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Identification of mobile genetic elements 
with geNomad

Antonio Pedro Camargo    1  , Simon Roux1, Frederik Schulz    1, 
Michal Babinski2, Yan Xu    2, Bin Hu2, Patrick S. G. Chain    2, Stephen Nayfach    1 
& Nikos C. Kyrpides    1 

Identifying and characterizing mobile genetic elements in sequencing data 
is essential for understanding their diversity, ecology, biotechnological 
applications and impact on public health. Here we introduce geNomad, a 
classification and annotation framework that combines information from 
gene content and a deep neural network to identify sequences of plasmids 
and viruses. geNomad uses a dataset of more than 200,000 marker protein 
profiles to provide functional gene annotation and taxonomic assignment 
of viral genomes. Using a conditional random field model, geNomad also 
detects proviruses integrated into host genomes with high precision. 
In benchmarks, geNomad achieved high classification performance for 
diverse plasmids and viruses (Matthews correlation coefficient of 77.8% and 
95.3%, respectively), substantially outperforming other tools. Leveraging 
geNomad’s speed and scalability, we processed over 2.7 trillion base pairs of 
sequencing data, leading to the discovery of millions of viruses and plasmids 
that are available through the IMG/VR and IMG/PR databases. geNomad is 
available at https://portal.nersc.gov/genomad.

Mobile genetic elements (MGEs) are selfish genetic entities that, unlike 
cellular organisms, are unable to self-replicate and, instead, rely on 
host cells and cellular machinery to propagate. MGEs are associated 
with all domains of life and encompass elements with various repli-
cation and mobility strategies, such as plasmids and viruses. These 
elements are ubiquitous in nature and are found across virtually all 
of Earth’s ecosystems1,2. Due to their mobility, plasmids and viruses 
can serve as key drivers of horizontal gene transfer, a process in which 
cells acquire genetic information from a mobile gene pool rather than 
through vertical descent3,4. As a result, they play a role in driving fast 
evolutionary and ecological innovation, greatly impacting the dynam-
ics of all biological communities.

With the increased availability of metagenomic sequencing data 
from diverse ecosystems, it became possible to study the diversity 
and distribution of MGEs on a global scale. In recent years, numer-
ous studies have harnessed these data to uncover an unprecedented 
diversity of viral genomes, greatly expanding understanding of their 
genetic diversity, distribution, function and evolution. Plasmids, 

on the other hand, have been mostly overlooked in metagenomic 
surveys, and most known sequences are derived from clinical iso-
lates and model species, highlighting the need for further research 
to understand the factors underlying their spread and evolution in 
natural environments.

Computational identification of plasmids and viruses from 
sequence data relies on the use of sequence classification models, 
which can be broadly categorized into two types: alignment-free mod-
els and gene-based models. Alignment-free models perform classifi-
cation directly from nucleotide sequences and employ deep learning 
architectures, such as recurrent neural networks or convolutional 
neural networks, to learn discriminative sequence motifs that are 
informative for classification5–7. In contrast, gene-based classification 
methods perform database searches and alignments to identify marker 
proteins that are indicative of the underlying identity of the sequence8. 
Both alignment-free and gene-based approaches have been used suc-
cessfully for plasmid and virus identification. However, most available 
tools are incapable of simultaneously identifying both classes of MGEs, 
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classification in the sequence branch; (2) sequence annotation and 
gene-based classification in the marker branch; (3) aggregation of 
the branch scores; (4) score calibration; and (5) output generation.

To identify sequences of plasmids and viruses in an alignment-free 
manner, geNomad’s sequence branch uses a neural network model that 
can classify the sequences from their nucleotide makeup alone (Fig. 1a, 
box A1 I). To process input sequences, geNomad employs an encoder 
based on the IGLOO architecture10, which is able to extract patterns that 
are useful for classification from the nucleotide sequences and encode 
them into an embedding space (Fig. 1b and Extended Data Fig. 1). This 
architecture has demonstrated superior performance compared to 
traditional alternatives (such as recurrent and convolutional neural 
networks) when applied to sequence data, as it gathers information 
from non-local relationships across the sequence to create a global 
representation10,11.

To classify sequences based on their gene content, geNomad’s 
marker branch predicts and annotates the proteins encoded by input 
sequences using a set of custom markers (Fig. 1a, box A1 II). To predict 
proteins, geNomad uses a modified version of the Prodigal12 software 
called prodigal-gv, which we developed to allow automatic detection 
of recoded TAG stop codons (common in Crassvirales phages13) and 
annotation of TATATA motifs that are frequently found upstream of 
coding sequences of Nucleocytoviricota viruses14. Predicted proteins 

and currently, there is no algorithm that combines the strengths of 
alignment-free and gene-based models within a single framework.

Here we introduce geNomad, a tool for concurrent identification 
and annotation of both plasmids and viruses in sequencing data. We 
demonstrate that geNomad’s classification framework, which uses a 
hybrid approach that combines alignment-free and gene-based mod-
els, substantially outperforms other plasmid and virus identification 
tools. Applying geNomad to metagenomes and metatranscriptomes 
revealed numerous RNA and giant virus sequences that were missed by 
large-scale surveys, expanding phylogenetic diversity of giant viruses. 
Additionally, we show that geNomad is computationally efficient and 
scalable, making it suitable for use in large-scale surveys, such as iden-
tification of potential virus and plasmids sequences, across all public 
sequencing data in the Integrated Microbial Genomes & Microbiomes 
(IMG/M) database9.

Results and Discussion
The geNomad framework for classification and annotation
geNomad employs a hybrid approach to plasmid and virus identifica-
tion that combines an alignment-free classifier (sequence branch) 
and a gene-based classifier (marker branch) to improve classification 
performance by capitalizing on the strengths of each classifier. geNo-
mad’s framework consists of five stages (Fig. 1a): (1) alignment-free 
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Fig. 1 | A hybrid framework for identifying and annotating plasmids and 
viruses. a, geNomad processes user-provided nucleotide sequences through 
two branches. In the sequence branch, the inputs are one-hot encoded fed to an 
IGLOO neural network, which scores inputs based on the detection of non-local 
sequence motifs (A1 I). In the marker branch, proteins encoded by the input 
sequences are annotated using markers that are specific to chromosomes, 
plasmids or viruses (A1 II). A set of numerical features is then extracted from the 
annotated proteins and fed to a tree ensemble model, which scores the inputs 
based on their marker content. Next, the scores provided by both branches are 
aggregated by weighing the contribution of each branch based on the frequency 
of markers in the sequence (A2). Aggregated scores can then be calibrated to 
approximate probabilities in a process that leverages the sample composition 
inferred from the classification of sequences from the same batch (A3). Lastly, 
classification results are summarized and presented together with additional 

data, such as virus taxonomy, gene function and the inferred genetic code 
(A4). b, The sequence branch is based on the IGLOO architecture, which uses 
convolutions to produce a feature map from a one-hot encoded input. Patches 
encoding non-local relationships within the sequence are then generated by 
slicing the feature map. Lastly, these patches are used as an attention matrix 
to produce a sequence representation from the feature map. c, The relative 
contribution of the marker branch (y axis, quantified using SHAP) increases 
as the marker frequency (fraction of genes assigned to a marker) in the 
sequence increases. d, Calibration curves of pre-calibration (left) and post-
calibration (right) scores, showing that sample composition can be used to map 
classification scores to actual probabilities. The x axis represents scores averaged 
across multiple bins; the y axis represents the fraction of positives in each bin; the 
45° dashed line represents a perfect calibration scenario. freq., frequency; MAE, 
mean absolute error of the scores relative to the true probabilities.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01953-y

are then queried against a set of 227,897 protein profiles—specific to 
chromosomes, plasmids or viruses (Fig. 2)—using MMseqs2 (ref. 15) 
protein profile search. Next, geNomad computes a total of 25 numeric 
genomic features that summarize the sequence structure (for exam-
ple, gene density and strand switch rate), RBS motifs (for example, 
TATATA motif frequency) and marker content (for example, frequency 
of chromosome, plasmid and virus markers) of the input sequences 
(Supplementary Note 1 and Supplementary Table 1). These features 
are then fed to a tree ensemble classification model, which outputs 
the confidence scores for each class.

From the outputs produced by the sequence and marker branches, 
geNomad generates an aggregated classification that leverages the 
strengths of each approach. This is achieved through an attention 
mechanism that consists of a linear model that weighs the branches 
based on the frequency of chromosome, plasmid and virus markers in 
the input sequence (Fig. 1a, box A2). The attention mechanism works 
in such a way that the contribution of the marker branch goes higher 
as the fraction of genes that are assigned to markers increases (Fig. 1c).  
This allows geNomad to take advantage of both marker-based and 
alignment-free classification approaches in a principled manner.

During inference, a classification model assigns a score to each 
prediction, indicating the degree of confidence in that prediction, 
with higher values representing more confident predictions. However, 
these scores do not reflect the true probabilities of the predictions 

being correct, as classification models will exhibit varying false dis-
covery rates (FDRs) when classifying samples with distinct underlying 
composition (Supplementary Note 2 and Extended Data Fig. 2). To 
address this, we devised an optional calibration mechanism in geNo-
mad that leverages sample composition data to approximate the true 
underlying probabilities. (Fig. 1a, box A3, and Fig. 1d). The calibrated 
scores produced by geNomad offer users two benefits: (1) estimated 
probabilities can be used to compute FDRs, allowing users to make 
more informed decisions (for example, setting a threshold to achieve 
a desired proportion of false positives); and (2) improved classification 
performance by adjusting the assigned labels of some sequences after 
calibrating scores (for more details, see ‘geNomad accurately identifies 
plasmids and viruses’ section).

Sequences classified as viral with geNomad’s markers are then 
assigned to taxa defined by the International Committee on Taxonomy 
of Viruses (ICTV)16. This process is made possible by the fact that more 
than 85,000 of the markers are specific to a virus taxon (for more 
details, see ‘A dataset of marker protein profiles’ subsection). In brief, 
geNomad assigns a taxon to each gene annotated with a taxonomically 
informed marker. Subsequently, it aggregates the taxonomies of all the 
genes within each scaffold and generates a single consensus lineage for 
that sequence (Extended Data Fig. 3).

Upon completion of its execution, geNomad produces a list of 
sequences that have been classified as either plasmids or viruses. This 
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were then clustered, and cluster representatives were selected to reduce 
redundancy. In parallel, reference chromosome, plasmid and virus sequences 
were clustered into RCs. Sequences were then weighed in such a way that the 
sum of the weights within each RC was constant. Representative protein profiles 
were mapped to reference sequences, and chromosome-, plasmid- and virus-
specificity metrics were computed for each profile based on the weighed number 
of hits to sequences of each class. Markers that were highly specific to one of the 
three classes were then selected. The position of each selected marker (circles) 
in the ternary plot is determined by its specificity, and the colors represent the 
marker density in a region. b, Bar plots showing: the sources of the selected 
profiles (upper plot); the total number of markers (light shades) and the number 

of functionally annotated markers (dark shades) for each class (middle plot); and 
the fraction of ICTV taxa covered by the taxonomically informative markers at 
each rank. c, Multidimensional scaling of semantic similarities of the GO terms 
enriched in chromosome (left), plasmid (center) and virus (right) markers. 
Labels of related terms were aggregated for clarity. Semantic similarities were 
computed with REVIGO. d, RadViz visualizations of the relative frequencies of 
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list can be refined using additional user-adjustable filters, such as a 
minimum score, maximum FDR (if score calibration was performed), 
minimum number of plasmid or virus hallmark genes and maximum 
number universal single-copy genes. The generated output includes 
rich metadata that can be useful for downstream analysis (Fig. 1a, box 
A4) and the nucleotide and amino acid sequences of the identified 
plasmids and viruses.

A dataset of marker protein profiles
geNomad uses a marker set of 227,897 protein profiles specific to chro-
mosomes, plasmids or viruses to perform classification based on gene 
content and to provide functional information for processed sequences 
(Fig. 2a). To build this marker dataset, which covers sequences from 
uncultured microorganisms and viruses from diverse environments, 
we clustered approximately 232 million protein sequences from diverse 
sources (see ‘Database of genomic sequences for training and bench-
marking’ section). The resulting clusters were independently aligned, 
generating 812,511 de novo protein profiles, which were further sup-
plemented with 612,966 external profiles. To improve geNomad’s com-
putational efficiency and ensure broad coverage of the gene space, we 
identified and removed redundant profiles, resulting in a collection of 
470,039 non-redundant profiles (Extended Data Fig. 4a,b).

To select profiles that are informative for classification, we com-
puted the specificity of each profile to each one of the targeted classes 
(chromosomes, plasmids and viruses) by mapping them to proteins 
encoded by reference genomes of both isolate and uncultivated spe-
cies (Extended Data Fig. 4c) and counting the hits to each class. To 
mitigate the bias resulting from uneven taxonomic representation of 
plasmid and virus sequences in public databases, which favor elements 
infecting a limited range of microbes, we downweighted sequences 
belonging to overrepresented taxa by clustering them into reference 
clusters (RCs) that group similar genomes. We assigned weights to 
the references so that the sum of the weights in all RCs was constant, 
effectively downweighting sequences within large RCs7. After comput-
ing specificity, we discarded profiles that were poorly specific or that 
matched few proteins, resulting in a final set of 227,897 profiles. Most 
of the markers originated from the de novo protein clustering (38.8%), 
efam17 (34.9%) and EggNOG18 (16.0%) (Fig. 2b, top, and Supplementary 
Table 2). Virus-specific markers dominate the dataset (69.2%), followed 
by chromosome-specific markers (23.5%) and plasmid-specific markers 
(7.3%) (Fig. 2b, middle, lighter shades).

geNomad also provides detailed taxonomic and functional infor-
mation for biological interpretation of results, enabling thorough 
analysis of identified MGEs. To allow this, markers were functionally 
annotated via alignment to the Pfam-A19, TIGRFAM20, KEGG Orthology21 
and COG22 databases. In total, 98,127 (43.1%) markers were annotated, 
although the proportion of annotated markers varied among the dif-
ferent specificity classes, with chromosome-specific markers having 
the highest annotation rate (82.5%), followed by plasmid-specific 
markers (63.4%) and virus-specific markers (27.5%) (Fig. 2b, middle, 
darker shades, and Supplementary Table 2). Functional enrichment 
analysis of the annotated markers (Fig. 2c) revealed that chromosome 
markers were associated with translation, transport and metabolism 
functions; plasmid markers were enriched in quorum sensing and 
motility functions; and virus markers were related to virus replication 
and assembly functions. A total of 978 plasmid and 14,635 virus markers 
were manually selected as hallmark markers, as they were annotated 
with functions related to core processes, such as conjugation genes 
for plasmids and capsid proteins for viruses. To provide additional 
context for MGE research, markers were also annotated using databases 
for specific domains of interest (Supplementary Table 2), resulting in 
the identification of 484 markers for genes involved in conjugation 
and 382 markers for antimicrobial resistance, annotated through 
alignment with the CONJscan23 and NCBIfam-AMRFinder24 databases, 
respectively. Lastly, 741 markers for universal single-copy genes, which 

are rarely present in MGEs and can help reduce false positives, were 
identified through comparison with profiles from the BUSCO dataset25.

To allow taxonomic assignment of viruses using geNomad’s mark-
ers, virus taxa from the ICTV (Virus Metadata Resource version 19) 
were assigned to 85,315 markers. The taxonomically informed mark-
ers can be used to assign virus sequences to a substantial fraction of 
the viral taxa up to the family rank (Fig. 2b, bottom), as at least one 
marker was assigned to 83.3% of the realms (the only realm missing 
is Ribozyviria), 100% of the kingdoms and phyla, 94.9% of the classes, 
87.7% of the orders and 61.8% of the families. Most of these markers 
were assigned to the Caudoviricetes class (93.1%), which dominates 
metagenomic data9, but other major taxa, such as Riboviria (2.8%), 
Nucleocytoviricota (2.2%) and Monodnaviria (0.7%), are also largely 
covered (Supplementary Table 2).

Our marker selection process was designed to maximize the 
range of covered uncultivated genomes found globally. To assess the 
environmental breadth of geNomad’s markers, we used them to scan 
a total of 2.3 billion proteins from 28,865 metagenomes and 7,258 
metatranscriptomes of various ecosystems. The ecosystem distribu-
tions of the marker classes (chromosome-, plasmid- and virus-specific) 
were then evaluated (Supplementary Methods), revealing that 
chromosome-specific and plasmid-specific markers are generally 
not specific to any ecosystem (high average entropy of frequencies), 
whereas virus-specific markers tend to be restricted to specific eco-
systems (low average entropy of frequencies) (Fig. 2d). This suggests 
that the gene repertoire of uncultivated viruses is highly variable and 
highlights the importance of incorporating environmental data to 
cover a large fraction of the virosphere.

geNomad accurately identifies plasmids and viruses
To evaluate the classification performance of geNomad and compare 
it to other virus and plasmid identification tools that use different 
approaches for sequence classification (Table 1), we used test data-
sets consisting of diverse sequence fragments with varying lengths 
(Extended Data Fig. 5a). To minimize overestimation of geNomad’s 
performance due to the presence of similar sequences in the train and 
test data, we randomly assigned RCs to five different data splits and 
performed cross-validation using the leave-one-group-out strategy 
(see Methods for details), which forced sequences from the same RC to 
remain together in either the train or test sets. Performance metrics for 
all tools were measured five times, using each RC as the test set at a time. 
Additional benchmark results are described in Supplementary Note 3.

By evaluating the classification, measured using the Matthews 
correlation coefficient (MCC), as a function of the similarity to the 
train data, we found that geNomad performs well on unseen genomes, 
even though performance dropped for sequences that were more 
divergent from the train data (Extended Data Fig. 5b). Assessment of 
geNomad’s performance on sequences with varying marker coverage 
(that is, fraction of proteins assigned to markers) revealed that even 
those that were targeted by no or few markers were still detected due 
to the sequence branch of the algorithm (Extended Data Fig. 5c). When 
compared to other tools, geNomad presented superior overall classifi-
cation performance across all sequence length ranges in both plasmid 
and virus classification tasks (Fig. 3a,b and Supplementary Tables 3 
and 4). Such difference was particularly apparent for short sequences 
(<6 kilobases (kb)), where other tools showed reduced performance 
due to limited genetic information, whereas geNomad leveraged its 
extensive marker dataset and alignment-free classification model, 
ensuring high sensitivity and precision. This highlights the usefulness 
of geNomad in metagenomic and metatranscriptomic assemblies, 
where most scaffolds are short.

geNomad’s calibration mechanism enhances the classification 
process by incorporating sample composition data and assigning 
estimated probabilities to each sequence, which reflect the likelihood 
of the sequence belonging to each class. Our analysis showed that the 
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plasmid classification performance increased with the use of calibrated 
scores, particularly for shorter sequences (average ΔMCC: +11.8% for 
sequences <3 kb; +5.6% for 3–6 kb; and +3.2% for 6–9 kb) (Extended 
Data Fig. 5d). We also found that short virus sequences benefited from 
calibration, although the improvement was not as pronounced. These 
results showcase the effectiveness of the introduced calibration mecha-
nism for improving classification quality.

Plasmid classification is a challenging task due to the variable 
genetic makeup of these elements, their similarity to other mobile 
elements that can integrate into host chromosomes and the lack of 
a standard for reporting plasmids in sequencing data. As a result, 
most evaluated tools (DeepMicroClass26, PPR-Meta27, PlasClass28 and 
viralVerify29) had low average classification precision (11.0–40.1%; 
Supplementary Table 3), even when classifying long sequences (Sup-
plementary Table 4), as they often produced a high number of false 
positives that can impact downstream analysis. In contrast, PlasX7 
had high precision (81.6%) but low sensitivity (40.5%), which impairs 
the detection of plasmids in sequencing data. geNomad had the best 
overall performance by a substantial margin (Fig. 3a; MCC and F1-score 
in Supplementary Tables 3 and 4), with the highest sensitivity (89.8%) 
and the second highest precision (70.8%), after PlasX. It is worth not-
ing that geNomad’s marker branch, which can be run independently, 
achieved a considerably higher precision than PlasX (91.2%). Evaluation 
of classification performance across diverse taxa revealed that geNo-
mad outperformed other tools in all assessed groups (Supplementary 
Table 5 and Supplementary Note 3). Furthermore, geNomad exhibited 
a lower rate of misclassifying viruses as plasmids (1.7%) compared to 
all tools except PlasX (1.5–64.4%; Supplementary Table 6 and Sup-
plementary Note 3).

In virus classification, geNomad attained the best overall perfor-
mance when considering all length strata (MCC: 95.3%, F1-score: 97.3%), 
followed by VirSorter2 (ref. 30) executed with all models (MCC: 81.3%, 
F1-score: 88.9%), VirSorter2 executed with default parameters (MCC: 
79.7%, F1-score: 87.1%) and PPR-Meta (MCC: 77.4%, F1-score: 86.6%) 
(Fig. 3b and Supplementary Table 3). VIBRANT31, geNomad, VirSorter2 
(default parameters) and DeepMicroClass achieved the highest clas-
sification precision (97.5%, 97.3%, 94.7% and 92.6%, respectively), and 
Seeker32, DeepVirFinder33 and PPR-Meta obtained the lowest scores 
(61.8%, 80.5% and 88.5%, respectively).

In a benchmark study using representative genomes from the 
ICTV, we found that geNomad outperformed other tools in all major 
taxa that we evaluated (Fig. 3c and Supplementary Table 7). Notably, 
geNomad was the only tool that achieved high sensitivity for viruses 
that encode an RNA-dependent RNA polymerase (RdRP; Orthornavi-
rae, 98.64%) and giant viruses (Megaviricetes, 94.74%) at a fixed FDR 
of 5%. When evaluating sensitivity across different host clades, we 
found that geNomad was the only tool that identified more than 90% 
of the viruses infecting bacteria, archaea and multiple eukaryotic 
groups, whereas other tools struggled to identify viruses that infect at 
least two eukaryotic groups (Supplementary Table 8). In an additional 
benchmark where we measured classification sensitivity on a catalog of 
metagenomic Inovirus34, which are known to be challenging to detect 
automatically, geNomad (sensitivity: 84.8%) also outperformed other 
evaluated tools (average sensitivity: 32.5%) (Supplementary Table 9).

We assessed the performance of geNomad’s taxonomic assign-
ment (Fig. 3d and Supplementary Table 10) by assigning 116,250 arti-
ficially fragmented genomes of ICTV exemplar species to viral lineages 
using a marker dataset with modified taxonomic metadata to simulate 
novelty (see Methods for details). Of the processed fragments, the 
majority (80.3%) was successfully assigned to a viral lineage, with most 
being classified at the class (54.4%), order (13.6%) or family (10.1%) lev-
els. Among those, 48.2% were correctly assigned to the most specific 
rank (up to the family level); 49.5% were under-classified (assigned to 
the correct lineage but not to the most specific rank); and only 2.3% 
were assigned to the wrong lineage. These results indicate that geNo-
mad is reliable at assigning sequences to higher taxa. The unassigned 
fragments, which lacked hits to markers with taxonomic information, 
were mostly shorter than 3 kb (80.6%).

Sensitive and precise identification of proviruses
Temperate phages can integrate into host genomes and form provi-
ruses, which can greatly affect host metabolism and ecology35–37. To 
identify integrated viruses within host genomes, geNomad employs a 
conditional random field (CRF) model that identifies genomic regions 
that exhibit a high enrichment of viral markers and are flanked by chro-
mosome markers (Fig. 4a). The CRF model leverages the extensive gene 
coverage provided by the marker database and scores each gene, fac-
toring in the specificity levels of assigned markers for that gene and its 

Table 1 | Classification methodology and average runtimes of plasmid and virus identification tools

Tool Method Plasmid Virus/provirus Runtime ± s.e.m. (s)

geNomad Hybrid ✓ ✓/✓ 241.73 ± 0.18

geNomad (marker branch) Marker-based ✓ ✓/✓ 119.20 ± 0.12

geNomad (sequence branch) Alignment-free (IGLOO) ✓ ✓/✗ 118.58 ± 0.10

DeepMicroClass Alignment-free (CNN) ✓ ✓/✗ 71.49 ± 0.13

DeepVirFinder Alignment-free (CNN) ✗ ✓/✗ 710.00 ± 1.75

Phigaro Marker-based ✗ ✗/✓ 1,585.61 ± 3.23

PlasClass Alignment-free (k-mer freq.) ✓ ✗/✗ 20.50 ± 0.09

PlasX Marker-based ✓ ✗/✗ 1,965.15 ± 1.02

PPR-Meta Alignment-free (CNN) ✓ ✓/✗ 374.41 ± 1.21

Seeker Alignment-free (LSTM) ✗ ✓/✗ 758.85 ± 2.93

VIBRANT Marker-based ✗ ✓/✓ 662.35 ± 9.39

viralVerify Marker-based ✓ ✓/✗ 1,641.64 ± 8.12

VirSorter2 Marker-based ✗ ✓/✓ 6,303.27 ± 4.25

VirSorter2 (all models) Marker-based ✗ ✓/✓ 6,745.52 ± 10.14

Runtimes were measured across five executions using the hyperfine tool. A random selection of 10,000 metagenomic scaffolds (total of 18.3 megabases, IMG/M Taxon Object ID: 3300038405) 
was used as input for all tools. All speed measurements were performed in an Amazon EC2 instance (c5.12xlarge, SSD storage). Checkmarks indicate that the software is able to identify a given 
type of element (as indicated by the column name), while crosses indicate that the software can’t identify that type of element. CNN, convolutional neural network; freq., frequency; LSTM, long 
short-term memory neural network.
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neighboring genes. To eliminate spurious viral islands (regions of con-
secutive genes labeled as viral), geNomad merges closely located islands 
and subsequently removes those with a low marker enrichment—that is, 
regions containing only a few virus markers. Finally, because tRNAs and 
integrases are commonly found next to the edges of integrated elements 
due to the dynamics of site-specific recombination38, geNomad extends 
provirus boundaries up until neighboring tRNAs and/or integrases, 
improving the detection sensitivity of genes close to provirus edges.

We evaluated geNomad’s provirus demarcation performance and 
compared it with other popular tools (Phigaro39, VIBRANT and Vir-
Sorter2) using the TIGER dataset38, which contains precisely mapped 
integration sites across 2,168 prokaryotic genomes, as the ground truth 
(Fig. 4b and Supplementary Table 11). For each predicted proviral region 
by the benchmarked tools, we measured precision as the fraction of 
genes within TIGER proviruses and sensitivity as the proportion of genes 
contained within regions predicted by each tool. The results of this 
benchmark demonstrated that geNomad identified more proviruses 
than other tools and exhibited high precision and sensitivity. Not all the 

predicted proviral regions overlapped with TIGER coordinates, because 
this dataset does not include inactive phages nor proviruses that do 
not integrate at tRNAs. To measure the quality of such predictions, we 
used CheckV40 (version 1.0.1) to estimate the quality of these regions 
and found that geNomad outperformed other tools, as the proviruses 
it demarcated tended to be more complete with lower contamination 
levels (that is, few host genes) (Fig. 4c and Supplementary Table 11). 
The completeness of most of these proviral regions was comparatively 
lower than those in TIGER, indicating that they likely represent inactive 
proviruses that underwent gene loss. In an additional benchmark, we 
found that geNomad outperforms other tools in the identification of 
proviruses in a Pseudomonas aeruginosa pangenome41 (Supplementary 
Note 4, Extended Data Fig. 6 and Supplementary Table 11).

geNomad is fast and allows analysis of large datasets
To make geNomad accessible to a wide audience, we designed it to 
be user-friendly and efficient, allowing it to run quickly on a broad 
range of hardware. geNomad can be installed locally though diverse 
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taxonomic assignment performance. Bar lengths represent the number of 
sequence fragments assigned at a given taxonomic rank. Light blue represents 
sequences that were correctly assigned to their most specific rank (up to the 
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methods (pip, Conda and Docker), facilitating its installation in a vari-
ety of scenarios. The command line interface offers comprehensive 
explanations and detailed execution logging. For non-technical users, 
geNomad is available as a web application through the NMDC EDGE 
platform (https://nmdc-edge.org/virus_plasmid/workflow), allowing 
easy data upload and result visualization in the web browser. Addition-
ally, the integration with NMDC EDGE enables geNomad to be easily 
incorporated into larger workflows that include other tasks, such as 
assembly and binning.

In a benchmark measuring the time it took to classify 10,000 
metagenomic scaffolds, geNomad was faster than all but two of the 
evaluated tools (Table 1), taking substantially less time than VirSorter2 
(26.1× improvement), PlasX (8.1×), viralVerify (6.8×) and VIBRANT 
(2.7×). The only tools that were faster were DeepMicroClass and Plas-
Class, which are alignment-free tools that exhibited lower classifica-
tion performance than geNomad in our benchmarks (Fig. 3a). It is 
worth noting that geNomad’s marker and sequence branches can be 
run independently, reducing runtime by half while still maintaining 
good classification performance (Supplementary Table 3), in cases 
where time is a concern. These results demonstrate that, due to its 
speed, geNomad can be used in varied hardware and can be scaled to 
process large datasets. In fact, geNomad was recently used to process 
approximately 260 million scaffolds (2.7 trillion base pairs) from IMG/M 
to gather the data used to build the IMG/VR version 4 (ref. 9) and IMG/
PR databases, which represent the largest available databases of virus 
and plasmid sequences, respectively.

geNomad allows the discovery of RNA and giant viruses
Recent studies have unveiled a previously undiscovered diversity 
of RNA viruses (Orthornavirae kingdom) and giant viruses (Nucleo-
cytoviricota phylum) through the analysis of sequencing data from 

metatranscriptomes and metagenomes14,42–46. As existing virus discov-
ery tools exhibit limited efficacy in detecting a substantial fraction of 
the RNA and giant virus genomes (Orthornavirae and Megaviricetes in 
Fig. 3c), these large-scale surveys have resorted to custom techniques, 
such as identifying the RdRP hallmark gene for RNA viruses and employ-
ing metagenomic binning for giant viruses. However, these tailored 
approaches are often difficult to reproduce, as they were developed 
for internal use. To address this issue and increase the sensitivity of 
detecting both RNA and giant viruses in sequencing data, we lever-
aged recent knowledge about these viruses to train geNomad, which 
improved the identification of these lineages (Fig. 3c, Supplementary 
Note 5 and Supplementary Note 6).

In metatranscriptomes from microbial communities of the Sand 
Creek Marshes47, geNomad classified 99.9% of the sequences containing 
the RdRP gene as viral (Fig. 5a). Furthermore, we found that 98.1% of the 
scaffolds that binned48 with RdRP-encoding sequences based on their 
co-occurrence across multiple samples were also identified as viral by 
geNomad. This indicates that geNomad can identify RNA virus genome 
sequences even when they lack the RdRP gene (Fig. 5a). In contrast, 
other tools classified an average of only 43.7% of these sequences as 
viral (Supplementary Table 12). Inspection of pairs of co-occurring scaf-
folds revealed that they fell into two categories: (1) linear genomes that 
were assembled into two scaffolds, one of which lacked the RdRP gene 
(Marnaviridae bin in Fig. 5b); and (2) segmented genomes, containing 
multiple DNA molecules (Cystoviridae bin in Fig. 5b). Among sequences 
not encoding RdRP and not binned with RdRP-encoding scaffolds, 
yet classified as viruses by geNomad, we found fragments of RNA 
virus genomes missing the RdRP gene (Leviviridae scaffold in Fig. 5b)  
and transcripts of DNA viruses (Caudoviricetes scaffold in Fig. 5b).

To assess geNomad’s capability to uncover new clades of giant 
viruses, we applied it to 28,865 metagenome assemblies from the  
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IMG/M49 database. Scaffolds classified as virus by geNomad that were at 
least 50 kb in length were further analyzed using the GVClass pipeline, 
which placed Nucleocytoviricota scaffolds in a phylogenetic context 
by identifying a set of conserved protein families and reconstructing 
gene trees together with reference genomes. A total of 11,414 scaffolds 
identified by geNomad were phylogenetically placed in the Nucleo-
cytoviricota tree (Fig. 5c and Supplementary Table 13). Other tools 
classified, on average, 77.4% of these scaffolds as viral (Supplementary 
Table 14). Within metagenomes from soils, an understudied niche for 
giant viruses50, we identified 235 additional Nucleocytoviricota scaf-
folds, up from 16 metagenomic bins reported in the previous survey. 
Phylogenetic reconstruction of these soil giant viruses revealed that 
they include several novel clades of Imitervirales, Pimascovirales and 
Asfuvirales that do not have representatives in GenBank or Schulz et al.14 
(Fig. 5d), suggesting that the underlying diversity of Nucleocytoviricota 
in soil is greatly underestimated.

More information on the RNA and giant virus surveys can be found 
in Supplementary Notes 5 and 6. The methodology is detailed in Sup-
plementary Methods.

Conclusion
Identifying plasmids and viruses in sequencing data is a crucial pro-
cess, as it sheds light on the diversity of these mobile elements, on their 
impact on the evolution and on ecological interactions of cellular organ-
isms, and it facilitates high-throughput monitoring of clinically relevant 
strains. Here we present geNomad, a novel computational framework 
that enables the identification and annotation of plasmids and viruses 
in sequencing data. This is supported by a database of marker protein 
profiles that are richly annotated in terms of functional and taxonomic 

information and that serves as a valuable community resource that can 
be leveraged independently of geNomad (see the ‘Code availability’ and 
‘Data availability’ sections for download information). As a result, this 
framework has broad application for sequence classification and annota-
tion, allowing, for example, end-to-end identification of conjugative plas-
mids that carry AMR genes. geNomad incorporates innovative concepts, 
such as a hybrid classification process that combines alignment-free and 
gene-based approaches in a principled manner, and a score calibration 
algorithm that enhances the quality and interpretability of results. Given 
its improved classification performance and computational efficiency 
compared to other tools, as well as its ability to taxonomically classify 
viruses and functionally annotate genes, we anticipate that geNomad will 
be a valuable resource for the plasmid and virus research communities. 
We also foresee that it will drive further exploration of the virosphere and 
foster new initiatives to uncover the diversity and ecology of plasmids in 
natural environments, a topic that has often been overlooked.
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Methods
Database of genomic sequences for training and benchmarking
Prokaryotic genomes (2,886 bacterial and 336 archaeal) were retrieved 
from GTDB51 (release 202). To mitigate taxonomic bias, we only used 
the genome with the highest quality score (completeness − 5 × con-
tamination − 0.05 × no. scaffolds) per GTDB family. Provirus and 
provirus-like regions were identified and removed from the scaffolds 
using VirSorter2 (version 2.2.2), Phigaro (version 2.3.0) and VIBRANT 
(version 1.2.1). Plasmids were removed by identifying sequences con-
taining the word ‘plasmid’ in their header or sharing at least half of their 
genes with any plasmid in the PLSDB database52 (release 2020_11_19). 
Eukaryotic genomes were obtained from the TOPAZ dataset53, which 
includes 988 metagenome-assembled genomes of small eukaryotes. 
To reduce taxonomic imbalance, we clustered TOPAZ genomes based 
on their amino acid identity (AAI) into 385 clusters using the Leiden 
algorithm54 (as implemented in the igraph Python package, resolution 
parameter = 0.5) and picked the genome with the least contamination, 
as estimated by the study’s authors, as the representative.

Plasmid sequences were obtained from the PLSDB database 
(release 2020_11_19), RefSeq (archaeal plasmids, retrieved on 23 July 
2021) and a dataset of complete plasmids identified in metagenomic 
data (IMG/M Taxon Object ID: 3300053491). To identify chromosome 
sequences that were mislabeled as plasmids, we performed gene pre-
diction with Prodigal (version 2.6.3, parameters: ‘-m -p meta’) and used 
hmmsearch55 (HMMER version 3.3.2, parameter: ‘--cut_ga’) to match the 
proteins to sets of single-copy genes (ar122 and bac120, from GTDB). 
Scaffolds encoding two or more single-copy genes were discarded.

To further remove viral scaffolds from the prokaryotic and eukary-
otic chromosome datasets, as well as phage plasmids from the plasmid 
data, we performed an additional filter using HMMs of viral hallmarks 
from VirSorter2 and viral and host markers from CheckV (database 
version 1.0). In brief, we used hmmsearch (parameter: ‘-E 1e-5’) to match 
Prodigal-predicted proteins from all chromosome and plasmid scaf-
folds to these HMMs and discarded the sequences that encoded any 
viral hallmark or that had no. viral markers ≥0.5 × no. host markers.

The virus sequence dataset was assembled using data from Gen-
Bank (retrieved on 6 July 2021), IMG/VR version 3 (ref. 56) Nucleocyto-
viricota from Schulz et al.14, Leviviridae from Callanan et al.57, Asgard 
archaea viruses from Medvedeva et al.58, archaeal tailed viruses from 
Liu et al.59 and Orthornavirae from Neri et al.44. To remove short genome 
fragments and contaminants from the IMG/VR sequences, we retained 
only sequences that contained direct terminal repeats or that fulfilled 
the requirements to be considered high quality according to the MIU-
ViG standard60. Because the Nucleocytoviricota genomes from Schulz 
et al. consist of metagenomic bins that might contain contamination, 
we opted to keep only the contigs that encode the major capsid protein 
(MCP), identified using hmmsearch (parameter: ‘-E 1e-5’) to match 
their proteins to the set of MCP HMMs provided in the original study.

To reduce sequence redundancy, plasmid and virus scaffolds 
were de-replicated using pairwise average nucleotide identities 
(ANIs), computed as described in Nayfach et al.40 (code available at  
https://bitbucket.org/berkeleylab/checkv/src/master/scripts/anicalc.py).  
Specifically, we used MegaBLAST61 (version 2.11.0+) to perform 
all-versus-all nucleotide alignments and computed the pairwise ANI 
as the length-weighted average identity of all the matches between 
a pair of sequences. Next, scaffolds with ANI ≥ 97% over at least 95% 
of the length of the shorter sequence were clustered using a greedy 
algorithm62, and the longest sequence within each cluster was selected 
as the representative. Scaffolds shorter than 2,000 bp were discarded. 
The final selection contained 300,990 sequences from prokaryotic 
chromosomes, 42,595 sequences from eukaryotic chromosomes, 
41,424 plasmid sequences and 240,411 virus sequences.

To account for the taxonomic representation imbalance of public 
databases, plasmid and virus sequences were structured into RCs 
containing related sequences. RCs would serve two purposes: (1) to 

minimize representation bias in model training, by downweighting 
the sequences within large RCs so that the total weight within each 
RC was the same; and (2) to allow informed cross-validation splits7, 
where the sequences of a given RC will remain together in either the 
train or test sets, allowing us to measure geNomad’s performance on 
novel genomes. To obtain the RCs, we computed the AAIs between 
all pairs of plasmids and viruses and built a graph using these values 
as edge weights (code available at https://github.com/apcamargo/
bioinformatics-snakemake-pipelines/tree/main/contig-aai-pipeline). 
Next, we employed the Leiden algorithm to cluster the sequences, 
tuning the resolution parameter to make the average within-cluster 
AAI close to 95%. In total, we obtained 32,134 plasmid RCs and 215,618 
virus RCs. Because prokaryotic and eukaryotic scaffolds are organ-
ized in genomes, we treated all the sequences within a given genome 
as members of the same RC. The RCs were randomly assigned to five 
distinct data splits that would be used for benchmarking.

Given that metagenomic assemblies mostly comprise short 
sequence segments, we created a dataset of artificially fragmented 
sequences that would be used for model training and evaluation. 
We first built an empirical length distribution from all public IMG/M 
metagenomes (as of 11 September 2021) and truncated the distribution 
to a minimum of 3,000 bp. Next, we split the sequences of our final 
selection into fragments whose lengths were randomly drawn from the 
distribution. Sequences shorter than 3,000 bp were left untouched.

Across all analyses, AAI was computed using Prodigal (version 
2.6.3, parameters: ‘-m -p meta’) to perform protein prediction and 
DIAMOND63 (version 2.0.15, parameter: ‘--sensitive’) to carry out 
all-versus-all protein searches. Pairwise AAI values were computed 
as the length-weighted average identity of the reciprocal best hits of 
pairs of scaffolds that share at least 75% of the proteins of the short-
est sequence. Only matches with E-value ≤ 0.001 and query and tar-
get alignment coverage ≥50% were allowed.

Marker protein profile database
To build a comprehensive dataset of protein profiles that could be used 
to identify diverse plasmids and viruses, as well as to identify provirus 
boundaries, we gathered protein alignments from external sources and 
built de novo clusters from a diverse collection of protein sequences. 
Alignments were retrieved from the following external sources: Pfam-A 
seed alignments (release 34.0), TIGRFAM (release 15.0), ECOD64 (release 
20210713), EggNOG Bacteria/Archaea/Virus (version 5), VOGdb (release 
206, retrieved from https://vogdb.org/), PHROG65, efam and efam-XC, 
CONJscan, double jelly-roll MCPs from Yutin et al.66, Lavidaviridae 
MCPs and core proteins from Paez-Espino et al.67, Inoviridae protein 
families from Roux et al.34, Leviviridae core proteins from Callanan 
et al.57 and RdRPs from the RVMT dataset44.

De novo protein clusters were built from 232,031,767 protein 
sequences retrieved from IMG/VR version 3, GTDB (release 202) spe-
cies representatives, GenBank viruses (retrieved on 6 July 2021), PLSDB 
(release 2020_11_19) and complete metagenomic plasmids (IMG/M 
Taxon Object ID: 3300053491). We first de-replicated these proteins 
at 95% identity using MMseqs2 linclust68 (version 13-4511, parameters: 
‘--kmer-per-seq 80 -c 1.0 --cluster-mode 2 --cov-mode 1 --min-seq-id 
0.95’). Next, we clustered the de-replicated protein sequences with 
MMseqs2 cluster, requiring a minimum 80% bidirectional alignment 
coverage (parameters: ‘-s 5.5 -e 1e-5 -c 0.8 --cov-mode 0 --cluster-mode 
0 --max-seqs 5000 --min-seq-id 0.5 --cluster-reassign 1’). Finally, we 
performed multiple sequence alignment of the 786,782 clusters con-
taining at least 20 proteins using Kalign69 (version 3.3.1). To improve 
the coverage of target viral groups, we performed independent cluster-
ing of the proteins obtained from the Nucleocytoviricota from Schulz 
et al.14, Asgard archaea viruses from Medvedeva et al.58, archaeal tailed 
viruses from Liu et al.59 and unannotated domains of polyproteins from 
the RVMT dataset. For these datasets, we allowed clusters to contain 
as few as four proteins.
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To identify the protein profiles that are informative for sequence 
classification (hereafter, markers), we measured the specificity of the 
1,425,477 profiles by computing the weighted number of matches of 
each profile to each class (chromosome, plasmid and virus). We first 
assigned weights to each sequence in such a way that the total weight 
of each RC within each class would be the same and that the total weight 
of the three classes would also be identical. Next, we converted the 
protein profiles into HMMs and used hmmsearch (parameter: ‘-E 1e-5’) 
to match them to Prodigal-predicted proteins from the sequence 
dataset. Finally, we counted the number of matches of each profile to 
each class, taking into account the RC weights and scaled the counts 
within each class so that the median profile count would be the same 
for the three classes. Scaled counts were used to compute each profile’s 
Pielou’s specificity—a single summary of the profile’s specificity—and 
specificity measures (SPMs)—which measure how specific the profiles 
are to each class—using tspex70 (version 0.6.2).

To reduce the redundancy of the protein profile set, we first used 
the HMMs to generate artificial protein sequences with the hmmemit 
command (parameter: ‘-N 10’) and then used hmmsearch (parameter: 
‘-E 1e-5’) to align the HMMs to all artificial protein sequences. Next, 
to measure the empirical redundancy of all possible pairs of protein 
profiles, we employed SetSimilaritySearch (version 0.1.7, available 
at https://github.com/ekzhu/SetSimilaritySearch) to compute the 
cosine similarity of all pairs of profiles, based on the identity of their 
hits. Finally, we identified groups of profiles targeting similar protein 
sets by clustering them with the Leiden algorithm (resolution param-
eter = 0.25). The most specific profile in each cluster, determined by 
Pielou’s specificity, was selected as its representative.

To select the markers that would be used for classification, we 
identified protein profiles that had either Pielou’s specificity ≥0.4 or 
the maximum SPM (among the three classes) ≥0.75. For chromosome 
markers, we required highly prevalent profiles, above the median count 
distribution, to avoid selecting markers that target genomic island, 
which are enriched in mobile elements. For plasmid and virus markers, 
we required profiles to be above the first quartile of the distribution. To 
address misclassification of eukaryotic sequences as viral, we negatively 
selected virus-specific profiles that frequently matched eukaryotic pro-
teins. Our approach involved retrieving eukaryotic proteins belonging 
to ortholog groups from OrthoDB71 (version 10.1) and removed the ones 
that corresponded to typical viral genes, resulting in a total of 16,928,157 
eukaryotic proteins. We also obtained the sequences of 159,003 proteins 
that were shown to have been horizontally transferred from viral to 
eukaryotic genomes72. By employing hmmsearch, we matched HMMs 
of virus-specific markers to these eukaryotic proteins and removed 
profiles with at least 200 matches to OrthoDB proteins or at least 10 hits 
to horizontally transferred proteins. Ultimately, 227,897 profiles were 
selected to be used in geNomad for distinguishing among chromosome, 
plasmid and virus sequences. For benchmark purposes, we repeated 
this process five additional times, using only the train sequences of 
each data split to perform the selection.

To assign functional annotations to the geNomad protein pro-
files, we used HHblits73 (version 3.3.0) to align them with HMMs from 
Pfam-A (release 35.0), TIGRFAM (release 15.0), KEGG Orthology (release 
98.0), COG (release 2020), CONJscan, NCBIfam-AMRFinder (release 
2022-10-11.2) and Bacteria and Archaea near-universal single-copy 
orthologs from BUSCO (version 5). We accepted hits with probability 
≥90%, E-value ≤ 0.001 and target coverage ≥60%. For Pfam, multi-
ple non-overlapping hits were allowed, whereas only the best hit was 
retained for other databases. Names and Gene Ontology (GO) terms 
were assigned to geNomad markers by transferring them from the 
accepted Pfam, TIGRFAM and KEGG Orthology hits. GO enrichment 
for each class was appraised using the Kolmogorov–Smirnov test (as 
implemented in the hypeR74 package, version 1.13.0; FDR < 0.01) on 
lists of markers sorted by the SPM of each class. REVIGO75 was used to 
generate visualizations of the enriched GO terms.

To assign ICTV taxa to geNomad markers, we first built a protein 
database from viral sequences retrieved from NCBI NR (on 19 May 
2022) and decorated the proteins with a custom taxdump generated 
from ICTV’s VMR 19 using TaxonKit76 (version 0.11.1). We then used 
MMseqs2 to align geNomad’s markers to the viral protein database 
(parameters: ‘-s 8.2 -e 1e-3’) and employed taxopy (version 0.9.2, avail-
able at https://github.com/apcamargo/taxopy) to assign a taxon to 
each marker by aggregating the taxonomic lineages of all the hits of 
each marker using the ‘find_majority_vote’ function. Because viruses 
of the Nucleocytoviricota phylum encode homologs of bacteriophage 
proteins77, we raised the minimum fraction parameter to 0.85 to assign 
taxonomy to markers that were initially assigned to Nucleocytoviricota 
but matched at least one Caudoviricetes protein. For benchmarking 
purposes, we simulated taxonomic novelty by masking proteins that 
had ≥60% identity to proteins of exemplar species.

Classification models
To train the gene-based classifier, we first predicted the proteins 
encoded by the sequence fragments using prodigal-gv (version 2.7.0, 
parameter: ‘-p meta’, available at https://github.com/apcamargo/
prodigal-gv). Next, we assigned geNomad markers to the predicted 
proteins using MMseqs2’s protein profile (parameters: ‘-s 6.4 -e 1e-3 
-c 0.2 --cov-mode 1’). For each sequence, we computed a total of 25 
features derived from the gene structure and marker annotation (full 
list and description in Supplementary Note 1) and used them to train 
a decision forest classification model with the XGBoost78 library (ver-
sion 1.5.1, parameters: ‘eta=0.2, max_depth=10, n_estimators=135’). 
Feature selection was performed using the Boruta algorithm and SHAP 
importance values, as implemented in the shap-hypetune package (ver-
sion 0.2.4, ‘BoostBoruta’ function). Hyperparameter tuning (learning 
rate, tree depth and number of trees) was performed using grid search 
(‘BoostSearch’ function in shap-hypetune).

The sequence-based classifier was trained using a two-step super-
vised contrastive learning approach79 (Extended Data Fig. 1). In the 
first step, we trained an IGLOO encoder to learn to produce vector 
representations of nucleotide sequences in such a way that sequences 
of the same class will tend to be clustered together and separate from 
sequences of different classes. In the second step, we trained a dense 
neural network classifier on top of the IGLOO representations using 
a focal loss80, which forces the model to focus on hard-to-classify 
sequences. Training was conducted using the Adam optimizer with 
gradient centralization81. Hyperparameter tuning was performed 
with KerasTuner (version 1.1.0) using the HyperBand algorithm82. For 
further details regarding the architecture and training process of the 
alignment-free classification model, see Supplementary Methods.

The outputs of the gene-based and sequence-based classifier are 
aggregated by a feedforward neural network, which uses an attention 
mechanism to weight the contribution of each model toward the final 
scores. In brief, we trained a model that encodes in an attention matrix 
A the reliability of the gene-based classifier, estimated from the relative 
marker frequency within each sequence. To aggregate the results of the 
two classifiers, the scores generated by them are scaled according to 
their expected reliability encoded in A and then averaged and fed to a 
dense layer with softmax activation.

For benchmark purposes, we trained the gene-based classifier, the 
sequence-based classifier and the aggregator model five additional 
times, using the train data and the selected markers of each data split. 
The models used for the remaining analysis were trained with the 
entire dataset.

Score calibration model
To train the model underlying geNomad’s score calibration, 1,000,000 
artificial communities with varying proportions of chromosome, 
plasmid and virus sequences were generated by random sampling of 
the train dataset. For each community, scores were calibrated using 
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an isotonic regression, and the empirical composition was obtained 
by using geNomad to predict the most likely class of each sequence. 
Because isotonic regressions are dataset specific, a regression feed-
forward neural network was trained to predict calibrated scores from 
the empirical composition and uncalibrated scores of a given com-
munity. The model was trained with the Adam optimizer and mean 
squared error loss.

Provirus identification
To identify regions that correspond to putative proviruses within 
host chromosomes, geNomad employs a CRF model that was trained 
on a dataset of mock proviruses built from prokaryotic chromosome 
sequences and phage genomes. The CRF takes as input the chromo-
some and virus SPM values of the genes annotated with geNomad 
markers and computes the conditional probability of a sequence of 
states (chromosome or provirus). Genes are then assigned to their most 
likely states, forming provirus islands—that represent regions that are 
enriched in virus markers. To prevent having proviruses split into mul-
tiple islands due to incomplete marker coverage, provirus islands that 
are separated by short gene arrays (fewer than six genes or two chro-
mosome markers) are merged. Next, provirus boundaries are refined 
by extending them to the closest tRNA (identified with ARAGORN83, 
version 1.2.41) within 5 kb and integrase (identified using MMseqs2 
profile search) within 10 kb, as long as there are no chromosome mark-
ers between the original edge and the new putative coordinate. The 
16 tyrosine integrase profiles used for integrase identification were 
manually selected from the CDD database84. Finally, islands with few 
viral markers, which usually are not bona fide proviruses, are filtered 
out by removing the regions where the sum of the virus SPM of the 
markers is below a certain threshold.

Performance benchmarks
The following tools were included in our benchmarks: geNomad  
(version 1.0.0), DeepMicroFinder (‘hybrid’ model, commit a70f6d9), 
DeepVirFinder (version 1.0), PPR-Meta (version 1.1), Seeker (version 
1.0.3), VIBRANT (version 1.2.1), viralVerify (version 1.1), VirSorter2 
(version 2.2.3), Phigaro (version 2.3.0), PlasClass (version 0.1) and PlasX 
(commit 7349226). The tools were executed with default parameters 
and installed following the authors’ instructions, except for PPR-Meta, 
which was executed through a Docker container. VirSorter2 was also 
executed with the ‘--include-groups dsDNAphage,NCLDV,RNA,ssDNA
,lavidaviridae’ parameter to measure its performance when using all 
classification models. To benchmark DeepMicroClass, we first assigned 
sequences to the class with the highest score. Next, we labeled the ones 
classified as ‘Eukaryote’ or ‘Prokaryote’ as chromosome and the ones 
assigned to ‘EukaryoteVirus’ or ‘ProkaryoteVirus’ as virus.

For the benchmarks that measured the sensitivity of virus detec-
tion across different viral and host taxa, we established cutoffs that 
approximated the FDR of each tool to 5%. The same was done in the 
benchmark that measured the sensitivity of plasmid detection across 
different host taxa, but we set the target FDR to 10%, as some tools could 
not achieve a 5% FDR regardless of the threshold. The procedure was 
performed to prevent overly sensitive tools (with elevated FDR) from 
dominating the benchmarks.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Metadata (specificity, functional annotation and hallmark informa-
tion), multiple sequence alignments, HMMs and a MMseqs2 data-
base of geNomad’s markers are available at https://doi.org/10.5281/
zenodo.8303752. The taxonomically annotated viral protein data-
base can be downloaded at https://doi.org/10.5281/zenodo.6574913. 

Reference sequences used for training and evaluation, the list of  
P. aeruginosa genomes used to build the pangenome and giant virus 
sequences discovered in metagenomes can be downloaded at https://
doi.org/10.5281/zenodo.8049246. Sand Creek Marshes metatran-
scriptomes were retrieved from IMG/M (GOLD Study ID: Gs0142363).

Code availability
geNomad is an open-source software, and its code can be found at 
https://github.com/apcamargo/genomad. The code used to build 
the taxonomically annotated viral protein database can be found at 
https://github.com/apcamargo/ictv-mmseqs2-protein-database. 
Python scripts used to train geNomad’s neural network and conditional 
random field models can be downloaded at https://doi.org/10.5281/
zenodo.8049246.
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Extended Data Fig. 1 | Global sequence representations generated by the 
IGLOO encoder are used for sequence classification. (a) The IGLOO encoder 
applies 128 independent convolutions to the one-hot-encoded sequence to 
create a feature map, from which four random slices are taken and concatenated 
to generate patches that encode long-distance relationships within the 
sequence. (b) A total of 2,100 patches are used to weight different parts of the 
feature map in a transformer-like self-attention mechanism that results in a 

high-dimensional sequence representation. The encoder was trained using a 
supervised contrastive loss function, which optimizes the separation of the three 
classes (chromosome, plasmid, and virus) in the embedding space. (c) To classify 
sequences, the sequence representations generated by the IGLOO encoder  
are fed to a dense neural network trained with focal loss to account for class 
imbalance.
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Extended Data Fig. 2 | Sample composition can be leveraged to calibrate 
classification scores to approximate probabilities. (a) The false positive rates 
of a set of classifications depend on the sample’s underlying composition. In 
typical metagenomes, where cellular sequences outnumber viral sequences, 
the fraction of false positives within scaffolds classified as viral is higher than 
in a virome. (b) The mean absolute error (MAE) of the score calibration model 
(y-axis) is highly dependent on the number of sequences in the sample (x-axis), 
as larger samples will result in more accurate estimates of the underlying sample 

composition. (c) The calibration model tends to increase the scores of a given 
class when it is abundant in the sample and reduce the scores when the class is 
rare. (d) The relative frequency of a given class in the sample (x-axis) contributes 
positively to the model output (y-axis, quantified using SHAP) when that class 
is abundant in the sample and negatively when the class is rare. (e) The pre-
calibration score of a given class in the sample (x-axis) contributes positively to 
the model output (y-axis, quantified using SHAP) when the initial score is high 
and negatively when the initial score is low.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 3 | Assigning viral taxa using geNomad’s markers. (a) To 
assign viral sequences to specific taxa, geNomad utilizes a best-hit approach to 
initially assign the genes encoded by these sequences to markers. (b) Each gene is 
subsequently classified based on the taxonomic lineage of the assigned marker. 
Different genes within the sequence might be assigned to different lineages. (c) 
To establish a single sequence-level taxonomy, geNomad aggregates the lineages 

of all the markers using a weighted majority vote approach. This approach 
determines the support for each taxon at each taxonomic rank by summing the 
bitscores of all genes assigned to that taxon. The sequence is then assigned to the 
most specific taxon that is supported by at least 50% of the total bitscore of the 
sequence.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01953-y

Extended Data Fig. 4 | geNomad’s marker dataset was built by gathering 
dereplicated protein profiles from several sources and measuring their 
specificity to chromosomes, plasmids, and viruses. (a) Number of protein 
profile clusters obtained by varying the clustering granularity (Leiden’s 
resolution parameter). The value chosen for dereplication (0.25) is indicated 
in blue. (b) UpSet plot showing the overlap of different protein profile datasets 

in the dereplication process. The overlap between a given pair of datasets was 
measured as the number of protein profile clusters that contained profiles from 
both. (c) Ternary plot showing the specificity of protein profiles (circles) prior to 
dereplication (n = 470,039). Colors represent the marker density in a region of 
the plot.
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Extended Data Fig. 5 | geNomad can detect plasmids and viruses with low 
identity to the training data even if they encode few or no markers.  
(a) Length distributions of the sequence fragments used to train geNomad 
and to evaluate classification performance of multiple tools. Sequence length 
(x-axis) is represented in log scale. (b) geNomad’s classification performance 
on plasmids (left) and viruses (right) with varying degrees of similarity to 
sequences in the train data (bins in the x-axis). Similarity to the train data was 
assessed by computing average amino acid identities to the sequences in the 

train data. (c) geNomad’s classification performance on plasmids (left) and 
viruses (right) with varying marker frequency (fraction of genes assigned to a 
geNomad marker). For each interval, performance was measured across five 
pairs of train/test sets (leave-one-group-out strategy). (d) Score calibration 
improves classification performance for both plasmids and viruses across all 
length ranges. Classification performance was measured using the Matthews 
correlation coefficient (MCC).

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 6 | geNomad outperforms other tools in identifying 
proviruses in the Pseudomonas aeruginosa pangenome. (a) Distribution of 
the contamination estimates of multiple provirus-identification tools, measured 
at the gene-level for each provirus. Contamination was measured as the number 
of core genes, as determined by PPanGGOLiN, in the provirus. The number of 
detected provirus and the median contamination of each tool are displayed 
below the graph. Box plots show the median (middle line), interquartile  
range (box boundaries), and 1.5 times the interquartile range (whiskers).  

(b) Defense system-encoding proviral regions demarcated with multiple tools 
in P. aeruginosa genomes. Shell and cloud genes are shown in light grey and core 
genes (putative contamination) are shown in dark gray. Genes that are part of 
defense systems are in orange. Integrase genes are in blue. tRNA loci are indicated 
by red arrows. GenBank accessions are shown within parenthesis. Phigaro 
did not detect any provirus within the 2,370,782–2,449,616 bp region in the 
NZ_CP078009.1 sequence.

http://www.nature.com/naturebiotechnology
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