nucleotides in a genome, it is not surprising that evidence is mount-
ing regarding their importance across all categories of life. This starts, 
for example, with speciation events3 and impacts plants4,5 but goes 
further across human diseases (Mendelian6,7 and complex diseases8–10) 
to cancer development11–13. Despite the importance of SVs, it is still chal-
lenging to detect germline and somatic SVs or even to robustly identify 
de novo SVs14–16. The least often studied and, thus, most challenging SVs 

are insertions (that is, novel sequences) that, as many studies showed, 
amount to half of all SVs found in a human genome17–19. The latter can be 
recovered either by long-read mapping methods or by de novo assem-
blies, followed by a genomic alignment1,20.

Long-read sequencing has come a long way over the past years 
from a novelty to a population/production-scale mechanism to study 
SVs21,22. The error rate of Oxford Nanopore Technologies (ONT) and 
PacBio HiFi are both ever decreasing23,24. Indeed, several studies have 
now started to sequence larger and larger datasets or even medical 
applications using PacBio HiFi or ONT21,25. This trend started with  
GENCODE22 but is ever increasing to other projects (for example, All of 
Us initiative26 and the Center for Alzheimer’s and Related Dementias 
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for SV calling improves the accuracy and performance across Mende-
lian disease probands with ONT. Here we showcase the boundaries of 
long-read SV calling by assessing highly complex SVs around MECP2. 
Lastly, we investigate the abiliity of Sniffles2 to identify low-frequency/
mosaic SVs across an MSA brain sample and compare its performance 
to Illumina sequencing and Bionano optical genome mapping (OGM). 
Overall, Sniffles2 pushes the boundaries of long-read-based SV calling 
and, thus, demonstrates the utility of such an approach further than 
any existing approach. Sniffles2 remains open source (MIT license) and 
is available at https://github.com/fritzsedlazeck/Sniffles.

Results
Accurate detection of structural variations at scale
Sniffles2 is a complete redesign and extension of the SV caller Sniffles28. 
Figure 1 gives an overview of its main components. Sniffles2 now imple-
ments repeat aware clustering to improve germline SV calling (Fig. 1a) 
and further enables family and population SV calling at scale and ease 
(Fig. 1b) and implements methods to identify mosaic SVs (Fig. 1c). A 
detailed description of Sniffles2 can be found in the Methods section.

Figure 1a shows a summary of the most important steps applied 
by Sniffles2 to identify germline SVs. In brief, we use a fast yet 
high-resolution clustering approach, which identifies SVs in three 
key steps. First, putative SV events are extracted from read alignments 
(split reads and inline insertion or deletion events) and allocated to 
high-resolution bins (default, 100 bp) based on their genomic coor-
dinates and putative SV type. Second, neighboring SV candidate bins 
are subsequently merged based on a standard deviation measure of SV 
starting positions within each growing bin. Through the use of optional 
tandem repeat annotations, Sniffles2 dynamically adapts clustering 
parameters during SV calling, allowing it to detect single SVs that 
have been scattered as a result of alignment artifacts. Finally, identi-
fied clusters are separately re-analyzed and split based on putative SV 
length. Final SV candidates are subjected to quality control based on 
read support, breakpoint variance and expected coverage changes.

We assessed the performance of Sniffles2 (version 2.2) with respect 
to Sniffles28 (version 1.12), cuteSV47 (version 1.0.11), PBSV48 (version 
2.6.2) and SVIM49 (version 1.4.2) using Truvari50 (version 2.1) and the 
Genome in a Bottle (GIAB) recommended parameters51. Figure 2 shows 
the results across different GIAB benchmarks (see Supplementary  
Table 1 for details). Across the tests, we show that Sniffles2 outperforms 
the other methods in speed and accuracy based on various conditions. 
Supplementary Section 1 gives additional details (see Supplementary 
Tables 1–8 and Supplementary Figs. 1–3 for even more details).

Given all these comparisons across different ethnicities (HG002 
being Eastern European Ashkenazi Jewish ancestry, HG01243 being 
Puerto Rican in Puerto Rico, HG02055 being African Caribbean in 
Barbados and HG02080 being Kinh in Ho Chi Minh City, Vietnam), 
coverage levels (5–50×) and sequencing technologies (HiFi and ONT), 
we conclude that Sniffles2 improves the detection of SVs in terms of 
accuracy and speed compared to other state-of-the-art methods.

Enabling population-wide studies of the impact of complex SV
Over the past years, an uptake of ever larger studies using long reads 
is foreshadowing a trend in genomics to use long reads more often 
than ever21. To promote this, Sniffles2 is fast and efficient but further 
implements a strategy to obtain a fully genotyped population VCF. 
Traditionally this is a multi-stage process of calling, merging, genotyp-
ing and re-merging21,52,53. This is clearly inefficient as the BAM/CRAM 
alignment files need to be assessed twice. Even so, this process can 
be achieved only by using a few of the existing methods (SVJedi54, 
Sniffles28 and cuteSV47). The Sniffles2 strategy requires only an initial 
calling and merging to obtain a fully genotyped population-level VCF. 
Figure 1b illustrates the principle. The calling can be done indepen-
dently where each sample produces a single VCF file accompanied by 
a binary file that serializes every single candidate SV that has even a 

(CARD)27) and is currently peaking in the M42 endeavor to sequence 
multiple hundreds of thousands of genomes. This also requires more 
efficient software to not just detect SVs but also to merge and produce a 
fully genotyped variant call format (VCF) file28,29. The improved degrees 
of error and lower cost for long reads are also starting to promote 
applications in medical or clinical space30,31. This is needed as several 
genes or regions of the genome remain a ‘dark matter’20,32. Most of 
these genes (∼70%) can be assessed using long-read technologies, but 
several challenges remain32.

Furthermore, there are more complex SVs beyond simple dele-
tions, duplications, inversions, insertions and translocations that 
can lead to a Mendelian disease6. The genomic locus including the 
dosage-sensitive gene MECP2 at Xq28 is particularly susceptible to 
such genomic instability due to nearby inverted and direct orienta-
tion low-copy repeats (LCRs)33–35. The protein encoded by MECP2, 
methyl-CpG binding protein 2 (MeCP2), is critical for brain function 
by acting as an epigenetic regulator36. Copy number variation span-
ning this gene causes MECP2 duplication syndrome (MDS) (Mendelian 
Inheritance in Man (MIM): 300260) with 100% penetrance in males37. 
The most prevalent clinical features of MDS are infantile hypotonia, 
developmental delay, intellectual disability, frequent respiratory infec-
tions and refractory epilepsy38. One of the frequent complex allele 
presentations is constituted by an inverted triplication flanked by 
duplications (DUP-TRP/INV-DUP). This allele is generated by a given 
pair of inverted LCRs telomeric to MECP2 being responsible for 20–30% 
of the MDS cases6, a fraction of which will lead to a more severe clinical 
phenotype. When generated, this structure includes two breakpoint 
junctions ( Jct) connecting the end of the duplication to the end of the 
triplication ( Jct1) and the beginning of the triplication to the begin-
ning of the duplication ( Jct2). Given the presence of two breakpoint 
junctions in cis, the involvement of LCRs and the size of such events 
(often >500 kilobases (kb)), we lack the ability not only to detect this 
structure solely using long-read sequencing data but also to describe 
it after the VCF specification. Part of the complexity originates as the 
reads themselves only partially indicate the allele—for example, high-
lighting a shorter inversion28.

In addition to complex variants, multiple studies have shown that 
there are mosaic or low-frequency SVs that are likely causal across 
neurological diseases or other diseases9. As an example, single-cell 
studies show that there can be variable copy number variants (CNVs) 
across multiple cells in the brain9. However, their true frequency is 
unknown, with around 12% of healthy cortical neurons having megabase 
(Mb)-scale CNVs39. A possible role in neurodegenerative disease40 has 
not been adequately explored. In synucleinopathies, which include 
Parkinson’s disease and multiple system atrophy41 (MSA), somatic CNVs 
of the highly relevant SNCA gene have been reported42–44, and single-cell 
whole-genome sequencing (WGS) in MSA has shown Mb-scale CNVs 
in approximately 30% of cells43. Still, these CNVs studies lack resolu-
tion as breakpoints are defined within ± multiple kbp, and only very 
large ∼1-Mb CNV events are reported39,45,46. So far, an identification of 
complex SVs arising in neurodevelopment has only been possible with 
WGS of clonally expanded precursors9,43. It has, thus, been difficult to 
identify the underlying alleles even for large, already reported CNVs 
along the human genome.

Here we present Sniffles2, a redesign of Sniffles, with improved 
accuracy, higher speed and features that address the problem of 
population-scale SV calling for long reads. This is needed across tumor/
normal comparison over family (for example, Mendelian) studies but 
also in larger studies deciphering rare alleles across a population or 
cohort. In addition, Sniffles2 enables the detection of low-frequency 
SVs across datasets, which facilitates detection of somatic SVs and 
mosaicism studies and opens the field of cell heterogeneity for 
long-read applications. We first highlight the performance of Snif-
fles2 compared to other SV callers over multiple benchmark sets, and, 
then, we further investigate how the new population or family mode 
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single read support. Next, each binary file per sample is provided as a 
list to Sniffles2 merge, which combines the SV across the samples and 
fills the missing information using the binary files per sample. This 
process is extremely efficient as it scales linearly with the number of 
samples and allows the samples to be analyzed in parallel and inde-
pendently of each other (Supplementary Table 9 and Supplementary 
Fig. 4). In addition, it solves the ‘n + 1’ problem, by allowing the inclu-
sion of further samples in the future by only re-doing the merge step, 
instead of re-genotyping across each BAM file. To assess the validity 
of this, we measured the Mendelian inconsistency rate using a family 
trio (Methods)55. For Sniffles2, we obtained a Mendelian inconsistency 
rate of 9.13% with a low rate of missing genotype of 1.29% for SVs with 
less than 5× coverage (default parameter) (Fig. 3a). In comparison, 
cuteSV with a simple merge (SURVIVOR56) presented a Mendelian 
inconsistency of 3.74%, with a much higher missingness of 32.20%. 
When we apply a re-genotyping and re-merging of the cuteSV results, 
we obtain a Mendelian inconsistency rate of 8.88% with almost three 
times higher missingness of 3.45% when compared to Sniffles2. Fur-
thermore, the cuteSV approach took more than 50 h of CPU time 
(Supplementary Table 10 and Extended Data Fig. 1) in contrast to 
only 8 h of CPU time for Sniffles2, thus rendering it impractical for 
larger cohorts. As a stress test, we merged from three to 777 samples, 
which consisted of repeating up to 259 times the HG002 family trio. 
This took a little more than 11 h of CPU time using Sniffles2 (11:16:18; 
Supplementary Table 9).

Next, we applied this population/family approach of Sniffles2 
across 31 ONT datasets that represented cases of Mendelian disorders 
in probands (seven complete trios, one duo and eight only probands). 
The merge was completed in 28 CPU minutes, and we measured an 
average of 3.89% Mendelian inconsistency rate and 1.11% of missing-
ness (Methods, Supplementary Table 11 and Supplementary Fig. 5). 
The probands for sequencing were selected based on a Mendelian 
disease that often is caused by SVs impacting MECP2 at the Xq28 locus. 
As described in the introduction, this is a severe neurodevelopmental 
disorder that is often caused by extreme complex alleles in this region. 
We were interested if Sniffles2, together with ONT data, can resolve the 
breakpoints, which were not always solvable using array data, and if 
we were able to fully explain the entire allele or just partially solve the 
junctions. To address this, we filtered SVs based on ChrX together with 

their size (10 kb) and filtered for SVs only being de novo or inherited 
from the mother.

Within this cohort, Sniffles2 is able to achieve a high rate of detec-
tion across junctions but sometimes struggles to recapitulate the 
entire allele that contains complex SVs. Table 1 shows the details per 
proband. In samples harboring a tandem duplication, Sniffles2 was able 
to properly detect the allele and fully resolve its architecture. In our 
cohort, these duplications span the dosage-sensitive gene (MECP2) and 
form a single breakpoint junction ( Jct1), confirming a tandem duplica-
tion structure. As highlighted in sample BH14233_1, although aCGH 
broadly defines the genomic interval of the duplicated region, Snif-
fles2 is able to properly give positional context of genomic fragment 
defining at nucleotide-level resolution to be a tandem duplication on 
the allele even though the end of the duplication is within a segmental 
duplication region (orange bar) (Fig. 3b). Note that the presence of the 
segmental duplication caused the SV to be tagged with a STDEV_LEN 
filter. This indicates non-agreement on the precise start of the SV given 
the repetitive nature of the region.

A portion of the inversions that Sniffles2 was able to detect were 
not simple genomic inversions but, instead, part of more complex 
structures that could not be fully resolved using current bioinformatic 
tools. A more complex allele was detected in sample BH13947_1, which 
consists of a duplication-normal-duplication (DUP-NML-INV/DUP) with 
breakpoints spanning segmental duplications (SegDups) (Fig. 3c). 
Here, Sniffles2 indicates two overlapping inversions that form junc-
tions 1 and 2 ( Jct1 and Jct2), generating a DUP-NML-INV/DUP structure.

In sample BH15646_1, the inversion called by Sniffles2 spanning 
nearly the entire X chromosome (∼148 Mb) represents the break-
point junction of a recombinant chromosome. In the sample, aCGH 
data show a short-arm deletion and a long-arm duplication—that is, a 
DEL-NML-DUP structure. Sniffles2 is able to positionally connect the 
beginning of the duplication to the end of the deletion forming Jct1 
(Extended Data Fig. 2). This allele is generated as the result of meiotic 
recombination between heterozygous homologous X chromosomes 
in females harboring a pericentric inversion57.

Another example is represented by an apparent 311-kb inversion 
detected in sample BH15700_1. This inversion is part of a DUP-TRP/
INV-DUP structure (Fig. 3d), which is generated by a given pair of 
inverted SegDups and produces an inverted triplication flanked by 
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duplications34. When generated, this structure includes two breakpoint 
junctions ( Jct) connecting the end of the duplication to the end of the 
triplication ( Jct1) and the beginning of the triplication to the beginning 
of the duplication ( Jct2). Although Sniffles2 can properly detect the 
inverted breakpoint generating Jct2, it is not able to fully resolve the 
context of the larger structure due to Jct1 being embedded within a pair 
of inverted SegDups with 99.9% sequence similarity.

In this cohort, Sniffles2 is able to correctly detect with nucleotide- 
level resolution the precise breakpoints defining a genomic interval in 
patients carrying complex genomic rearrangements (CGRs). A large 
portion of the CGRs in this cohort have at least one of the breakpoint 

junctions mapping to SegDups; those can be fully resolved by Sniffles2 
together with copy number information. Additionally, Sniffles2 infers 
positional connections that help resolve a given complex allele archi-
tecture with information that aCGH alone cannot provide.

Identification of mosaic SVs reveals insight in diversity
We know from many studies that germline variants are not the only 
source of structural variation. Often, somatic/mosaic variants are 
important. This has been indicated in, for example, cancer and neu-
rological disorders9,12. Thus, Sniffles2 is equipped with a mosaic mode 
to identify low-frequency (5–20% variant allele frequency (VAF)) SVs 
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across a single sequenced sample. Figure 1c shows the principal steps 
where the main innovation is to weigh the support of each read, tak-
ing into consideration its edit distance as a confidence measure. To 
circumvent the impact of sequencing error rates on mosaic SV detect, 
we filter out SVs where the average edit distance of reads supporting 
exceeds a threshold, which is estimated per dataset to account for 
different sequencing error levels (Methods).

We used a spike-in experiment of different concentrations rang-
ing from 7% to 28% VAF of HG002 into high coverage of HG00733.  
Figure 4a,b shows the precision and recall of SVs across the differ-
ent concentrations. Overall, Sniffles2 mosaic mode outperforms the 
other SV calling approaches. The recall is impacted by the fact that the 
subsampling occurs randomly and that heterozygous SVs are dispro-
portionately sampled. Correcting for this fact and measuring recall 

on SVs occurring within 5–25% VAF improved the recall for Sniffles2 
mosaic mode, as it averages 94.47% given an overall 84.12% precision. 
See Supplementary Section 2 and Supplementary Table 12 for details.

Next, we applied Sniffles2 mosaic mode to an affected brain region 
(cingulate cortex) of a patient with MSA at 55× coverage using ONT. 
Here, we are interested in all types of SVs, including rearrangements. 
In this particular case, however, we need to be alert to the possibil-
ity that chimeras can form inversions or other duplications and, as 
such, contribute to the overall apparent somatic SV calls. To avoid this, 
Sniffles2 deploys filters for low-frequency inversions that are 1 kb or 
smaller. Figure 4c shows the overall number of SVs and their type for 
both the germline and mosaic SV call sets (Supplementary Table 13).  
We detected a higher proportion of deletions than insertions in 
the mosaic calling when compared to germline (INS/DEL ratio 1.37 
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duplication within a segmental duplication region where array data does not 
provide information. c, Detailed aCGH view of a complex duplication-normal-
duplication (DUP-NML-DUP) structure in sample BH13947_1 with breakpoints 
within SegDup or LCR region (orange bar) where Sniffles2 is indicating two 
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(orange bars). Sniffles2 identifies the inversion breakpoint at Jct2 (teal bar) but 
cannot fully resolve the entire allele including Jct1 as it is also not possible to be 
reported in the VCF standard. Red arrows indicate duplicated regions, and blue 
arrows show triplicated portions. One possible haplotype structure for a DUP-
TRP/INV-DUP is shown with the triplication and initial duplication being inverted, 
forming Jct1 and Jct2 (ref. 34).
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germline, 0.78 mosaic). We compared this ratio across all samples used 
in this study and found an average INS/DEL ratio of 1.10 for germline SV 
calling, thus clearly showing differences between mosaic and germline 
SVs. Supplementary Table 14 shows 34 mosaic SVs that were manually 
curated, and Fig. 4d,e shows two of them, both deletions, which were 
validated by polymerase chain reaction (PCR) and Sanger sequencing. 
One is overlapping a repeat element, and one affects a neuronal gene 
(complete gels in Supplementary Fig. 6). Figure 4d shows an example 
of a mosaic deletion close to a germline insertion that was identified 
using 55× ONT long reads (top IGV panel). We observed that these 
events were located between Alu elements—one novel insertion and 
one already pre-existing on the reference. We compared the insertion 
sequence to the neighboring Alu sequence and found great similarity 
(89.17%). This particular case is a direct orientation of an AluY, which 
is the Alu subfamily that is most predisposed to brain recombination 
and, thus, leads to mosaic deletions58. We then performed a blast search 
of the insertion sequence reported by Sniffles2 (and Sanger sequenc-
ing, 100% identity) and found that it belongs to an AluYa5. Across this 
sample, we could identify 25 other regions that had similar alleles of Alu 
insertions that lead to mosaic deletions, both identified with Sniffles. 
When expanding our search to other sizes of insertions, we identified a 
total of 206 regions where insertions might lead to an instability of the 
region, causing a mosaic deletion in the proximity. This again highlights 
the ability of Sniffles2 to recover potential interesting alleles genome 
wide and at scale. Figure 4d further shows discordant Illumina reads 

(colored), indicating multiple translocations instead of the actual Alu 
insertions, which we reported previously28.

Figure 4e shows another example of a mosaic deletion, this time 
overlapping an intron of the RBFOX3 gene, which encodes NeuN, a 
nuclear antigen used for sorting neuronal nuclei58,59. On manual inspec-
tion of the short reads (Supplementary Fig. 7), we observed this dele-
tion also on the Illumina reads (five reads out of ∼85×), but it was not 
identifiable using Manta. Figure 4d,e also shows the result of PCR 
validation of both SVs. For the first validated SV (4D), the PCR gel shows 
both the insertion and deletion event (column b) with the proper SV 
length of 240 bp reported by Sniffles2. For the second validated SV (4E), 
the PCR gel shows evidence of the 127-bp deletion. We further validated 
these SVs by Sanger sequencing the PCR products highlighted in both 
gels, which, again, showed both deletions detected by Sniffles. Supple-
mentary Section 3 lists details on the impact of SV on genes and overlap 
of repeats for this MSA sample (Fig. 5c, Extended Data Figs. 3 and 4, 
Supplementary Figs. 8 and 9 and Supplementary Tables 15 and 16).

Next, we compared the different technologies to the Sniffles2 
results. The same brain region was also sequenced by Illumina short 
reads (90×) and analyzed by Bionano OG (690×) (Methods). The variant 
calls from Sniffles2 for both germline (21,965) and mosaic (2,937) were 
concatenated as the VAFs between them are mutually exclusive. For Illu-
mina, Manta60 detected 12,142 SVs, and OGM (5 kb or larger) detected 
1,463 SVs. Figure 5a highlights the agreement of all SVs detected in 
the same sample by the three technologies for a minimum length of 

Table 1 | Table across all the probands assessed here and highlighting in bold which junctions could be resolved using 
Sniffles2

ID Sex Inheritance Pathogenic CGR Coordinates CGR (aCGH) Coordinates (Sniffles2)

CNV Chr Start SegDUP End SegDUP SV Chr Start End Filter

BH14233_1 M Maternal Tandem 
duplication

DUP X 153084841 - 153414342 Yes DUP X 153084620 153483892 STDEV_LEN

BH13948_1 M Maternal Tandem 
duplication

DUP X 152877325 - 153414342 Yes DUP X 152808716 153487348 PASS

BH15642_1 F De novo Tandem 
duplication

DUP X 153289589 - 153399165 - DUP X 153289208 153386550 PASS

BH13947_1 M Maternal DUP-NML-INV/DUP
DUP1 X 153106533 - 153414342 Yes INV X 153106249 153937616 PASS

DUP2 X 153938964 - 154293950 - INV X 153492860 154294604 PASS

BH15700_1 M Maternal DUP-TRP/INV-DUP

DUP1 X 153131406 - 153409337 - INV X 153131086 153520844 PASS

TRP X 153523170 Yes 153565901 Yes

DUP2 X 153575989 - 153623000 Yes

BH15701_1 M Maternal DUP-TRP/INV-DUP

DUP1 X 153189181 - 153420198 Yes INV X 153188685 153499734 PASS

TRP X 153505485 Yes 153565901 Yes

DUP2 X 153575989 - 153623000 Yes

BH15646_1 M Maternal
Terminal DUP/ 
recombinant 
chromosome

DUP X 147326287 - Telomere - INV X 1406919 147326058 PASS

DEL X Telomere - 1405994 -

BH15692_1 M De novo
Terminal DUP/
Translocation Y

DUP X 151905254 Yes Telomere - BND X 151904176 N]Y:23243741] PASS

DUP Y 23243948 - 23655166 Yes

DEL Y 24095954 Yes Telomere - BND X 23243742 ]X:151904175]N PASS

BH15696_1 M De novo
Terminal DUP/
translocation Y

DUP1 X 148351663 - 148384182 - BND X 148351430 ]Y:28389311]N PASS

DUP2 X 148706667 - Telomere BND X 148384577 [Y:25210061[N PASS

DEL Y 28458870 Yes Telomere BND X 148705972 N]Y:25654822] PASS

BH14229_1 M Maternal Terminal 
duplication /
unknown structure

DUP X 151893933 Yes Telomere - INV X 151919987 155251615 PASS

BH13949_1 M Maternal
Terminal DUP/ 
unknown structure

DUP1 X 144057799 - 144066387 - DUP X 144056099 150063756 PASS

TRP X 144067901 - 144101282 - INV X 144068403 150063449 PASS

DUP2 X 144101282 - Telomere -

Variants assessed in all the probands including junctions which could be resolved using Sniffles2. Results from BH14233_1, BH13947_1, BH15646_1 and BH15700_1 are discussed in the main text.
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50 bp and excluding translocations (Supplementary Table 17.1). Sup-
plementary Section 4 provides details on the comparison. Overall, we 
saw disagreement between OGM and Illumina mainly driven by size 
or SV type differences (for example, insertions or rearrangements). 
We further noted a shift in the variant allele frequencies (VAFs) across 
the Manta calls compared to the Sniffles2 calls (Fig. 5b), which further 
impacts the overlap between the technologies.

Finally, we focused on the non-germline (mosaic/somatic) 
SVs exclusive to the cingulate cortex brain region. For this, we also 
sequenced the neighboring cingulate white matter from the same 
patient using Illumina. We used SVTyper61 to genotype Sniffles2 SVs 
(only deletions, duplications and inversions) that were not initially 
identified by Manta against the aligned Illumina reads from both brain 
regions (Supplementary Table 17.3). This way, we identified 497 SVs that 
initially were not identified in Illumina but were genotyped as present. 
We identified 484 non-germline SVs using Sniffles2 that have Illumina 
read support in the neighboring brain region, thus showing that Snif-
fles2 is able to accurately detect low-frequency (that is, mosaic) SVs.

Given these advancements in mosaic and germline calling, we 
further tested Sniffles2 across COLO829/COLO829BL. Figure 5d shows 
the overlap across ONT and PacBio calling using Sniffles. Details on 

the results are in Supplementary Section 5. Supplementary Fig. 10 
and Supplementary Table 18 show the benchmark results; Fig. 5e and 
Supplementary Fig. 11 show examples of cancer-specific germline 
SVs; and Supplementary Fig. 12 show examples from the benchmark.

Discussion
Here we present an updated version of the highly popular SV caller Snif-
fles (Fig. 1). Sniffles2 is a substantial improvement in terms of accuracy 
and runtime compared to all other commonly used long-read-based 
SV callers (Fig. 2). We show higher accuracy across different coverages 
(5–50×) using different sequencing technologies (PacBio HiFi and ONT) 
and even across all SV types. This is achieved by an automatic parameter 
optimization that is part of Sniffles2 compared to all other SV callers 
that require manual adjustments. Besides this, Sniffles2 is also able to 
genotype SV and leverage phased reads (using haplotype phase (HP) 
and phase state (PS) tags) as input to provide phased SV in a VCF file. 
We demonstrated a genomic VCF (gVCF) concept for SV calling and 
implemented a working version in Sniffles2. This instantaneously halves 
the requirements of computing and storage for population/family SV 
or even tumor versus normal SV calling (Supplementary Section 5),  
thus resolving the ever-larger demands of long-read datasets21. 
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Fig. 4 | Recovery of somatic SVs using the Sniffles2 mosaic mode.  
a,b, Benchmark of mixtures of HG002 with HG00733. We spiked HG002 in 
various concentrations and measured the precision (a) and recall (b) of Sniffles2 
default (blue) and mosaic (yellow) modes, alongside cuteSV (in red). For the 
recall, we added an adjusted recall (in green) as Sniffles2 mosaic mode calls 
SVs only in the range of 0.05 to 0.20 VAF, and, thus, everything outside that 
range will not be analyzed. c, Overview of the number of SV types identified as 
germline (blue) and mosaic (red) in the cingulate cortex brain region of an MSA 
patient brain sample sequenced with 55× ONT long reads. A zoom is shown for 
duplication and inversion SVs. d,e, Validated mosaic SVs detected by Sniffles2. 
Each PCR was done once (d)—mosaic deletion close to a germline Alu insertion. 
The IGV screenshot shows bulk WGS: top panel 55× ONT, bottom panel  
85× Illumina. PCR validation shows both products from the MSA brain  

(column b, insertion in top and deletion in bottom) compared to a control 
(column c) and the ladder (column a). The PCR products highlighted in squares 
were Sanger sequenced, and the alignment is shown below the gel (colors 
matching), with the INS position marked with a purple triangle. e, Mosaic 
deletion within RBFOX3. The IGV screenshot shows bulk WGS: top panel 55× 
ONT, bottom panel 85× Illumina. PCR demonstrates the mosaic deletion (column 
b, wild-type in top and deletion in bottom) compared to two controls (column 
c, brain control) and the ladder (column a). The PCR products highlighted in 
squares were Sanger sequenced, and the alignment is shown below the gel 
(colors matching). Supplementary Fig. 6 shows the complete unannotated gels, 
and Supplementary Fig. 7 shows a different view of the same Illumina results 
for e. Supplementary Table 14 shows the complete list of candidate SVs, and 
Supplementary Fig. 8a–h shows all IGV screenshots for the same candidates.
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Furthermore, it solves the n + 1 problem when a new sample is added 
on a later stage of the project. We demonstrate the utility across the 
31 ONT Mendelian samples, where Sniffles2 resolved SVs mapping to 
complex regions of the genome with a direct impact to disease, sup-
porting copy number data. This clearly illustrates the benefit of this 
approach that can easily scale to new population long-read challenges. 
For cancer applications, there are in development other somatic SV call-
ers62 that are specialized on tumor versus normal tissue comparison. 
In contrast to them, Sniffles2 is a general purpose SV caller that can 
also be used to detect cancer-specific somatic but further mosaic SVs. 
Furthemore, the same strategy can also be used to compare different 
tissues within the same organism.

We demonstrated this approach using a synthetic dataset of 
HG002 and a genetically unrelated individual HG00733. This showed 
the accuracy and recall of Sniffles2 while depending on only 2–3 reads 
overall to distinguish SV from noise (Fig. 4a,b). We then turned our 
attention to MSA, a rare sporadic neurodegenerative disease related to 
Parkinson’s disease, with negligible heritability (<7%)63. We performed 
ONT WGS on an affected brain region from one patient, where Snif-
fles2 was able to identify presumptively low-frequency mosaic SVs 
and showcased great performance partially validated by Illumina and 
OGM approaches, thus overall highlighting the fact that Sniffles2 is 
highly versatile and accurate. Although thresholding on the VAFs (here, 
5–20% AF) for the identification of potential somatic variants is straight-
forward, there is still a gray area to be addressed. For multiple SVs,  

we saw a continuum in VAF (between 20% and 30% AF), which suggests 
that some SV with apparent AF < 30% may also be germline. Thus, the 
comparison to population data or to different tissues is still favorable 
(for example, tumor versus normal). Furthermore, it is interesting to 
note that the insertion versus deletion characteristics change between 
germline and mosaic. We attribute this to the many cases of repeat 
mediated recombination that we could identify that manifest as dele-
tions. It is also interesting to note that the detection of tissue-specific 
SVs as proposed here can be impacted by multiple biases. First, we can 
have a detection bias in the Illumina data (for example, insertions), 
but, furthermore, a sampling bias in the other tissue might also result 
in tissue-specific SV detection. The possible role of somatic SVs in 
MSA is under investigation43, although further validation data from 
more cases and controls would be required to allow interpretation of 
the present findings. In our experiments at mosaic level, we identified 
many more deletions than insertions in contrast to germline (AF > 0.2). 
We speculate that this is indeed a biological signal and not a detection 
bias due to non-allelic homologous recombination (NAHR) or other 
mediated mechanisms.

Despite solving central problems of SV calling at scale and accu-
racy for long reads, many challenges remain. High-quality benchmarks 
for complex SVs are lacking. Sniffles2 does not yet solve the issues 
with highly rearranged regions where SVs can be overlapping with 
each other. This remains a near-future goal of Sniffles2 and will also 
require improved benchmark sets and even standards to report these 
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variant, and no read support was found in the control.
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events, as the VCF standard does not provide a clear recommendation.  
Currently, these complex alleles would need to be reported as inde-
pendent breakend (BND) events, which lose their individual impact 
(for example, DUP-TRP/INV-DUP and DUP-NML-INV/DUP) on the region 
itself. Nevertheless, this is clearly needed, as our experiments on the 
Mendelian cohort show.

Overall, we report here the innovations across Sniffles2 and high-
light them across Mendelian cases, a patient with MSA and a tumor/
normal comparison. We think that our implementations will spark 
discoveries across human diseases and diversity. Furthermore, we 
think that these will also be important for other species. Despite the 
fact that the genotype model for Sniffles2 is designed for diploid organ-
isms, Sniffles2 is capable of also detecting SVs in haploid (as shown for 
X chromosomes in males) or polyploid organisms. For higher ploidy 
levels, we would suggest running the mosaic mode as, otherwise, the 
genotype caller will penalize true SVs, thus again highlighting Sniffles2 
as a highly accurate and versatile method to detect SVs of any kind  
and property.

Online content
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acknowledgements, peer review information; details of author contri-
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Methods
Patient enrollment
The 31 individuals (proband and parents) included in this study were 
enrolled into research protocols approved by the institutional review 
board (IRB) at Baylor College of Medicine and the Pacific Northwest 
Research Institute (H-29697 and H-47127 and WIRB 20202158).

Sniffles2 methodology
Sniffles2: germline calling. An overview of the steps involved in 
the Sniffles2 germline SV detection algorithm is shown in Supple-
mentary Fig. 13.

Sniffles2 germline mode accepts aligned long reads as input  
(BAM or CRAM format, sorted by genomic coordinate and indexed). 
First, read alignments are parsed and pre-filtered based on minimum 
mapping quality (default, 20), minimum alignment length (default, 
1 kb) and maximum number of split alignments (default, 3 + 0.1 
ReadLengthKb). Split alignments are analyzed to extract SV signals 
for insertions, deletions, duplications, inversions and BNDs. Next, to 
analyze splits, inline alignments are scanned for insertion and dele-
tion signals. Sniffles2 does not merge nearby inline insertion and 
deletion events at this point. SV signals that fulfill a minimum length 
threshold (default, 0.9 MinSVLength) are subsequently recorded in 
high-resolution genomic bins. Start and end positions of alignments 
are recorded in a separate data structure for facilitating later coverage 
computation without requiring reopening of alignment files.

Sniffles2 employs a three-phase clustering process to translate 
individual SV signals into putative SV candidates. First, SV signals 
extracted from reads in the pre-processing step are clustered based 
on their indicated SV type and genomic start position. Second, inser-
tion and deletion sequences in each cluster stemming from the same 
read are merged to correct for alignment errors in highly repetitive 
regions. Third, preliminary clusters are re-split to represent different 
supported SV lengths.

The first clustering phase constitutes a fast pass over all bins 
(default bin size, 100 bp) containing SV signals extracted from align-
ments in the pre-processing step. Bins are traversed from chromosome 
start to end separately for each of the five basic SV types. Neighboring 
bins are merged if the inner distance between them is smaller than a 
threshold calculated based on the minimum standard deviation of the 
genomic SV start positions within each bin. The inner distance thresh-
old dn is calculated as dn = r ⋅min(σStartA,σStartB) , where r is a constant 
(default, 2.5), and σStartA and σStartB  refer to the standard deviation of 
indicated SV start positions in the two neighboring bins, respectively. 
In regions spanning tandem repeats, a more relaxed clustering criterion 
is applied. Neighboring bins are also clustered when their outer dis-
tance falls below a threshold defined based on the indicated average 
SV length of the SV signals stored in the neighboring bins. This  
threshold dr is calculated as dr = min(hmax,h ⋅ [xA + xB]) , where h and  
hmax are constants (default, 1.5 kb and 1 kb, respectively) and xA and xB 
refer to the mean indicated SV length in the two neighboring bins. 
Whenever two neighboring bins have been merged, the clustering is 
restarted at the bin preceding the merged pair, facilitating the growth 
of SV clusters in both upstream and downstream directions. The first 
clustering phase is completed as soon as the last bin in the chromosome 
has been reached.

The second clustering phase constitutes merging of insertion 
and deletion events stemming from the same read that have been 
placed within the same initial cluster. Events with an inner distance 
closer than the set threshold (default, 150 bp) are merged. In areas of 
tandem repeats, the distance threshold is set to the size of the initial 
cluster itself.

In the third phase, clusters are split by indicated SV length of the 
contained SV signals and subsequently re-merged, which leads to the 
final separation of SVs that share a start position on the reference but 
have different lengths. Bins are traversed from those containing small 

to large SV signals and merged in a similar fashion to phase one, based 
on the relative difference in SV length between neighboring bins being 
no larger than a given threshold (default, 0.33). In clusters overlapping 
tandem repeats, Sniffles2 does not perform resplitting.

Differentiated clustering parameters are applied to BND-type SVs, 
because no length is available as a metric to drive clustering.

At the beginning of post-processing, SV candidates are generated 
from the final clusters resulting at the end of the last stage. Start coor-
dinates and SV length are determined based on the median of the most 
common values supported by the reads. Standard deviations are cal-
culated for the trimmed distribution of indicated SV start position and 
lengths. The quality value is summarized as the mean mapping quality 
of supporting reads. SVs are labeled as precise when the sum of SV start 
and length standard deviation is less than the set threshold (25 bp).

SV candidates are filtered based on absolute and relative (com-
pared to the SV length) standard deviation of their coordinates. In 
addition, type-specific coverage filtering is applied to deletions and 
duplications, requiring central coverage changes consistent with the 
detected variant. Instead of requiring users to settle for a predefined, 
static minimum read support threshold, Sniffles2 dynamically adjusts 
the minimum support value based on estimates of global and regional 
sequencing coverage. By default, the minimum read support  
threshold is calculated as MinSupport = α ⋅ ([1 − λ]Cglobal + λClocal , 
where Cglobal and Clocal refer to average chromosomal and SV sur-
rounding coverage, respectively. The parameters are set as α = 0.1 
and λ = 0.75, by default. For insertion and deletion SVs, support from 
inline alignments and split alignments is output separately. Addition-
ally indicated support from soft-clipped reads is additionally 
recorded for insertion SVs.

Genotypes are determined using a maximum-likelihood approach. 
The genotype quality is calculated based on the likelihood ratio of the 
second most likely to the output genotype: Q = −10log10(L2/L1), where 
L1 and L2 refer to the likelihood of the most likely genotype and the 
second most likely genotype, respectively. Genotype likelihoods are 
computed for a binomial distribution for the observed number of 
variant and reference reads. Genotype likelihoods are set as 1.0-ß for 
1/1, 0.5 for 0/1 and ß for 0/0, where ß represents the genotype error 
introduced through sequencing and alignment artifacts and is set to 
ß = 0.05 by default.

For insertion SVs, sequencing and read aligner errors are corrected 
using a fast k-mer-based pseudo-alignment method. Through this, 
Sniffles2 generates a consensus sequence in two steps. In the first step, 
the best possible starting sequence is chosen from the supporting read 
with the smallest distance in SV start position and length to the final 
reported SV coordinates. K-mers (default length, 6 bp) are enumer-
ated for this read-supported insertion sequence, and a taboo set of 
repetitive k-mers, which occurs more than once in the sequence, is built. 
Simultaneously, the positions of non-repetitive k-mers are stored in an 
anchor table to facilitate pseudo-alignment of the other reads. In the 
second phase, k-mers from other read insertion sequences are enumer-
ated. When a k-mer is present in the anchor table, the corresponding 
position in both the initial insertion sequence and the current read 
is stored. After all reads have had their k-mers anchored, sequences 
between anchored k-mers are extracted from the pseudo-aligned reads. 
These sequences from between the anchored k-mers constitute the 
parts of each read insertion sequence in disagreement with the initial 
sequence. Finally, coordinates of the initial sequence are traversed, and 
the consensus is generated as the most common base at the respec-
tive position throughout all pseudo-aligned reads. Long insertions 
(that is, multiple kbp) are often difficult to detect even in long-read 
data because reads often do not span the full insertion sequence. To 
improve detection of long insertions, Sniffles2 records these clipped 
read events as additional support for presence of a large insertion. This 
enables Sniffles2 to accurately detect large insertions even when the 
SV is fully covered by just a single read.
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Post-processed and annotated SV calls that passed quality control 
checks are written to the output VCF file. Quality control filters applied 
to SV candidates by default include absolute and relative standard 
deviation of the SV breakpoints, coverage change for copy number 
variants and minimum coverage in the surrounding genomic region. 
Additionally, all unfiltered SV candidates and genome-wide cover-
age information are written to a specified output SNF file, which may 
be consecutively used as input for multi-sample calling (See below, 
combined calling). Using the --qc-output-all option, all unfiltered can-
didates (except for the minimum SV length filter) can also be directly 
written to the VCF output file complete with the respective reasons for 
why they would have been filtered by default.

Full parallelization across chromosomes is applied through 
all key steps in Sniffles2, including pre-processing, clustering and 
post-processing. The final SV calls are written to a sorted VCF output 
file. Alternatively, Sniffles2 also supports direct output to a sorted, 
bgzipped and tabix-indexed VCF file.

Sniffles2: combined calling (population mode). Sniffles2 produces a 
fully genotyped population VCF file by introducing a specialized mode 
(‘Sniffles2 combine’) for both family-level and population-level SV call-
ing. ‘Sniffles2 combine’ is built around an SNF file, designed to store 
a complete snapshot of structural variation and sequencing coverage 
for a single sample. Mergeable SNF files for later population-level 
calling are designed to be easily produced as a side-product of regular 
single-sample SV calling using Sniffles2, by using the optional --snf 
output argument. Based on individual use case requirements, Sniffles2 
can simultaneously produce SNF files and/or regular VCF files in a single 
run of processing an individual sample.

SNF files consist of a JSON-based index followed by a series of 
multiple gzip-compressed blocks (separated by genomic coordinates). 
Each block stores all putative SV candidates, separated by SV type, for 
a single sample’s respective genomic region. This includes candidates 
only supported by, for example, a single read that would normally be 
ignored. Each block furthermore stores sequencing coverage informa-
tion (500-bp resolution by default). All stored SV candidates contain 
a compressed form of all the information of the final SV calls, as they 
would be output in a single-sample VCF file, such as start, end positions, 
standard deviation and alternative alleles. SNF blocks span a genomic 
region of 100 kb by default. This small block size comparison to a typi-
cal mammal genome allows Sniffles2 to combine a high number of sam-
ples simultaneously while keeping a manageable memory footprint.

SNF files, once generated, can then be used as input for the 
‘Sniffles2 combine’ mode, producing a final, fully genotyped 
population-level VCF file within seconds. SNF files may also be reused 
in the combine step—for example, when the population is later on 
extended, when individual samples need to be re-run or when querying 
whether a later newly identified SV is present in a population. These use 
cases would not be possible without costly re-processing of all samples 
with the currently prevalent method of forced calling. A schematic of 
SNF file structure can be found in Supplementary Fig. 14.

When presented with multiple SNF files as input, Sniffles2 com-
bines them through a single pass over chromosomal regions. For each 
region, the respective SNF blocks overlapping it are loaded, including 
all SV candidates and coverage information from each sample. In the 
following step, Sniffles2 groups the loaded SV candidates based on 
SV type and coordinate-based matching criteria. For each SV candi-
date, Sniffles2 first checks if there is an already existing, matching 
group. An SV candidate matches a group if it has the same SV type and 
the sum of start position and length deviation is less than 
M ⋅ √min(SVLength,GroupSVLength), where M is set to 500 bp by default 
(user-adjustable). The start position and SV length of a group are 
defined as the arithmetic mean of all SVs currently contained in it. In 
case there are one or more groups that fulfill the matching criteria 
for the current SV candidate, the group with the smallest deviation 

metric is chosen, and the SV candidate is placed therein. The coordi-
nates of the selected group are then subsequently updated to repre-
sent the new average position of length of the contained candidates. 
If there are no matches, a new SV group is created. By default, Sniffles2 
allows for matching multiple SVs from the same sample within a group 
(can be disabled using a dedicated parameter).

This partition of SNF files into individually loadable blocks keeps 
Sniffles2 memory footprint manageable even when processing a high 
number of samples and/or samples with high coverage. Sniffles2 further 
implements a dynamic binning strategy for accelerating the grouping 
phase. Sniffles2 first assigns all loaded SV candidates from the current 
chromosomal region to bins based on SV type and start position. Bins 
are then traversed from low to high coordinate within the current block 
while collecting encountered SV candidates. When the number of SV 
candidates exceeds a certain threshold (default, PopulationSize × 0.5), 
the collected SV candidates are grouped as described above. Triggering 
the grouping stage only when a set number of SV candidates is reached 
allows for the highest possible accuracy in matching SVs from different 
samples in regions with low complexity while keeping the runtime man-
ageable even in regions with a high density of SV candidates. To avoid 
edge effects, the final resolving of SV groups with genomic coordinates 
close to the ends (default, <2.5 kb) of the respective bin are carried over 
and finally resolved in conjunction with the grouping of the next bins. 
The same strategy is applied to SV groups close to the genomic start 
or end coordinate of the currently processed SNF block.

By default, the ‘Sniffles2 combine’ mode will output all resulting 
SV groups in the population that meet at least one of two criteria:

	A.	 The SV has been detected with high confidence (that is, passes 
all quality control checks) in at least one sample and/or

	B.	 By default, to have a high-confidence call in at least one sample.

The SV is present in a sufficiently high number of individual 
samples, even though it may not have passed individual quality con-
trol checks (default, present in at least max(0.2PopulationSize, 2) sam-
ples). These parameters are also user-adjustable and can be adjusted 
or disabled without having to re-generate the SNF files for the indi-
vidual samples.

Each final SV group that passes the above criteria is output as an 
SV in the final population-level VCF file, including the genotypes from 
all samples. For samples that did not have an SV candidate that could 
be matched to the group, Sniffles2 first uses the coverage informa-
tion stored in the SNF file of the respective sample to determine if the 
sequencing depth at around the group’s genomic location was suf-
ficiently high (default value, 5×). If it is, the sample genotype for that 
SV is output as 0/0 if there is no evidence and, otherwise, as missing 
(./.). For all SVs, the number of reads supporting the SV and supporting 
the reference are output for all samples, allowing for differentiation 
between true biological and technically induced absence of each SV 
from a sample.

‘Sniffles2 combine’ is fully parallelized, allowing leveraging 
multi-core CPU systems not just for calling individual samples but also 
for the final combination step. This, in conjunction with the separation 
of SNF files into blocks and dynamic binning strategy, together enables 
Sniffles2 to perform scalable population-level SV calling.

Sniffles2: low-frequency SV (mosaic) calling. In the mosaic mode, 
a reduced default minimum support multiplier is applied (default, 
0.025) to increase sensitivity for low-frequency SVs. At coverage levels 
of 30× to 50×, this leads to a minimum read support of 2–4 reads for 
the detection of mosaic SVs. To balance out the increased influence 
of sequencing and alignment artifacts at this lowered read support 
threshold, additional filtering based on alignment quality is applied. In 
the pre-processing steps, the length-weighted number of mismatches 
is recorded for all SV signals, excluding insertions and deletions. After 
calling, SVs with an average weighted mismatch ratio of larger than a 
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threshold t = c × a, where a is the average length-weighted mismatch 
number for all reads and c is a constant (default, 1.66), are filtered. 
The additional, coverage-based filtering steps for CNVs applied in the 
germline mode are not applied in mosaic mode, as coverage changes 
induced by somatic SVs are not reliably measurable.

Benchmarking methodology
Computer specifications.  All tests were performed in a 
high-performance cluster with Intel Xeon Gold 6148 CPU @ 2.40 GHz; 
the memory allocation was 32 Gb unless otherwise stated; and the num-
ber of CPU cores allocated was eight unless otherwise stated. All CPU 
time is given as the sum of all compute times as if a single core was used.

Benchmarking SV callers on GIAB, 1000 Genomes and Challeng-
ing Medical Relevant Genes. Reads were mapped using minimap2 
(ref. 64) (version 2.17-r941) technology-specific preset parameters. 
Reference genome GRCh37 was used to test for the GIAB version 0.6 
SV benchmark, and GRCh38 was used to test the Challenging Medical 
Relevant Genes (CMRG) SV panel. In both cases, the ALT and/or Decoy 
contigs were not included. The -Y option was supplied to disable hard 
clipping (required by pbsv) and generate the --MD tag (required by Snif-
fles1), and the PacBio/ONT presets were used, respectively. Resulting 
alignments were converted to BAM format, sorted and indexed using 
SAMtools (version 1.13).

As measure of coverage across all benchmarked datasets, we used 
the mapping coverage as reported by mosdepth65 (version 0.3.2), which 
was averaged across all autosomes.

In addition to GIAB’s HG002 sample, we also benchmarked SV 
on three assemblies from 1000 Genomes (HG01243, HG02055 and 
HG02080). Here, we leveraged the phased HiFi assemblies provided 
at https://github.com/human-pangenomics/hpgp-data and the cor-
responding long reads. The benchmark set was derived from a dipcall66 
(version 0.2) alignment against the GRCh38 reference. This result was 
used together with the corresponding BED files for benchmarking67.

We used Truvari50 (version 2.1) for benchmarking the accu-
racy of all SV callers across datasets. For benchmarking, we used 
the --passonly parameter to include only those SVs from caller and 
gold standard that are not marked as filtered. For the GIAB bench-
marks, we additionally used the --giabreport parameter to generate 
the benchmark-specific detailed report. As included regions, Tier 1 
regions were used unless otherwise specified. For all other param-
eters, default values were used.

Callers were first benchmarked using default parameters, and 
callers other than Sniffles2 were separately benchmarked on GIAB by 
manually setting the minimum read support parameter to 2 (sensitive).

SVIM49 (version 1.4.2) does not include filtering steps in its main 
pipeline, which caused it to perform poorly (F-measure) in most bench-
marks, and we were not able to identify a recommended default cutoff 
for the quality value that SVIM outputs along with its SV calls. Therefore, 
in line with previous SV caller benchmarks, we filtered the output of 
SVIM to include only calls with a minimum read support of 10 by default 
(equal to the default of cuteSV and Sniffles1) or 2 (sensitive).

For benchmarking Sniffles2 (build 2.2), we only used the default 
parameters with the exception of mosaic SVs, where the --mosaic 
option was supplied. For Sniffles28 (version 1.12), default parameters 
were used. For cuteSV47 (version 1.0.11), we used the additional param-
eters recommended by the authors for use with HiFi/ONT datasets 
in their GitHub documentation as well as the --genotype option. For 
pbsv48 (version 2.6.2), we supplied the --ccs option for analyzing HiFi 
data, as recommended by the authors. Both pbsv and Sniffles2 sup-
port the use of tandem repeat annotations for improving SV calling 
in repetitive regions. For pbsv and Sniffles2, we, therefore, supplied 
the tandem repeat annotations for GRCh37/GRCh38, which we 
obtained from the pbsv repository on GitHub: https://github.com/
PacificBiosciences/pbsv.

For all SV callers that have an option for specifying the number 
of multi-processing threads, we set the number of threads as 8. We 
measured and reported the total CPU time and wall clock time using 
the UNIX time command. For the benchmarks including only insertions 
and deletions, we used SnpSift68 (version 4.3t) to filter the output of all 
SV callers to include only those types of SVs. To prepare SV caller output 
for benchmarking, VCF files were sorted using BEDTools, compressed 
and indexed using bgzip and tabix. For SVIM, SVs labeled as INS:NOVEL 
were re-labeled to INS, to be able to be matched to insertions in the 
benchmark sets by Truvari. Genotype F1 measure for the detection 
of insertions and deletions by genotype and SV length are shown in 
Supplementary Fig. 15.

Simulation of different SV types using SURVIVOR. SURVIVOR56 
(version 1.0.7) was used to simulate SV types not covered by the GIAB 
and other benchmarks. For this benchmark, 3,000 duplications, 
inversions and translocations were each simulated within a length 
range of 500 bp to 30 kb on the human reference genome GRCh37 
in diploid mode. A total sequencing depth of 30× was simulated 
for ONT reads, with the error profile obtained using the SURVIVOR 
scanreads command from the HG002 ONT Q20+ dataset. SVs were 
called using each SV caller for the simulated reads using the default 
parameters and post-processing steps also used in the GIAB and other 
benchmarks (see respective Methods subsections). The SURVIVOR 
eval command was used (matching threshold, 500 bp) to obtain 
true-positive (TP), false-negative (FN) and false-positive (FP) counts 
for each caller and simulated SV type from which precision, recall and 
F-measure were calculated.

Measurement of insertion sequence accuracy. Accuracy of insertion 
sequences recovered by the SV callers was measured using Biopy-
thon’s69 (version 1.79) pairwise2 global alignment function. First, the TP 
calls from all investigated SV callers on the dataset were intersected, to 
establish a common set of calls to benchmark. Next, the gold standard 
and reported insertion nucleotide sequences were aligned, and the 
resulting score was normalized by length of the gold standard sequence 
to compute the alignment identity. We measured sequence accuracy 
separately for the GIAB HiFi and ONT datasets (30× coverage). Results 
are shown in Supplementary Fig. 1. The respective script is available in 
the Supplementary Materials.

Simulation of low-frequency SVs
Low-frequency SVs were simulated by combining varying coverage 
titrations of HG002 and HG00733 into synthetic samples with differ-
ent levels of mosaicism. Recovery of SVs unique to HG002 was done 
based on the intersection of SVs of the same type using BEDTools 
with 50% coverage of the SV reciprocally against the benchmark set 
of HG0733 (ref. 50). These unique SVs were then used to benchmark 
to measure recall for low-frequency SVs. For benchmarking the abil-
ity of Sniffles2 to detect low-frequency SVs, we simulated synthetic 
datasets with 63×/5×, 63×/7×, 60×/10×, 55×/15× and 50×/20×, where 
the coverage refers to HG00733 and the second one to HG002. Next, 
we used the previously selected HG002 unique SVs overlapping the 
GIAB Tier 1 benchmark. To measure recall for low-frequency SVs, 
we ran Sniffles2 in mosaic mode on the synthetic samples and used 
Truvari as described in the Methods subsection on GIAB benchmarks 
to compute the recall for the rare HG002 SVs introduced into each 
HG00733 dataset. Simultaneously, we ran Sniffles2 and cuteSV with 
default parameters and benchmarked the results for comparison. 
Given that Sniffles2 mosaic mode analyzes and reports SV only 
within a defined VAF (5–20%), we excluded all SVs that were out-
side of such VAF to compute an ‘adjusted recall’. As in all the other 
GIAB benchmarks, analysis was limited to insertion and deletion 
SVs. Distribution of SVs from HG002 by their AF is shown in Sup-
plementary Fig. 16.
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MSA patient analysis
Optical mapping data on MSA patient brain. Ultra-high molecular 
weight (UHMW) DNA was isolated from frozen human brain tissues 
using a Bionano Prep SP Tissue and Tumor DNA Isolation kit (no. 80038) 
according to the Bionano Prep SP Brain Tissue Isolation Tech Note  
(no. 3400). In short, approximately 20 mg of frozen tissue was 
homogenized using a Qiagen TissueRuptor (no. 9002755), passed 
through a 40-µm filter and treated sequentially with Qiagen protease  
(cat. no. 19155), proteinase K and RNAse A in lysis and binding buffer. 
The homogenate was then treated with PMSF to de-activate the pro-
tease and proteinase K, washed and eluted. The extracted DNA was 
mixed using an end-over-end rotator for 1 h at 5 r.p.m. and allowed to 
rest at room temperature until homogenous (approximately 1 week). 
Then, 750 ng of purified UHMW DNA was fluorescently labeled at the 
recognition site CTTAAG with the enzyme DLE-1 and subsequently 
counterstained using a Bionano Prep DLS Labeling Kit (no. 80005) fol-
lowing the manufacturer’s instructions (Bionano Prep Direct Label and 
Stain (DLS) protocol no. 30206). OGM was performed using a Saphyr 
Gen2 platform for a final effective coverage of 894× for the pons and 
754× for the cingulate. Effective coverage is defined as the total raw 
coverage of molecules ≥150 kbp in length multiplied by the proportion 
of molecules that aligns to the reference genome.

Calling of low AF SVs was performed using the rare variant analysis 
pipeline (Bionano Solve version 3.6) on molecules ≥150 kbp in length. 
De novo assembly was performed using the longest 250× molecules 
of each dataset. The variant annotation pipeline (Solve 3.7) was used 
to detect which SV calls in the cingulate are present in the pons SV 
calls and/or molecules. See the Bionano Solve Theory of Operations 
for more details.

MSA sample comparison. Illumina reads were mapped to the human 
genome GRCh38 using bwa70 mem (version 0.7.17-r1188) with default 
parameters, including -M to mark split reads as secondary alignments. 
Subsequently, we identified SV using Manta60 (version 1.6.0).

For ONT, reads were mapped using minimap2 (ref. 64) (version 
2.17-r941) with present parameters for ONT. Subsequently we identified 
SV using Sniffles2 with both germline (default) and mosaic mode. The 
Bionano OGM data smap file was converted by SURVIVOR smaptovcf 
(version 1.0.7) into a VCF file.

To compare SVs called by Sniffles2, Manta (Illumina) and OGM 
(Bionano), we used SURVIVOR merge using a 10-kb threshold, match-
ing SV type and ignoring reported SV strand. We extended it to 10 kbp 
after testing 500 1-kbp and 5-kbp thresholds and observed that the 
accuracy of the breakpoints from OGM required the larger parameter.

The genotype columns in the SURVIVOR merge output were com-
pared for each SV to determine presence or absence in the results 
reported by the respective method.

Subsequently, to further investigate SVs absent from the Manta call 
sets, we additionally genotyped the respective Sniffles2 calls against 
the raw Illumina read alignments for the same brain region (cingulate 
cortex) as well as a different brain region (cingulate white matter) using 
svtyper (version 0.7.1)61. SVs reported as having at least one supporting 
read by svtyper were considered as present in a sample.

PCR validation of selected mosaic deletions. We used the National 
Center for Biotechnology Information (NCBI) primer design tool to 
obtain primers straddling the target deletions. The primer sequences 
for the 240-bp deletion were TACCAAGTCTTTCTCCAAGTCCC (for-
ward) and TTGCACAGCCTTGGCTATACTC (reverse) and, for the 
127-bp deletion, ATCCTGAGAGAACCCCCTCC (forward) and GGACA-
GACTCGTGGTTTCGT (reverse). PCR was performed using Phusion 
Plus PCR Master Mix (Thermo Fisher Scientific), with 0.5 µM primers, 
annealing temperature 60 °C and extension time 75 s. PCR results 
were confirmed using Agilent TapeStation and 2% agarose gel elec-
trophoresis, stained with GelRed (Biotium), with 100-bp DNA ladder 

(New England Biolabs). Initial PCR was performed using 20–40 ng of 
template DNA in 20 μl for 35 cycles. Repeats to obtain adequate prod-
ucts were performed using 100 ng of DNA in 50 μl, with 40 cycles for 
the second deletion, and low-melting-point agarose was used to allow 
relevant amplicon band excision. Extraction and purification from 
agarose was carried out using a QIAquick Gel Extraction Kit (Qiagen). 
Extracted products, which represented the wild-type, deletion and Alu 
insertion, underwent Sanger sequencing

Mendelian inconsistency benchmark in population mode
Mendelian benchmark/inconsistency. To assess the performance 
of Sniffles2 population mode, we used the Ashkenazim family trio. We 
called SV using Sniffles2 and cuteSV. For Sniffles2, we used a minimum 
SV length of 50 and with the output being the SNF binary file that 
contains the unfiltered SV candidates and genome-wide coverage 
information (using the --snf option). Then, we merged the SNF files 
with Sniffles2 population-level calling providing the reference genome 
to obtain the sequences of the deletions. Here, the input is the SNF 
files and the output the VCF file. For the case of cuteSV, we used ver-
sion 1.0.11 with recommended parameters for Oxford Nanopore data 
(--max_cluster_bias_INS 100 --diff_ratio_merging_INS 0.3 --max_clus-
ter_bias_DEL 100 --diff_ratio_merging_DEL 0.3). Then, we merged the 
results of cuteSV using SURVIVOR version 1.0.7 with a maximum dis-
tance between breakpoints of 1 kb, a minimum support of 1 and taking 
into account the SV type. Next, we performed force calling with cuteSV, 
using as input the merged SV from SURVIVOR (-Ivcf and --genotype 
options). Finally, we performed a second merge with SURVIVOR with 
identical parameters as before.

We then tested the Mendelian inconsistency of the genotypes 
using the BCFtools version 1.14 Mendelian plugin55. The Mendelian 
plugin denotes a genotype consistent when the proband genotype 
is in concordance with the parental genotypes (for example, F 0/0, M 
0/1 and P 0/0), inconsistent when the proband and parental genotypes 
do not match (for example, F 0/1, M 1/1 and P 0/0) and NA when the 
proband has a missing genotype (./.). For all analyses, time was meas-
ured using the linux time command.

Chromosome X disorder patient analysis
Sniffles2 population mode was used to analyze 31 ONT samples that 
represented cases of Mendelian disorders in probands. We obtained 
the BAM files by running PRINCESS29 (version 1.0) using the default 
parameters and ‘ont’ flag. PRINCESS implicitly calls Minimap2 (ref. 64) 
(version 2.17) with the following parameters ‘-ax map-ont -Y --MD’. Later, 
we sorted the output using SAMtools55 (version 1.14). For all samples, 
unfiltered SV candidates and genome-wide coverage information are 
written to a specified output SNF file and then merged with Sniffles2 
population-level calling. General statistics, such as SV sizes and com-
position (proportion of each SV type), were computed by extracting 
the SVLEN, SVTYPE and GT information from the VCF file.

Given the nature of the dataset, only the SV calls from chromo-
some X were analyzed. Additionally, for specific individuals (BH14379 
and BH14413), SVs from chromosome Y were analyzed given that both 
aCGH and Sniffles2 called translocations to chromosome Y. Then, all 
SVs that were less than 10 kb were filtered, as aCGH data showed that 
large events were involved. Finally, we filtered out SVs that occurred 
in the father, as this disorder is fully penetrant in males by comparing 
the SUPP_VEC tag in the VCF to the sample names. Manual curation was 
performed for a single SV that was filtered out by the STDEV_LEN filter 
of Sniffles2 during development.

Identification of cancer-specific somatic SVs by Sniffles2
We used the population-level calling (population merge) of Sniffles2 
to detect cancer-specific somatic SVs by comparing a tumor/nor-
mal pair. We used the highly studied COLO829 cancer cell line with 
the COLO829BL blood control. SVs were called with Sniffles2 using 
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default parameters with the --snf option to save candidate SVs to the 
SNF binary file, per sample. We used two tumor/normal pairs, one 
described in Vale-Inclan et al.71 and a sample provided by PacBio (see 
‘Data availability’). We then merged the four files using Sniffles2 popu-
lation merge. Next, we analyzed the SV presence/absence by means 
of the SUPP_VEC tag in the INFO field of the output VCF to extract SVs 
that are detected only in the tumor samples. We compared all the SVs 
detected by Sniffles2 to the COLO829 SV benchmark set to assess the 
performance of Sniffles2 somatic SV calling. For the case of mosaic SVs, 
we performed the same strategy as before; moreover, for the cancer 
datasets, we added the --mosaic option to get the mosaic candidate 
SVs in the SNF file as well. Here, we also detected somatic SVs but the 
presence/absence by means of the SUPP_VEC tag in the INFO field to 
extract cancer-specific SVs.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
GIAB HG002 PacBio HiFi data are hosted at the GitHub server: 
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/.
ONT HG002: https://labs.epi2me.io/gm24385_q20_2021.10/
ONT HG00733: https://www.internationalgenome.org/data-portal/
search?q=HG00733 and https://ftp.hgsc.bcm.edu/Software/Tru-
vari/3.1/sample_vcfs/hg19/li/HG00733.vcf.gz
GIAB benchmark sets:
Genome wide: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/
giab/release/AshkenazimTrio/HG002_NA24385_son/NIST_SV_v0.6/
Medical regions: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/
giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/
The 1000 Genomes datasets of the three genomes were downloaded 
from https://github.com/human-pangenomics/hpgp-data. The dip-
call results that we leveraged as benchmarks are deposited at https://
github.com/smolkmo/Sniffles2-Supplement.
The other datasets have been made available in the Sequence Read 
Archive (SRA). Thirty-one ONT datasets that represent cases of Men-
delian disorders have SRA bioproject ID PRJNA953021 and database 
of Genotypes and Phenotypes (dbGaP) ID phs002999.v1.p1. MSA sam-
ple has bioproject ID PRJNA985263. The COLO829BL (normal) and 
COLO829 (tumor) ONT samples can be found with European Nucleotide 
Archive (ENA) ID PRJEB27698 (samples ERR2752451 and ERR2752452, 
respectively), and the Revio tumor/normal samples can be found at 
https://downloads.pacbcloud.com/public/revio/2023Q2/COLO829/. 
The individual VCF files for Sniffles across the samples that are pub-
licly available (not dbGaP) can be found at https://doi.org/10.5281/
zenodo.8144524.
All software used (with versions) is listed in Supplementary Table 20.

Code availability
Source code for Sniffles2 is available at https://github.com/fritzs-
edlazeck/Sniffles and https://doi.org/10.5281/zenodo.8121996. The 
auxiliary scripts are available at https://github.com/smolkmo/Snif-
fles2-Supplement and https://doi.org/10.5281/zenodo.8122060.
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Extended Data Fig. 1 | Performance of Sniffles2 population merge. Here we show the total time used by each approach, which includes the SV calling for each 
member of a family trio, merging SV into a single VCF file, and in the case of cuteSV force call, re-genotyping each sample followed by a second merge.  
See Supplementary Table 10 for details.
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Extended Data Fig. 2 | Detailed view of inversion spanning nearly the entire 
X chromosome called by Sniffles2. Detailed view of inversion spanning nearly 
the entire X chromosome (∼155 Mb) called by Sniffles2. This event is in fact not 
an inversion but a recombinant chromosome. This chromosomal aberration is 
generated de novo as the result of meiotic recombination in a mother carrying 

a heterozygous pericentric inversion. aCGH data shows a short-arm deletion 
(A, green arrow) and a long-arm duplication (C, red arrow). Sniffles2 is able to 
positionally connect the beginning of the duplication to the end of the deletion 
forming Jct1.
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Extended Data Fig. 3 | IGV alignments for a Structural Variant that was called by 
Sniffles2 but not represented in either the Bionano or Illumina call sets. The top 
shows the read alignments for the cingulate cortex ONT data, followed below by 
Illumina read alignments for cingulate cortex and cingulate white matter.  

A 687 bp mosaic duplication on chromosome 1, overlapping with simple repeats. 
Manual curation revealed DEL being called in the Illumina data in both cingulate 
cortex and white matter and no call in the Bionano data set.
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Extended Data Fig. 4 | IGV alignments for a Structural Variant that was called by 
Sniffles2 but not represented in either the Bionano or Illumina call sets. The top 
shows the read alignments for the cingulate cortex ONT data, followed below 
by Illumina read alignments for cingulate cortex and cingulate white matter. 

A 645 bp non-mosaic duplication in chromosome 10 that is flanked by a SINE 
and LINE element. Manual curation revealed no overlap in the Illumina nor the 
Bionano data.
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