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High-quality metagenome assembly from 
long accurate reads with metaMDBG

Gaëtan Benoit1, Sébastien Raguideau    1, Robert James2, Adam M. Phillippy    3, 
Rayan Chikhi4,7 & Christopher Quince    1,2,5,6,7 

We introduce metaMDBG, a metagenomics assembler for PacBio HiFi 
reads. MetaMDBG combines a de Bruijn graph assembly in a minimizer 
space with an iterative assembly over sequences of minimizers to address 
variations in genome coverage depth and an abundance-based filtering 
strategy to simplify strain complexity. For complex communities, we 
obtained up to twice as many high-quality circularized prokaryotic 
metagenome-assembled genomes as existing methods and had better 
recovery of viruses and plasmids.

Shotgun metagenomics, the sequencing of DNA from a mixed sample 
of genomes in a community1–3, provides a high-throughput means to 
survey microbial population genomic diversity. A critical first step in 
metagenomics analyses is the assembly of shotgun reads into longer 
contiguous sequences or contigs. Genome assemblies that are derived 
from short reads can be highly fragmented into potentially millions 
of contigs per sample, particularly if they are from diverse commu-
nities. The difficulty in assembling metagenomes is a consequence 
of intra- and inter-genome sequence repeats, low coverage of some 
species and strain diversity4,5. Many complete genomes are, neverthe-
less, recovered by clustering (binning) short contigs using features 
such as sequence composition or differential coverage across mul-
tiple samples6, creating metagenome-assembled genomes (MAGs). 
Although MAGs have resulted in thousands of bacterial genomes being 
added to reference databases, MAGs from short-read metagenomes are 
often fragmented, contaminated and missing key regions such as the  
16S rRNA gene operon.

Third-generation long-read sequencing technologies have 
greatly improved the quality of metagenome assemblies and MAGs. 
The first applications, using reads generated by the Oxford Nanopore 
Technologies (ONT) platform (which, at that point, had a relatively 
high error rate) typically only resolved a small fraction of the com-
munity as complete circularized contigs7. More recent ONT studies 
have generated hundreds of MAGs but only a relatively small number 
of closed circularized genomes8,9. An alternative long-read technol-
ogy, HiFi PacBio, combines long reads with very high accuracies 
(≈99.9%). This has enabled hundreds of MAGs to be retrieved from 

metagenomes with a substantially larger fraction as circularized 
contigs10. An important caveat is that platform comparisons cannot 
easily be made across studies owing to variations in sequencing depth 
and community complexity8.

Existing algorithms for metagenomics assembly of HiFi PacBio 
reads are effective but have limitations. Firstly, both low-abundance 
and high-abundance organisms with strain diversity may not be assem-
bled11 and, hence, the majority of the community by abundance will not 
be resolved as high-quality MAGs10. Secondly, even typical metagen-
omes require long processing times (days) and high-end computing 
infrastructure (>500 GB to 1 TB of memory), and therefore scaling 
to larger data sets from more complex communities is prohibitive. 
Thirdly, they do not allow the easy incorporation of contextual data 
such as depth of coverage, which is a critical component in metagen-
ome reconstruction.

There are two generally accepted paradigms for sequence 
assembly: string graph methods that operate with individual reads, 
which consider pair-wise overlaps and construct graphs to represent 
them12, and de Bruijn graph (DBG) assemblers, in which reads are first 
decomposed into short, fixed-length sequences (k-mers)13. The former 
requires all-versus-all read comparisons, which scales poorly with read 
numbers and hence is too inefficient for short-read metagenomics. It 
has been applied to long reads, specifically HiFi PacBio metagenomics, 
in hifiasm-meta 14, using minimizers to efficiently find read overlaps. 
String graphs, although they are effective, will always scale poorly with 
large read numbers, and the complex graphs that are generated make 
coverage estimation difficult because of ambiguous read mapping.
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‘human gut’, is a PacBio HiFi-generated data set composed of four 
human fecal samples from omnivore and vegan donors14. The second 
metagenome, ‘AD-HiFi’, is a time series of three samples that were 
extracted from anaerobic digester sludge and generated for this study. 
For these two projects, where multiple samples were available, we 
present results from the co-assemblies of all samples together. The 
third data set, ‘sheep rumen’, is a single deeply sequenced sample 
from the sheep rumen10.

Improved recovery of complete circularized genomes
We first evaluated the assemblers on two mock communities, Zymo-HiFi 
and ATCC, by aligning contigs to references and computing average 
nucleotide identity (see Methods). The results are summarized in Sup-
plementary Table S4. Rust-mdbg was not competitive with the other 
assemblers. This is not surprising, as rust-mdbg performs no polishing 
and is designed specifically for rapid and draft-level genome assem-
bly; therefore, we will exclude it from the further comparisons below. 
MetaMDBG performed similarly to hifiasm-meta and metaFlye, both 
in terms of the number of species obtained as circularized contigs and 
the average nucleotide identity to reference sequences (>99.99% in 
most cases). The Zymo-HiFi mock community contains 21 genomes, 
but five have very low coverage and five are strains of E. coli. In this 
case, metaMDBG and hifiasm-meta both obtained ten circularized 
genomes and metaFlye obtained nine; however, metaMDBG addi-
tionally generated two almost complete (>99.8%) genomes as linear 
contigs. No assembler could correctly resolve all of the E. coli strain 
diversity; however, metaMDBG and hifiasm-meta each succeeded in 
circularizing one strain, and the latter had all the other strains present 
as fragmented contigs, whereas metaFlye produced only fragmented 
genomes. The mock ATCC community contains 20 species, but only 15 
were obtained by any of the assemblers, probably because the others 
lacked sufficient coverage depth. Of these species, each assembler 
obtained 12 as circularized contigs, although not the same 12, and each 
assembler assembled one species uniquely.

For the real communities, we used CheckM (v.1.1.3) to obtain 
the level of genome completeness and contamination of each contig 
and determine whether they are MAGs. These were then grouped as 
‘near-complete’ (completeness ≥ 90%, contamination ≤ 5%), ‘high 
quality’ (completeness ≥ 70%, contamination ≤ 10%) and ‘medium 
quality’ (completeness ≥ 50%, contamination ≤ 10%). For all three real 
communities, we observe a significant improvement in the number of 
circularized near-complete MAGs (cMAGs) longer than 1 Mb generated 
by metaMDBG compared to the state-of-the-art algorithms (Fig. 2a). 
MetaMDBG assembled 75 cMAGs from the human gut microbiome 
data set (13 more than hifiasm-meta), 114 from the AD-HiFi data set 
(61 more than hifiasm-meta) and 266 from the sheep rumen data set 
(three more than hifiasm-meta). MetaFlye produced significantly 
fewer cMAGs than the other two assemblers. As a further validation of 
the quality of the cMAGs, we predicted the presence of rRNA and tRNA 
genes (see Methods). This step confirmed that HiFi cMAGs usually do 
contain the expected complement of RNA genes (96.0%, 96.6% and 
98.5% of metaMDBG, hifiasm-meta and metaFlye MAGs, respectively) 
and that all three assemblers generate cMAGs of similarly high quality.

To investigate differences between the cMAGs generated by the 
assemblers, we aligned the assemblies against each other with wfmash 
(Supplementary Tables S5 and S6) and computed their coverage depth 
and single-nucleotide variant (SNV) density (see Methods). In the sheep 
rumen data set, metaMDBG and hifiasm-meta combined found a total 
of 356 distinct near-complete circular contigs. Among them, 176 were 
found by both assemblers (49%), with 90 specific to metaMDBG and 87 
specific to hifiasm-meta. The majority (91%) of these specific cMAGs are 
still present in the other assemblies but as one or more linear contigs. 
The cMAGs missed by metaMDBG were less fragmented, with a median 
of one contig (mean, 1.3) necessary to cover a cMAG reconstructed by 
another assembler, compared to a median of three contigs for both 

The decomposition to k-mers in DBG assemblers enables them 
to reduce the volume of data that is being processed and efficiently 
detect overlaps; consequently, they are now the default for short reads. 
However, there are two challenges in applying DBGs to long reads. 
Firstly, they effectively assume exact overlaps. Secondly, for long 
reads, the required overlap (and therefore k-mer size) becomes large 
and the number of unique k-mers required (and therefore memory 
required) becomes prohibitive. A hybrid approach has been developed 
(Flye15) that uses a form of sparse DBG16 to assemble noisy disjointigs, 
which are then used to create a repeat graph that is further resolved 
through read mapping. This works for both Nanopore and HiFi PacBio 
sequences and has been adapted to metagenomics; however, it also 
does not scale particularly well and produces inferior results compared 
to hifiasm-meta on HiFi data10,17.

A fundamentally different approach to the problem of adapting 
DBGs to long reads was introduced with rust-mdbg18. This implemen-
tation uses a minimizer-space DBG (MDBG) in which the k-mers are 
replaced by sequences of universal minimizers, which are k-mers that 
map to an integer below a fixed threshold and are a means of reproduc-
ibly subsampling k-mers. The result is a graph that is more sparse and 
lightweight: for example, just 12 million nodes are required to assem-
ble a complete human genome. It can also deal better with noise than 
long-nucleotide k-mer DBGs because exact matches are only required 
for the small selected minimizers. The rust-mdbg algorithm is, however, 
not designed for metagenomics. In particular, it cannot cope well with 
variable genome coverage depths.

We introduce metaMDBG (see Methods and Fig. 1a), which takes 
the principle of minimizer-space assembly and engineers it specifically 
for metagenomics from high-fidelity long reads. Each read is first 
converted into a minimizer-space read (mRead), which is an ordered 
list of minimizers. Each iteration of the assembler then comprises the 
construction of a DBG using lists of minimizers of fixed length (k′), 
denoted k′-min-mers. Following filtering of low-frequency k′-min-mers, 
the graph is constructed and simplification is performed using stand-
ard methods (for example, tip clipping and bubble popping).

We exploit the ease with which abundance estimates can be 
obtained for k′-min-mers to integrate abundance information directly 
inside the assembly algorithm. This ‘local progressive abundance filter’ 
removes complex errors, inter-genomic repeats and strain variability 
(Fig. 1c). It starts by identifying long seed unitigs and then increments 
an abundance threshold from one up to 50% of the seed coverage depth. 
At each step, unitigs with coverage equal to or lower than the threshold 
are removed, the graph is re-compacted and unitig coverage estimates 
are refined (Fig. 1b).

These algorithmic advances are integrated within a highly efficient 
multi-k approach that is entirely in minimizer space, and they address 
the variable coverage depths found in metagenomes. The minimizer- 
space contigs (mContigs) from the last iteration are added to the set 
of input mReads in the next iteration and these steps are repeated after 
incrementing k′. At the end of the multi-k process, reads are mapped 
to the final mContigs to determine their base-space sequence. This is 
followed by a low-memory re-implementation of the racon19 
contig-polishing strategy and purging of strain duplicates.

Benchmarking setup
We compared metaMDBG with two other state-of-the-art assemblers 
for HiFi metagenomics data, metaFlye (v.2.9-b1768) and hifiasm-meta 
(v.0.2-r058), on two mock communities and three real metagenomes 
(Supplementary Table S1). The commands that were used are provided 
in Supplementary Table S2 and all assembly results are summarized 
in Supplementary Table S3. A comparison to rust-mdbg is also given, 
although only on a subset of the data sets as explained below. The 
two mock communities, ATCC20 and Zymo, contain 20 and 21 spe-
cies, respectively, for which abundances and reference genomes are 
known (see Supplementary Table S4). The first real metagenome, 
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hifiasm-meta (mean, 10.7) and metaFlye (mean, 5) (see Extended Data 
Fig. 1). In the human gut microbiome and AD-HiFi data sets, we observed 
similar results in terms of reduced linear contig fragmentation for 

metaMDBG. MetaMDBG and hifiasm-meta were able to generate cMAGs 
across a range of SNV densities (Extended Data Fig. 2A), but we found a 
highly significant negative relationship between SNV density and the 
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Fig. 1 | Overview of the algorithmic steps of metaMDBG. a, Overview of the 
multi-k′ assembly strategy. Processes in blue are performed at the level of 
nucleotide sequences and those in green are performed only at the level of 
minimizers. b, Components for estimating and refining k′-min-mer abundance 
as k′ is increased and for filtering errors before graph construction. c, Illustration 
of the 'local progressive abundance filter' algorithm that simplifies complex 
graph regions generated by errors, inter-genomic repeats and strain variability. 
Each node represents a unitig (unitigs in green and blue belong to two distinct 

species and unitigs in red represent errors). The long unitig (with abundance = 4) 
is chosen as the seed (step c.1). Its abundance is used as a reference to apply a 
'local progressive abundance filter' from 1× to 0.5× its abundance (steps c.2 and 
c.3). At each step, unitigs with abundance equal to the cutoff value are removed 
and the graph is re-compacted to simplify fragmented unitigs. Note that 
fragmented green unitigs with abundance = 2 would have been removed without 
the intermediate step c.2.
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Fig. 2 | Assembly results on three HiFi PacBio metagenomic projects.  
a, CheckM evaluation. A MAG is considered 'near-complete' if its completeness 
is ≥90% and contamination is ≤5%; 'high quality' if its completeness is ≥70% 
and contamination is ≤10%; and 'medium quality' if its completeness is ≥50% 
and contamination is ≤10%. b, The percentage of mapped HiFi reads on MAGs. 
c, Phylogenetic tree of genera recovered from the AD-HiFi data set for all 
assemblers combined. For the near-complete bacterial MAGs, we generated a de 

novo phylogenetic tree based on GTDB-Tk marker genes, displayed at the  
genus level. The outer bar charts give the number of MAGs found in each 
genus. The colored symbols then denote genera recovered by only one of the 
assemblers. The grayscale heat map illustrates the aggregate abundance of 
dereplicated MAGs in a genus. d, Number of taxa at different levels that are 
unique to each assembler.
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probability that metaFlye would assemble a cMAG (logistic regression 
coefficient, –1.35, P = 2.18 × 10–11, n = 575). For intermediate coverage 
depths, metaMDBG and hifiasm-meta had similar success at resolving 
cMAGs; however, at higher coverages, more than twice as many cMAGs 
were obtained by metaMDBG (Extended Data Fig. 2B).

Improved reconstruction of phages and plasmids
We used viralVerify21 to identify the circular components that were 
potentially plasmid or phage genomes (Supplementary Table S7). Meta-
MDBG identified substantially more circularized plasmids and phages 
than hifiasm-meta, which was second best for all three metagenomes 
(sheep rumen, 70% more circularized plasmids and 25% more phages; 
human gut coassembly, 42% more plasmids and 55% more phages; 
AD-HiFi coassembly, more than twice as many plasmids and 78% more 
phages). For the circularized phages, we used CheckV22 to determine 
predicted completeness. We found that 39.4% and 45.2% of the genomes 
were judged as high quality for metaMDBG and hifiasm-meta, respec-
tively, but we still obtained substantially more (25.8%) high-quality 
phage genomes with metaMDBG because of the greater number of 
initial predictions.

Recovery of a majority of communities as near-complete MAGs
To date, no HiFi PacBio assembler has succeeded in recovering 
the majority of a complex microbial community by abundance as 
near-perfect MAGs. To reconstruct non-circular MAGs, we binned 
contigs from each assembler with MetaBAT2, using sequence com-
position and coverage after first subtracting all circularized contigs 
of ≥1 Mb (see Methods). The contigs that are removed before binning 
will include the cMAGs identified above, as this ensures that bins are 
constructed only from genome fragments14. We then evaluated these 
bins with CheckM (see Supplementary Table S8 for the list of MAGs). 
MetaMDBG reconstructed 23 (34%) more near-complete non-circular 
MAGs than hifiasm-meta in the human gut coassembly, 127 (270%) 
more in the AD-HiFi time series and 44 (32%) more in the sheep rumen 
data set (Fig. 2a). MetaFlye produced fewer near-complete circular 
contigs than the other assemblers but an equivalent or higher number 
of near-complete or high-quality MAGs compared to hifiasm-meta 
across all data sets and an equivalent or lower number compared to 
metaMDBG. The non-circular near-complete MAGs from all assemblers 
typically contained less than ten contigs (Extended Data Fig. 3).

The improvement in the number of near-complete non-circular 
MAGs produced by metaMDBG is mainly a result of better recovery of 
low-abundance organisms (Extended Data Fig. 4). This, combined with 
the higher number of abundant cMAGs, means that for the AD-HiFi and 
sheep rumen data sets, metaMDBG succeeds in obtaining a collection 
of near-complete MAGs that can map over 50% of reads (Fig. 2b). This 
was not the case for the human gut data set, which may be a conse-
quence of the relatively lower depth of sequencing. The assemblers 
also differ in the nucleotide divergence of the near-complete MAGs 
that they resolve (Extended Data Fig. 5). In the sheep rumen and human 
gut data sets, a greater proportion of the hifiasm-meta MAG diversity 
is at the strain level.

To summarize the microbial diversity from the AD-HiFi coassem-
bly, we constructed a phylogenetic tree at the genus level (see Methods) 
for all near-complete MAGs from all assemblers (Fig. 2c). The improved 
MAG recovery by metaMDBG translates into a more representative 
picture of microbial diversity at all levels of evolutionary divergence. 
In total, we observed 114 genera that were recovered from the AD-HiFi 
data sets by metaMDBG but are missing from the near-complete MAG 
collections of the other programs. When the other assemblers did 
recover MAGs from the same genus, in all but one case metaMDBG 
found more MAGs. Finally, we can see large parts of the tree in Fig. 2c  
that are represented by only metaMDBG MAGs; indeed, six phyla  
(46 families) were found only by metaMDBG, compared to one phy-
lum (4 families) specific to metaFlye and four families specific to 

hifiasm-meta (see Fig. 2d and Supplementary Table S9). The phyla that 
are unique to the metaMDBG near-complete MAGs include recently 
discovered phyla, with no cultured representatives (for example, OLB16 
(ref. 23) and Riflebacteria24).

Efficient large-scale assembly
MetaMDBG is highly scalable, both in terms of execution time and 
memory footprint (Supplementary Table S3). MetaMDBG took 36 h 
to complete the human gut data set, which is 20% faster than the other 
assemblers. This gain increased substantially with the more complex 
sheep rumen and AD-HiFi data sets. MetaMDBG took about 3 days to 
assemble the AD-HiFi data sets compared to 8 days for metaFlye and 
39 days for hifiasm-meta. We observed a similar trend with the sheep 
rumen data set. With regards to memory usage, metaMDBG required 
only 14 GB to assemble the human gut data set, whereas metaFlye and 
hifiasm-meta used more than 130 GB. The memory consumption of 
metaMDBG for the AD-HiFi and sheep rumen samples spiked at only 
16 GB and 22 GB, respectively, despite the larger diversity detected 
in those data sets. The memory usage of MetaFlye (650 GB) and 
hifiasm-meta (800 GB) was many times this amount.

Evaluation of metaMDBG for ONT metagenome assembly
MetaMDBG is optimized for HiFi PacBio reads but the accuracy of the 
more cost-effective ONT reads is continuously improving; therefore, we 
also evaluated metaMDBG on two recently generated Oxford Nanopore 
R10.4 data sets8 (Supplementary Table S1). The first data set, Zymo-ONT 
(a simplified version of the Zymo-HiFi mock considered above, compris-
ing seven bacterial species and one fungus) sequenced to high depth 
with an estimated per-base accuracy of 99.14%. Both metaMDBG and 
metaFlye assembled all the bacterial species as circularized contigs at 
high average nucleotide identity (median, 99.99%) and completeness 
(median, 99.97%). Hifiasm-meta produced only fragmented genomes; 
however, it is not designed for ONT reads and therefore we will not 
discuss its results further (see Supplementary Table S10). The second 
data set, AD-ONT (from an anaerobic digester) had effectively much 
lower coverage, as only 14 Gbp of reads were generated from a far more 
complex community at an observed accuracy of 98.11%. Here, on raw 
reads, metaFlye outperformed metaMDBG in terms of MAGs, obtain-
ing 42 near-complete or high-quality MAGs as opposed to just seven. 
The results were more comparable after polishing with the Nanopore 
reads themselves. Using VeChat before assembly25, we then obtained 
28 near-complete or high-quality MAGs from metaMDBG versus 34 
for metaFlye (see Supplementary Table S11). Furthermore, using short 
reads from the same community to polish the Nanopore reads with 
Ratatosk26, we saw a clear performance benefit with metaMDBG, obtain-
ing 52 near-complete or high-quality MAGs versus 32 for metaFlye. In 
addition, eight of the near-complete MAGs generated by metaMDBG 
were circularized compared to just one generated by metaFlye.

Summary
We have introduced metaMDBG, an assembler for long and accurate 
metagenomics reads based on the MDBG. Our aim was to develop a 
scalable assembler for high-fidelity long reads. We succeeded in this 
goal, as metaMDBG, tested on a range of HiFi PacBio data sets, was 
1.5 to 12 times faster than the state of the art and required between 
one-tenth and one-thirtieth of the memory. Moreover, we achieved 
this result with substantially better assembly results, particularly in 
strain-diverse communities such as the AD-HiFi data set, and we suc-
ceeded in reconstructing the majority of communities by abundance 
as near-complete MAGs. We also demonstrated improved results for 
phages and plasmids. We could not demonstrate an improvement for 
raw ONT reads; however, if short reads are available to error-correct 
before assembly, then we can obtain more high-quality MAGs and, in 
particular, more circularized MAGs. In summary, we have demonstrated 
the power of MDBGs for the assembly of highly accurate long reads from 
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metagenomes. We believe that further advances in our methodology 
coupled with larger data sets will greatly contribute to achieving com-
plete genome-scale resolution of even the most complex metagenomes.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-023-01983-6.
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Methods
Overview of metaMDBG
We present metaMDBG, a method for assembling metagenomes from 
accurate long reads (for example, PacBio HiFi). MetaMDBG takes as 
input a set of reads and outputs a FASTA file with contigs. The overall 
assembly strategy is summarized in Fig. 1a. The universal minimizers, 
which are k-mers that map to an integer below a fixed threshold (see 
below), are first identified in each read. Each read is thus represented 
as an ordered list of the selected minimizers, denoted an mRead. Each 
iteration of the assembler then comprises the construction of a DBG 
using lists of minimizers of fixed length, k′ (denoted k′-min-mers), 
starting with k′

min
= 4. We count k′-min-mers across the whole data 

set, and those with a frequency below a set threshold are filtered  
(Fig. 1b). The graph is then constructed and graph simplification is 
performed. This process includes classical methods for contig gen-
eration, such as tip clipping and bubble popping. Following this step, 
a ‘local progressive abundance filter’ is performed to remove poten-
tial inter-genomic repeats, strain variability and complex error  
patterns (Fig. 1c), beginning by identifying long seed unitigs  
(long, non-branching paths in the graph). We then increment an 
abundance threshold starting at one up to 50% of the coverage depth 
of this seed. At each step, unitigs with coverage equal to or lower than 
the threshold are removed and the graph is re-compacted. This strat-
egy, coupled with techniques for refining unitig coverage estimation 
(Fig. 1b), enables the seed unitig to converge conservatively on its 
longest possible form as complexity is removed from the graph. At 
this stage, one iteration in our multi-k′ approach in this minimizer 
space is complete. The resulting mContigs are added to the set of 
input mReads in the next iteration, and these steps are repeated after 
increasing k′ by an increment of one. At the end of the multi-k′ process, 
when k′ equals k′max, reads are mapped to the final mContigs in order 
to extract their base-space sequence. This is followed by a low-memory 
re-implementation of the racon19 polishing strategy and purging of 
strain duplicates.

Preliminaries
We start with a lexicon of some terms and concepts related to MDBGs 
and genome assembly.

Minimizer. In this work, we adopt the concept of a universal minimizer 
as previously defined18. Recall that in the original definition of minimiz-
ers27, a window is used to compute minimizers. Universal minimizers 
are pre-determined and do not require a window to be defined. Specifi-
cally, let f be a function that takes as input a k-mer (string of size k) and 
outputs an integer value within the range [0, H [, where H is typically 
equal to 264. Given 0 < d < 1 and k > 0, a universal minimizer is any string 
m of length k over the DNA alphabet such that f(m) < dH. The value of d 
represents the density of k-mers that will be considered as minimizers 
over the space of all possible k-mers.

Minimizer-space read. Before MDBG construction, each read is 
scanned and its minimizers are identified. Each read is therefore rep-
resented as an ordered list of minimizers. We call this minimizer rep-
resentation of a read the mRead.

k′-min-mer. A k′-min-mer is a list of k′ successive minimizers. They are 
collected by sliding a window of size k′ over the mReads.

MDBG. The MDBG is constructed from the set of k′-min-mers. An 
MDBG is a directed graph in which the nodes are k′-min-mers and an 
edge exists between two nodes x and y if the suffix of x of size k′ − 1 
(that is, its k′ − 1 first minimizers) is equal to the prefix of y of size k′ − 1 
(that is, its k′ − 1  last minimizers). We defer details about reverse 
complementation to the ‘Assembler implementation details’ 
section.

Unitig. A unitig (or simple path) is a maximal-length sequence of dis-
tinct nodes in the graph such that, given a unitig length n, for all nodes 
except the first and the last one, the in- and out-degrees of each node 
are equal to 1, and if n > 1, then the out-degree of the first node is 1 
and the in-degree of the last node is 1. Singleton nodes (n = 1) are also 
considered to be unitigs.

Unitig abundance. We define the unitig abundance as the median 
abundance of its constituent k′-min-mers.

mContig. Contigs have the same definition as unitigs, except that they 
are unitigs obtained after graph simplification. Contigs are first 
extracted as ordered lists of k′-min-mers (a path in the graph). The 
mContig is constructed by concatenating the first k′ − 1 minimizers of 
its first k′-min-mer and the last minimizer of each following k′-min-mer 
(that is, the sequence of k′-min-mers without their k′ − 1 overlapping 
region). The mContig representation will be used to extract 
(k′ + 1)-min-mers in the multi-k′ algorithm.

Contig. At the end of the assembly process, the mContigs are converted 
to base-space by concatenating the base-space sequence spanned 
by the minimizers (see ‘Converting to base-space and assembly 
post-processing’ for more details).

Algorithmic components
The overall assembly workflow is given in Fig. 1. Input reads are first 
converted into their minimizer-space representation (mReads). We 
then initiate a multi-k′ assembly algorithm in minimizer space. The fol-
lowing operations are performed during each iteration. The abundance 
of k′-min-mers is determined, and low-abundance k′-min-mers, deemed 
as erroneous, are discarded. An MDBG graph is then constructed, and 
classical assembly graph simplification steps such as tip clipping and 
bubble popping are performed. Then an algorithm, termed ‘local pro-
gressive abundance filter’, is applied to remove potential inter-genomic 
repeats, strain variability and complex error patterns. The resulting 
mContigs are added to the set of mReads for the next iteration. At the 
end of the multi-k′ process, reads are mapped to the final mContigs in 
order to output their polished sequences in base-space. In the following 
sections, we describe in more detail each of the major steps.

Multi-k′ MDBG assembly
In classical DBG metagenome assembly, the choice of the k-mer size is 
critical. Smaller k-mers increase sensitivity, as they recover overlaps 
between reads from rare species and are less sensitive to sequencing 
errors. By contrast, larger k-mers yield higher-contiguity assemblies by 
resolving longer repeats as well as avoiding spurious overlaps between 
close strains. In order to retain the best of both worlds, multi-k strate-
gies have been introduced28. The assembler typically iterates over  
k values from values kmin to kmax by fixed increments. In each iteration,  
a DBG is constructed from the input reads and the contigs are generated 
from the previous iteration.

In minimizer space, there are three ways to increase the base- 
equivalent length of a k′-min-mer: decrease the density d, increase the 
minimizer length or increase the value of k′. We rule out increasing the 
minimizer length k under the hypothesis that doing so would increase 
sensitivity to sequencing errors. Changing the density is, in principle, 
interesting because it affects only the distance between consecutive 
minimizers; however, this would require the recomputation of all 
minimizers within the mReads and mContigs for each iteration of the 
assembler, which would be computationally costly. Therefore, we 
decided to increase only the k′ parameter (the length of the  
k′-min-mer), as this does not require minimizers to be recomputed.

In metaMDBG, we iterate over k′ from values k′
min

 to k′max by incre-
ments of 1 (see ‘Choice of parameters’ for the values and a discussion 
of (k′

min
, k′max)). The input reads are parsed only once to generate mReads, 
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using fixed minimizer k and d parameters. Each iteration then extracts 
k′-min-mers from the mReads. Another advantage of this approach is 
that the base-space sequence of the contigs never needs to be con-
structed during the intermediate iterations; only the union of mContigs 
and mReads is used to construct the next graph.

Estimating k′-min-mer abundance and filtering errors
We aim to refine the abundance of each k′-min-mer, that is the number 
of times a k′-min-mer is seen in the input reads. Generally, abundance 
information is used in DBG assemblers to detect and filter out errone-
ous k-mers before graph construction to reduce its complexity and 
memory consumption. Here, the same philosophy is adapted and 
further elaborated for k′-min-mers. Refined abundances are estimated 
in two steps. First, before the first graph construction, k′-min-mer 
abundances are collected from raw k′-min-mer counts in mReads. Then, 
at each k′ iteration after graph construction, long mContigs, which are 
unlikely to be erroneous, are examined to refine the abundances of  
k′-min-mers and better detect erroneous k′-min-mers. Refined  
abundances are then propagated to the k′-min-mers of the next  
multi-k′ iteration.

Initial k′-min-mer counting and filtering. Even though the MDBG is 
a lightweight data structure, inserting all erroneous k′-min-mers would 
dramatically increase graph memory consumption and complexity, 
making its traversal computationally challenging. Therefore, before 
constructing the graph for the first value of k′, we apply an abundance- 
based filter on k′-min-mers to remove the majority of erroneous values. 
In metagenomics, detecting erroneous k′-min-mers is non-trivial, as 
low-frequency k′-min-mers could correspond either to real genomic 
sequences coming from rare species or to errors. Our idea in this first 
step is to consider the k′-min-mers in the context of the read from which 
they have been extracted: an estimate of a long read ‘abundance’ is 
determined and those k′-min-mers with very low ‘local’ abundance are 
filtered out.

More precisely, we first perform k′-min-mer counting, which is 
similar to classical k-mer counting in that the number of occurrences 
of each distinct k′-min-mer is determined. Then each read is processed 
sequentially. We define the read coverage (Rcov) as the median of abun-
dances of all its constituent k′-min-mers. We then determine a minimum 
abundance cutoff Rmin = Rcov × β (where β = 0.1, empirically determined). 
A k′-min-mer is discarded if the following two criteria are satisfied: its 
abundance = 1 and its value is lower than Rmin. This removes k′-min-mers 
that are seen only once, which represents the vast majority of erroneous 
k′-min-mers, but only within reads in which Rcov is greater than 1 / β.  
It is a conservative filter to prevent high memory usage on deeply 
sequenced data sets. Other potentially erroneous k′-min-mers will be 
detected during the contig-generation process by the ‘local progressive 
abundance filter’ method described in the next subsection.

Refining k′-min-mer abundances. After mContigs have been  
generated (see next section), k′-min-mer abundances are refined.  
We introduce two techniques: abundance smoothing and long  
contig k′-min-mer rescuing. The smoothing step is performed first.  
The abundance of an mContig Ccov is computed as the median abun-
dance of its constituent k′-min-mers. In the mContig, the abundance of  
each k′-min-mer is then set to the refined abundance Ccov. Long  
mContigs (having >2k′ k′-min-mers) are unlikely to contain any errone-
ous k′-min-mers. If a k′-min-mer with an abundance of 1 is present in a 
long mContig, it is rescued by incrementing its refined abundance by 
1 so that it will pass the pre-filtering performed in the next iteration.

Propagating refined abundance to the next k′ iteration and filtering. 
At the beginning of each subsequent multi-k′ iteration except the initial 
one (k′ > k′

min
), we estimate k′-min-mers based on the refined abundance 

of (k′ − 1)-min-mers determined in the previous iteration. A k′-min-mer 

contains two overlapping (k′ − 1)-min-mers for which the refined abun-
dance is known. We define the refined abundance of a k′-min-mer as 
the minimum of its two (k′ − 1)-min-mer abundances. We use the mini-
mum instead of the average because if one of the two (k′ − 1)-min-mers 
is erroneous, we do not wish its abundance to be raised by the other 
potentially correct one. This refined abundance propagation technique 
has several advantages. Firstly, it improves k′-min-mer abundance  
estimation over using abundances determined from reads alone.  
Secondly, it prevents k′-min-mer abundances from collapsing to one  
(or even zero) when determined from reads alone as we increase k′; 
indeed, long k′-min-mers tend to be underrepresented because they 
are more likely to contain a sequencing error or to be longer than the 
mReads themselves. Finally, refined abundances allow us to assign an 
abundance estimate to k′-min-mers that exist only in mContigs and not 
in mReads.

After the k′-min-mer refined abundances have been determined, 
all k′-min-mers with a single occurrence are discarded. As we progress 
in the multi-k′ process, we notice that erroneous k′-min-mers tend to 
occur only once, whereas correct k′-min-mers tend to be rescued and 
refined to abundances of two or more.

Local progressive abundance filtering
In this section, we introduce a key component of our contig-generation 
process that performs progressive abundance filtering to simplify 
parts of the assembly graph corresponding to abundant organisms 
(typically above 10–20x coverage). We first explain the rationale and 
then present the algorithmic details.

We generate contigs by examining the abundances of organisms 
in the assembly graph through the abundances of unitigs. Recall that 
a unitig is a maximal-length, non-branching path in the assembly 
graph. Nearly all unitigs of abundant organisms cluster together into 
a single large connected component of the assembly graph owing 
to inter-genomic repeats and chimeric reads in HiFi samples. These 
two effects increase the complexity of the graph and make assembly 
challenging. By performing graph simplifications using abundance 
information, we are able to sidestep both issues.

In principle, some abundant organisms could be separated in 
silico from the large component of the assembly graph by using an 
abundance filter; for instance, by removing all nodes with an abundance 
lower than half that of the organism’s abundance. This is because most 
of the erroneous overlaps have low coverage: chimeric reads are rare 
and most inter-genomic repeats are spanned by rare species, so remov-
ing the corresponding low-abundance graph nodes will remove those 
repeats. Filtering using a local abundance criteria has additional advan-
tages: it can remove large stretches of sequencing errors as well as strain 
variability. However, designing such a filter is not straightforward.

In complex areas of an assembly graph, unitigs tend to be frag-
mented and their abundances may be under-estimated, resulting in 
correct unitigs being filtered out whenever removal is based on length 
or, more critically, absolute abundance. The abundances of chimeric or 
rare species unitigs in complex areas also tend to be under-estimated28. 
Our solution is to filter out unitigs by iterating over abundance cutoffs, 
from low to high. At some point in the iterative process, fragmented 
but correct unitigs will be linked to longer ones and thus successfully 
rescued.

An unpractical but simple algorithm that illustrates our contig- 
generation process is as follows. Sort the MDBG unitigs u1, …, un from 
the most abundant (u1) to the least abundant (un). Iterate the following 
procedure from i = 1…n. Consider the abundance, ai, of ui and fix a local 
abundance cutoff Ui,cut = ai × β (with β values in the range of 0.1–0.5; in 
the real algorithm we will set it to 0.5). Create a copy, G′, of the MDBG. 
For t = 1 to t = Ui,cut, repeat the procedure of removing all unitigs with an 
abundance less than t from G′ and then re-compact G′. Finally, at t = Ui,cut, 
collect the unitig u′ in G′ that contains u. If u′ does not contain any  
k′-min-mer from a previously returned contig, then return it as a contig.
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Performing assembly with the above procedure for every unitig 
would be costly and redundant. Instead, in this work, a progressive 
abundance filter is applied once to the whole graph from thresholds 
t = 1 to t = tmax (see ‘Progressive abundance filtering’) instead of per 
unitig. At each step, we collect the set of unitigs from the graph. This 
results in multiple sets of unitigs (S1,… , Stmax

), each corresponding to a 
single threshold, t. A subsequent algorithm iterates over the sets (St) 
and non-redundantly outputs all unitigs that are above a well-chosen 
abundance threshold at each step (see ‘Generating mContigs’).

Progressive abundance filtering. This process (Algorithm 1) iterates 
over abundance thresholds, simplifying and compacting the graph and 
then removing unitigs that are below the current threshold, saving the 
remaining unitigs.

Specifically, the algorithm iterates from abundance threshold 
t = 1 to t = tmax (line 3), where tmax is the abundance of the most abun-
dant unitig in the initial graph. The graph is simplified (line 4, see 
‘Graph simplification’ below for details). The graph is then compacted  
(line 5) and unitigs are collected into a set, St (line 6). Finally, unitigs with 
an abundance ≤ t are discarded (line 7) from the graph and we move to 
the next iteration of t.

Graph simplification. The simplification step includes two processes: 
tip clipping and superbubble popping. Tips of 50 kbp or smaller are 
disconnected from the graph. We do not remove them here as they may 
either be erroneous or belong to a rare species. These tips are removed 
at the end of the assembly process if they have a high identity with 
another contig. Superbubbles of length 50 kbp or smaller are detected 
in O(∣Edges∣ + ∣Nodes∣) average time following a previously defined 
algorithm29, and the path with maximum abundance is retained.

Algorithm 1 Progressive abundance filtering.
Input: MDBG G
Output: S1,… , Stmax

 sets of unitigs along with their abundance 
information

1: S ← {}
2: t ← 1
3: while t ≤ tmax do
4:  G ← Simplify(G) ⊳ Tip clipping, bubble popping
5:   G ← Compact(G) ⊳ Compact the graph and calculate median  

k′-min-mer abundance of unitigs
6:  St ← Unitigs(G)
7:  Remove unitigs with abundance ≤ t from G
8:  t ← t + 1
9: end while
10: return S

Generating mContigs. This process iterates over all sets of unitigs (St) 
starting from the one with the highest abundance cutoff, Stmax

. For each 
set, unitigs and their abundances are scanned in no particular order 
and a unitig, u, is returned if its abundance, a, is greater than some 
threshold. We call mContigs the set of returned unitigs (in line with 
typical genome assembly usage, where a contig is generally a unitig 
within the simplified assembly graph). The complete process is 
described in Algorithm 2.

Specifically, at each iteration, a unitig, u, from St along with its 
abundance, a, is added to the final set of mContigs if it does not share 
any k′-min-mer with any other unitig already in mContigs and also if its 
abundance, a, is greater than a × t / β (line 6). The k′-min-mers within u 
are recorded in a set of outputted nodes to prevent redundancy  
(lines 7 and 8).

Here, the sets of unitigs (St) are iterated from the large abundance 
threshold to the low-abundance threshold rather than the opposite. 
This is done to ensure that we always output unitigs in their longest pos-
sible form. To illustrate, consider what would happen if we had started 

with the lowest threshold. There would be no way of knowing whether a 
given unitig has been maximally merged with some other unitig(s) after 
our abundance-filtering and graph-simplifications steps. For example, 
at the abundance threshold of three, all unitigs with an abundance of six 
would be output because they pass the local abundance threshold of 
3 / 0.5 = 6. However, among them, there may also be fragmented unitigs 
that belong to a more abundant species (for instance, of abundance ten) 
that are ‘waiting’ to be merged with other unitigs after more substantial 
simplifications (for instance, at t = 4 or t  = 5). Iterating from the large 
threshold to the low threshold solves this issue.

Algorithm 2 Generating mContigs.
Input: S1,… , Stmax

 sets of unitigs
Output: mContigs

1: t ← tmax

2: C ← {} ⊳C is the set of k′-min-mers in the mContigs
3: β ← 0.5
4: while t ≥ 1 do
5:  for each unitig u (with abundance a) in St do
6:   if C ∩ nodes(u) = ∅ and a > t / β then
7:    Output u
8:     C ← C ∪ nodes(u)
9:   end if
10:  end for
11:  t ← t − 1
12: end while

Converting to base-space and assembly post-processing
At the end of the multi-k′ process, the base-space representation of 
mContigs (that is, the actual nucleotide sequences and not their 
minimizer-space representation) is constructed by gathering the base 
sequences corresponding to all mContigs k′-min-mers from the original 
reads. This is followed by two post-processing steps. A contig polishing 
step fixes sequencing errors in contigs (mostly homopolymers), and 
an optional duplication-purging step removes similar contigs corre-
sponding to close strains.

Constructing contig base sequences. This step converts mContigs 
(that is, the minimizer-space representation of contigs) to actual 
nucleotide-space contigs. The idea is to choose a particular k′ value, 
collect k′-min-mer nucleotide sequences from the original reads and 
then reconstruct contig nucleotide sequences by aggregating the  
k′-min-mer nucleotide sequences. This is a generalization of  
the method presented in a previous work18 to the multi-k′ setting, made 
more accurate by using read mapping. Indeed, a k′-min-mer can be 
generated by multiple different nucleotide sequences. Hence, collect-
ing the ‘wrong’ nucleotide sequence could yield errors in contigs. Large 
values of k′ yield more specific k′-min-mers, minimizing such errors. 
However, some of these long k′-min-mers may exist only in mContigs 
and not in mReads; therefore, their nucleotide sequences cannot be 
constructed with certainty. We use k′ = k′

min
 to ensure that all contig  

k′-min-mers are indeed present in the reads. To collect the ‘true’ nucleo-
tide sequence of each contig k′-min-mer, mReads are first mapped to 
mContigs. The k′-min-mer sequences are then collected from the reads 
that best match the contigs. The read mapping strategy in minimizer 
space is described as follows.

The mContigs are firstly indexed to create a set of k′-min-mer 
seeds: each mContig k′-min-mer is stored as a key in a hash table with 
the associated values being a list of contig positions, represented as 
pairs {ci, cp}, where ci is the contig identifier and cp is the k′-min-mer 
position in ci. Then, mReads are scanned, and for each mRead  
k′-min-mer found in one or more mContigs, its mContig position(s) 
are retrieved as seeds for potential mappings. The seeds are extended 
maximally: we iterate over the mRead k′-min-mers (to the left and  
to the right of the seed) and extend mappings as long as subsequent  
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k′-min-mers continue to be the same as those that follow in the 
mContig(s). The result is a set of intervals (made non-redundant) indi-
cating maximal matches between the current mRead and one or several 
mContigs. Then another hash table with contig k′-min-mer positions 
{ci, cp} as keys (here cp is the position of the seed in the mContig, one 
position per mapping obtained) maintains the maximal matches as 
triplets {ri, rp, m}, where ri is the read identifier, rp is the position of the 
seed k′-min-mer in ri and m is the length of the longest match.

The overall mapping algorithm is thus quadratic over the number 
of k′-min-mers in each mRead. However, in practice, this number is 
close to 45, making the algorithm highly practical. We process mReads 
twice, in forward and reverse order, to handle reverse complements. 
The output of the algorithm is exactly one read k′-min-mer position for 
each contig k′-min-mer position.

The reads are then parsed in nucleotide space and their  
k′-min-mers are extracted. If a k′-min-mer is reported as a best match 
during the above mapping procedure, then we collect the substring of 
the read corresponding to that k′-min-mer. To deal with overlaps 
between successive k′-min-mers in mContigs, we also record the posi-
tion of the second and second-to-last minimizers within each  
k′-min-mer. We finally parse mContigs and concatenate the sequences 
associated with their k′-min-mers, making sure to discard overlaps.

Contig polishing. We perform an additional polishing step on the 
base-level representation of contigs to remove sequencing errors. 
We re-implemented a strategy akin to racon19: reads are first uniquely 
assigned to contigs using minimap2, contigs are then split into 
non-overlapping windows of 500 nucleotides and fragments of reads 
that map to each window are collected. Finally, a consensus sequence 
for each window is created by partial order alignment using the  
SPOA library19.

Our polishing differs from that of racon, in particular in the follow-
ing two aspects. The first is how we select reads in the case of multiple 
mappings. We noticed that longer alignments are not necessarily the 
best ones, but that alignment identity must also be considered. We 
score alignments using the metric MS = alignLength × alignIdentity and 
for each read, retain only the alignment that maximizes MS. The second 
is a reduction of memory usage. We limit the number of read fragments 
used to correct a window. With accurate long reads, we noticed that 
using only 20 fragments is sufficient to produce a high-quality con-
sensus. We also reduce the memory required to store the read frag-
ments by partitioning the contigs and the reads that map onto them 
on the disk, processing one partition at a time. The memory required 
to store the read fragments of a contig is estimated by multiplying the 
contig length by the contig coverage (estimated from the initial read 
mapping). Contigs are processed sequentially and written into a par-
tition file until the memory required to process the partition exceeds 
6 GB. The current partition is then closed and a new one is started. A 
structure in memory records the association of contigs to partitions. 
Similarly, reads are then processed and written to the partition of their 
best-matching contig. This results in an approximately 100-fold reduc-
tion in memory usage compared to the original racon implementation 
for the sheep rumen data set.

Strain duplication purging. Sequence duplications in contigs caused 
by strain variability are detected by all-versus-all contig mapping using 
wfmash30. Contigs longer than 1 Mbp are left untouched and are used 
as templates to remove duplications that are present in shorter con-
tigs. For those shorter contigs, we remove any part overlapping with 
a ≥1 Mbp contig when the overlap nucleotide alignment identity is 
greater than 99%.

Choice of parameters
Our method has four critical parameters: the minimizer size, the mini-
mizer density and the starting and ending k′-min-mer size, k′

min
 and k′max.

The minimizer size and density were both set empirically to 13 and 
0.005, respectively (that is, roughly 0.5% of total k-mers are used as 
minimizers). In our tests, using such short minimizers leads to better 
results than using longer minimizers, possibly because they are less 
sensitive to sequencing errors.

The starting k′-min-mer size, k′min was fixed to 4. Using k′ values 
less than 4 creates assembly graphs that have high complexity,  
resulting in highly fragmented contigs. The ending k′-min-mer  
size, k′max, is a function of the sample median read length: k′max =
medianReadLength × density × 2.

With density 0.005 and k′min = 4, the assembler initially considers 
overlaps between reads with lengths of 4−1

0.005
= 600 bases on average.  

It then iteratively increases the overlap length, in increments of  
200 bases, until finally processing overlaps of twice the median length 
of the reads.

Anaerobic digester sample extraction and long-read DNA 
sequencing
Facility operators obtained three biomass samples directly from an 
anaerobic digester reactor that was digesting food waste at weeks 1, 20 
and 40 of a year-long sampling campaign. The samples were shipped 
in ice-cooled containers to the University of Warwick. Upon receipt, 
they were stored at 4°C, subsampled into several 1–5 ml aliquots within 
a few days and then stored in 1.8 ml cryovials at −80°C. Samples were 
defrosted at 4°C overnight before DNA extraction. DNA was extracted 
from a starting mass of 250 mg of anaerobic digester sludge using the 
MP Biomedical FastDNA SPIN Kit for Soil (cat no. 116560200) and a 
modified manufacturer’s protocol.

DNA size was assessed using a FemtoPulse (Agilent). The Pacific 
Biosciences protocol ‘Preparing 10 kb Library Using SMRTbell Express 
Template Prep Kit 2.0 for Metagenomics Shotgun Sequencing’ was 
used to create libraries from 1.5 µg of DNA. In most cases, the DNA 
was already 10 kb or smaller. Sample AD2W40 was slightly larger; 
therefore, the DNA was sheared using a g-TUBE (Covaris) for one library 
and unsheared for a second library. Libraries were not pooled because 
of the large number of reads that were desired. Sequencing was per-
formed using a Sequel II sequencer (Pacific Biosciences) using version 
8M SMRT cells and version 2.0 sequencing reagents with 30 h movies 
and a 2 h pre-extension time to generate circular consensus sequenc-
ing reads.

Assembling data sets, mapping reads and binning contigs
We ran all assemblers with 16 central processing unit threads. We used 
the default parameters of metaMDBG for all assemblies (minimizer size, 
13; density, 0.005). We ran hifiasm-meta with the default parameters 
on real data and with the option ‘–force-preovec’ on the mock com-
munities as suggested by the authors. We only used the hifiasm-meta 
primary assembly of polished contigs (p_ctg.gfa), as adding alternate 
contigs reduced the overall MAG quality. We ran metaFlye with the 
options ‘–meta’ and ‘–pacbio-hifi’ for HiFi data sets and with the option 
‘–nano-hq’ for Nanopore data sets. We used the command ‘/usr/bin/
time -v’ to obtain wall-clock runtime and peak memory usage. All tools 
that were used and the complete command line instructions are avail-
able in Supplementary Table S2.

To determine the fraction of reads that were mapped to the assem-
blies, we used ‘minimap2 -x asm20’ as suggested in the metaFlye study10. 
We filtered out reads in which all of the alignments were shorter than 
80% of its length, and we assigned each remaining read to a unique 
contig through its longest alignment (breaking ties arbitrarily). To esti-
mate contig coverage across samples before binning, we used the com-
mand ‘minimap2 -ak19 -w10 -I10G -g5k -r2k –lj-min-ratio 0.5 -A2 -B5 -O5, 
56 -E4,1 -z400,50 ∣ samtools sort -o outut.bam’ as proposed in the 
hifiasm-meta article14,31. We input the resulting binary alignment map to 
the program jgi_summa_rsize_bam_contig_depths of MetaBAT2 
to obtain contig coverage profiles across samples.
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We performed contig binning using MetaBAT2 (ref. 32), with 
default parameters and a fixed seed (–seed 42) for reproducibility. 
As MetaBAT2 may bin strains from the same species, creating a single 
apparently contaminated MAG, we separated all circular contigs of 
1 Mb or longer before binning the remaining contigs, as suggested in 
the hifiasm-meta study14.

Quality assessment of assemblies
We used CheckM (v.1.1.3) to assess the quality of all MAGs and circular 
contigs longer than 1 Mbp. We used viralVerify21 (v.1.1) to identify plas-
mids and viruses in each assembly. We considered only contigs shorter 
than 500 kbp with prediction scores higher than five. Annotations 
labeled as ‘Plasmid’ or ‘Uncertain - plasmid or chromosomal’ were 
considered as plasmids and, similarly, annotations labeled as ‘Virus’ 
or ‘Uncertain - viral or bacterial’ were considered as viruses. We used 
checkV22 to assess the quality of viral contigs. We used Barrnap (https://
github.com/tseemann/barrnap), and Infernal33 to predict, respectively, 
rRNA and tRNA genes from circular contigs. We filtered out annotations 
with E-values over 0.01. A total of 437 (96%) near-complete circular 
contigs found by metaMDBG had one copy of the 5S, 16S and 23S genes 
and at least 18 tRNA genes, compared to 96.6% for hifiasm-meta and 
98.5% for metaFlye (Supplementary Table S12).

Assessment of completeness and fragmentation of assemblies 
with reference sequences
We used the following process to assess the completeness and frag-
mentation of assemblies when reference genomes are available 
(mock reference genomes or near-complete circular contigs). We 
used wfmash to align contigs against the reference sequences. Align-
ments with less than 99% identity were filtered out. Alignments were 
ordered by their matching score from MS = alignLength × alignIdentity 
(best score first). We considered alignment identity to improve contig 
assignment to similar strains. Alignments were then processed sequen-
tially and contigs were uniquely assigned to references. During this 
process, we check whether a reference is complete or not, meaning 
that at least 99% of its positions are covered by contigs. We prevent 
other contigs from being assigned to a complete reference. Moreover, 
we prevent a contig from being assigned to a reference if more than 
30% of its matching positions are already covered by another contig. 
In this case, we first try to assign this contig to another reference. 
References with less than 70% completeness were considered to be 
missed by the assembler.

Taxonomic classification of MAGs recovered from anaerobic 
digester samples
The phylogenetic tree in Fig. 2 was built using fasttree34 from the out-
put alignment of GTDB-Tk v.2.1.0 (ref. 35) on near-complete-quality 
MAGs of all three assemblers for the anaerobic digester data set. 
Concurrent diversity coverage between the different assemblers 
was explored at different taxonomic levels from genus to domain. 
To do so, it is necessary to first address MAGs for which no annota-
tion is available at a given taxonomic rank. A pair of unannotated 
MAGs may or may not share the same taxa. A first pass based on tree 
topology allows us to select neighboring MAGs as candidates for 
sharing the same unknown taxa. As a second step, we compute the 
relative evolutionary distance (RED) using the R library Castor v.1.7.3 
(ref. 36). Following guidelines from GTDB, we use their median RED 
values for each taxon in order to decide whether to group unknown 
MAGs together. We then find the best ancestor for each unknown 
MAG in terms of its RED being nearest to the corresponding taxon’s 
median RED. If they share the same best ancestor, then we group them 
together; otherwise, we split them into distinct unknown taxa. Tree 
manipulation and representation are carried out using the libraries 
ggtree v.2.4.1 (ref. 37), treeio v.1.14.3 (ref. 38) and ggtreeExtra version 
1.0.2 (ref. 39).

Assembler implementation details. During transformation to mini-
mizer space, reads are homopolymer-compressed40. We handle reverse 
recomplements in a manner that is similar but slightly different than 
classical DBG assembly. We consider canonical k′-min-mers by compar-
ing to its reverse (not its reverse complement). The first minimizer of 
each is compared; the k′-min-mer with the smallest minimizer is 
selected as the canonical representative. In the case of equality, the 
second minimizer of each is compared, and so on. Note that minimizers 
are also considered in their canonical representations, which, in this 
case, is identical to the classical technique. A minimizer is in canonical 
form if its forward sequence is lexicographically equal to or smaller 
than its reverse-complement sequence.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data sets used in this study were downloaded from the NCBI 
Sequence Read Archive; accession numbers are given in Supplemen-
tary Table S1. Zymo-HiFi mock reference genomes are available at 
https://s3.amazonaws.com/zymo-files/BioPool/D6331.refseq.zip. 
ATCC mock reference genomes are available at https://www.atcc.org/
products/msa-1003.

Code availability
MetaMDBG is available at https://github.com/GaetanBenoitDev/meta-
MDBG. The analysis scripts used in this study to compare assemblers 
are available at https://doi.org/10.5281/zenodo.8321179.
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Extended Data Fig. 1 | Number of contigs required to cover a near-complete 
circular MAG reconstructed successfully by an alternative assembler. In 
order to estimate the degree of fragmentation of assemblers, we aligned the 
contigs of one assembler against the near-complete circular contigs (cMAGs) 
recovered by the other assemblers. The fragmentation is then represented as 
the number of contigs required to cover these cMAGs (see section ‘Assessment 
of completeness and fragmentation of assemblies using reference sequences’ 
for details). The boxplot elements are the median (horizontal bar), 25th and 

75th percentiles (box limits Q1 and Q3), Q1-1.5*IQR and Q3+1.5*IQR (whiskers, 
IQR=Q3-Q1) and outliers. Summary statistics (n, min, median, mean, max): 
Human gut- metaMDBG (19, 1, 2, 2.1, 5); hifiasm-meta (32, 1, 2, 4, 24); metaFlye 
(68, 1, 4, 7.5, 48) : AD-HiFi- metaMDBG (11, 1, 2, 2.3, 6); hifiasm-meta (72, 1, 6, 19.8, 
109); metaFlye (105, 1, 6, 15.1, 104) : Sheep rumen- metaMDBG (15, 1, 1, 1.8, 8); 
hifiasm-meta (18, 1, 3, 10.7, 125); metaFlye (183, 1, 3, 5, 37). The data to generate 
this boxplot have been extracted from Supplementary Table S5.
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Extended Data Fig. 2 | Histograms of SNV density and coverage depths for near-complete circular contigs. SNV densities (A) and coverage depths (B) are shown 
for all the near-complete circular contigs (see definition in text) aggregated across the three HiFi PacBio datasets (Human gut, AD-HiFi, Sheep Rumen) for each 
assembler (metaMDBG, hifiasm-meta, metaFlye).
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Extended Data Fig. 3 | Number of contigs in non-circular near-complete 
MAGs. The boxplot elements are the median (horizontal bar), 25th and 75th 
percentiles (box limits Q1 and Q3), Q1-1.5*IQR and Q3+1.5*IQR (whiskers, 
IQR=Q3-Q1) and outliers. Summary statistics (n, min, median, mean, max): 
Human gut- metaMDBG (90, 1, 4, 6.8, 53); hifiasm-meta (67, 1, 3, 3.1, 13); metaFlye 

(65, 1, 3, 4.6, 19) : AD-HiFi- metaMDBG (174, 1, 4, 9.2, 138); hifiasm-meta (47, 1, 2, 3.6, 
20); metaFlye (107, 1, 5, 7, 35) : Sheep rumen-metaMDBG (181, 1, 2, 3.3, 22); hifiasm-
meta (137, 1, 1, 1.5, 9); metaFlye (186, 1, 2, 2.8, 22). The data to generate this boxplot 
have been extracted from Supplementary Table S5.
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Extended Data Fig. 4 | Number of low-coverage non-circular near-complete MAGs recovered by the assemblers. For the three tested PacBio HiFi datasets, we show 
the number of non-circular near-complete MAGs with low coverage ( < 12x) reconstructed by each assembler.
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Extended Data Fig. 5 | Total number of near-complete MAGs (circular and 
non-circular) across different dereplication thresholds. We used dRep to 
cluster MAGs by nucleotide similarity using the parameter -sa from 0.95 to 
1. This Figure shows for each assembler on each data set, how the number of 
dereplicated near-complete MAG clusters, both circular and non-circular, 
collapses as they are dereplicated at decreasing levels of nucleotide similarity. 

In the Sheep rumen and Human gut data sets, the number of dereplicated MAG 
clusters from hifiasm-meta drops significantly below a 97% ANI dereplication 
threshold, this is not observed for metaMDBG or metaFlye, which indicates that 
a greater proportion of the hifiasm-meta MAG diversity is at the strain-level. This 
is not the case for the AD-HiFi data set where no assembler seems to generate a 
substantial number of strains with more than 97% ANI.
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