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Spatial metatranscriptomics resolves  
host–bacteria–fungi interactomes

Sami Saarenpää    1,7, Or Shalev2,5,7, Haim Ashkenazy    2,7, Vanessa Carlos2,3, 
Derek Severi Lundberg2,6, Detlef Weigel    2,4 & Stefania Giacomello    1 

The interactions of microorganisms among themselves and with their 
multicellular host take place at the microscale, forming complex networks 
and spatial patterns. Existing technology does not allow the simultaneous 
investigation of spatial interactions between a host and the multitude of 
its colonizing microorganisms, which limits our understanding of host–
microorganism interactions within a plant or animal tissue. Here we present 
spatial metatranscriptomics (SmT), a sequencing-based approach that 
leverages 16S/18S/ITS/poly-d(T) multimodal arrays for simultaneous host 
transcriptome- and microbiome-wide characterization of tissues at 55-µm 
resolution. We showcase SmT in outdoor-grown Arabidopsis thaliana leaves 
as a model system, and find tissue-scale bacterial and fungal hotspots. By 
network analysis, we study inter- and intrakingdom spatial interactions 
among microorganisms, as well as the host response to microbial hotspots. 
SmT provides an approach for answering fundamental questions on host–
microbiome interplay.

Advances in spatially resolved transcriptomics technologies have 
greatly improved the understanding of eukaryotic host gene expres-
sion mechanisms in animal and plant tissues1–4. These technologies 
have been designed to capture targeted3,5,6 or untargeted1,2,4 RNA 
information based on imaging or sequencing of unique molecules, 
enabling the study of hundreds of genes or the whole transcriptome, 
respectively.

Spatial variation is also prominent in host–microorganism inter-
actions, and single-cell RNA-sequencing (scRNA-seq) of the host has 
been used to understand how this affects host cellular responses during 
infection7. However, integrated spatially resolved analyses of microbial 
identity and the host response remain rare and are typically focused 
on individual microbial taxa within a host8. With existing technology, it 
has not been possible to simultaneously resolve the spatial interactions 
between a host and the multitude of microorganisms colonizing it. This 
has considerably limited our understanding of host–microorganism 
interactions at the tissue level.

Microorganisms often live in diverse communities surrounded by 
other microorganisms. Both cooperative and antagonistic interactions 
between microorganisms are known to be important for the functional-
ity and health of ecosystems, plants, animals and humans9–11. Moreover, 
the success of microbial colonization and infection depends strongly 
on the spatial structure of microbial interactions with other microor-
ganisms and with multicellular species, and several pioneering studies 
have revealed clear and functionally significant spatial organization in 
host-associated microbial communities12–14. Much broader knowledge 
of the spatial organization of microorganisms within hosts, and the 
associated local host responses, is therefore needed to fully understand 
the biology of the host–microorganism–microorganism interactome.

Fluorescence in situ hybridization (FISH)-based techniques pro-
vided the first insights into microbial spatial organization in different 
environments15 and in host tissues, including mouse gut16, human 
plaque microfilms16 and Arabidopsis thaliana roots17. A limitation of 
these targeted methods is that they use a set of predesigned probes, 
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Because of the limitations of current analytical methods, microbial 
interactions within plants are often deduced from complete tissues or 
whole plants, based on 16S rDNA abundance data9,24,25. This approach 
inevitably makes it impossible to resolve microscale differences in 
abundance. Hence, bulk RNA-seq can only be used to study average 
plant–microorganism interactions in a tissue26,27. Given the tremendous 
variation of unique RNA profiles found within tissues, demonstrated 
repeatedly by spatial transcriptomic (ST) and scRNA-seq analyses2,28, 
it is very likely that important information has been obscured by the 
limited spatial resolution of the techniques used to study plant–micro-
organism interactions.

Here we present spatial metatranscriptomics (SmT; Fig. 1), an 
untargeted approach that allows simultaneous interrogation of bac-
terial and fungal communities, and the corresponding host transcrip-
tional responses with a spatial resolution of 55 µm. By capturing the 

each specific to a single microbial taxon. Current FISH-based tech-
nologies thus cannot provide comprehensive spatial descriptions of 
unknown microbiomes. Moreover, despite recent advances, these 
methods cannot yet achieve complete spatial resolution of the host’s 
expression patterns due to their limited capacity and overfitting to 
specific hosts18.

Plants are colonized by a heterogeneous set of microorganisms 
whose diversity is comparable to that of the human gut’s microbial 
population19. Similar to gut microorganisms, plant colonizing micro-
organisms affect the host’s health and physiology in various ways, 
ranging from beneficial20 to harmful21,22. Plant microbial communities 
are shaped in an environment-dependent manner by the intertwined 
forces of host–microorganism and microorganism–microorganism 
interactions, which ultimately determine the fitness of the host and 
the associated microorganisms23.
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Fig. 1 | Overview of the method. a, SmT uses capture arrays on glass slides. Each 
capture array contains 4,992 spots that are 55 µm in diameter and 100 µm from 
center to center. Cells are permeabilized to release RNA molecules that hybridize 
to the barcoded capture probes in the spots. The captured molecules are then 
processed into a sequencing library. b, Capture probes consist of a sequencing 
adapter, a spatial barcode, a UMI and a capture moiety. Polyadenylated mRNAs 
are captured with poly-d(T) probes that comprise 10% of all the capture probes. 
Ribosomal RNAs from fungi are captured with P-ITS7 and P-ITS1 probes targeting 
the 18S rRNA and ITS regions, respectively. Ribosomal RNAs from bacteria and 
archaea are captured with P479, P799, P902 and P1205 probes targeting bacterial 
16S rRNA. Bacterial and archaeal probes and fungal probes each comprise 45% 

of the capture probes. c, A bioinformatic workflow designed to assign the reads 
to host or microbial modalities. First, low-quality reads are filtered out, the 
remaining reads are mapped against the A. thaliana TAIR10 reference genome, 
and spatial barcodes are demultiplexed. Second, mapped A. thaliana reads are 
filtered based on their UMI and compiled to obtain a gene-count matrix. Third, 
the reads not mapping to A. thaliana are mapped to a universal database to 
remove those that are not clearly of microbial origin. The remaining microbial 
reads are classified with LCA based on their identity and UMIs, and unique taxa 
are counted to generate separate unique taxa-count matrices for fungi and for 
bacteria and archaea.
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spatial distribution of bacterial and archaeal 16S rRNA sequences, 
together with fungal internal transcribed spacer (ITS) and 18S rRNA 
sequences and the host mRNAs, we link local changes in host gene 
expression to the size and composition of local microbial populations 
in A. thaliana leaves. We resolve the organization of microbial commu-
nities along tissue sections and demonstrate the presence of microbial 
hotspots at the leaf scale, and how these locally impact host responses.

Results
Spatial detection of bacterial infection and host response
To determine whether mRNA molecules could be captured from the 
host A. thaliana leaf sections while preserving the tissue’s morphology, 
we applied an optimized ST protocol to leaves grown under laboratory 
conditions29. To this end, we permeabilized a 14-µm thick longitudinal 
leaf section on a glass surface uniformly coated with poly-d(T) capture 
probes. Following cDNA synthesis with fluorophores, we obtained a 
fluorescent cDNA footprint (Fig. 2a) whose morphology matched to 
that of the original leaf, demonstrating that spatial host gene expres-
sion patterns can be obtained from longitudinal leaf sections. Next, 
because bacterial communities are typically characterized based on 16S 
rDNA sequences, we hypothesized that capturing 16S rRNA molecules 
could provide information on the spatial distribution of bacteria in host 
tissues. To prove this concept, we analyzed leaves of lab soil-grown 
A. thaliana plants infiltrated with the model pathogen Pseudomonas 
syringae pv. tomato DC3000 (Pst DC3000), which was genetically 
labeled to enable its fluorescence imaging in whole leaves (Fig. 2b). The 
array used in the analysis contained two degenerate probes (P799 and 
P902) to capture bacterial and archaeal (hereafter ‘bacterial’) diversity 
from 16S rRNA hypervariable regions, together with poly-d(T) probes to 
capture host mRNA, mixed in the following proportions: 50% poly-d(T), 
25% P799 and 25% P902.

We imaged intact infected leaves 3 d postinfiltration to record the 
fluorescent spatial pattern of the bacterial infiltration and analyzed 
corresponding 14-µm-thick tissue sections with the array described 
above (Fig. 2b). We detected a uniform host and bacterial molecu-
lar capture throughout the tissue section (Supplementary Fig. 1a,b), 
indicating successful tissue permeabilization and RNA hybridization. 
We identified 512,779 unique bacterial molecules, of which 92.4% 
corresponded to Pseudomonas, indicating the controlled infection 
system of our lab-grown leaves. The density of Pseudomonas 16S rRNA 
molecules was the highest around the infiltration site (yellow squares 
in Fig. 2b) and gradually declined toward distal regions, thus provid-
ing a more comprehensive picture than the fluorescence imaging, 
which had missed the spatial component of the infection gradient 
(Supplementary Figs. 1c and 2a–c). This is confirmed by the positive 
correlation (r = 0.21, P < 2.2 × 10−16; Supplementary Fig. 1d) between 
the Pseudomonas array signal and the Pseudomonas fluorescence 
signal, which indicates higher sensitivity of the array in capturing the 
decreasing gradient of microbial content from the infection site that 
could not be recognized based on the fluorescence signal (Fig. 2b and 
Supplementary Figs. 1d and 2d). A similar pattern was seen in another 
leaf replicate (Supplementary Fig. 2f,g,i).

We next investigated the expression patterns of host genes in rela-
tion to Pseudomonas localization. Following a machine learning-based 
analysis (‘Boruta’30), we found the expression of pathogenesis-related 
gene 1 (PR1, typical marker of the plant immune response30) as  
the most associated with Pseudomonas localization in both rep-
licates (Supplementary Table 1). As expected, the PR1 spatial gene 
expression pattern closely matched the distribution of SmT-derived  
Pseudomonas signal (Fig. 2b and Supplementary Fig. 2c,h), significantly 
correlated with the Pseudomonas signal detected by the array (r = 0.52, 
P < 2.2 × 10−16; Supplementary Fig. 1e) and was nearly fully contained 
within the region where Pseudomonas was detected by the array (Sup-
plementary Fig. 1f). Finally, we found spatial colocalization of fluores-
cent microscopy-derived Pseudomonas signal with the SmT-derived 

Pseudomonas signal and host PR1 immune gene expression (Supple-
mentary Fig. 2e,j). These spatial patterns, which are obvious from visual  
inspection, were validated by statistical hotspot analysis, in which only 
significant spatial heterogeneities are considered (Supplementary Fig. 3).  
Taken together, these results show that we are able to simultaneously 
capture bacterial taxonomic information and host transcripts.

Simultaneous detection of microbial and host spatial data
Having demonstrated that bacterial information can be specifically 
captured together with information on host gene expression, we 
aimed to add a third modality to our arrays, capturing information 
from eukaryotic microorganisms, specifically fungi. We designed 18S 
rRNA/ITS probes specific for fungi and tested their performance in 
both separate arrays and a multimodal array. For this purpose, we cre-
ated arrays with 100% poly-d(T) probes, 100% 16S rRNA probes and 
100% 18S rRNA/ITS probes, as well as a multimodal array containing 
all three probe types (10% poly-d(T), 45% 16S rRNA and 45%18S rRNA/
ITS). We dissected three leaves of outdoor-grown Arabidopsis plants 
into four 14-µm thick longitudinal sections and analyzed consecutive 
sections from each leaf using the four array types. The multimodal and 
unimodal arrays greatly enriched the proportion of captured reads for 
the corresponding taxa when compared to the unspecific poly-d(T) 
probes (Supplementary Fig. 4). Specifically, at the genus level, the 
multimodal array enriched bacterial and fungal unique molecules up 
to ~19- and ~31-fold, respectively. At the superkingdom level, the 100% 
16S rRNA array enriched bacterial-unique molecules up to ~47-fold 
when compared to the 100% poly-d(T) array, and the 100% 18S rRNA/ITS 
array enriched fungal unique molecules up to ~233-fold. As expected, 
the multimodal array enriched microbial signals to a lesser degree 
than the 100% 16S rRNA and 100% 18S rRNA/ITS arrays, given the lower 
concentration of microorganism-specific probes in the multimodal 
arrays (Supplementary Fig. 4).

Importantly, the bacterial information captured using the multi-
modal arrays was almost identical to that captured from consecutive 
tissue sections using 100% 16S rRNA arrays (both qualitatively and 
quantitatively). The multimodal array captured up to 962 bacterial 
taxa and 179 fungal taxa at the genus level (Supplementary Table 2), 
and recapitulated the profile of 100% 16S rRNA arrays independently 
if full bacterial components (r = 0.91–0.93, P < 0.001), top 500 bacterial 
taxa (r = 0.92–0.93, P < 0.001) or top 20 bacterial taxa (r = 0.96–0.99, 
P < 0.001) were considered (Fig. 2c and Supplementary Figs. 5–8). 
Similarly, the multimodal array recapitulated the profile of 100% 18S 
rRNA/ITS arrays if full fungal components (r = 0.71–0.74, P < 0.001) 
were considered, while the correlations obtained for the top 500 and 
20 fungal taxa were on average 0.71 and 0.77 (P < 0.001), respectively 
(Fig. 2c and Supplementary Figs. 9–12).

Bray–Curtis similarity showed that the bacterial profile obtained 
using the bacterial 16S rRNA array was most similar to that of the mul-
timodal array, while the fungal profile obtained with the multimodal 
array clustered with that for the eukaryotic 18S rRNA/ITS array (Fig. 
2d). Conversely, the bacterial profile obtained with the eukaryotic 
18S rRNA/ITS array and the poly-d(T) array differed markedly from 
that obtained with the bacterial 16S rRNA array, and the fungal profile 
obtained with the bacterial 16S array and the poly-d(T) array differed 
markedly from that obtained with the 18S rRNA/ITS array. By downsam-
pling the 100% 16S rRNA and 18S rRNA/ITS arrays, simulating various 
probe concentrations, we identified that the Shannon diversity index 
was almost entirely saturated at 45% simulated probe concentration 
in all samples for both array types, showing that no new information 
could be captured by increasing the probe microbial concentrations 
(Supplementary Fig. 13). When a kingdom-specific array was used to 
analyze a kingdom other than that for which it was designed, it failed 
to do so (Fig. 2d). We confirmed this result by calculating the Shannon 
diversity index across leaves, revealing that the multimodal and 100% 
16S rRNA arrays captured similar levels of diversity (H′ = 3.62–4.01 
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and H′ = 3.81–4.04, respectively), different from the 100% 18S rRNA/
ITS and 100% poly-d(T) arrays (H′ = 2.76 and H′ = 3.70, respectively; 
Supplementary Fig. 14). Overall, the bacterial profile captured by the 
16S rRNA array and the fungal profile captured by the 18S rRNA/ITS 
array could only be recapitulated by the multimodal array and not 

by any of the unspecific probes (Fig. 2d). These results imply that the 
multimodal array quantitatively enriched microbial counts and accu-
rately profiled microbial populations within tissue sections, unlike the 
unspecific poly-d(T) probes (Fig. 2d, Supplementary Figs. 4–14 and 
Supplementary Table 2).
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Fig. 2 | SmT resolves the microbial profile and host transcriptome at micro­
scopic resolution. a, A Toluidine blue-stained bright-field image of a 14-µm  
thick longitudinal A. thaliana leaf section (left) and the fluorescent cDNA 
footprint (right) of the same section from the tissue optimization experiment.  
b, Left, fluorescence image of an intact A. thaliana leaf syringe-infiltrated 
(yellow square) with mCherry-tagged Pst DC3000 bacteria. Middle, a 14-µm 
thick longitudinal section from the same leaf was analyzed using a 50% poly-
d(T), 25% P799 and 25% P902 array, revealing the spatial capture of Pst DC3000 
16S rRNA molecules. Right, spatial distribution of PR1 gene expression in the 
same leaf section. Scale bars: 1 mm. c, Pearson correlation coefficient and the 

corresponding two-tailed significance test of bacterial 16S rRNA, eukaryotic 18S 
rRNA/ITS and A. thaliana molecules captured in leaf 1 with a multimodal array 
containing 10% poly-d(T), 45% 16S rRNA and 45% 18S rRNA/ITS probes and with 
100% 16S rRNA or 18S rRNA/ITS and poly-d(T) arrays. In all correlations, P = 0. 
d, Bray–Curtis similarity for bacterial and fungal taxa captured on different 
arrays, organized by hierarchical clustering. e, Experimental validation of SmT by 
amplicon sequencing. f,g, Numbers of bacterial and archaeal taxa detected using 
the two methods in a representative sample of four leaves from two plants are 
compared qualitatively using a Venn diagram (f) and quantitatively using NMDS 
(g). NMDS, non-metric multidimensional scaling.
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Finally, we confirmed that the multimodal array correctly captured 
the transcriptomic profile of the host as well (Fig. 2c and Supplemen-
tary Figs. 15–17) by comparing the A. thaliana gene expression pattern 
captured with the multimodal array to that obtained with the 100% 
poly-d(T) array. The multimodal array captured 16,368 Arabidopsis 
genes on average and its correlation with the 100% poly-d(T) array 
was high (r = 0.92–0.93, P < 0.001). Overall, these results show that 
multimodal arrays enable accurate simultaneous capture of the host 
transcriptome, the bacterial profile and the fungal profile.

Validation of the multimodal array with amplicon sequencing
As each of the two 16S rRNA probes captures a slightly different bacte-
rial community, we introduced two additional 16S rRNA probes, P479 
and P1265 (Supplementary Figs. 18 and 19 and Fig. 1), thus improving 
the ability of the multimodal array to capture the bacterial taxonomic 
range. We compared the results of this multimodal array with those 
from 16S rDNA amplicon sequencing (amp-seq)—current gold standard 
for bacterial profiling. Amp-seq involves PCR amplification of crude 
DNA extracts using a primer pair. Conversely, our multimodal array 
captures RNA fragments that are targeted by individual probes. To be 
able to directly compare the multimodal array to amp-seq—which is 
conducted on crude extracts—we sampled four leaves from field-grown 
A. thaliana plants and simultaneously extracted their RNA and DNA. 
We then analyzed the crude RNA extracts with the multimodal array 
containing the additional P479 and P1265 probes and used the extracted 
DNA for amp-seq of two 16S loci with V3-V4 (primers 515F + 806R) and 
V4-V6 (primers 799F + 1192R; Fig. 2e).

We first qualitatively compared the bacterial profiles obtained 
using the multimodal array to those obtained with the two single pairs 
of 16S rDNA amp-seq primers by analyzing the presence or absence 
of every genus found by at least one of the three processes (Fig. 2f  
and Supplementary Fig. 20). SmT detected more than three times the 
total number of bacterial taxa detected by the two amp-seq primer 
pairs (Fig. 2f), including ~71% of the taxa detected by the amp-seq V4-V6 
primers and ~65% of the taxa detected by the amp-seq V3-V4 primers. 
The two amp-seq primer pairs overlapped in ~56% of detected taxa.

We obtained similar results for the other three biological replicates 
(Supplementary Fig. 20), and a similar trend in quantitative analyses, 
comparing the Bray–Curtis distances, based on relative abundances 
(Fig. 2g). Furthermore, pairwise Spearman correlations calculated on 
bacterial profiles of genera shared across each pair of possible compari-
sons between the three profiles (Supplementary Fig. 21) showed that 
SmT delivers an accurate quantitative microbial profile, comparable 
to amp-seq. In summary, these results confirm that our multimodal 
array accurately profiles bacteria in A. thaliana leaves and captures a 
more diverse taxonomic range than standard amplicon sequencing.

Microbial hotspots in the leaf govern microbial interactions
The spatial distribution of the members of natural microbial communi-
ties within host leaves has been largely unknown. Therefore, we used 
SmT to investigate the microbial profiles of different leaf sections in 
outdoor-grown A. thaliana leaves. The microbial profiles of the differ-
ent sections were similar, reflecting the similarity of the environments in 
which the source plants were grown (Methods) and the reproducibility  
of our method (Fig. 3a). We ensured that this similarity is not driven 
by any environmental contaminants by quantitatively comparing the 
observed microbial profiles with those of axenically-grown leaves. 
Despite the axenically-grown leaves presented microorganisms that 
probably survived the seed surface sterilization (for example, sporulat-
ing microorganisms; Methods), we found that both the bacterial and 
fungal profiles of outdoor- and axenically-grown leaves largely differ 
(Supplementary Figs. 22–24). In fact, 42% of the axenically-grown leaf 
microbial relative abundance alone was characterized by one bacterial 
genus, that is Paenibacillus (highly resistant spore-forming bacteria31), 
while the same bacterial genus had an average relative abundance 

of only 0.035% in the outdoor-grown leaves. Among outdoor-grown 
leaves, considering only taxa with relative abundances above 1%, 
we identified 29 bacterial taxa and 23 fungal taxa at the genus level 
(Supplementary Tables 3 and 4). The relative abundances of differ-
ent microorganisms did not vary greatly across sections, leaves or 
whole plants. Analysis of the overall spatial distributions of bacterial 
and fungal genera (Fig. 3b and Supplementary Fig. 25) revealed that 
microorganisms were present across almost the entire leaf surface—
unique bacterial molecules were detected in 99.9% of sampling spots 
at an average density of ~277 molecules per million reads, while unique 
fungal molecules were detected in 97.5% of sampling spots at an aver-
age density of ~261 molecules per million reads (Supplementary Table 
5 and Supplementary Fig. 25). We validated that this pattern is not a 
technical artifact of lateral diffusion by comparing the reads under 
and outside the tissue, finding that for both the microbial and host 
profiles, the vast majority of reads was derived from under-the-tissue, 
while also showing a different microbial profile than outside-the-tissue 
(Supplementary Figs. 26–28).

We next analyzed the geography of microbial colonization. 
Although we detected both bacteria and fungi across the entire leaf 
surface, they were concentrated in hotspots rather than being homo-
geneously distributed (Fig. 3cand Supplementary Fig. 29). Some leaf 
regions, in 100% of the outdoor-grown leaf sections analyzed, were 
highly colonized with microorganisms, while others were uncolo-
nized or colonized at very low levels. This complex spatial pattern, 
instead, could not be observed in sections of axenically-grown leaves 
where less than half of the tissue sections presented a few small highly 
delimited hotspots (Supplementary Fig. 30). Moreover, these were 
almost completely related to only one bacteria, that is Paenibacillus31  
(93% and 83% of the hotspot microbial composition in leaf batches 
1 and 2, respectively), in contrast to the mixed and diverse hotspot 
microbial composition found in outdoor-grown leaves (Supplementary 
Figs. 31 and 32).

Further investigation of outdoor-grown leaves revealed that some 
hotspots were shared between bacteria and fungi (Fig. 3d and Supple-
mentary Fig. 29). The relative abundance of shared and unique hotspots 
varied widely across the 13 leaf sections (Fig. 3d). Because microbial 
interactions are constrained by physical proximity32, we hypothesized 
that the relative abundance of shared and unique hotspots controls the 
proportion of interkingdom and intrakingdom interactions. To test 
this, we computed the interaction network of the 50 most abundant 
bacterial and fungal taxa using an algorithm that accounts for the 
spatial structure of our data (Methods). We exemplify this approach by 
focusing on a subnetwork of 14 taxa (12 bacterial and 2 fungal), which 
are strongly associated (average pairwise Spearman’s rank correlation 
coefficient (SRCC) ≥ 0.35) in all tested leaf sections (Supplementary  
Fig. 33). We then tested the association between the relative abun-
dance of shared hotspots and the magnitude of interkingdom  
(bacteria–fungi) interactions across the leaf sections, revealing a  
positive correlation between the two features (SRCC = 0.72, P = 0.0058; 
Fig. 3e). This implies that microbial interactions are driven by their  
spatial organization, and specifically by their presence in shared 
hotspots. We found a similar association for the magnitude of  
bacteria–bacteria interactions and the fraction of bacterial-unique 
hotspots (SRCC = 0.72, P = 0.059; Supplementary Fig. 34), but lower 
for fungi–fungi interactions and the fraction of fungal-unique hotspots 
(SRCC = 0.47, P = 0.1; Supplementary Fig. 35).

Together, these results demonstrate a considerable spatial organi-
zation of microorganisms within the leaf.

Microbial hotspots and host gene expression associations
Because microorganism–microorganism interactions are driven by 
spatial relatedness, we hypothesized that microbial organization might 
also drive host–microorganism interactions. We therefore investigated 
the effects of microbial hotspots on the host transcriptome by reducing 
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Fig. 3 | Microbial interactions are driven by spatial organization. a, Bacterial 
and fungal profiles for each of the sections of four leaves (‘L’) from two plants 
(‘P’). ‘Other’ denotes binned bacterial and archaeal genera and fungal genera 
having ≤1% abundance. b, Numbers of unique microbial taxa per capture spot. 
c, Significant hot- and cold-spots for bacteria and fungi in a representative leaf 
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the host expression patterns into five cell clusters using uniform  
manifold approximation and projection (UMAP33; Fig. 4a and Supple-
mentary Figs. 36 and 37). As expected, the clustered spots reflected  
the leaf’s tissue structure, in which different cell types are distributed 
fairly evenly with the exception of vascular tissue (Fig. 4b and Sup-
plementary Fig. 37). The close proximity of clusters 1 and 2 in UMAP  
indicates that these cells have similarities in their gene expression 

patterns as confirmed by the spot deconvolution analysis, which 
identified most of the spots populated by mesophyll cell types  
(Fig. 4c, Supplementary Figs. 38–40 and Supplementary Table 6). For 
example, chlorophyll a/b binding protein 3 (CAB3), a common marker 
gene for mesophyll cells34, is upregulated in cluster 2 (avg. log2(fold 
change(FC)) = 0.33; Supplementary Fig. 41). Instead, cluster 3 is popu-
lated by both mesophyll and vascular cell types, as its spatial location 
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and ACD6 (AT4G14400). NS, not significant. Scale bars: 500 µm.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01979-2

clearly suggests (Fig. 4b), and in agreement with the spatial expression 
of the gene glutathione s-transferase phi 9 (GSTF9; Supplementary  
Fig. 41). Clusters 4 and 5, in addition to mesophyll cell types, presented 
epidermal cell types (Supplementary Fig. 40), while cluster 5 con-
tained the putative guard cell-type-marker gene AT2G31141 (ref. 35; 
avg. log2(FC) = 1.05; Supplementary Fig. 41).

Overall, these results show that our system accurately resolves 
spatial host expression profiles in leaves. However, gene annotation 
analysis revealed no strong association between any of the five clusters 
and microbial colonization, and there was no obvious visual overlap 
between the clusters and the microbial hotspots (Supplementary 
Figs. 29 and 37).

To further investigate the host response to microbial hotspots, 
we first tested what fraction of expression hotspots overlapped  
with the microbial hotspots. We found that it highly varies across leaf 
sections, ranging from 4.6 to 75% shared expression-microbial hotspots 
(Supplementary Fig. 42). Next, we performed a machine learning-based 
analysis (‘Boruta’) to associate the host’s spatial gene expression pat-
tern with bacterial and fungal abundance (Methods). This revealed 
1,323 and 954 host genes that were significantly associated with  
bacteria and fungi, respectively (Supplementary Table 7). To test how 
general our results are, we asked how often genes were associated 
with microbial abundance in at least two sections of the same leaf 
(Supplementary Fig. 43). While moving from one section per leaf 
to two sections per leaf substantially reduced the number of genes 
significantly associated with microbial abundance, the size of this 
gene set was more moderately reduced when requiring that a gene 
was significant in three sections per leaf (Supplementary Table 8).  
This behavior implies that the chosen cutoff enriches real biological 
signal. This conservative approach reduced the number of genes 
associated with bacteria and fungi to 645 and 442, respectively, thus 
filtering singular hits. The vast majority of these (63% of 667 genes in 
total) was associated with both kingdoms, indicating involvement in a 
general microbial response by the host, rather than a kingdom-specific 
one (Supplementary Fig. 44). A gene ontology (GO) analysis revealed 
enrichment of biological process terms associated with plant immune 
responses, including GO:0042742—‘defense response to bacterium’ 
and GO:0006979—‘response to oxidative stress’ (Fig. 4d, Supple-
mentary Fig. 45 and Supplementary Table 9). In total, 73 (11%) of the 
associated genes had GO terms associated with defense responses to 
bacteria and/or fungi (Supplementary Table 10). The spatial correlation 
between gene expression and microbial abundance is well illustrated 
by the expression patterns of the following three genes: ACD6, CA1 and 
LURP1 (Fig. 4e and Supplementary Fig. 46). All three genes are related 
to basal plant immunity—ACD6 is broad-spectrum disease resistance 
gene activated by diverse microorganisms36, the CA1 gene product 
binds the immune-related hormone salicylic acid37 and regulates sto-
matal opening during pathogen invasions38 and LURP1 is required for 
resistance to the pathogen Hyaloperonospora parasitica39. Overall, 
these results reveal a connection between the spatial organization 
of microorganisms within the leaf and the host expression signature.

Discussion
We present SmT, a multimodal untargeted sequencing method  
to investigate host–microorganism–microorganism interactions in 
tissue sections at a resolution of 55 µm. Numerous spatially resolved 
transcriptomics methods have been introduced so far40 based on either 
targeted3,41 or untargeted1,4,42 capture of the transcriptional informa-
tion and characterized by different spatial resolutions ranging from 
subcellular43–45 to multiple cells1,46. These methods have been applied 
to a wide range of tissues from humans47–49 to plants2,45,50,51. Recently, 
methods have been developed that are capable of detecting multiple 
modalities such as protein and transcriptional information41,46,52–54 or 
chromatin accessibility and transcriptional information55. In addition, 
ref. 56 presented spatial capture of bacterial information in human 

cancer tissue. Our SmT approach extends these recent efforts by captur-
ing information not only from the host and its colonizing prokaryotic 
microorganisms but also from its colonizing eukaryotic ones, thus 
achieving to retrieve spatial information from three different coexist-
ing organisms simultaneously by using a diverse set of probes specific 
for polyadenylated transcripts, 16S rRNA and 18 rRNA/ITS regions.

SmT captures fungal, bacterial and host signals from a tissue 
section while preserving their spatial structure and thus enabling 
integrated network analysis of gene expression by the host and its 
microbiota. Recent advances in smFISH techniques for microbi-
ome analysis support the spatially resolved capture of over 1,000 
bacterial taxa at the single-cell level16 or the detection of bacterial 
metabolic activities15. However, smFISH is a laborious technique and 
requires the design of highly sensitive probes to capture a sample’s 
full bacterial diversity. Extending it to simultaneous detection of host 
whole-transcriptome information and potentially another microbial 
kingdom will likely be very challenging. SmT provides a straightforward 
approach, by sequencing the 16S rRNA and 18S rRNA/ITS variable 
regions together with polyadenylated transcripts. Our validation of 
SmT with amplicon sequencing, the gold standard method for bacte-
rial profiling, revealed that SmT can more sensitively capture bacterial 
diversity than amplicon sequencing. This improvement is probably 
related to the usage of four individual probes simultaneously, com-
pared with a set of two primers, providing a more diverse set of cap-
tured molecules. Similarly to our results, 16S amplicon sequencing was 
unable to detect many rare bacterial taxa in soil samples, probably due 
to primers bias57. Nevertheless, like any other emerging technologies, 
SmT presents limitations. The higher sensitivity of SmT comes with an 
increased risk of capturing signals from environmental contamination. 
As we have shown, this risk can be mitigated by exploiting the spatial 
information associated with each read. Specifically, by focusing on 
hotspots, contrasting the profiles under and outside the tissue and 
comparing different sections of the same sample, we were able to 
highlight fundamental differences between plants from different 
environments. A further limitation of the current implementation of 
SmT is that it does not yet achieve single-cell resolution. However, at 
least for the host, spot deconvolution allowed us to resolve the cell-type 
composition of spots.

We showcased SmT on A. thaliana leaves, which are an important 
model system for phyllosphere microbiology. We found microbial 
hotspots within plant leaves, reminiscent of microbial microniches in 
the human mouth56,58. An important question for future research will 
be whether there are specific leaf locations that favor a specific spatial 
organization of microorganisms within the leaf. We hypothesize that 
the invasion point at which the epiphytes entered the leaf is one factor 
governing the location of hotspots59, while the boundaries of hotspots 
may be set by the host response or simple ecological factors such as a 
local lack of nutrients in specific microenvironments60. An ecologically 
important aspect of microbial hotspots is that interactions are the 
strongest between microorganisms in close physical proximity32,61. New 
knowledge of interkingdom microbial interactions will be particularly 
valuable, given that interkingdom interactions can be associated with 
plant health9,24.

As for microbial interactions, studies of plant responses to micro-
bial colonization have mainly been limited to analyses of homogenized 
whole tissues26,27,62. SmT now allows us to link microbial abundance at 
the micrometer level to host transcriptional responses. We found a high 
degree of overlap between the sets of genes associated with bacteria 
and fungi, implying a general response of leaf cells to microorgan-
isms, although this generality could be driven by the extensive colo-
calization of bacteria and fungi in the sampled leaves. Furthermore, 
it may relate to the quantitative rather than qualitative difference in 
plant gene expression profiles to a diverse set of microorganisms63. 
Among the gene functions highly associated with microorganisms, 
chloroplast-related functions showed the greatest enrichment. This is 
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consistent with reports linking chloroplasts to plant defense and patho-
gen invasion as well as photosynthesis64. This non-self-host-response 
profile we describe is less immune-centered than that recently 
described for the non-self A. thaliana response63. This difference is 
unsurprising given that (1) our study examined outdoor-grown plants 
instead of plants infected with individual microorganisms in a con-
trolled environment, (2) we profiled host expression at a very late stage 
of the host–microbiota interaction (after a few months of growth) 
instead of just 9 d postinfection and (3) we describe the host response 
at the micrometer scale in different regions of individual leaves rather 
than the average response among homogenized leaves. Despite these 
methodological and conceptual differences, both studies revealed 
some similarities, such as the association between microbial infection 
and the immune-related gene GSTF6 (AT1G02930), which was among 
the 24 general non-self-response genes that were discovered.

In conclusion, the versatility of SmT bodes well for its poten-
tial application to the many other tissue types ranging from plants  
to animals, including humans, where local differences in microbial 
colonization are an important determinant of health or disease.
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Methods
Bacterial leaf-infiltration assay for microscopy
Seeds of A. thaliana (accession Col-0) were surface sterilized by an 
overnight incubation at −80 °C followed by washing with ethanol 
(5–15 min shaking in a solution of 75% EtOH (Sigma-Aldrich) and 0.5% 
Triton X-100 (Sigma-Aldrich), followed by a 95% EtOH wash and drying 
in a laminar flow hood). Stratification was done in a 0.1% agar solution 
at 4 °C for 7 d before planting. Seeds were sown on potting soil (CLT 
Topferde; www.einheitserde.de), in 60-pot trays (Herkuplast Kubern). 
During the first 2 d after sowing (the germination period), the trays 
were covered with a transparent lid to reduce the likelihood of pest 
infection. Indoor growing conditions were as follows: Cool White 
Deluxe fluorescent bulbs (25 to 175 µmol m−2 s−1), 23 °C and 65% relative 
humidity. Plants were grown under long-day conditions (16 h of light) 
for 15 d before syringe-infiltration with mCherry-tagged Pst DC3000 
at OD600 = 0.001. Only half of the leaf was infiltrated (in relation to the 
main vein). A 3xmCherry construct had been inserted at the attn7 site 
and was a kind gift from Brian Kvitko.

Pst DC3000 was grown overnight in Luria Broth with the appropri-
ate antibiotics (gentamicin and nitrofurantoin, 5 µg ml−1 each), then 
diluted 1:10 on the following morning, and was grown for an additional 
4 h to initiate the log phase, after which the bacteria were centrifuged 
at 3500g for 90 s, and resuspended in 10 mM MgSO4.

Three days after infections, leaves were dissected and placed 
on 0.5× MS medium with agar (Duchefa, M0255), inspected under a 
Zeiss Axio Zoom.v16 fluorescence stereomicroscope to verify that the 
mCherry signal was present, and immediately flash-frozen in liquid N2. 
The leaves were stored at −80 °C before cryosectioning.

Imaging of bacterial-infected leaves
Infected A. thaliana leaves were imaged on a Zeiss Axio Zoom.v16 
fluorescence stereomicroscope, equipped with an LED array for trans-
mitted illumination and an X-Cite XYLIS LED (Excelitas Technologies) 
for epi-illumination. All leaves were imaged using a PlanNeoFluar Z 
1×/0.25 dry objective and a Hamamatsu ORCA-Flash4.0 digital CMOS 
camera (c11440-22C) with 2 × 2 binning. mCherry-tagged Pst DC3000 
was detected using the Zeiss filter set 45 (00000-1114-462), which 
includes a 560/40 nm excitation filter, a 630/75 nm emission filter and a 
585 nm dichroic mirror. Bright-field images were acquired as references  
for the outline of the leaves for the analysis. The camera exposure  
time was 220 ms at 5% of light intensity. The images of infected leaves 
have a pixel size of 18.6 µm2 and were acquired at a ×7 magnification. 
Image acquisition was done using the ZEN 2.1 software package.

Outdoor-grown plants
For the analysis of microbial hotspots, microbial interactions and host 
responses to wild microbiomes, seeds of A. thaliana (accession Col-0) 
were germinated and grown indoors for seven short days (8 h of light). 
On 27 February 2019, the trays were placed outdoors near the Max 
Planck Institute for Biology Tübingen in a naturalized environment 
surrounded by other plants. Plants were irrigated weekly with regular 
tap water. Twenty-seven days after outdoor planting, individual leaves 
were sampled and immediately flash-frozen in liquid N2. Leaves from 
different plants were stored separately at −80 °C before cryosectioning.

Axenically-grown plants
To grow axenic plants, Arabidopsis Col(0) seeds were pretreated at 
37 °C for 24 h, followed by a cold treatment at −20 °C for 24 h. The seeds 
were then rinsed in 70% ethanol for 5 min, 20% chlorine for 20 min, 
and washed in sterile water three times before being transferred to 
Murashige Skoog plant agar plates. Subsequently, the seeds were 
vernalized at 4 °C for 48 h before allowing them to germinate and grow 
into seedlings, still on the MS plates, at 20 °C under long daylight condi-
tions (16 h of light and 8 h of darkness). Ten days after the vernalization, 
individual leaves were sampled and immediately frozen in liquid N2. 

Leaves from different plants were stored separately at −80 °C before 
cryosectioning.

Two batches (‘1’ and ‘2’) of axenically-grown leaves were analyzed in 
the SmT experiments. Leaves were prepared as described in the subsec-
tion Sample preparation and sectioning. Three leaf sections from batch 
1 and five leaf sections from batch 2 were cryosectioned and attached 
onto two multimodal array capture areas, respectively. In addition, 
from the same leaves, four sections per leaf were collected to a Lysing 
Matrix D tube (MP Biomedicals) for total RNA extraction, which was 
performed using the RNAqueous-Micro Total RNA Isolation kit (Invitro-
gen, Thermo Fisher Scientific) using minor modification. Specifically, 
the leaf sections were disrupted using a Fastprep-24 instrument (MP 
Biomedicals) in 50 µl of Lysis Buffer at 6.0 m s−1 for 40 s. Subsequently, 
the homogenized tissue lysate was centrifuged and transferred to the 
binding column followed by washes with wash buffers according to 
the manufacturer’s protocol. Finally, the total RNA was eluted in 20 µl 
of elution solution, and 10 µl from each of the two samples was added 
onto two multimodal array capture areas, respectively, during the 
cDNA synthesis (instead of tissue sections).

Multimodal array structure
SmT uses multimodal slides (10x Genomics) with capture areas of 
6.5 × 6.5 mm. Each capture area comprises 4,992 spots, with diameters 
of 55 µm each. The spots are covered with capture probes in the follow-
ing proportion: 45% 16S rRNA probes, 45% 18S rRNA/ITS probes and 
10% poly-d(T) probes.

Probe design
Probes were designed using the following two approaches: one based 
on established primers of the relevant marker genes (P799 (ref. 65) 
and P902 (ref. 66)) and a de novo approach (P1265 and P479) (Supple-
mentary Fig. 18). On average, the probing sites were 100 nt upstream 
of the target site. In general, we aimed to maximize the following two 
variables: the conservation of the probe sites and the variability of 
the 100 nt downstream target sites. The de novo design process was 
adopted because previously designed primers were suboptimal with 
respect to these criteria.

Previously designed primers were used as templates due to their 
wide usage in the field, which is indicative of useful specificity—it 
implies that they have a wide taxonomic range and good ability to 
exclude host reads such as those originating from 16S chloroplast rRNA. 
Four probes were designed based on the following previous primers; 
the 16S probes 16S:P799 (5′-TTA VVG CRT GGA CWM CCM GGG TAT 
CTA ATC CKG TT-3′) and 16S:P902 (5′-CSS YTG TGY GSG GSC CCC CGT 
CAA TTC MTT TGA GTT TYA RYC-3′) were based on the mainstream 
primers 799F65 and 902R66, respectively. Additionally, the eukaryotic 
capture probes 18S:P-ITS1 (5′-CCT ACG GAA ACC TTG TTA CGA CTT 
TTT ACT TCC TCT AAA TGA CCA AG-3′) and ITS:P-ITS7 (5′-RRG CGC 
AAK RTG CGT TCA AAG ATT CGA TGA YTC AC-3′) were based on the 
mainstream primers ITS1F67 and ITS7F68, respectively. To fit the primers 
to the annealing conditions of the array, we reversed-complemented 
all forward-oriented primers (that is, all of them but 902R; the target 
RNA is single stranded, so reversal of the primer orientation was needed 
to capture it) and elongated them to obtain 35–45 bp long sequences, 
as recommended for microbial profiling in microarray systems69. To 
this end, 16S rRNA and ITS custom databases were downloaded (on 
29 April 2020) from NCBI GenBank and the sequences downstream of 
the primer (up to 100 nt, including the primer) were extracted. These 
sequences were then aligned using the software Clustal Omega (v1.2.4) 
and the sequence profiles were plotted using weblogo (v3.7.5). The 
primers were elongated by manual inspection of the resulting weblogo. 
The length and degeneracy level were limited to obtain fewer than 
35,000 unique probe sequences.

In addition to these probes, the following two de novo 16S probes 
were designed to complement the primer-based probes (as shown in 
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Supplementary Fig. 18): 16S:P1265 (5′-GGT AAG GTT YYK CGC GTT GCD 
TCG AAT TAA ACC RCAT-3′) and 16S:P479 (5′-TCT CAG THC CAR TGT 
GGC YBD YCD YCC TCT CARR-3′). To design these probes, representa-
tive sequences were selected from the SILVA 16S database (v138.1) using 
CDHIT (v4.8.1) to the level of 99% sequence identity. Representative 
sequences were aligned using MAFFT (v7.245), and the sequence profile 
was plotted using weblogo (v3.7.5). In this process, we targeted highly 
variable regions with a conserved matching probing site.

Sample preparation and sectioning
The leaves stored at −80 °C were immersed in 50% Optimal Cutting 
Compound (OCT, Sakura) in PBS (Medicago). Embedded samples were 
frozen in a cryostat (Cryostar NX70, Thermo Fisher Scientific) and 
sectioned to obtain 14-µm longitudinal sections. Tissue sections were 
then laid over the multimodal capture areas of the arrays.

Tissue optimization experiment
Tissue permeabilization conditions were identified using a modified 
variant of a previously reported protocol29. Briefly, after attaching 
of the tissue section to the slide surface containing 100% poly-d(T) 
capture probes, the tissue was fixed in methanol (VWR) at −20 °C for 
40 min and stained with 0.05% Toluidine Blue (Sigma-Aldrich) at room 
temperature for 2 min. Tissue sections were imaged using a Zeiss Axio-
Imager 2T and a Metafer slide scanning system (v. 3.14.2, MetaSystems). 
They were then permeabilized with pepsin (Sigma-Aldrich) in 0.1% 
per 0.1 M HCl (Fluka) at 37 °C for 30 min. The plant mRNA molecules 
that had hybridized to the capture probes were reverse transcribed 
to cDNA using SuperScript III (Invitrogen, ThermoFisher Scientific) 
and Cy3-dCTP-nucleotides (PerkinElmer) at 42 °C overnight. Tissue 
sections were removed from the slide surface by incubation for 1 h 
at 37 °C in a hydrolytic enzyme mixture consisting of pectate lyase 
(Megazyme), xyloglucanase (Megazyme), xylanase 10A (Nzytech), 
β-mannanase 26A (Nzytech) and cellulase (Worthington) in monoba-
sic sodium citrate (Sigma-Aldrich), pH 6.6. They were then incubated 
with 2% β-mercaptoethanol (Calbiochem) in RLT buffer (Qiagen) and 
proteinase K (Qiagen) in PKD buffer (Qiagen) for 1 h each. Finally, the 
fluorescent cDNA footprint was imaged using an Innoscan 910 (Innop-
sys) slide scanning system and Mapix image analysis software (v9.1.0, 
Innopsys) with a pixel size of 5.0 and a gain of 50.

Sequencing library preparation
Sequencing libraries were prepared according to the Visium protocol 
(10x Genomics) with the following modifications: multimodal slides 
with leaf sections attached to the capture areas were incubated for 
2 min at 37 °C followed by a 40-min fixation in methanol (VWR) at 
−20 °C. Capture areas were washed with PBS (Medicago) and incubated 
for 2 min at 37 °C. Tissue sections were stained for 2 min with 0.05% 
Toluidine Blue (Sigma-Aldrich) at room temperature followed by two 
washes with ultrapure water and warming at 37 °C for 2 min. The slides 
were mounted with 85% glycerol (Merck) and the bright-field images 
were acquired with a Zeiss AxioImager 2X microscope and a Metafer 
slide scanning system (v. 3.14.2, Metasystems) at ×20 magnification. To 
increase permeabilization efficiency and reduce the effect of secondary 
metabolites, the slides were incubated in 2% (wt/vol) polyvinylpyr-
rolidone 40 (PVP-40, Sigma-Aldrich) at room temperature for 10 min. 
Host plant and eukaryotic microbial cells were permeabilized using the 
permeabilization enzyme (10x Genomics) at 37 °C for 30 min. Bacterial 
organisms were permeabilized using 10 mg ml−1 lysozyme from chicken 
egg white (Sigma-Aldrich) in 0.05 M EDTA pH 8.0 (Invitrogen) and 0.1 M 
Tris–HCl, pH 7.0 (Invitrogen) for 30 min at 37 °C.

The rest of the SmT workflow followed the procedure described 
in the Visium Spatial Gene Expression user guide with the following 
modification: reverse transcription was performed using 2% (wt/vol)  
PVP-40 instead of nuclease-free water to reduce adverse impacts  
due to secondary metabolites and cDNA was amplified by performing 

12–15 PCR cycles. Libraries were sequenced using the Illumina Nextseq 
2000 and Nextseq 1000/2000 P2 or P3 Reagents (200 cycles) kit.

Preprocessing of the reads and bright-field images
Template switch oligo and long poly-A stretches were removed from 
Read 2 using cutadapt v. 2.9 (ref. 70). The location of the tissue was 
determined using the Loupe Browser v. 5.1.0 (10x Genomics), in which 
all the spots containing at least 25% of the tissue were selected and their 
locations (that is, x and y coordinates) were recorded.

Read alignment
TSO- and poly-A trimmed reads were analyzed using the ST Pipeline71  
(v. 1.7.9, https://github.com/jfnavarro/st_pipeline), which enables 
simultaneous analysis of the spatial location, unique molecular iden-
tifier (UMI) and mRNA molecule. First, the pipeline trimmed poly-N 
stretches that are longer than 15 bp. Read 2 was then mapped against the 
A. thaliana TAIR10 genome release72 using the STAR v. 2.7.7a73 mapping 
tool and annotated with htseq-count 1.0 (ref. 74). The spatial barcode in 
read 1 was demultiplexed using Taggd (v. 0.3.6)75 and the information 
from read 1 and read 2 was combined. The ST Pipeline then grouped the 
reads based on the spatial barcode, gene and genomic location. Finally, 
the unique molecules were identified using a UMI and the counts were 
compiled into the gene-count matrix.

Taxonomic assignment of microbial reads
Reads were mapped against the A. thaliana reference genome using STAR 
v. 2.7.7a73 and all reads aligning to the genome were discarded, leaving 
putative microbial reads. Next, read datasets were demultiplexed based 
on their probe types (that is, 16S rRNA and ITS/18S rRNA). For each probe 
dataset, the reads were first clustered into representative sequences 
by the fastx_uniques module of usearch v. 11.0.667 (ref. 76). Next, the 
representative sequences (query) were searched for the best homolog 
(hit) in the NCBI NT database (downloaded on January 2021)77 using 
MMseqs2 v. 1f30213 (refs. 78,79). For each query, all of the best hits (that 
is, those with the highest identical bit score and a taxonomic assignment 
on the genus level) were selected for further consideration. Next, the 
taxonomic assignment for a query was set as the lowest common ances-
tor (LCA) among the best hits as calculated by TaxonKit v. 0.7.2 (ref. 80)  
using the NCBI Taxonomy database (downloaded on January 2021)81. For 
18S rRNA/ITS probes, reads were further considered if they were clas-
sified as Eukaryota but not as unclassified, chloroplast, mitochondria, 
uncultured, Streptophyta, Chordata or Arthropoda on the genus or the 
phylum levels. Similarly, for 16S rRNA probes, reads were considered 
if they were classified as bacteria but not as unclassified, chloroplast, 
mitochondria or uncultured on the genus level. Finally, reads were 
further filtered by their UMI, such that for each spatial location, only 
one representative read with a given UMI was retained. The number of 
reads considered for each dataset is provided in Supplementary Table 11.

The annotation of the sequences used for taxonomic assignment 
was assessed to confirm that they originated from the expected locus. 
On average, 93.7 and 96.8% of the sequences captured by the 16S and 
ITS probes, respectively, were annotated as 16S and ITS rDNA loci, and 
most of the rest were annotated as full genomes, which include 16S 
and ITS rDNA loci (Supplementary Table 12). We further validated the 
observed microbial profiles by confirming that the reads containing 
each of the targeted probes fell within the expected range when aligned 
against the corresponding sequences in the NCBI ‘nt’ database (Sup-
plementary Fig. 47). This further confirms that the reads originated 
from the expected targeted region.

Pst DC3000 infection experiment—data processing
Processed, aligned reads were analyzed using STUtility (v. 0.1.0)82. 
To exclude low-quality spots, the A. thaliana host data and 
bacterial-unique molecules were summed together and every spot with 
fewer than 20 unique molecules was discarded. Each spot containing 
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less than 10 unique genes/taxa was discarded. The visualized genes 
and taxa were log10 normalized and projected on a bright-field image 
of the tissue section with an opacity of 0.75.

The maximum fluorescence intensities for each spot location 
were performed by manually aligning the fluorescence image and 
bright-field image. Then Matlab (2022a) was used to identify the cent-
ers of the spots and the k-nearest-neighbor algorithm was implemented 
to identify pixels that are a maximum of 27.5 µm away from the center. 
Maximum fluorescence values for each of the spots were extracted.

To generate the scatter plots and Pearson correlation, 
log10-normalized SmT captured unique Pseudomonas molecules were 
plotted against the log10-normalized host PR1 gene expression and the 
log10-normalized maximum Pseudomonas fluorescence values from the 
fluorescence imaging using ggplot2 (v. 3.3.5.)83. The Eulerr84 package in 
R was used to generate the Venn-diagrams with a cutoff of 45 and 120 
for leaves 1 and 2, respectively, to remove the background fluorescence 
signal and minimum of 1 unique molecule per spot for SmT captured 
Pseudomonas and PR1. Hotspots analysis using the fluorescence signal 
values with the applied cutoffs, as well as using the SmT reads, was per-
formed as described in the subsection Analysis of microbial hotspots.

Enrichment experiment
Glass slides bearing a multimodal capture array (10% poly-d(T) probes, 
45% bacterial 16S rRNA probes and 45% eukaryotic 18S rRNA/ITS 
probes), a 100% poly-d(T) array, a 100% bacterial 16S rRNA array and 
a 100% eukaryotic 18S rRNA/ITS array were used. Three leaves were 
sectioned on each of these capture slides meaning every leaf had a 
consecutive section on each array type. Sequencing libraries were 
prepared as per the above protocol and sequenced with Nextseq 2000 
(Illumina). The reads were annotated as described above and analyzed 
using R (v. 4.0.5).

STUtility (v. 0.1.0) was used to read the A. thaliana data to an object 
and sums of gene values were log10-transformed. Pairwise Pearson cor-
relation coefficients were calculated and visualized with the corrplot 
package (v. 0.92) function corrplot.mixed using significance levels of 
0.001, 0.01 and 0.05, with hierarchical clustering permitted. The scatter 
plots are visualized using ggplot2 (v. 3.3.5.)83.

For bacterial 16S rRNA and eukaryotic 18S rRNA/ITS data, unique 
molecules were summed together per taxon, generating a table con-
taining the sum of unique molecules, phylogenetic paths and metadata 
relating to section identification. Any annotations to phylum Strepto-
phyta were removed, after which the data were divided into bacterial 
and fungal datasets based on their superkingdom. For taxonomic rank 
plots, the unique molecules for the different taxonomic levels were 
counted and compared with the 100% poly-d(T) array to calculate the 
fold change for microbial taxa at each of the taxonomic levels. Pairwise 
correlations, and unique molecules for each taxonomic rank, were 
only calculated for classified reads. We performed the analysis three 
times—first with all taxa and then with only the most highly expressed 
500 and 20 taxa. Shannon diversity and Bray–Curtis similarity were 
calculated using vegan R package (v. 2.5-7)85.

Simulation of probe concentration and effect on diversity. Differ-
ent proportions of reads—ranging from 5 to 95%—were sampled of 
samples analyzed on a 100% 16S rRNA or 18S/ITS rRNA array to simulate 
the effect of different probe concentration on the captured microbial 
diversity (Shannon diversity index). The procedure was repeated 100 
times. The distribution of this simulated Shannon diversity is presented 
together with the diversity observed in the 45% probe concentration 
multimodal SmT array.

Saturation of the host information was calculated by subsam-
pling the annotated reads to the saturation point (2,000; 3,718; 8,389; 
21,085; 55,598; 149,413; 404,428; 1,097,633 and 2,981,957 reads), and 
unique molecules and genes were counted and plotted against the 
saturation points.

Validation of SmT with amplicon sequencing
To compare the performance of SmT to that achieved with amplicon 
sequencing, seeds of A. thaliana (accession Est-1) were surface steri-
lized and stratified at 4 °C for 1 week in a refrigerator, and then sown 
in plastic trays (Herkuplast) filled with wild soil from the Heuberger 
Tor experimental site of the University of Tübingen (Germany). The 
seeds were left outside to germinate in the same field in late Septem-
ber. The plants developed and overwintered without supplemental 
watering. Additional plants in each pot were thinned in January 2020 
with tweezers, and individual plants were sampled at the end of March 
2020 before flowering. The sampling protocol involved cutting the 
mature rosettes with sterile scissors, placing them in sterile 50 ml cen-
trifuge tubes, and vigorously shaking them in sterile water. The water 
was then dumped and new water was added until the leaves released 
no further dirt. After washing, plants were immediately flash-frozen 
in liquid N2, and subsequently stored at −80 °C prior to nucleic acid 
extraction. Both DNA and RNA were extracted from each plant. The 
entire rosette was lysed in a buffer containing 2% β-mercaptoethanol 
to extract all nucleic acids while preserving RNA. One proportion of 
the lysate was used for RNA extraction by the phenol/chloroform pro-
tocol, while another portion was used to extract DNA following a previ-
ously described potassium acetate and SPRI bead protocol86. The DNA  
moiety was used for 16S rDNA amplicon sequencing. The following two 
sets of primers were used: (1) 515F-806R (V3-V4) in combination with 
plastid-blocking clamps87 and (2) 799F-1192R (V4-V6), which does not 
amplify chloroplasts and for which the mitochondrial amplicon was 
removed by gel extraction88. The RNA moiety was used for SmT, using 
the same pipeline as for all other samples with the exception that crude 
extracts were used in place of leaf samples (so spatial information was 
not extracted). A total of 300 µg of RNA was used for the array. In total, 
four plant samples were used for 16S rRNA profiling, comparing two 
amplicon sequencing primer sets to the SmT array, with the exception 
of leaf C for which amp-seq 799F-1192R was not performed. The reads 
obtained by amplicon sequencing were analyzed in the same way as the 
array reads, excluding the initial mapping to the A. thaliana TAIR10 data-
base. For both of the methods, the reads were subsampled to the same 
sequencing depth. See the ‘Read alignment’ and ‘Taxonomic assignment 
of microbial reads’ subsections for information about the full pipeline.

Spearman correlation was calculated between all taxonomic pro-
files at the genus level (each amp-seq-primer-pair-profile with the 
SmT-profile and with the other primer-pair derived profile). In all com-
parisons, only taxa that were detected in both profiles were accounted 
for. The analysis was performed and plotted using the ggpairs function 
which is part of R GGally package (version 2.1.0)89.

Analysis of microbial hotspots
Microbial hotspots (based on 16S rRNA/ITS reads) were identified using 
the Getis-Ord G statistic90 as implemented in the localG function of 
the R spdep package (v. 1.1.11)91. The calculation was performed using 
a 2 × 2 grid applied to the count matrix resulting from the sum of reads 
belonging to the 50 most abundant genera (separately for 16S rRNA/
ITS reads). A similar calculation was done for individual host genes so 
that the association between microbial and G-values for individual host 
genes could be done. The p.adjustSP function of the R spdep package 
was used with the BH-FDR92 method to correct the G stats P values while 
accounting for the number of neighbors of each region. Hotspot spatial 
maps were plotted using the R tmap package (v. 3.3-2).

Microbial interaction network analysis
Microbial interactions were inferred based on the Spearman rank corre-
lation coefficient (SRCC) values of the reads count associated with each 
pair of genera. Specifically, for each pair of microbial genera, in each leaf 
section, SRCC was calculated accounting for all spots of the array (that 
is, each spot on the array was considered as a ‘sample’ for each genus). 
We considered pairs of genera to be interacting if their SRCC-corrected 
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P value (BH-FDR) was below 0.05. Next, to account also for the spatial 
organization of microorganisms in the array, we computed the SRCC 
value of each candidate pair based on shuffled abundance matrices. 
This step, repeated 1,000 times, results in an empirical null distribution 
of expected SRCC values where the spatial association between paired 
genera is random. The shuffled count matrix was generated by using the 
permatfull function implemented in the R vegan package (v. 2.5.6) while 
keeping the total number of reads associated with each genus across 
all samples (spots) constant (that is argument fixedmar = ‘columns’). 
Finally, the significance of each candidate pair of genera was calculated 
by comparing the SRCC value based on the unshuffled count matrix to 
the empirical null pair distribution93 following a BH-FDR correction. 
Microbial interactions were considered to be also spatially significant 
if their corrected-empirical P value was below 0.05. The network was 
created based on these microbial pairwise correlation values using the R 
igraph package (v. 1.2.6) and plotted using the R ggraph package (v. 2.0.5).

Host mRNA clustering
For the A. thaliana host data, the counts were filtered using STUtility  
(v. 0.1.0)82 by removing the low-quality spots and genes containing at 
least 10 and 30 counts, respectively. In addition, each spot was required 
to have at least 10 genes and each gene was required to cover at least 
20 spots. Chloroplast, mitochondrial, ribosomal and noncoding genes 
were filtered from the data set because many of them are not polyade-
nylated and might contain genes captured with 16S rRNA and 18S rRNA/
ITS probes. Finally, after the filtering steps, the spots with fewer than 10 
genes were removed because they were considered to be of low quality.

Each section was normalized individually using the Seurat (v. 4.1.0)94 
function sctransform95 to eliminate intrasection batch effects. To rein-
tegrate the sections back together, anchor features were selected and 
the whole data was scaled based on these features. Principal component 
analysis (PCA) was performed on this data using identified variable 
features. Based on the results of the PCA, the intersection batch effects 
(experiment date, plant and leaf) were removed with Harmony (v. 0.1.0)96 
using a diversity clustering penalty of 4 and PCA dimensions of 1 to 8.

Normalized gene counts were projected onto 2D leaf section 
images using UMAP33 with the eight first dimensions from Harmony and 
a resolution of 0.22. To identify cluster-specific markers, raw counts 
were normalized using the NormalizeData function with LogNormalize  
as a normalization method and the FindAllMarkers function with  
the parameters of test.use = ‘poisson’ and logfc.threshold = 0.15.

Spot cell-type deconvolution
Cell-type proportions in the spatial host data were analyzed using 
Stereoscope (v. 0.3)97 with the Single Cell Leaf Atlas data98, who kindly 
provided the raw count data and cell-specific annotations. Stereoscope 
used raw gene-count matrices from single-cell data and raw spatial 
data from which spots outside the tissues had been removed. The 
stereoscope was run with a –gpu setting using batch sizes of 2,048 and 
epoch sizes of 50,000 for spatial and single-cell dataset and 5,000 most 
highly expressed genes from the single-cell dataset.

The single-cell data contained 19 clusters, which were reduced 
to the following five: mesophyll (11 clusters), vascular (4 clusters), 
epidermis (1 cluster), guard cell (1 cluster) and hydathode (1 cluster). 
These collapsed as well as the 19 original clusters were projected on 
tissue using STUtility (v. 0.1.0)82 and heatmaps for each of the clusters 
were generated with pheatmap (v. 1.0.12)99. To aid the visual interpreta-
tion, the cell-type proportions were scaled by quantiles using the 95th 
percentile of the data in each section and cell type.

Host-response analyses
We used the Boruta algorithm30 to determine which set of  
A. thaliana genes is important to explain the microbial load on each 
spot of the array. Briefly, we modeled the relationship between the 
expression profile of all A. thaliana genes—G1…Gn and M—the sum of 

the 50 most abundant bacterial/fungal genera in each spot of the array 
(M)—M ~ G1…Gn. We treated the task as a regression problem and used 
the random forest algorithm100 to calculate the importance of each 
gene in the model. Next, we used Boruta to assign a significance score 
for each gene based on its importance for the model’s accuracy. For this 
purpose, we used the R implementation of the Boruta package (v. 7.0.0) 
with 1,000 trees. This procedure was performed for each leaf section, 
once using the un-normalized read counts and once using the Getis-Ord 
G statistic value, treating each spot as an observation. Overall, a gene 
was considered further if it was found to be significant by Boruta for 
at least one measure (that is, reads count or G statistics), and if its 
SRCC P value (after FDR correction) was below 0.01. GO enrichment 
analyses were performed with the DAVID web server with the DAVID 
knowledgebase v2022q1 (refs. 101,102).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited at NCBI-SRA under the BioPro-
ject PRJNA784452. Source data files (bright-field images, alignment 
matrices, putative microbial reads and annotation files and gene/taxa 
matrices) for each of the experiments have been deposited to Zenodo 
(https://doi.org/10.5281/zenodo.8308137)103.

Code availability
Scripts written for the analyses described in this paper are 
avail able on GitHub (https://github.com/giacomellolab/
SpatialMetaTranscriptomics)104.
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