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Factor analysis decomposes single-cell gene expression datainto a minimal
set of gene programs that correspond to processes executed by cellsin

asample. However, matrix factorization methods are prone to technical
artifacts and poor factor interpretability. We address these concerns with
Spectra, an algorithm that combines user-provided gene programs with

the detection of novel programs that together best explain expression
covariation. Spectraincorporates existing gene sets and cell-type labels as
prior biological information, explicitly models cell type and represents input
gene sets as agene-gene knowledge graph using a penalty function to guide
factorization toward the input graph. We show that Spectra outperforms
existing approachesin challenging tumor immune contexts, as it finds
factors that change under immune checkpoint therapy, disentangles the
highly correlated features of CD8* T cell tumor reactivity and exhaustion,
finds a program that explains continuous macrophage state changes under
therapy and identifies cell-type-specificimmune metabolic programs.

A key challenge in the interpretation of single-cell RNA-sequencing
(scRNA-seq) datais toretrieve coherentinterpretable gene programs
representing cellular processes and to quantify theminresponse to per-
turbation. Gene programs are sets of genes defined by common tasks,
such as metabolic pathways or responses to inflammatory cues. Gene
setscoring (for example, scanpy score_genes"?) isasimple and widely
used approachto query whichknown gene programs are activeinwhich
cells, butitis often confounded by gene set overlap and technical fac-
tors. The regulation of gene programs tends to be shared across cell
subpopulations, creating collinearity in gene expression and imbuing
high-dimensional cell-by-gene count matrices with low-dimensional
structure. Matrix factorization can mine this structure to identify can-
didate gene programs®* and is a core tool in single-cell analysis; for
example, factorization by principal component analysis appears in
most analysis pipelines.

In principle, the power of factorization lies in summarizing bio-
logical activity as a set of cellular building blocks (a minimal vector

representing the degree to which a cell activates each gene program)
rather thananoisy vector of all observed genes or asingle label denot-
ing cell type. Yet, there are many ways to decompose a matrix, and
unsupervised approaches, such as principal component analysis and
non-negative matrix factorization (NMF), produce factors that are
often difficult to interpret or are driven by technical artifacts, such
as batch effects, ambient RNA or gene expression scale differences*’.
Supervised approaches use known gene sets to make detected factors
more interpretable®’, but preexisting gene sets are typically defined
in different biological contexts than those under study. In addition,
cell-type factors tend to prevail in factor analysis because expression
differences between cells are dominated by cell type®. The popular
practice of partitioning data by cell type and factoring each subset
separately mitigates this issue but makes it impossible to find shared
programs.

We developed Spectra (supervised pathway deconvolution of
interpretable gene programs) to provide meaningful annotations of
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cell function by balancing prior knowledge with data-driven discovery
(https://github.com/dpeerlab/spectra). Spectraincorporates existing
gene sets and cell-type labels as prior information, explicitly models
cell type and represents input gene sets as a gene-gene knowledge
graphusinga penalty function to guide factorization toward the input
graph. The graphrepresentation enables data-driven modification of
the input to reflect biological context and the identification of novel
gene programs from residual unexplained variation. The degree of
reliance on prior knowledge can be tuned with a global parameter.

The minimization of cell-type influence allows Spectratoidentify
factorsthatareshared across cell types. We show that Spectraoutper-
forms existing approaches and solves longstanding challengesin tumor
immune contexts, including the identification of an interpretable
tumor reactivity factor in CD8' T cells and a new invasion programin
macrophages, which associate with response and resistance to can-
cer immunotherapy, respectively. Our open-source software scales
to large atlases and overcomes batch effects to find factors that are
stable across cohorts and even tumor types and are robust enough to
be associated with clinical variables.

Results

Spectraidentifies interpretable gene programs

We assume that each cell executes a small number of gene programs
andthatits observed expressionis determined by the sum of its active
programs. Spectra decomposes the cell-by-gene expression matrix
intoacell-by-factor matrix that identifies and quantifies the programs
executed by each cell and a factor-by-gene matrix representing the
genesin each program (Fig. 1a and Methods). As input, the algorithm
receives anormalized cell-by-gene count matrix, a cell-type annotation
for each cell and either alist of gene sets or gene-gene relationships
inthe form of knowledge graphs. As output, Spectra provides a set of
normalized global and cell-type-specific factor matrices that represent
the gene loadings for each identified factor (gene scores), a sparse
matrix of normalized factor loadings for each cell (cell scores) and
amodified gene knowledge graph that represents factors inferred
fromthe data (see Methods for atechnical description of Spectraand
parameter settings).

Two key features distinguish Spectra from other factorization
methods, enabling it to identify more interpretable factors and dis-
cover new biology. First, Spectra uses known cell-type information and
allows for cell-type-specific factors. Second, Spectrarepresents exist-
ing gene sets as an input gene-gene knowledge graph, enabling their
data-driven modification and the derivation of entirely new factors.

Cell-typelabels are provided asinput to Spectra, which models the
influence of afactor on gene expressionrelative to baseline expression
per celltype, thereby mitigating its influence onthe factors. The ability
toincorporate cell-type-specific factors guides inference. For example,
the T cellantigen receptor (TCR) activation program should be limited
to T cells, but many of its genes are activated by additional programsin
other cell types, which confuses traditional factor analysis.

Spectraattempts to balance prior knowledge and interpretability
with faithfulness to the data. Its likelihood function ensures that the
reconstituted matrix closely matches theinput matrix, andits penalty
function guides gene factorization toward the gene-gene knowledge
graph (Methods). To capture prior knowledge, we use binary gene-
gene relationships and encourage these gene pairs to share similar
factors. Spectra takes input gene sets and turns each into a fully con-
nectedcliqueintheinputgraph, indicating their relationships. Factors
are thus scored by how well they match the data and how many edges
inthe gene-gene graph supportthem.

Most gene sets are derived from multiple biological contexts,
which differ from the context under study. Spectra can take a com-
pilation of gene sets and determine the subset supported by the
data. Encoding prior knowledge as a graph facilitates computational
efficiency and allows Spectra to adapt gene programs by adding or

removing edges in theinputgraph. The algorithmincorporates back-
ground edge and non-edge rates (provided as input parameters or
learned from the data) to determine edge addition and removal rates.
Critically, Spectra can detach factors from graph penalizationtolearn
entirely new factors. In effect, Spectra attempts to explain as many of
the input gene counts as possible by adapting the input gene graph
(providing highly interpretable factors) and uses the residual unex-
plained counts to identify non-penalized factors that can capture
entirely novel biology.

Spectrafactors predict ground truth signaling perturbations
Wefirst curated ageneral resource of 231immunological cell-type and
cellular process gene sets that can be input into Spectra for analyzing
anyimmune-related dataset (Fig. 1b, Supplementary Table 1and Meth-
ods). To maximize how many processes can be dissected and to avoid
size-driven effects, our cellular process gene sets have comparable
size (median of 20 genes per set) and relatively little overlap (median
of 40% pairwise overlap).

We used our immunology knowledge base to infer gene programs
in a ground truth scRNA-seq dataset® from human peripheral blood
mononuclear cells (PBMCs) stimulated in vitro withinterferon-y (IFNy),
lipopolysaccharide (LPS) or phorbol myristate acetate (PMA), a protein
kinase Cactivator used to mimic TCRactivation (Fig. 1c). We ran Spectrain
additionto expiMap’ and Slalom® (factorization methods that also incor-
porate prior gene sets) and tested the association of factor cell scores
with their corresponding perturbations. Only Spectra identified gene
programsassociated with allthree perturbationsinthe correct condition
and cell type (Fig. 1d), substantially outperforming Slalom and expiMap.

Spectraidentifies robust factorsinimmuno-oncology data

We next applied Spectra to scRNA-seq data from the challenging
context of individuals with non-metastatic breast cancer before and
after pembrolizumab (anti-PD-1) treatment (‘Bassez dataset’; Fig. 2a)"°.
The original study used clustering and gene set analysis to identify
therapy-induced changes and used TCR sequencing to define the clonal
T cell expansion status of each participant treated with anti-PD-1as a
surrogate forimmune checkpoint therapy (ICT) response’®.

We annotated 14 broad cell types (including CD8" T cells and
macrophages), leaving Spectra to infer factors associated with finer
cell-typedistinctions, suchas T cell activation or macrophage polariza-
tion (Fig. 2b, Extended Data Fig. 1, Supplementary Table 2 and Meth-
ods). Fitting the Spectra model with default parameters (Methods) and
our cell-type labels and immunology knowledge base as input resulted
in152 global and 45 cell-type-specific factors, the latter including CD4*
Tcells (n=12),CD8*T cells (n=7) and myeloid cells (n = 6).

We determined overlap with known gene sets to assess whether
Spectra can identify biologically interpretable programs. For every
factor, Spectra estimates adependence parameter (1) that quantifies
reliance on the gene-gene graph. Most factors (171) are strongly con-
strained by the graph (r > 0.25), whereas 26 are novel (Extended Data
Fig.2). We found that factors with n > 0.25 generally share over 50% of
their genes withaninput gene set, whereas the unbiased factorization
approaches NMF and scHPF*® produce factors that do not agree with
annotated gene sets (Fig. 2c), underscoring the difficulty of interpret-
ing programs derived by these approaches.

Spectrauses cell-type labels and cell-type-specificinput gene sets
torestrict factorstotheirappropriate cell type, ensuring more biologi-
cally sensible factor loadings; for example, Spectralimits CD8-specific
TCRsignaling, tumor reactivity and exhaustion factorsto CD8" T cells
(Extended Data Fig. 3). By contrast, the gene set-based factorization
method Slalom®and autoencoder-based method expiMap’ misassign
some TCR activity, CD8" T cell exhaustion and tumor reactivity to the
myeloid, natural killer (NK) cell and plasma cell lineages (Extended
Data Fig. 3a), likely because many genes in these factors participate
inmultiple programs.
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Fig.1|Spectrauses gene sets and cell types to guide gene program discovery
from scRNA-seq data. a, As input, Spectra receives a gene expression count
matrix with cell-type labels for each cell as well as predefined gene sets, which it
converts to agene-gene graph. The algorithm fits a factor analysis model using
aloss function that optimizes reconstruction of the count matrix and guides
factors to support the input gene-gene graph. As output, Spectra provides
factor loadings (cell scores) and gene programs corresponding to cell types and
cellular processes (factors). b, Gene set categories in theimmunology knowledge

base. ¢, Design of the perturbation experiments from Kartha et al.®. PBMCs
(n=23,754) from healthy human donors (n = 3) were incubated for 6 hwith LPS,
PMA or recombinant human IFNy. d, Ability of different algorithms to identify
gene programs associated with biological perturbations in the PBMC dataset.
For select factors, mean per-donor cell scores are provided for T cells or innate
lymphoid cells (T/ILCs), B cells (B) and myeloid cells (M; n =3 donors). Boxes
and lines represent interquartile range (IQR) and median, respectively; whiskers
represent1.5xIQR.

Pleiotropy similarly confounds score_genes'* For example, Spec-
tra’s IFNy response factor is well correlated with the gene encoding the
IFNy receptor upstream of this gene program and correctly captures it
acrossall celltypes, whereasthe score_genesIFNyresponseis detected

almost exclusively in the myeloid population (Fig. 2d). This myeloid bias
isdue to differencesin baseline expression across cell types, especially
higher expression of genes encoding major histocompatibility complex
class Il (MHC class II) molecules by myeloid antigen-presenting cells
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Fig.2|Evaluation of Spectra performance on simulated data and animmuno-
oncology dataset. a, Treatment and scRNA-seq sampling regimen of individuals
with breast cancer in the Bassez dataset'°. b, t-Distributed stochastic neighbor
embedding (t-SNE) of tumor-infiltrating leukocytes (n = 97,863 cells) from the
Bassez dataset colored by cell type; B, B cell; DC, dendritic cell; y&T, y§ T cell; GC,
germinal center; ILC3, type 3 innate lymphoid cell; Mac, macrophage; Mast, mast
cell; NK, naturalkiller cell; pDC, plasmacytoid dendritic cell; Plasma, plasma

cell; T, T cell; T, regulatory T cell. ¢, Maximum overlap coefficient of every
global factor generated by Spectra (n =152 global factors), expiMap’ (n =155
factors, soft_mask = True), Slalom® (n = 20 factors), NMF (n =100 factors) and
scHPF* (n =100 factors) with every input gene set. Boxes and lines represent

IQR and median, respectively; whiskers represent 1.5x IQR range. d, Cell scores
for Spectraand scanpy.score_genes'* factors plotted against MAGIC-imputed

(t=3) IFNGR1 expression for each cell colored by cell type (n = 97,863 cells); IFN,
interferon. e, Proportion of held-out genes recovered by Spectra or Slalom from
the Bassez dataset for each input gene set tested. Lines connect identical input
gene sets. f, Coherence (mean pairwise log-normalized co-occurrence rate among
the top 50 markers) of factors generated by various factor analysis methods using
arandom sample 0f 10,000 cells from the Bassez dataset with 14 cell types and 20
input genes sets (Slalom) or 181 input gene sets (other methods). The experiment
wasrepeated n =5 times. Boxes and lines represent IQR and median, respectively;
whiskers represent1.5x IQR. g, Run time dependence on cell number with 35 gene
sets (left) and gene set number with 25,000 cells (right). The experiment was
performed using one cell type with the methods in b and netNMFsc (net-NMF)’
and was repeated n = 3 times; shading indicates 95% confidence interval; CPU,
central processing unit.

(Extended DataFig.4). Spectraovercomes pleiotropy by implicitly down-
weighting the influence of genes whose expression could be explained
by multiple factors. Specifically, Spectradecomposes gene expression
using thefactorsbest supported by total expressioninagiven cell. Spec-
traisabletoidentify IFNyactivity and its previously reported activation
by ICT""* across expected immune cell types” (Extended Data Fig. 4b)
becauseitlearns these factorsin a cell-type-specific manner.

Thus, in addition to yielding more interpretable gene programs
than other supervised methods, Spectra is better at inferring which
cells these programs are activein.

Spectra outperforms other methods on gene program
benchmarks
We systematically benchmarked Spectra against other methods by
measuring how well they identify coherent gene programs and assign
activity to cells. A key feature of Spectra is that it can modify input
gene sets in a data-driven manner. We held out 30% of genes from 20
input gene sets and tracked their identificationin the resulting factors
(Methods). Spectra factors recover many more genes than Slalom®
(Fig.2e) and expiMap’ (Extended Data Fig. 5a-c). For example, among
the 50 genes with the highest gene scores for the MYC factor, Spectra
identified 7 of 33 held-out genes; moreover, it recovered additional MYC
target genes DKCI (ref. 14) and TOMM40 (ref.15), which are absent from
the training and hold-out sets, whereas MYC signaling was not captured
by Slalom (Fig. 2e, Extended Data Fig. 5a and Methods).

To evaluate new gene detection, we reasoned that genes belong-
ing to a program should exhibit coherence; that is, they should be

coexpressed inthe same cells. We applied factor analysis with held-out
cells and evaluated the coherence of inferred factors in the test set
(Methods). Spectra and other methods that take the sparsity of
scRNA-seqdataintoaccount (Slalom and scHPF) perform well, whereas
generic models (NMF) do not (Fig. 2f). The key advantage of supervised
approachesis thatby seedinginference with aknown gene set, coher-
ent genes are more likely to be biologically meaningful (Extended
DataFig.5b,c).

Unlike other methods, Spectra’s use of prior knowledge enabled
it to separate highly correlated factors in simulated data generated
by a generic factor analysis model with both correlated and uncorre-
lated factors (Methods and Extended Data Fig. 5d). Estimating factor
loadings in these data is particularly challenging because pleiotropy
creates correlation between gene programs (Methods). As gene set
overlap increases, score_genes"? surges in false-positive score esti-
mates, whereas Spectra correctly assigns expressed factors to cells
(Extended Data Fig. 5e). Due to their multivariate nature and encour-
agement of sparsity, factorization methods select the factors that best
explainthe dataglobally, such that each factor accounts for expression
notalready explained by other factors. Factor analysis is thus superior
to score_genes even for the simple task of scoring gene sets.

Incontrast to Spectra, Slalom’s accuracy drops substantially as the
number of active gene sets increases (Extended Data Fig. 5f). Moreover,
Slalom can only assess afew dozen gene sets before run time becomes
prohibitive, whereas Spectra scales to hundreds of thousands of cells
and hundreds of gene programs. When run on a graphics processing
unit (GPU), Spectra outperforms all methods, including NMF and the
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GPU-based expiMap (Fig. 2g). Similarly, Spectra’s peak memory usage
remains low with increasing gene set numbers (Extended Data Fig. 5g).
Spectraruntime and memoryincrease proportionally with the number
of cell types and remain low for typical cell-type numbers (Extended
DataFig. 5g,h). Ourbenchmarking demonstrates that Spectrais faster
andinfers programs with superior interpretability and coherence while
retrieving more ground truth factors.

Spectraseparates tumor reactivity and exhaustion features

To understand and ultimately improve therapeutic efficacy, we quan-
tified therapy-induced gene program changes in non-dysfunctional
tumor-reactive CD8" T cells, a subset of T cells that recognize
tumor-associated antigens'® and are also cytotoxic'”'®, These cells
express clonal TCRs and specific markers and accumulate after PD-1/
PD-L1checkpointblockade (clonal expansion'?°). Conversely, T cells
that expand clonally under ICT are likely to be tumor-reactive'". These
cells may also gradually become exhausted (lose effector capacity)
after prolonged antigen exposure in the tumor microenvironment?-?,
Although exhaustion and tumor reactivity lead to different cellular
behaviors with highly consequential phenotypes, their gene programs
are correlated and challenging to discriminate computationally; clus-
tering approaches typically group exhaustion, tumor reactivity and
cytotoxicity features together'**,

We evaluated Spectra’s ability to deconvolve these programs,
focusingon CD8" T cells (Fig. 3a). The exhaustion and tumor reactivity
factors scored high in Spectra’s information and importance scores
(see Methods), suggesting that they explain relevant gene programs
(Extended DataFig. 6a). Genes from these two programs are correlated
in these data (Extended Data Fig. 6b), explaining why they were not
distinguished previously'®*. score_genes'” generates visually similar
distributions of input gene sets in responders and non-responders
(Fig.3b), yet the absence of tumor-reactive, non-terminally exhausted
statesinrespondersisinconsistent with the treatment-induced clonal
expansion of these states'*?****, and it conflicts with the proven effi-
cacy of ICT in this clinical setting®.

Whereas gene set scores fail to distinguish expanding from
non-expanding clones (Fig. 3b), Spectra clearly disentangles them
(Extended DataFig. 6¢), identifying a substantial tumor-reactive popu-
lation thatis almost exclusive to responders (Fig. 3c). Spectra extracts
gene programs directly from the unlabeled data and does not need
response status to successfully dissect these features. Spectra’s likeli-
hood function discourages overlap between gene programs when
a single program is sufficient to explain the observed count matrix,
harnessing unique features of each gene set to associate cells with
the best fit program. We identified CXCL13 as the gene exhibiting the
highest covariance with tumor reactivity as well as exhaustion factors
(Extended Data Fig. 6b). Spectra assigns this tumor reactivity marker® a
high weightin tumor reactivity but not exhaustion and strongly weights
genesrelated to TCRsignaling, T cell activation and cytotoxicity in the
tumor reactivity factor, whereas the exhaustion factor mostly includes
genes encoding exhaustion-inducing transcription factors (TOX*'*
and NR4AI (ref. 28)) and PDCDI (PD-1) (refs. 21,22).

InCD8" T cells, tumor reactivity correlates with proliferative pro-
grams, as expected for clonally expanding cells, oxidative phosphoryla-
tion and glycolysis, processes associated with enhanced CD8" T cell
effector function® and IFNy signaling, a key mediator of ICT efficacy"
(Fig.3d). Of the top 50 marker genes in tumor-reactive CD8" T cells, 42
areoutsidetheinputgene set, butrecentstudies support their rolesin
tumor reactivity (Fig. 3e and Supplementary Table 3)*°,

Expression of this factor is higher in responders at baseline
than in non-responders, and it increases further under therapy in
responders (Fig. 3f), consistent with the reported association between
tumor-reactive cell clusters and therapeutic response®*”. Spectra thus
disentangles a CD8" T cell tumor reactivity program that is associated
with response to ICT at the cell and patient levels.

T cellskill cancer cells after binding to mutation-associated neoan-
tigens (MANAs). To test whether our tumor reactivity programidenti-
fies T cells with MANA-specific TCRs, we leveraged a lung cancer atlas
of tumor-infiltrating T cells with functionally validated TCR antigen
specificity®® (‘Caushidataset’; Fig. 3g). Spectra detected tumor reactiv-
ityand172 additional factorsinthese data. Despite the different context
and tumor type, 13 genes overlap among the top 50 marker genesinthe
Caushiand Bassezreactivity factors (Extended DataFig. 6d). Moreover,
the Caushi reactivity factor is almost exclusively expressed in T cells
with aMANA-specific TCRrather thanin T cells with TCRs for unrelated
antigens (Fig. 3h). This independent, functionally validated dataset
provides strong support for the Spectra tumor reactivity factors and
suggests that transcriptional features of tumor-reactive T cells are
shared across tumor types.

In contrast to Spectra, Slalom®, scHPF* and expiMap’ failed to
deconvolve the two factors (Extended Data Fig. 6e). Only Spectra was
ableto distinguish a clonally expanding tumor-reactive T cell popula-
tionthatisspecifictoresponders (Extended DataFig. 6f) and associates
with patient-level response (Extended Data Fig. 6g).

Spectrais thusuniqueinits ability to disentangle tumor reactivity
and exhaustion programs in CD8" T cells, making it possible to iden-
tify tumor-reactive populations across cancer types and find novel
mediators of tumor reactivity that can be associated with patient-level
therapeutic responses and nominated as candidate targets for enhanc-
ing ICT efficacy.

Spectra uncovers metabolic pathway use in leukocytes
Metabolic processes are fundamental to cancer therapeuticresponse,
but metabolic genes participate in multiple pathways, making their
analysis very challenging®®. We tested Spectra’s metabolic inference on
immune cells in the Bassez dataset'’ and identified programs related
to all 89 metabolicinput gene sets (overlap coefficient of >0.25), reca-
pitulating known macrophage characteristics, such as iron uptake,
iron storage®**° and cholesterol synthesis*** as well as DNA synthesis
in cycling germinal center B cells (Fig. 4a).

Spectraalsouncovered cell-type-specific expression of amino acid
factors, such as lysine metabolism in plasma cells (Fig. 4a). Lysineis a
scarce nutrientin malignant breast cancer tissue*. Lysine metabolism
scored highinSpectra’sinformation and importance scores (Extended
Data Fig. 7a). Its top 50 marker genes contain 72% of the input gene
set, including all key metabolic enzymes (Fig. 4b), and Spectra added
unfolded protein response genes, including the pivotal initiators
XBP1and ATF6 and their downstream targets (ERLECI (ref.44),SDF2L1
(ref. 45), HERPUDI (ref. 46) and PDIA6 (ref. 47)). These genes are
expressed more coherently and at higher levelsin plasma cells thanin
other cells, as expected for a gene program (Extended Data Fig. 7b).
Endoplasmic reticulum stress regulates the capacity of plasma cells
to produce immunoglobulins®, likely because large quantities of mis-
folded antibodies*® must be degraded, generating lysine*’. Other meth-
odsidentified factors that are either not enriched for lysine metabolism
genes or are uniformly expressed across cells (Extended DataFig. 7c-e).

Togauge stability and reproducibility, we fitanindependent Spectra
model onto datafromindividuals with metastatic breast cancer biopsied
before and during paclitaxel chemotherapy with or without anti-PD-L1
treatment (Zhang dataset)” using identical parameters (Extended Data
Fig.1b). Ofthe top 50 markersin the Bassez dataset', 28 were alsoiden-
tified in the Zhang dataset (Fig. 4c), including 17 of the 37 new genes
learned directly fromboth datasets and encompassing ER stress. Spectra
lysine metabolism factors from both datasets are specifically expressed
inplasma cells (Fig. 4d). Our results link lysine metabolism and ER stress
asfeatures of tumor-infiltrating plasma cells in breast cancer.

Macrophage states change continuously under therapy
Macrophages mediate resistance to ICT by becoming immunosuppres-
sive under therapy (adaptive resistance); however, the effect of ICT on
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Two-sided Pvalues were calculated using Mann-Whitney U-tests; pre-anti-PD-1
(n=40 participants): P=3.84 x 1075, statistic = 308, Cohen’s d = 1.51; on anti-PD-1
(n=40 participants): P=2 x 107, statistic = 313, Cohen’s d = 1.49. g, Design of
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MANA versus Epstein-Barr virus: P = 6.04 x 107%*, statistic = 164,536, Cohen’s
d=1.44).Boxes and lines represent IQR and median, respectively; whiskers
represent 1.5x IQR.

macrophage gene programs and the association with response remains
unclear®**, Bassez et al.”’ linked a macrophage cluster expressing the
complement gene C3to therapy resistance (Extended Data Fig. 8a,b);
yet, complement genes suchas CFB (which activates C3 (ref. 52)) exhibit
opposite trends to C3 and are more highly expressed in responders
(Extended DataFig. 8b,c).

Todetermine whether Spectracanidentify moreinterpretable gene
programs underlying adaptive resistance, we used diffusion compo-
nents (DCs) to visualize continuous states**. DC2 captures maturation
frommonocyte-like to macrophage states, and DC4 separates respond-
ersfromnon-responders (Fig. 5a and Extended DataFig. 8d). Cell scores

for Spectra factors form gradients along DC2, with successive peaks
of tumor necrosis factor-o (TNF-o) signaling and CYP enzyme activity,
followed by glycolytic activity™, a novel factor containing invasive and
angiogenic mediators (‘invasion program’) and finally complement
production, akey feature of mature macrophages®. Along DC4, Spectra
identified programs for type 2 IFN signaling and MHC class Il antigen
presentation at one extreme, followed by the interleukin-4 (IL-4)/IL-13
response, hypoxia signaling and the invasion program at the other
(Fig. 5a; see Supplementary Table 4 for all DC-associated factors).
Tofind states that changein non-responders under ICT and could
therefore confer adaptive resistance, we used Milo*, which revealed
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Fig. 4 |Spectrareveals cell-type-specific metabolic profiles in breast cancer
data. a, Mean cell scores among positive (score > 0.01) cells normalized to
maximum cell scores of each factor and positive fractions per cell type for each
Spectra metabolic factor identified in the Bassez data'® (n = 97,863 leukocytes).
The box highlights the plasma cell-enriched lysine (LYS) metabolism factor; CYP,
cytochrome P450; CYS, cysteine; ER, endoplasmic reticulum; HIS, histidine;
mem, memory; TRP, tryptophan. b, Input genes and genes newly inferred by

Spectrain the lysine metabolism pathway; CoA, coenzyme A; Glu, glutamine; PIP,
pipecolicacid. c, Overlap between the input lysine metabolism gene set and the
top 50 marker genes from lysine metabolism factors identified in the Bassez"®
and Zhang® datasets. d, t-SNE embeddings of TILs colored by Spectra factor cell
scoresin the Bassez (n = 97,863 leukocytes) and Zhang (n =150,985 leukocytes)
datasets.

overlapping cellular neighborhoods (states) that only expand under
anti-PD-1therapy innon-responders (Fig. 5b) and are high in the novel
invasion program (Fig. 5c). This invasion program does not correspond
toinputgenesets (7 = 0.24) but has highimportance and information
scores; moreover, Slalom® and scHPF* do not identify a similar pro-
gram (Extended Data Fig. 8e-g). Its constituent genes are coherently
expressedinmacrophages, only increaseinnon-respondersandinclude
genes encoding known invasion and metastasis mediators (CTSL,
CTSD*, CTSB*°, CHI3L1 (ref. 60), SPPI (ref. 61) and PLIN2 (ref. 62)).
Furthermore, the invasion program includes genes of inflamma-
tion modulators (TREMI (ref. 63), TREM2 (ref. 64) and GPNMB®) and
cholesterol metabolism genes (APOE*>*’, APOCI (ref. 68) and CYP27A1

(ref. 69)), some of which suppress inflammatory cytokine (IL-6 and
TNF-a) release®. Our results suggest that in individuals who do not
respond to ICT, macrophages may upregulate these genes coordinately
(Fig. 5d). By focusing onresidual expression that is not well explained
by the gene knowledge graph, Spectra can thus find a gene program
thatis bothinterpretable and related to ICT response.

To test for replication, we ran Milo, identified macrophage popu-
lations in the Zhang dataset* and scored expression of the top 50
invasion factor genes. Despite the different setting of metastatic
tumors, the invasion and cholesterol metabolism genes identified in
the Bassez data have high expressioninthe Zhang data, validating our
invasion program (Fig. 5¢,d). Spectra thus identifies a prometastatic
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Fig. 5| Spectrareveals therapy-induced macrophage gene expression
programs. a, Macrophage cells plotted along DCs 2 and 4 colored by patient-
level T cell expansion status (responder and non-responder) in the Bassez

data'® (n=12,132 cells). Heat maps indicate z-scored gene program cell scores
along DCs smoothened by fitting a generalized additive model (Methods);

IL, interleukin; TNF, tumor necrosis factor. b, Graph with nodes representing
cellular neighborhoods (n = 858) plotted along DC2 and DC4 and edges
representing overlap colored by log, (fold change) under anti-PD-1 treatment, as
estimated with Milo (Methods). The log, (fold change) of non-significant (false
discovery rate (FDR) > 0.05) neighborhoods is set to 0. ¢, Average cell scores of
macrophage neighborhoods (n = 858) enriched in non-responders under therapy

Average z score

and cell scores for all other macrophage neighborhoods in the independent
Bassez and Zhang breast cancer datasets. Cell scores were calculated using

the Spectrainvasion factor (factor 182 from Bassez et al.'’) or by using scanpy.
score_genes'”on the top 50 marker genes of factor 182 in Zhang et al.>. Pvalues
(two-sided) were calculated using Mann-Whitney U-tests (Bassez: P=4.96 x 1075,
statistic =1,060, Cohen’s d =1.49; Zhang: P=3.74 x 10, statistic = 600,886,
Cohen’sd =1.03). Boxes and lines represent IQR and median, respectively;
whiskers represent 1.5 IQR. d, Mean expression zscored across cells (n =12,132
cells) and percentage of cells with at least one detected copy of the indicated
factor genes in non-responder macrophage populations and other macrophage
populations in the Bassez (n =12,132 cells) and Zhang (n = 3,206 cells) datasets.

gene programthatis upregulated following anti-PD-1/PD-L1treatment
inindividuals with therapy-resistant breast cancer, with implications
forunderstanding adaptive resistance mechanisms and macrophage
polarization.

Spectrafactors generalize to hundreds of individuals

Batch correction of technical differences between samples and cohorts
tends to remove subtle, yet important, biological signals’™, so we asked
whether Spectracanfind shared features without explicit batch correction.
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Fig. 6 | Spectra gene programs are reproducible across multiple studies.

a, Uniform manifold approximation and projection (UMAP) embeddings of
whole tumor single cell suspensions (n =1.28 million cells) colored by study
(left) or cell type (right) in the Salcher atlas”; Endo, endothelial; Epi, epithelial;
Fibro, fibroblast; Gran, granulocyte; Haber., Habermann; Lambr., Lambrechts;
Laugh., Laughney; Madis., Madissoon; Mayn., Maynard; Reyfm., Reyfman;
Travag., Travaglini. b, Expression and positive cell fraction of global Spectra
factors with the lowest entropy across studies. The Adams study with batch
effectis highlighted in red; met., metabolism. ¢, Overlap between the input gene
set and the top 50 marker genes for lysine metabolism (left), tumor reactivity
(middle) and macrophage invasion (right; new factor, no input set) factors.

d, Mean cell scores, z-scored across cell type, of the lysine metabolism factor
per study and cell type. Bars indicate mean zscore per column (bottom) and
participant numbers per study (right). Two-sided Pvalues between plasma cells
and other cell types were calculated using Wilcoxon matched-pairs signed-rank

tests. (B cells: statistic =2,903, Cohen’sd = 0.77; CD4" T cells: statistic = 2,385,
Cohen’sd=0.88; CD8'T cells: statistic = 4,555, Cohen’s d = 0.70; dendritic cells:
statistic = 3,152, Cohen’s d = 0.76; granulocytes: statistic = 516, Cohen’sd = 0.91;
macrophages: statistic = 2,350, Cohen’s d = 0.86; mast cells: statistic = 5,348,
Cohen’sd=0.52; NK cells: statistic = 3,883, Cohen’s d = 0.70; regulatory T cells:
statistic = 4,441, Cohen’sd = 0.61; T cells: statistic = 3,345, Cohen’s d = 0.56). The
studieslisted ina, band d are from Salcher et al.”. e,f, Mean cell scores per patient
in positive (>0.001) CD8' T cells (e) or macrophages (f) for the tumor reactivity
factor (e) and the macrophage invasion factor (f) based on smoking (top) or EGFR
mutation (bottom) status. P values were calculated using Mann-Whitney U-tests
(two-sided); tumor reactivity smoking: n =153, P= 0.0022, statistic = 3,500,
Cohen’s d = 0.45; tumor reactivity EGFR: n = 30, P= 0.18, statistic = 78, Cohen’s
d=0.52; invasion smoking: n =147, P= 0.051, statistic = 2,928, Cohen’sd = 0.30;
invasion EGFR:n=32,P=0.010, statistic =59, Cohen’s d =1.17). Boxes and lines
represent IQR and median, respectively; whiskers represent 1.5x IQR.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01940-3

The scRNA-seq lung cancer atlas from Salcher et al.”* is composed
of 1.28 million cells from 19 studies and 318 individuals, including a
study that uses cryopreserved cells and exhibits a strong batch effect
(Fig. 6a). We applied Spectra with default parameters and ourimmunol-
ogy knowledge base and found 11 global factors with low cross-study
entropy (Methods), 10 of which are specific to the cryopreserved cell
study and account for its batch-driven variation (Fig. 6b).

Spectraidentified lysine metabolism, CD8" T cell-specific tumor
reactivity and macrophage-specificinvasion factorsinthe Salcher atlas
withoutbatch correction. Despite differencesintumor type and clinical
cohort, multiple factor genes are shared across the Bassez, Zhang and
Salcher datasets (Fig. 6¢). Newly discovered shared genes include ER
stress transcription factors XBPIand ATF6 and targets (SDF2L1 (ref. 45)
and PDIAG6 (ref. 47; lysine metabolism factor)), the TCR signaling target
BATF?"* and the immune checkpoint gene LAG3 (refs. *”%; tumor reac-
tivity factor), invasion mediators CTSL and CTSD*"*® and inflammatory
mediators TREMI (ref. 63) and GPNMB® (macrophage invasion factor).
Theidentified factors are very stable across the Salcher atlas, and lysine
metabolism is significantly enriched in plasma cells (13 of 19 studies,
P<107?),as observed in breast cancer (Fig. 6d).

Next, we tested for associations between Spectra factors and
two clinically important variables, EGFR mutation and smoking sta-
tus. Although EGFR-mutated tumors are resistant to ICT’?, smokers
respond more frequently’. Tumor reactivity cell scores are higherin
CD8'T cells from tumors of smokers than from tumors of non-smokers
(P=0.002) and are higher in wild-type EGFR tumors than in mutated
tumors (P=0.180;Fig. 6e). The invasion factor similarly shows higher
cellscoresin macrophages fromsmokers (P=0.051) and wild-type EGFR
tumors (P=0.010; Fig. 6f). In the breast cancer datasets, this factor is
associated with ICT resistance (Fig. 5¢c), and studies of its marker genes
suggest that they are involved in suppressing antitumor immunity
(FABPS (ref.75) and TREMI (ref. 63)).

Spectra thus finds subtle programs across batches and patients
without requiring explicit batch correction. Although patient- or
sample-level phenotypic association has been attempted with cell-type
fractions, Spectrafactors makeit possible to associate clinical pheno-
types with cell-type-specific gene programs, a promising strategy for
cancer research and biomarker discovery.

Discussion

Spectra anchors data-driven factorization with prior knowledge to
infer factors thatare coherently expressed, interpretable and not pol-
luted by cell-type markers. The algorithm modifies each factor to the
dataset’s biological context by upweighting novel genes that are tightly
expressed with factor genes, and it can dissect highly correlated factors,
such as T cell exhaustion and tumor reactivity. We demonstrate that
tumor reactivity program expression separates individuals with breast
cancer by their clonal expansion status after anti-PD-1treatment (other
methods fail) andis replicated in alung cancer setting with functionally
validated T cell specificity.

We found that differences related to cell type dominate the mar-
ginal gene-gene covariance matrix, obscuring higher-resolution
cell-type-conditional covariance structure. Spectra uniquely addresses
this multiscale expression variance by accepting cell-typelabels as input
and explicitly modeling cell-type-specific factors that can account for
local correlation patterns. As aresult, Spectrareliably identifies programs
that are conserved across multiple cell types related to metabolism,
response to cytokine signaling, differentiationand growthand separately
estimates the cell-type-specific components of these programs.

Our knowledge base of high-confidence gene sets can improve
immune scRNA-seq data analysis using any supervised method, but
Spectra does not strictly need good relevant gene sets; it adaptively
tunes its reliance on prior information based on concordance of the
inputgraphwith observed data, anditallocates novel factors when prior
information does not fully explain expression. This property allowed

usto discover a cancer invasion program describing an axis of variation
in tumor-associated macrophages that is strongly related to anti-PD-1
therapyresistance andis replicated in two independent datasets.

The common simplifying assumption made by factor analysis
methodsis that factors combine linearly to drive expression, whichis
notalways the case. Uncoveringinterpretable nonlinear relationships
isafuture goal of factorization methods development.

We designed Spectra to unravel heterogeneity in large-scale
scRNA-seqstudies. Spectrafactors are stable across two breast cancer
datasets and alung cancer atlas totaling over 1.5 million cells from 375
individuals and 21studies, demonstrating the ability to find robust bio-
logical signal and overcome batch effects at this scale. Spectrafactors
make it possible to associate clinical covariates with cell-type-specific
gene programs. Inaddition, the ability to transfer factors learned from
one dataset to another can advance our ability to iteratively transfer
and refine knowledge across scRNA-seq studies without requiring
dataintegration.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Overview of Spectra

Spectra (https://github.com/dpeerlab/spectra) grounds data-driven
factors with prior biological knowledge (Supplementary Fig. 1). First,
Spectra takes in prior biological information in the form of cell-type
labels and explicitly models separate cell-type-specific factors that
can account for local correlation patterns. This explicit separation of
cell-type-specificand global factors enables the estimation of factors
at multiple scales of resolution. Second, Spectra resolves indetermi-
nacy of the reconstruction loss function via a penalty derived from a
gene-gene knowledge graph that encourages solutions that assign
similar latent representations to genes with edges between them.
To account for prior information of variable relevance and quality,
Spectra adaptively tunes its reliance on prior information based on
concordance of the prior and observed expression data. Third, novel
factors areadaptively allocated when prior informationis insufficient
to explainthe observed expression data.

Inthe first step of Spectra, a set of gene-gene similarity graphs is
built by aggregating information across gene sets and/or other sources.
This graph representation is flexible and can accommodate various
types of prior knowledge; gene sets can be incorporated into graphs
by including edges between genes that are annotated to the same
pathway, whereas existing datasets can be used to generate annota-
tions by thresholding partial correlations or factor similarity scores.
This representation lends computational convenience, as the graph
dimensions are fixed regardless of the size of the input annotations.
The annotations are either labeled as cell-type-specific or have global
scope. A separate graph is thus built for each cell type alongside a
global graph.

Inthe second step, Spectra learns amultidimensional parameter
foreach celland each gene, representing each celland each gene’s dis-
tribution over gene expression programs. Similarity of the parameters
between genes indicates that these genes are likely to have an edge
joining them, whereas similarity of the parameters betweena cell and
agene indicates that the cell is likely to express that gene. Hence, the
graphencodesthe priorthat genes with edges between them are likely
to be expressed by the same set of cells. In practice, we take several
additional stepsto fulfill the desiderata: (1) factors not representedin
the annotations can be discovered, (2) low-quality annotations can be
removed, and (3) discrete cell types are assumed to be fixed and known
and therefore not captured as factors by the model.

Toavoid penalizing novel factors that have norelation to the anno-
tations, weintroduce aweighting matrix that scales the computation of
gene-gene similarity scores by factor-specific weights that arelearned
fromthe data. Factors that have low weight are not used in computing
edge probabilities, whereas factors with high weights influence the
edge probabilities directly. Hence, Spectra can estimate similar param-
eters for two genes without forcing a high edge probability between
them as long as the factors corresponding to these genes also have
low weight. These weights allow the addition of new, unbiased factors
thatarenotinfluenced by the input annotations. Importantly, weights
are estimated from the data, allowing for an adaptive determination
of the relative number of unbiased and biased factors. An estimated
background rate of edges in the graph allows for the removal of anno-
tations with little supporting evidence from gene expression data.
Finally, Spectraexplicitly separates global and cell-type-specific factors
by enforcing a cell-type-determined block sparsity patternin the cell
loading matrix. Cell-type-specific factors capture within-cell-type vari-
ation, whereas global factors capture any variation that is shared across
multiple cell types. To reduce the burden of modeling constitutively
expressed cell-type marker genes, each factor’s contribution to gene
expression is multiplied by a cell-type-specific gene weight. These
cell-type-specific gene weights explain away the influence of cell-type
marker genes and hence mitigate the tendency of these marker genes
toinfluence the factors themselves.

Components of the Spectra objective function

Broadly speaking, Spectra fits a set of factors and cell scores by mini-
mizing an objective function with two components. The first compo-
nent of the objective function, Lgeconstruction, Measures how well the
estimated model parameters canreconstruct (or predict) the observed
expression data using the set of all model parameters ©. We write
Leconstruction (@) to emphasize that Lreconstruction IS @ function that maps
a set of model parameters to a corresponding objective value. The
second component of the objective function measures how well the
set of model parameters © corresponds to our biological prior informa-
tion. This second componentis denoted £,,n(©). We weight this term
by auser-defined hyperparameter A, which allows a user to control the
level of confidence placed in the given biological prior information.
The general form of the Spectra objective function is

L (O) =AL Reconstruction (O) + LGraph (0)

Below, we describe the precise functional forms of each of the objective
function components.

Lieconstruction (0): modeling gene expression asalow-rank product
We assume that the expression variation observed in the count matrix
isdriven by variation in the activity of different biologically meaning-
ful gene programs as well as technical variation that often involves
highly expressed genes. Therefore, our model of gene expression
needs toaccount for both components. In more detail, interpretation
of factors estimated from scRNA-seq data is often hindered by highly
expressed genes, which factor analysis methods based onreconstruc-
tionloss functions must account for. Housekeeping genes required for
basal cellular function, such as GAPDH, ACTB and ribosomal genes, are
expressed at high levels and hence unduly influence the reconstruc-
tion loss function despite the fact that their expression variance is
explained in large part by overall levels of transcription. As a result,
existing matrix decomposition methods tend to put high weight on
such nonspecifically expressed genes, although post hoc corrections
can be applied for the interpretation of individual factors. However,
certainimportant cytokine genes (for example, IL4,1L6,IL2and IL10),
chemokinereceptor genes (CXCRI and CXCR2) and transcription factor
genes (RORC and BATF3) are expressed in low mRNA copy numbers.
Normalization strategies that rescale features empirically tend to
amplify measurement uncertainty associated with lowly expressed
genes, leading matrix factorization methods to overfit and return
low-quality gene expression programs. To address this, we introduce
gene scale factors g; that are estimated from the data and allow the
model to explain high expression and variability of certain genes with-
outincreasing the magnitude of the gene factor weights. Because lowly
expressed genes are correspondingly noisier, we bound the minimum
gene scale factors below by a tuning parameter 6.

By way of notation, X refers to the processed gene expression
matrix, with entry X; containing the gene expression value for celliand
genej. The matrix X has n rows (the number of cells) and p columns
(the number of genes). K refers to the number of gene expression
programs unless otherwise specified. Additionally, for a given cell
indexed by, the cellloading (a set of weights across the set of factors)
is denoted by a;. The distribution across factors for genej is denoted
as 0;, which sums to 1 over K gene expression programs, Zle O = 1.
Unsubscripted variables refer to the collection containing all possible
subscripts; for example, 6 refers to the collection of all §,. The base
expression model describing the gene expression measurement for
celliand genejis

withg; € [0, 1]agene scaling parameter, a; € R and 6, € A" (where A€
is the set of positive K- vectors that sum to 1). The low-rank
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decomposition of this expression model can be visualized in Supple-
mentary Fig. 2.

Incorporating cell types into modeling expression variation. Because
expression variationis dominated by cell types, existing methods gener-
ally fit factors that are polluted with cell-type markers or alternatively
must be run on a subset of the data. For example, TCR activation pro-
grams (consisting of marker genes such as NFATCI and NFATC2) are
confounded with T cell identity, and existing factor analysis methods
tend to return identity marker genes, such as CD3, CD4 and CD8. Simi-
larly, programs representing metabolic pathways are often confounded
with plasmacytoid dendritic cell (/L3R and BDCA2) or B cell (CD19 and
CD79A) identity marker genes. Althoughitis challenging to fit a biologi-
cally meaningful factor model, successful cell typing of scRNA-seq data
using clustering approachesis asolved problem for discrete cell types
but not forintermediate states. Therefore, to mitigate thisissue, Spectra
assumes that discrete cell types are known and therefore not captured
asfactorsby the model; instead, Spectraexplicitly fits cell-type-specific
and global factors, allowing Spectrato effectively deal with expression
variance at multiple scales. To perform this cell-type-integrative factor
analysis, for cell type cand cell i, the model is extended to

ElXejl = (g + 6)a], (6 + &g + O, ., O

wherecis the cell-type label for cell i, g ;is cell-type-specific gene scal-
ing, and 6, € Ak is a cell-type-specific gene representation with
a.; € R+, Single-subscript variables, such as g;and 6, denote global
parameters, whereas the notation a., indicates the first K elements of
avector (typically denoting global elements), and a,.,. indicates the
tail of the vector from the K + 1st element (typically denoting
cell-type-specific elements). The threshold 6 restricts the maximum
ratio of gene scaling factors to 1%5.

Spectramodels the presence of gene programs with highly limited
scope in that they can only be activated by a specific cell type, which
can be represented by a hard-coded sparsity pattern in the cell load-
ing matrix (Supplementary Fig. 3). The cell-type-specific gene scal-
ings (g;) associated with these programs are encouraged to capture
cell-type identity markers and constitutively active genes, enabling
factors themselves to capture variation across cell types and within
cell types (Supplementary Fig. 4). Spectra tends to assign constitu-
tive genes, such as EEFIAI and ACTB, and identity marker genes, such
as CD4 and CD3, high values of g.. Lowly expressed genes important
for CD4" T cell-specific gene programs, such as /L21, IL13 and /L6, are
oftenassigned small values of g, whichallows Spectra to attend to gene
expression differences that occur on a smaller scale (Supplementary
Fig.4).By default, Spectraruns withatleast one cell-type-specific factor
per cell type so that global factors do not capture cell-type identities.

Determining cell-type granularity. Spectra can accommodate
cell-type labels at any level of granularity, subject to a linear increase
incomputational burden with the number of cell types in the dataset.
Additionally, as the granularity increases, the effective sample size for
estimating cell-type-specific factors decreases, leading to potentially
lower-quality cell-type-specific factors. The correct cell-type granu-
larity depends on the dataset and the specific scientific questions at
hand.First, the analyst should incorporate cell types that are known to
be discrete and easily identifiable in the dataset via standard cluster-
ing analysis (for example, T cells, B cells, myeloid cells and epithelial
cells).If cell subtypes exist that are not included as input to the model,
Spectradevotes factors to describing variation across these subtypes.
Moreover, ifintermediate differentiation states between subtypes exist
inthe data, these subtypes should generally not beincluded asinput to
the model because (1) coarser cell-type-specific factors can describe
these intermediate states, and (2) delineating between subtypes via
clustering may be inaccurate.

Lerapn (0): modeling gene-generelationshipsin relation to
expression data

In addition to faithful approximation of the input count matrix, we
would also like interpretable factors that correspond known gene
programs and biological processes (prior). Therefore, the second
component of our likelihood function is a penalty term that guides
the solution toward this prior. One aspect that makes Spectra unique s
thatit models this prior knowledge as agene-gene community graph,
which provides both computational efficiency and flexibility to adapt
the graph structure to the data.

In this graph, nodes represent individual genes, and edges
between genes occur when each gene has a similar distribution over
factors. Communities within the graph, or densely connected subsets,
thenrepresent gene programs, whereas edges between communities
contain information about genes that participate in multiple gene
programs. Providing animperfect, partially known graph structure as
input, we can constrain our matrix factorization solution to respect
thestructuretoyieldinterpretable gene programs. Amain advantage
of thisapproachisits flexibility. Gene sets are naturally incorporated
into a graph by forming fully connected cliques among members
of each set.

Further, more complex prior knowledge graph structures can
be used as input, for example, arising from gene programs esti-
mated from a separate dataset or cell atlas. Most importantly, the
structure of thisinput gene-gene graph can be improved by fitting
it to the dataand learning gene programs that are more faithful to
the data.

Asecond advantage of the graph priorisits scalability. Although
gene sets may be highly overlapping, especially when curated from
several separate databases, this redundancy is eliminated when stor-
ing information at the level of gene-gene relationships. Redundant
gene sets will be merged into highly overlapping communities, and
so two redundant gene sets can be approximately described by a
single factor. A further computational advantage over gene set pri-
ors is that the dimensions of the graph are fixed as the size of gene
set database increases, with only the number of edges increasing,
and eliminates the need for iterating over the gene set dimension.
Finally, operationsinvolving the graph areimplemented via efficient
and parallelizable matrix multiplications with the graph adjacency
matrix, thus allowing Spectra to efficiently scale to a large number
of gene sets and cells (Fig. 2g).

To encourage factors to capture our prior knowledge of gene pro-
grams, we assume that binary gene-gene relationships are evidence of
apair of genes having similar latent profiles. This assumption could be
incorporated by assuming a model for edge probabilities depending
onthesimilarity scores (6, 8;) for genesiand;j. However, the naive inner
product does not explicitly account for the fact that prior information
isinvariably imperfect in systematic ways. First, at the level of entire
gene programs, not all gene programs are active in all datasets, and,
therefore, entire graph communities may be unnecessary for describ-
ing the observed expression data, while there are likely novel gene
programs observed in the expression data that are not represented
by communities in the graph. Also gene programs are imperfect due
to inaccuracy of annotation, and, more frequently, gene programs
differ across biological contexts, and our prior information s typically
derived from a different biological context. Therefore, genes may be
misclassified into gene setsto which they do not belong (correspond-
ing tonoisy edge observations), or gene sets may beincomplete (cor-
responding to missing edges). Spectra addresses these issues in the
following two ways: (1) adaptively modeling background noise in the
graph, allowing for the addition and removal of edges (Background
edge rates), and (2) tuning the weight of the prior gene-gene matrix
through the incorporation of aweight matrix, termed the factor inter-
action matrix, into the inner product between gene representations
0,and 6, (see below).
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The factorinteraction matrix tunes the weight of the gene-
geneprior

Tounderstand the purpose of the factor interaction matrix, let us first
consider the ordinary inner product measuring gene-gene similarity
interms of gene program representations:

(61, 6;) = 0261 + -+ + OO

The maximum value of this productis1andisachieved only when
geneiand gene, put all their weight into a single gene program. Con-
sider what happens if genes i andj are important components of a
gene program that exists only in the expression data and not in our
prior information. Then, i andj are not connected in the graph, and
so the inner product model encourages (6, 6,) = 0. When (6, 0,) = O,
genes i andj must be components of entirely separate programs. In
this way, we see that the naive inner product discourages new factors
frombeing estimated from the expression data. Suchaninner product
model estimates novel factors that are heavily biased by the graph.

Now, instead of the naive inner product, consider a weighted
productweighted by scalar values (b,, b,,..., by) thatarebetween O and 1:

(6; 9j>b = D104 + - + by O

Tomodel the data, we canadjust the values of (b,,..., b) to achieve
the best fit. Consider the samessituation as above, where iandjare not
connected in the graph, but they are components of a gene program
supported by expression dataalone. The product model againencour-
ages (6;,0;), =~ 0; however, now this constraint does not necessarily
encourage 6;and 6;to be dissimilar. To see this, suppose that §,=[1, 0, 0]
and §,=1[1,0,0].If b, =0, then

<ei,6j>b = b11*1+b20*0+b30*0
=0

Hence, novel gene programs can be estimated as long as the value of b,
corresponding to that program is pushed toward 0. We can interpret
gene programs corresponding to low values of b, as novel and gene
programs corresponding to high values of b, as supported by prior
information. We could equivalently write each weight b, as one of the
non-zero elements of a diagonal matrix

by

by
sothat
(6;.B8) = (6,.6)),
= 01636 + -+ + bOu b

In practice, we allow the off diagonals of this matrix Bto be estimated
asnon-zero (Supplementary Fig. 5). The resulting matrix is termed the
factor interaction matrix.

Allowing off diagonals of the factor interaction matrix to be
non-zero serves two purposes. First, it allows the model to explain
overlapping gene sets without forcing shared genes to have partial
membership. Forexample, iftwo gene sets overlap butinreality repre-
senttwo distinct biological processes that canbe separatedinthe gene
expression data, the modelis not forced to assign partial membership
tooverlapping genes but can fully assign genes to one of two programs.
To account for this, the off-diagonal element corresponding to this
pair of gene programs (B, for programs k and /) can be estimated as
greater than 0. Onreal data, we see this occur for $-alanine metabolism
and fatty acid metabolism (Supplementary Fig. 6). Second, non-zero
off-diagonal elements of the factor interaction matrix serve to mitigate

the effect of low-quality edges in the prior graph by allowing edges
between genes that are in separate gene expression programs to arise
with non-zero probability.

Full Spectramodel

As a notation, we refer to the adjacency matrix of an input graph as
A e RP*Pwithelement A;=1ifanedge existsbetweeniandjandA;=0
otherwise. Following the discussion above, the Spectra generative
model states (Supplementary Fig. 5)

P[A; =1] = (6, B6))

Inthe fullSpectramodel, each gene has aseparate representation per
celltype (inaddition toits global representation), ,, where cindexes
into the possible cell types. To supervise these representations in a
cell-type-specific manner, the user (optionally) provides one graph
for each cell type and a graph representing global gene-gene rela-
tionships (Supplementary Figs. 6 and 7). These graphs are modeled
separately, where eachgraph’s edges canonly be predicted using factor
representations specific to that cell type. The cell-type-specific graphs
aredenoted A for celltype c, with A ;=1if thereis a cell-type-specific
annotation between genesiand,for cell type c. The cell-type-specific
graphs can only influence cell-type-specific factors and vice versa:

P[Acy = 1] = (O Bb)

diagrammed in Supplementary Fig. 7. Importantly, a separate factor
interaction matrix, B,, is learned for each cell type with a prior graph
provided.

The computational cost of including granular cell-type-specific
priorinformation canbe large, as each cell type requires its own graph.

Background edge rates
Realistic annotation graphs have several edges that are not supported
by expression data, and the model should be allowed the flexibility to
attribute edges (or the lack thereof) in annotations to a background
rate of noise. To allow flexibility in modifying the original graph, we
incorporate background edge and non-edge rates k and p that reflect
noise ratesinthe observed graph. These parameters serve two separate
purposes. First, these parameters deal with numerical stability issues by
moving probabilities away from 0 and 1. Second, the parameters control
the rate that edges are added and removed from the original graph.
Intuitively, our inference procedure examines whether a relationship
(orlack of arelationship) inthe prior knowledge graphis consistent with
expressiondataand if not can ascribe this relationship torandomnoise.
Thegenerative process of our model is that with some probability
p,edgesbetweengeneiandjareblocked outand cannotoccurirrespec-
tive of the corresponding factor values 6;and 6. If this does not occur,
anedge willbe generated by random chance with probability k. Finally,
if neither of these events occur, an edge is generated according to the
factor similarity score (8, B0)). This yields the following distribution
for the adjacency matrix:

P[A; =1] = Q-1 - p)b] BO; + k(1 - p)
P[4y =0]=1-01-p)(1-6]B6)+p

where k and p are (cell-type-specific) background rates of 1and O in
the adjacency matrix, respectively. k and p can be estimated from the
data or fixed to constants and treated as tunable hyperparameters.

Constructing the gene-gene prior graph

In most applications, Spectra receives a set of gene sets rather than a
gene-gene graph as input, and the gene-gene graph is constructed
fromthese gene sets. Large gene sets generally provide lower evidence
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thatany givengeneis crucial to the process that the gene set represents.
For example, hallmark gene sets often contain hundreds of genes’,
some of which are upregulated as distant downstream targets. Addi-
tionally, larger cliques represent alarger component of the likelihood
function, potentially biasing Spectra solutions toward attending to
the largest gene communities. Therefore, by default, when Spectra
takes in gene sets as input, the edge weights used to downweight the
contribution of any individual graph edge are proportional to the size
ofthe geneset thatitis derived from. The default weighting schemeis
to weight edges by the total number of edges in the clique. For agiven

gene set G,, this involves downweighting by -

G0N
Y (\Gu)
2

where |G,|isthe size of ageneset G, containing genesiandj. The weights
arerescaled sothat the median weight across gene setsis 1. When a pair
of genes existsin multiple gene sets, the weights accumulate additively.
Another reasonable choice is w;; = where d(i) is the degree
ofnodei.

As an alternative weighting scheme, Spectra accommodates
weighted graphs by scaling edges by edge-specific weights. This feature
allows users to annotate the priorinformation graphs with additional
quantitative information representing relative confidence in each
individual annotation.

1
max[d(i),d(j))”

Pseudolikelihood function

The heretofore described model components describe the expected
values of the expression datamatrix X and the prior knowledge graph A
under the Spectragenerative process. Together with specific observa-
tiondistributions, this would specify alikelihood function that serves
asthe maximization objective of Spectra, fit via either first-order meth-
ods or expectation maximization (EM). The loss function described
below is the negative value of a proper likelihood function in the case
where weights w; are equal to 1, A=1, and expression data X follow a
Poisson distribution. In practice, these conditions are not satisfied,
so we adopt the terminology pseudolikelihood function to describe
the negative loss function. For ease of exposition, we first describe
the pseudolikelihood function assuming a single cell type. Recall the
general form of the Spectra objective, consisting of aterm that meas-
uresthe ability of Spectrafactors to recapitulate expressiondataanda
term that measures the concordance of Spectrafactors with the prior
knowledge database:

L(O) = /l'CReconstruction(O) + ‘CGraph (O)
Asedges arebinary, combined with the assumption of independence,
thelog likelihood of A;given a probability of 1, p; : = P[4; =1}, is

With p;as described in Modeling gene-gene relationships in relation
to expressiondataand The factor interaction matrix tunes the weight
ofthe gene-gene prior,

log P(Ay) = Ay log [(1 - K)(1 - p)6] B6; + k(1 - p)|

+(1— Ay)log [(1 - k)1 - p)(1 - 6] BE)) + p|

To incorporate weights (following Constructing the gene-gene
prior graph), we weight likelihood terms corresponding to each edge
inthe graph by an edge-specific weight w;:

log P(Ay) = wyA;log [(1— K)(1 - p)8] BO; + k(1 - p)]

+ (1-4;)log [(1 -K1-p)1-6]B6) + P]

Combiningacross all observations (i, ), this leads to the expression for
LGraph(O):

P P
Loapn(® = % % [wyA log (1 - )1 - p)B] BY; + k(1 - p))
i=1 j=1,j#i

+ (1-Aplog (1 - 01 - p)1- 6] BY) +p)]|

Theloss function derived from the Poisson distribution hasbeen
widely used for modeling scRNA-seq counts***””, Although processed
datamay not necessarily be well described by the Poisson observation
model (that is, scran-processed data are on a log scale), the resulting
loglikelihood strikes a practical balance in scaling with gene expression
magnitude. Theresulting loss function hasbeen used in contexts other
than modeling count data as the KL divergence loss’®. Additionally,
under idealized settings, estimates obtained by minimizing this loss
function inherit properties of M estimators analogous to those of
maximum likelihood estimators, with few assumptions on the data
distribution’. Here, we are primarily concerned with how the loss
function behaves under changes in scale. For example, suppose we
have an estimated expression value X;. We can write X;;(©)as our pre-
dicted gene expression as a function of the model parameters. The
leastsquaresloss £,(0) := [X; — Xy(e)]zis quadratically dependenton
the scale of X, because replacing both ground truth and estimate by
scaled versions @X; and ¢X; leads to a loss of ¢2£,(0). Similar to the
issues addressed in ‘Lreconstruction (@): modeling gene expression as a
low-rank product’, the squared loss function encourages factors to
attend to highly expressed genes because scale differences amplify
theloss quadratically. At the other extreme, consider the Itakura-Saito
loss (IS loss) given by (we briefly assume that both ground truth and
estimate are not 0)

X Xjj

L5(0) 1= 2 —log - -
X;(©) X;(©)
If we scale observed counts and prediction @X;and ¢X;, then the IS
loss does not change. So, matrix factorization with the IS loss does
not suffer from a bias toward highly expressed genes. However,
forcing the model to predict all lowly expressed genes is not desir-
able, often leading to low-quality factors. The Poisson log likelihood
exhibits a practically convenient balance between these two
extremes:

Lpois(0) 1= —X;710g X;(©) + X;(0)

When X; and X; are scaled by @, £p;5(©) is scaled by . This linear
dependence on expressionscale achieves agood balanceinthe relative
weighting between highly expressed and lowly expressed genes.

An additional advantage of this loss function is that the second
term behaves as a lasso penalty®’, inducing sparsity in the resulting
estimates of X; for sparse data X, noted by Gopalan et al.”. This sparsity
allows for a parsimonious explanation of acell’s gene expression using
asfew factors as possible.In Spectra, wehave X;; := a] 6,(g; + 6) yielding
the expression

n p
LReconstruction(@) = z z xij log [alTGJ(gJ + 6)] - alTé)J(gj +6)
i=1j=1

Combining the components, the pseudo-loglikelihood functionis

n p
£L(a,0,8,B) =13 zlx,-jlog(aj@(gﬁ&)) —a] 6(g; + 6)

i=1j=

LReconstruction

M=

+

L

+ (1-Aplog((1-Kk)1-p)1-6]B6) +p)|

L Graph

p
A Iz#' [wyAylog ((1 - 01 - p)O] BO; + k(1 - p))
J=LJ

L

I
—_
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Again, X is the data matrix after processing, whereas a, 6, g and B are
the four model parameters that need to be estimated. The first term
in the pseudo-log likelihood function comes from the log likelihood
of the Poisson distribution (also referred to as the KL divergence loss
functionwhen multiplied by -1), while the second termis the log likeli-
hood of a Bernoulli distribution with positive observations scaled by
w;. The pseudolikelihood function optimized by Spectra includes an
optimization over cell-type-specificand global parameters, and soan
additional sumover celltypesisincludedinthe pseudo-loglikelihood
(Supplementary Fig. 7).

C n P
£(a,6,8B) = ¥ YA ¥ Xlog (g + &al, 0+ &g+l ;. 6)

c=li=1 j=1

C n.p

-T2 2 (g +0al, 6+ &g +6a],,,.0)

c=li=1j=1

LReconstruction

C+l p p

+ Z Z Z A[wc,ijAc,ij IOg ((1 —K)1— pc)e;rchecj +x(1- pc))
c=1i=1 j=1,j#i

+ (1= A log ((1— k)1 - pe)(1 - O1B6) + pc) |

LGraph

As all discrete parameters have been integrated out, this pseudo-log
likelihood can be directly maximized via first-order methods, suchas
gradient descent. Approximate second-order methods are not ideal
due to the high dimension of the parameter space for practical prob-
lem sizes. However, for smaller-sized problems (in terms of number
of genes and factors), we develop an EM approach thatyields intuitive
coordinate ascent updates of model parameters.

Spectra’s output
Todescribe the activity level of factor kin cell i, we compute cell scores

ascell_score, = g,ay, Where g, = % Zle ;. Inother words, the cell scores

are the loadings weighted by the total factor usage across all genes.
This allows us to circumvent the non-identifiability of scale associated
with factor analysis approaches. Regarding terminology, we will always
referto the unnormalized loadings a; as ‘loadings’ and the normalized
loadings as cell scores. Additionally the cell-specific parameters of
other matrix factorization methods are described as ‘loadings’. The
ground truth parameters in our simulations are also described as
‘loadings’.

To describe the relevance of gene j for factor k, we compute gene

gi+6

scores for genejand factor k as (—
gj+6+otiset

) 0. The first termis near O

wheng;is very smalland near 1whengjislarge. This allows us to remove
very lowly expressed genes from the factors while maintaining coher-
ence. By default, the offset term is set to 1, can be tuned and in some
cases set to 0, which yields the factors 6, themselves. Each ;. is more
directly influenced by the prior than g;8;, and so setting offset to O
tends to yield marker lists closely resembling input gene sets.

Users can access additional parameters that facilitate inter-
pretation of the gene scores and cell scores. The factor interaction
matrix per cell type (B; Supplementary Fig. 6) contains entries in
the range [0, 1], where diagonal entries can be interpreted as the
relevance of a given factor to the prior graph. Off-diagonal entries
can be interpreted as a background rate of edges between genes
that are expressed in separate factors. For each cell type, users can
access a posterior graph that is denoised using information from
the expression data. The posterior graph is computed by the inner
product (6, BO)) for each pair of genes 6;and 6, after estimating 6,, 6,
and B from the data.

Ofimportance are the diagonal elements of the interaction matri-
ces B, which contain information about the dependence of the factor

on the input graph. We term these diagonal elements r, specifically
n=diag(B.).

Factorimportance and information scores

We adopt the following two metrics to prioritize factorsin the output
of Spectra: factor importance and factor information scores, each
measuring a different property of the factor. Both metrics are com-
puted per cell type for all of the factors that are potentially relevant to
that celltype. Inother words, to prioritize the relevant factors foracell
type, the metrics are computed for each cell-type-specific factor and
eachglobalfactor, resultingin2(K + K,) scores for cell type c. The factor
importance score measures the overall contribution of a factor to
explainthe observed expression data (as measured by the reconstruc-
tion component of the loss function), regardless of whether this factor
explains within-cell-type variation. The factor information score, com-
plementaryto the factorimportance score, measures whether the gene
setassociated with afactor captures meaningful within-cell-type vari-
ation. Factors with high scoresin either of these categories are poten-
tially of interest for post hoc analysis. The factor importance score is
arelative change in reconstruction error for a specific cell type when
acertain factor is masked out. Let L (6, 6,) be the reconstruction error
for cell typec:

n p
L(6.6) := Y Ac Y Xeylog (g + Oal, 0+ &g +6al, ;. 5]

=1 j=1

n. p

- Z Z [(g/ + 6)acT,i,:K0j +(gy + 5)acT,i,K+1: ecj] @

i=1j=1
Here, it is understood that all parameters except 6 and 6, are fixed to
their fitted values. Further, let €, denote a vector of all 1 values of a
dimension equal to the number of factors, except at k where it is O:
€.=1-e,. The importance score for cell-type-specific factor k is then
= —[C(g‘ek["?g;[)‘(g’@). where ° represents elementwise product. Similarly
c\Yj

theimportancescore foraglobalfactor kis given by fcfg) =

Tek
L (8,6)~Lc(6.6)
L(6,6)

Informationscores are given by Definition (1) in Mimno et al.*? but
computed per cell type to represent cell-type-specific information
content. Specifically, given a marker list associated with a factor and
with Msetto 30 we have

M m-1 Dc(gfr]:)sggk)) +1
Cek=, D, log — 3)
m=2 =1 Dc(gf )

where g(,,’,‘) isnow the mthtop gene for factor k,and D (-, -) and D(-) are
the co-occurrence frequency and frequency, respectively, within cell
type c. We plot exp(C_) as the information scores.

Optimization

We develop the following two optimization schemes: an auxiliary
latent variable EM approach and gradient descent-based optimiza-
tion via Adam®. EM converges quickly in many situations; however,
the memory requirements are substantially larger than the gradient
descent-based optimization. Specifically the memory requirement of
EM parameter storage is O(npK + p’k?) due to auxiliary parameter stor-
age, while the memoryrequirement of gradient descentis substantially
lower, O(nK + pK + K?).

Although memory intensive, the EM solution is valuable for two
reasons: (1) for problems with asmall number of factors (<20) and genes
(<2,500), EM is fast and less sensitive to initialization than gradient
descent®, and (2) the EM updates are intuitive and give us an under-
standing of how our algorithm balances evidence from the graph and
expression data.
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However, optimization with Adam can handle a large number
of factors (>200) and genes (>10,000) and can exhibit stability with
the appropriate initialization. By default, Spectra uses Adam for
optimization.

EM

For ease of exposition, we describe the EM routine for the
non-integrative model; the updates are easily extendable to incor-
porate cell-typelabels. Additionally, we write the pseudolikelihood
function equivalently (up to a scale factor) in terms of 4 := %
To make EM possible, we exploit two facts about the distribution
of (X, A)*.

Thefirstisthatifz, ~ Pois[(g; + 6)a,0,] and we define X;; = E’,le Zijk,
then X; still has the correct marginal distribution due to standard
properties of the Poisson distribution®. Second, if we define
Z; ~ Categorical(6;) and z; ~ Categorical(g;) and define a conditional
distribution for A;as

P(Aj=1Zx =12y =1)=By

then A;still has the correct marginal distribution®. Asaresult, we can
optimize the marginallog likelihood via optimization of the expected
complete dataloglikelihood E, ;[log p(X, A, z, 2)] where the expectation
istaken over the posterior p(z, 2|A, X). The expected complete datalog
likelihood is given by

n K
£(a,B,0,8) = El Zlkzl i 1og((g; + O)ay i) — (g + )ayubi
= j= =
- 14 K K
+AY Y T Y Py (wyAylog (- 0By + k)
i=1 j=1,j#i k=1I=1

+ (1 -Aplog(1-K)A - p)1 - By) + p) + log Oy + log ;)

Xk ejk

i ——2%—and
¥ E e B

where ¢ 1= E(zulX) = X

B = P (2 = L.2u = 1A)
o 038;((1— KBy + 1“1 (1 — )1 = p)(AL — By) +p)'

Importantly, thismanipulation moves summations outside of the logs,
which permits analytic EM updates for B,  and g given by

= P
- o
2jm1 08 +6)

D 2::1 [ 5)
Z:‘:l 2::1 i Bje

Xk

g < proj[ovl] (

(L +(1—K))Ek,—k
) =
B = projoy ( oz )

PP
Where Ekl i El:l Zj:l ‘pxjklwlliAAj

=5 Ay representing an odds ratio between Ber-
i=1 &j=1 *ijl i

noullioutcomes. Further, the complete dataloglikelihood has diagonal
Hessianwhen viewed as a function of @ only, £(6), permitting linear time
Newton Raphson updates

1 n p _p K N _p K 5 n
Vi< o 2P+ AY Y Qi+ AY Y Oy |-G+ 0) X ay
it | i=1j=1 i=1k=1 i=1k=1 i=1

_g
H—I — gﬂ
ji n P P K 2 P K -
7 zi:l Zj:l Pii+A Zi:l Zk:l d’i/kl*”‘ Zi:l Zk:l q)jilk
K -1
A e — D= Vit
J ZK H-1
k=1""jk

O < O — H (B + Vi)

Algorithm 1. EM Spectraroutine

Require: X > 0,A € {0,1*,Te Z,,keR,,peR,, AR,
initialize B, @, 0, g
while ¢, - £,_; >¢,do

Ok
X
¢yk v Z:Zl Ok

~ iAi 1-A;
Bis — 0ubi(1— 0By + 1) (1 - )AL= p)A = B) +p)
‘i’ykt - J’ijkl/ Zkzi’ijkl
whilet<T,do

1 [@n P ioP vk R S S

Vit < % [Zi=1 21 i + A1 Dopm1 Pijpt + A Dy Zken ‘Pjilk]

_(g}' + 6) Z?;] 447}

H' « — = /S —

7 Zi:l Zf:l ¢iﬂ+A Z:”:l ZK=1 ¢g‘fkl+/1 Zf:l E’k(=1 ¢jilk

_ Zf:l y/’k'lﬂl

Tha B!
O < O — H (8 + vi)

ZJI-J:, PDiji

<

X1 O (gi+6)
DTt _ 5)

n K

Dic 2kt ik
(¢~ +(1—K))5k1—l()

. 2
B < projpoy < (=00

QXik

& < Projjo (

L, < L(a,0,B,8)
The integrative version of Spectra uses analogous updates, with
thebounds of summations appropriately modified; specifically, the E
step updates are ¢y = X;; Zoy b for cell-type-specific

K K+Kc
8 Ek:x aike/'k +&c,j Zk:K-H aikgjk

for global factors.

_ &%kbjk
factorsand ¢y = x,jg,_ SN
Adam
For large scRNA-seq datasets, the memory requirement of EM for fitting
alarge number of factors s prohibitive. We optimize the marginal log
likelihood with Adam®?, a momentum-based gradient descent opti-
mizer implemented in pytorch, directly. In detail, the Adam hyperpa-
rameters 8, and 3, are set to default values 0.9 and 0.999, respectively.
We use a learning rate schedule of [1.0, 0.5, 0.1, 0.01, 0.001, 0.0001],
where training at subsequent learning rates occurs after convergence
at higher learning rates. A maximum number of iterations is fixed to
10,000. This default training scheme can be modified by the user. In
particular, for faster convergence, either the maximum number of
iterations can be made smaller or the smallest learning rates can be
removed, allowing for solutions that are not as fine tuned.

Initialization
Because the Spectraobjective functionis non-convex and susceptible
tosuboptimallocal maxima, initialization plays animportantroleinthe
quality of the eventual solutions. When Spectrais provided with gene
setsasinput, our strategy is toinitialize factors as closeto the gene sets
aspossible. Whenever the number of factorsis greater than the number
of gene sets, we resort to agene set-based initialization procedure.
First,ahyperparameter t controls the strength of the initialization.
By default, tis set to 25. For agiven cell type, whenever the number of
factors is at least as large as the number of gene sets, we initialize
log 6; < twhengeneibelongstogenesetjforeachgenesetj=1,..., N,
and N, isthe number of gene sets. Further, the factor interaction matrix
is initialized with logitB; < t to encode the knowledge that this factor
correspondsto agene set. Toencourage the last factor to capture genes
that have no edges in the prior graph, we initialize the last row and
columntosmallvalues, logit B; « —~tandlogit B;, « —tforallj=1,...,K.
Corollary1(Supplementary Note) explains why this leads to extremely
fast convergence when Ais small.
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For a given cell type, when the number of factors is not greater
than the number of gene sets, we resort to initialization with NMF®’,

GPU acceleration

For allresults involving GPU acceleration, awrapper around the origi-
nal model implementation is provided, loading models onto the GPU
via the pytorch syntax device = torch.device (‘cuda:0’) and model.to
(device) when CUDA is available. Data (including adjacency matrices
and expression data) are similarly loaded onto GPU. All GPU methods
were runon an NVIDIA A100 Tensor Core GPU.

Determining the number of factors
We adopt two approaches to determine the number of factors. The
first approachis to set the number of factors for each cell type equal
tothe number of gene sets available for that cell type + 1 (similar tothe
approachtakenby Slalom), and the second approachisto estimate the
number of factors from the data via bulk eigenvalue matching analy-
s, Fitting a large number of factors is possible; in our experiments,

we fitaset of 197 factors.

The second approach involves three steps. In the first step, we
estimate anulldistribution of eigenvalues based on sampling variances

~Gamma(6,1/0) and then subsequently an n x p Gaussian matrix
Z ~ N(O, 02) We sampIeBofthese matrices and take the average of the
sorted elgenvalues of . ZZ‘ over B samples. Typically Bis set to 100.
Given the average sorted eigenvalues, we compute a regression coef-
ficient without intercept between the ‘bulk’ of these eigenvalues and
the bulk of the observed eigenvalues of the data covariance matrix.
The bulk of the distribution are the values between some lower and
upper quantiles, which are hyperparameters of the method. We per-
form aline search on 6 to find a value of 8 that minimizes the sum of
squared residuals of this regression. Denoting this regression coeffi-
cient as 3, in the second step, we simulate a background distribution
based on sampling variance terms o} ~ Gamma(6./6), data from
Z; ~ MO, 02) and eigenvalues from 1 ZZf Finally, K'is estimated as the
(1 a) quantlle of the simulated distribution of leading eigenvalues.
We apply this process for every cell type separately.

Determining Spectra’sinput parameters
We summarize all user-defined inputs to the Spectra algorithm.

X: Expression matrix with n cells and p genes (required).

A:Regularization strength of prior graph (required).

Gene set dictionary: dictionary with cell types as keys and gene
sets as values (optional).

Cell-type labels: list of cell types corresponding to expression
matrix (optional).

&: parameter that bounds minimum gene scale factor (optional).

w: graph edge weights (optional).

k:background rate of edges (optional).

p:background rate of edge deletion.

The data matrix and regularization strength A must be provided
by the user, while prior information can be provided in the form of a
dictionary of cell-type-specific and global gene sets (note that Spectra
canalsoberunby providing graph adjacency matrices directly). Option-
ally, cell-typelabels that align with keys of the gene set dictionary canbe
provided. Thelower bound for genescale factors, §, controls the extent
thatgene expressionis normalized and is set to a default value of 0.001.
This translates to a maximum ratio of gene scale factors of =1,000. By
default, the graph edge weights are set to be inversely proportional to
thetotal number of edges induced by the gene setleadingtoagivenedge
and accumulate additively for genes in multiple sets. The background
rate of noise edges, k, and therate at which edges arerandomly removed
fromthegraph, p, canbe provided as fixed parameters that provide users
withanextradegree of control over the extent that the graph is modified.
Ifthey areset to ‘None’ (default), they are estimated during the training
process inthe same manner that other model parameters are estimated.

For typically sized scRNA-seq datasets, as a rule of thumb, we rec-
ommendA = 0.01for studies inwhich factors should closely resemble
theinput gene sets and A= 0.1for studies where the factors should be
allowed to deviate substantially from the gene sets. Values of 6 rang-
ing from 0.0001 to 0.01yield similar results, with § > 0.01 providing
solutions with typical highly expressed genes observed from NMF.

Validation metrics

Marker list coherence metrics. To evaluate the quality of factors
computed from data, we follow previous work®*°° and use coherence,
co-occurrence of factor genes in held-out data, to evaluate the qual-
ity of the inferred factors. For a given factor, we consider the 50 top
marker genes with the highest gene scores for that factor. Between
every pair of genes in the top 50 markers, we compute the pointwise
mutual information as

p(&i.8)

pE)p(g)

where probabilities denote the empirical occurrences in the held-out
data. Coherence is defined as the average of this quantity across the
marker gene list. This metricis used in Fig. 2f. To assess the coherence
of Spectraand other methods, we allocated 9,787 cells as a hold-out set
to compute the coherence scores at evaluation time. The remaining
88,076 cells were used to fit the model. For each experiment, we sub-
sampled the 88,076 cellsin the training set to a size 0f 10,000 without
replacement (repeating this process five times to recapitulate the under-
lying data distribution). This number was chosento be sufficiently large
subject to the constraint that each of the methods under evaluation
couldruninareasonable amount of time (<2 d). For each subsampled
dataset, we computed the coherence score described above with the
top 50 markers, where marker lists are determined viathe method sug-
gested by the individual papers. For scHPF, we used the gene_scores
function from the scHPF package to get the top 50 markers*. For Slalom,
wemultiplied the estimated parameter matrices, thatis, the continuous
posterior mean EW and Bernoulli posterior mean EZ, as in Buettner
et al.®. To evaluate NMF, we derive marker lists based on the absolute
values of the estimated factor matrix as is standard practice”.

PMI(g;,g) = log

Reconstruction of held-out genes. To quantify the ability of methods
to impute missing genes from gene sets, we ran Spectra and Slalom
(scRNA-seq data preprocessing and analysis) on the full Bassez dataset
butwithrandomly truncated gene sets. Due to Slalom’s computational
demands and size of the dataset, we choose a small set of 24 gene sets
to evaluate for both methods, which are chosen apriori and held fixed
throughout the experiment. We hold out 40% of genes (selected ran-
domly) from the original set and measure the fraction of these genes
recoveredinthetop 200 genesaccordingto Slalomand Spectra’s gene
scores. To match factors to gene sets, for both methods, we find the
geneset (in our full database) with the highest Szymkiewicz-Simpson
overlap coefficient (overlap coefficient) to the given factor and label
the factor as corresponding to that gene set. The overlap coefficient
for the sets Xand Yis defined as the size of the intersection divided by
the size of the smaller set:

Xn¥

overlap(X, V) = T v

If two factors both have the highest overlap coefficient to the
same gene set, we take the one with the higher overlap coefficient.
Theaccuracyreportedis the fraction of held-out markers recoveredin
thetop 200 highest gene scores (Fig. 2e and Extended Data Fig. 5a-c).

Simulation experiments

Robustness to correlated factors. Matrix factorization methods rely
on reconstruction-based objective functions that implicitly encour-
agetheestimation of adiverse set of gene programs. As aresult, when
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gene programs are expressed in similar contexts (for example, CD8"
T cellactivation, exhaustion and tumor reactivity or TNF and type 2IFN
responses), matrix factorization methods often returnasingle program
representing the combined set of correlated programs. Further, as the
correlation between gene programs increases, the effective sample
size of the estimation problem decreases, as most cells do not provide
information to separate the gene programs. Toillustrate that Spectra
can incorporate prior information to maintain robust estimation in
the presence of highly correlated gene programs, we simulated gene
expression data from a generic factor analysis model where the cell
loadings corresponding to factors 1and 2 are simulated from a joint
log normal distribution with non-zero correlation terms ranging from
0.25t00.99 (Extended Data Fig. 5d). Factors themselves were simulated
from a half-Cauchy distribution to achieve realistic levels of sparsity
and extreme values. Conditional on simulated factors and loadings,
gene expression was simulated from a Poisson distribution with the
mean given by the matrix product of loadings and factors. Anoisy prior
knowledge graph was simulated by sampling the adjacency matrix
fromaBernoulli distribution with parameters given by inner products
between factors (asinthe Spectramodel) and used asinput to Spectra.
For each value of the correlation, we simulated ten datasets and ran
Spectra (A= 0.1), NMF, scHPF and Slalom (20 top genes per factor as
input). We quantified estimationaccuracy by the mean Pearson correla-
tionof ground truth factors with estimated factors across genes, both
for the two correlated factors and for a third factor uncorrelated with
the first two. While the unbiased methods, NMF and scHPF, correctly
recover the factors when factors are weakly correlated, estimation
accuracy deteriorates as the correlationincreases (although the inac-
curate estimation of the correlated factors does not hurt performance
onthe uncorrelated factors). Spectra’s use of prior knowledge allows
it to separate highly correlated factors.

In more detail, in our comparative simulation, study factors are
correlatedinthe sense that they tend to be expressed by the same cells
(Extended DataFig.5d). We simulate ground truth factor matrices with
p features and K factors with each entry independently distributed
according to a half-Cauchy distribution (chosen to obtain realisti-
cally sparse factor matrices). To obtain correlated factors, the factor
loadings, a, are independently drawn from a correlated log normal
distribution:

1p0..0

a 0
p10..0

a 0
~ LogNormal ,001..0

(298 0
000..1

If we denote the N x Kloading matrix by a and the K x p factor matrix
by 6, the count dataare simulated by X - Pois(a8 + €), whereeisarandom
noise term with variance ¢ An adjacency matrix is sampled

coordinate-wise A ~ Bern(éTé),where ;= ZKBJ' .Werun10independ-

k=1 "k
enttrials for 7 different levels of correlation p = {0.25,0.5,0.7,0.85,0.9,
0.95,0.99}, totaling 70 simulated datasets. Because NMF, scHPF, Slalom
and Spectraeach estimate a factor matrix, we compared the estimated
(normalized) factor matrices to § via Pearson correlation (y axis of
Extended Data Fig. 5d) after resolving the permutation of estimated
factorsthatis closest to ground truth. Resolving the correct permuta-
tion for each estimate is done via finding the permutation that maxi-
mizes the average Spearman correlation between ground truth factors
and estimates. Because we areinterested in performance on correlated
factors, we report the average correlation between estimation and
ground truth for the first two correlated factors across the ten inde-
pendent trials.

In our experiment, N=20, p =500, K =3 and ¢ = 4 (a setting with
low signal-to-noiseratio). Spectrais provided with the simulated matrix

A, whereas Slalomis provided with feature sets containing the correct
top 20 features of each factor. Spectrauses aAvalue of 0.1and 6 value
of 0. Allmethods are run with the correctly specified number of factors
and with default parameters.

Biasedness of gene set averaging for overlapping gene sets. When
gene sets corresponding to gene programs overlap, simple gene set
averaging approaches produce false-positive program activity calls.
To illustrate this phenomenon, we simulated gene expression data
driven by sets of overlapping gene programs with varying degrees of
gene set overlap and showed that gene set averages are increasingly
biased proxies for program activity as the degree of gene set overlap
increases (Extended Data Fig. 5e). Specifically, we simulated factor
matrices with known sparsity patterns determined by a set of gene
sets (each non-zero entry independently Exponential(16)). Each gene
setis designed to have an overlap coefficient p with at least one other
gene set, with pranging from 0 to 0.75. Loadings are generated by first
sampling each coordinate LogNormal(0, 1) independently and then
zeroing out components that are <1 to induce sparsity. Simulated
expression data are from a Poisson distribution, with the mean given
by the matrix product of simulated loadings and factors.

For each possible value of the overlap coefficient p in {0.0, 0.3,
0.5,0.75}, we create three simulated datasets and ran both Spectraand
score_genes with the ground truth gene sets. Accuracy is measured by
the Pearson correlation of estimated cell scores (or score_genes esti-
mates) and the ground truth factor loadings from the data generation
process (yaxis of Extended Data Fig. 5e). In this experiment, the gene set
sizeis fixed to 20, the number of gene sets is 10, the number of features
(genes) is 500, and the number of observations is1,000.

Recovery of active gene sets. We compared Spectra to Slalom,
another factor analysis method that uses prior information in the
form of gene sets, in a simulation experiment where we measured the
ability of each method to recover the gene sets involved in the true
data-generating process. Here, we followed the simulation settings
of the Buettner et al. manuscript® closely. First, background factors
are generated from an exponential distribution, as before. To simu-
late sparsity, entries smaller than 2 are zeroed out. Next, loadings are
generated LogNormal independently, and entries <1 are zeroed out.
We then generate both active and control gene set-based factors as
in Buettner et al.® and described in Biasedness of gene set averaging
for overlapping gene sets, where gene sets overlap with an overlap
coefficient of 0.3. Loadings corresponding to active gene set-based
factors are also drawn from a standard LogNormal and zeroed out if
less than 1. Next genes are randomly added to gene sets and removed
fromgenesetsto achieve afalse-positive rate of 0.2 and false-negative
rate of 0.2. Asameasure of success, we use the areaunder the receiver
operating characteristic curve (AUC) based on Slalom’s relevance score
andSpectra’s average cell score for agiven factor. Spectrawas robust to
increasing the number of gene sets, whereas Slalom suffered adrop in
AUC asthe number of active gene setsincreased (Extended Data Fig. 5f).

In our experiments, the numbers of active pathways vary on the
x axis of Extended Data Fig. 5f, the number of control pathways is 5,
the genesetsizeis 20, the number of genesis 300, the number of cells
is 300, the number of unbiased factors is 5, and the gene set overlap
coefficientis 0.3.

Run time and memory benchmarks. Allmemory and run time bench-
marks were performed on simulated data to allow for precise control
over the number of cells, genes, factors and cell types. Data were simu-
lated as described in Simulation experiments, closely following the set-
tings described in Buettner et al.®. Tobenchmark run time and memory
with respect to the number of cells, we scaled the number of cells in
our simulated data from {300, 1,000, 5,000, 10,000, 25,000, 75,000,
100,000, 200,000} cells. The number of genes was held constant at
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2,000 genes. Tobenchmark the methods on the number of gene sets,
wescaled the n_active_pathways parameter in our simulation from {10,
20,50,100,200} gene sets. Next, we note that to keep our gene set size
of 20 constant with an overlap coefficient p = 0.3 between gene sets,
weincrease the number of genes to 3,000 genes. We used 25,000 cells
for all experiments. To benchmark Spectra GPU and central process-
ing unit (CPU) on the number of cell types, we scaled the number of
celltypes from {2, 4, 8,16, 32, 64} cell types. All experiments were run
using 25,000 cells and 3,000 genes. We note that due to variation in
the number of epochs until convergence, we forced both Spectra CPU
and GPU to runto the default 10,000 epochs to study a pessimistic but
low-variance run time quantity, although convergence was generally
achieved between 2,000 and 7,000 epochs. All CPU methods were
runon five CPU cores (Intel Xeon Gold 6230 at 2.10 GHz), while all GPU
methods were run on an NVIDIA A100 Tensor Core GPU.

A humanimmunology knowledge base

Databases, such as the Gene Ontology Resource®, the Molecular Sig-
natures Database”, the Kyoto Encyclopedia of Genes and Genomes®*
and the Reactome database”, contain thousands of gene sets and
their relationships, but they are noisy and often do not distinguish
whether or not genes are transcriptionally regulated. For example,
many genes with signaling pathway annotations are regulated at the
post-translational level by phosphorylation or subcellular localization.
Expression signatures in these databases are often derived from bulk
sequencing data, whichmay not represent responsesin individual cells.
Moreover, the databases do not have a framework for distinguishing
which gene sets are cell-type specific. To address these issues, we
created animmunology knowledge base with the following criteria:

1. Genes within a gene set define a cellular process at the tran-
script level.

2. Gene sets represent cellular processes at the single-cell level.

3. Gene sets can be specific to a defined cell type.

Our knowledge base includes 231 gene sets representing ‘cellular
processes’ (n=181) to be queried by Spectra and ‘cellular identities’
(n=50) to obtain replicable high-quality cell-type annotations. To
generate the resource, we developed 97 gene sets, including 14 from
perturbation experiments, and added these to 134 gene sets from
publications and external databases, some of which we modified.
Of the cellular processes, 150 apply to most cell types in the data (for
example, leukocytes) and are designated as global, and 31 apply to
individual cell types.

Like Spectra, the knowledge base models gene sets as a graph
wherein every gene setisanode connected toallindividual gene nodes
within the set as well asto a cell-type node. Cell-type nodes (currently
50) are connected to ‘cellularidentity’ gene sets, one for each cell type,
which contain marker genes for their connected cell type. Metadata,
such as the scientific publication the gene set was derived from, gene
set version and original gene set authors, are stored as node proper-
ties. Cell-type nodes are organized in a hierarchy, reflecting that cell
types are frequently subsets of other cell types. This hierarchy starts
with a cell-type node labeled ‘all-cells’ to which gene sets for ‘cellular
processes’ occurring in all cell types are connected. Thus, the knowl-
edge base can be queried for cellular processes that can be found in
all cell types (for example, glycolysis) or a cellular process specific to
acelltype, such as TCRsignaling, whichis only presentinT cells. It also
allows retrieving ‘cellular identity’ marker gene sets, which define the
queried cell type.

Within this resource, 150 cellular processes apply to all leukocytes,
and 31apply toindividual cell types. Of all 231 gene sets, 97 were gene
setsnewly curated fromtheliterature, 14 used data from perturbation
experiments, 11were adopted from the literature with modifications,
and 123 were taken from the literature and external databases without
changes. Gene sets correspond to diverse cellular identities (n=50)

and cellular processes, such as homeostasis (n=9), stress response
(n=3), cell death and autophagy (n=18), proliferation (n = 6), signal-
ing (n =12), metabolism (n =90), immune function (n =22), immune
cell responses to external stimuli (n = 18) and hemostasis/coagulation
(n=3;Fig.1b). We designed the gene sets for cellular processes to have
comparable size (median n =20 genes per gene sets) and relatively
little overlap (median pairwise overlap coefficient of 40%) to enable
dissection of a large number of cellular processes and to avoid gene
set size-driven effects.

Tospecify Spectrainput, the user first defines cell types atagranu-
larity of interest in their single-cell expression data and retrieves the
cell-type-specific cellular process gene sets and gene sets applying to
all cell types from the knowledge base. Next, the user can select cellu-
lar process gene sets pertaining to all cell types in the dataset, which
should be set as ‘global’ in the Spectra model.

The user indicates which cellular processes can be considered
global based onwhich cell types are present in the dataset under study.
For example, if a dataset only contains T cells, all cellular processes
pertaining to leukocytes and T cells should be considered global. If
cellular processes apply to more than one but not all cell types in the
data, there are two options:

1. Thegene set can be multiplied, and one copy can be assigned to
each cell type. This will ensure that the cell scores of the result-
ing factors will be specific to those cell types but may result in
separate factors for the same cellular process in each cell type.

2. Thegene set can be set as global, which will generally result in
one factor. However, cell scores for this factor may be detected
in other cell types also.

Users can take advantage of the hierarchical organization of cell
types in the knowledge base by adding the children or parent classes
of selected cell types. For example, cellular processes for both ‘CD4
T cells’ and its parent ‘T cells’ can be retrieved and assigned to ‘CD4
T cells’, making it possible to find broader processes (for example,
TCRsignaling) that are specific to CD4' T cells. Alternatively, cellular
processes for CD4" T cells and for CD4" subtypes ‘T,1’, ‘T,2"and ‘T,17/
can be retrieved and assigned to ‘CD4 T cells’, thereby pooling rare
cell types that may not contain enough training data for the Spectra
model to converge to ageneralizable solution. Moreover, hierarchical
classification is advantageous when cellular processes are ambigu-
ously or incorrectly assigned. For example, CD4* T cell subtypes are
often presented as distinct lineages with distinct cellular processes.
However, mixed CD4" T cell subtypes have been reported, such as
cells possessing both T, 1 and T,;2 polarization cellular processes®,
suggesting that CD4" T cells can be described using combinations of
purportedly subtype-specific processes.

The newest version of our human immunology knowledge base
is available on GitHub as the Cytopus Python package”. This includes
20 additional cellular processes mostly for non-immune cells, such
as fibroblasts (n = 7), which we curated from a list of perturbation
experiments onbulk-sorted immune cells’®. Users canload our default
or a custom knowledge base using the KnowledgeBase class build on
a NetworkX object. Cytopus includes methods to retrieve gene sets
and corresponding cell types and can visualize them as a graph and
convert them into a Spectra-compatible dictionary. The ‘celltypes’
method retrieves a list of available cell types, ‘processes’ generates a
dictionary of all ‘cellular processes’ gene sets, and ‘identities’ gener-
ates adictionary of all ‘cellular identity’ gene sets. Gene set metadata
(for example, author, topic, date of generation and version) can be
accessed as node properties of the gene sets. The get_celltype_pro-
cesses method retrieves cell-type-specific ‘cellular processes’ based on
a user-provided list of cell types at the desired granularity (generally
all cell types contained in the data).

Full Cytopus documentation can be found at https://github.com/
wallet-maker/cytopus. The tumor-infiltrating leukocyte gene sets used
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inthe paperareincludedinthe Spectra package at https://github.com/
dpeerlab/spectraand arein Supplementary Table 1.

scRNA-seq data preprocessing and analysis
An overview of all datasets used in this study and relevant patient
metadata can be found in Supplementary Table 5.

PBMC dataset

The original dataset® consists of scRNA-seq data from PBMCs from
four healthy donors afterincubation (1-6 h) in IFNy, LPS or the protein
kinase C and TCR stimulation mimetic PMA. For three donors and at
the 6-h time point, they added Golgi inhibitors (Gls), which prevent
exocytosis of cytokines from PBMCs after perturbation and second-
ary paracrine signaling events, and compared them to control cells
treated with Gls alone. Thereby, the gene expression changes in the
Gl-treated perturbations compared to the Gl-treated control cells can
beattributed to direct signaling of the applied perturbations alone. We
used the Gl-treated conditions as aground truthto benchmark factori-
zation methods. Information on ethics oversight was not available in
the original manuscript®.

We obtained preprocessed count matrices (23,754 cells, four indi-
viduals) from the Gene Expression Omnibus (GEO; accession number
GSE178431) from the Kartha et al.® PBMC perturbation scRNA-seq
dataset. We normalized gene expression counts to median library
size and log 1p transformed the data. We selected the 10,000 most
highly variable genes using scanpy’s pp.highly_variable_genes func-
tion with the seurat_v3 method on raw counts. To avoid discarding
genesrelevantto cell typing, we added a manually curated list of cell
typing markers to highly variable genes (Supplementary Table 6).
We then calculated the neighborhood graph on the first 50 princi-
pal components using these highly variable genes, which explained
27.87% of the total variance, and calculated a UMAP embedding on
this neighborhood graph.

Toget coarseimmune cell types, we clustered the datain principal
component space using the scanpy implementation of phenograph.
We chose the k=40 parameter for PhenoGraph because of its ability
to delineate immune cell from non-immune cell populations while
showing stable clustering in awindow of adjacent k parameters (pair-
wise rand indices > 0.7). We then annotated the clusters into coarse
immune cell types (monocytes, T cells/innate lymphoid cells and B
cells/plasma blasts) by assessing the mean marker gene expression
per cluster (Supplementary Table 2).

Running Spectra. To run Spectra, we retrieved 188 input gene sets
pertaining to PBMC data from the newest version of our Cytopus
knowledge base (https://doi.org/10.5281/zenodo.7306238). This
included gene sets for signaling/response programs to the ground
truth perturbations (IFNy response, LPS signaling in monocytes/
macrophagesand TCR activationin T cells). We fitted Spectra on the
union of the 10,000 most highly variable genes and the input gene
sets for a total of 11,840 genes using the following parameters: A of
0.01, 6 of 0.001 and p of 0.001. We obtained a total of 196 factors
and found 1 factor for each of the input gene sets related to each
perturbation according to our criteria below (overlap coefficient
ofthe top 50 marker genes with input gene set > 0.2). We calculated
the average cell score per cell type and sample and compared the
perturbed and unperturbed conditions. Spectra was run on acom-
pute cluster with 64 CPU cores (Intel Xeon Gold 6230 CPU at 2.10
GHz) with 512 GB RAM.

Running Slalom. For Slalom, expression data were preprocessed
the same as Spectra. Because Slalom’s run time scales linearly with
the number of gene sets (Fig. 2g), we had to subset the number of
gene sets used to run Slalom on our dataset of interest. We pro-
vided Slalom only with the three gene sets corresponding to the

investigated perturbations (LPS, IFNy and PMA) plus ten additional
factors. These gene sets were used to determine the | parameter of the
SlalominitFA() function. The following additional input parameters
were used: nHidden = 0, nHiddenSparse = 0, do_preTrain = False,
minGenes =1and pruneGenes = False, with all other options set to
default values.

Running expiMap. For expiMap, expression data were preprocessed
the same as Spectra. We used expiMap’s default parameters as shown
inthe tutorials of the scArches GitHub repository (https://github.com/
theislab/scarches; version as of 20 March 2023). We provided expiMap
withthe same gene sets as Spectra. When using the default parameters,
expiMap cannot learn new genesinvolvedin gene programsrelated to
the input gene sets nor can it learn new factors in the reference data,
butonlyinthe mapped query.

Immuno-oncology datasets

To study Spectra in an immuno-oncology context, we used two pub-
lished scRNA-seq datasets of tumor-infiltrating leukocytes from female
individuals with breast cancer treated withimmunotherapy. We chose
thisimmuno-oncology context for the following reasons:

1. Theabundant prior knowledge of cellular processes and
well-characterized cell types in tumor-infiltrating leukocytes
enabled us to leverage the full power of gene set and cell-type
priors.

2. Theavailability of before- and on-treatment samples to test the
sensitivity of factor cell scores to environmental perturbation
with anti-PD-1/PD-L1 therapy.

3. Theclinical need for detecting cellular processes affected
by anti-PD-1in humans to improve current immunotherapy
strategies.

4. Theavailability of two studies in similar biological settings to
enable validating findings in an independent dataset.

Bassezdataset.Bassezetal.'wasaprospectivewindow-of-opportunity
study reporting scRNA-seq as an exploratory endpoint. The authors
analyzed scRNA-seq data from whole-tumor single-cell suspen-
sions from 42 individuals with operable breast cancer before and
after anti-PD-1 immunotherapy (pembrolizumab, NCT03197389).
Individuals received neoadjuvant chemotherapy as per standard
of care (chemotherapy n =11, no chemotherapy n =31), followed
by a single dose of anti-PD-1. Breast resections were performed
7-14 d after anti-PD-1treatment. Tissue from pre-anti-PD-1 biopsies
(7-15 d before surgery) and from surgical resections was processed
for scRNA-seq. The study was approved by the institutional review
board of University Hospital Leuven (S60100). As a surrogate for
response to therapy, the authors of the original study quantified the
clonal expansion of T cells under therapy on the patient level using
paired single-cell TCR sequencing; we used these annotations to
find response-associated cellular processesinthe data. The authors
categorized participants as either exhibiting (we refer to as respond-
ers) or lacking (we refer to as non-responders) T cell clonal expan-
sion under therapy. To classify participants, the authors quantified
the number of expanding T cell clones (T cells with identical TCR
sequences) per participant, labeling participants with >30 expand-
ing clones as responders and those with <30 expanding clones as
non-responders. AT cell clone had to fulfill the following two criteria
tobelabeled as expanded:
1. Detected at least twice in the participant’s on-treatment
sample.
2. More frequentinthe participant’s on-treatment samples than
in the pretreatment sample either by the absolute cell number
in that clone or by the cell number in that clone relative to the
number of cells with a TCR detected.
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Zhang dataset. Zhang et al.”> was a retrospective clinical study ana-
lyzing tumor-infiltrating leukocyte scRNA-seq data of pre-, on- and
post-therapy samples from 15 female individuals with advanced breast
cancer receiving either anti-PD-L1 (atezolizumab) combined with
chemotherapy (paclitaxel, n = 8) or chemotherapy alone (paclitaxel,
n=7).Thestudywas approved by the Chinese Academy of Medical Sci-
ences ethics review board (18-216/1794). Notably, participants received
corticosteroid premedication for paclitaxel. The authors assessed
participant response to immunotherapy using radiological response
according to RECIST v1.1criteria’. RECIST vl.1 criteriaare the standard
criteria used for drug approval-relevant clinical trials and standard
clinical management of individuals with metastatic solid tumors. The
RECIST criteriaclassify individuals into responders (combining partial
and complete response labels) and non-responders (combining pro-
gressive and stable disease labels) based on the change in the sum of
tumor lesion diameters under therapy. We used this classification to
identify response-associated cellular processes in the Zhang dataset.
Relevant clinical variables distinguishing the Bassez and Zhang data
areindicated below.

Bassez:

Operable disease: yes

n=31treated with anti-PD-1

n=11treated withchemotherapy and anti-PD-1

Received corticosteroids: no

Zhang:

Operable disease: no

n=8treated with chemotherapy and anti-PD-L1

n=7treated with chemotherapy

Received corticosteroids: yes

Processing strategy. To minimize systematic differencesin cell-type
annotations and normalization of gene expression counts, we per-
formed the same preprocessing for the Bassez' and Zhang® datasets.
After basic filtering, removing residual low-quality cells and doublets
and subsetting to leukocytes with scanpy?, we normalized the data
using scran’’. We hierarchically annotated cell types in the data by first
labeling majorimmune subsets (T cells/innate lymphoid cells, B cells/
plasma cells and myeloid cells) by clustering on the most dominant
principal components only. We then partitioned the data into these
major immune subsets, renormalized the data within every subset
using scranand clustered on more principal components to annotate
granular celltypes. We then combined the annotated data from major
immune subsets for joint analysis using Spectra. We have outlined the
details of the analysis strategy below.

Retrieving single-cell gene expression data. Count matrices of
the Bassez data'® were kindly provided by the authors and are also
available here (226,635 cells). Raw read counts are available in the
European Genome-Phenome Archive (EGA; accession numbers
EGAS00001004809 and EGAD00001006608). The count matrices
for the Zhang data®> were downloaded from GEO using the accession
number GSE169246 (489,490 cells).

Removing low-quality cells. To prepare the data for clustering, we
removed cells with less than 200 genes per cell and genes observed in
less than 20 cells as well as mitochondrial and ribosomal genes. This
filtering procedure removed 2,971and 203 genes, resulting in a total of
22,639 and 20,898 genes in the Bassez'” and Zhang? datasets, respec-
tively. We defined doublets in the databy running DoubletDetection'*®
for each sample individually using standard parameters (clustering
algorithm: PhenoGraph; P value threshold: 1 x 107; voter threshold:
0.5). DoubletDetection detected 3,270 (1.4%) and 12,760 (2.6%) dou-
blets as well as 27 (0.01%) and 8 (0.001%) ambiguous doublets in the
Bassez'’ and Zhang™ datasets, respectively, which we removed from
the data.

Retrieving tumor-infiltrating leukocytes for downstream annota-
tion. While the Zhang” data contained sorted tumor-infiltrating leu-
kocytes, the Bassez'® data contained unsorted whole-tumor single-cell
suspensions. To retrieve immune cells from the Bassez'® data for down-
stream annotation, we first performed standard median library size
normalization and log 1p transformed the data so that the normalized
expression of every genejin cell i is X and the median of the sum of
gene expression counts across all cells is med (Zj’.’zl xj)

, e Xj
xj; = In | med lej *— +1
=

1j=1Xij

We then clustered the data using PhenoGraph'® on the most domi-
nant principal components, which we selected using the knee point of
the principal component versus explained variance curve (calculated
using the kneed package v.0.7.0 (ref.102)) or the lowest number of prin-
cipal components explaining >20% of the total variance, whichever was
higher. Using this procedure, we clustered the data with PhenoGraph
on the first 26 principal components, explaining 20.1% of the total
variance. We chose the k=80 parameter for PhenoGraph because of
its ability to delineate immune cell from non-immune cell populations
while showing stable clustering in a window of adjacent k parameters
(pairwiserandindices > 0.7). We then subsetted leukocytes for further
analysis by their marker gene expression (myeloid cells, T cells, innate
lymphoid cells, B cells and plasma cells) per PhenoGraph cluster (Sup-
plementary Table 2).

Annotating tumor-infiltrating leukocytes. We renormalized leu-
kocytes in the Bassez'® and Zhang® data using scran because median
library size normalization can generate artificial differential gene
expression between cells of different library size, such as leukocytes”.
After testing all genes and a range between 5,000 and 15,000 highly
variable genes, we selected the top 15,000 highly variable genes
for the Bassez' data and all genes for the Zhang”® data, which led to
the best separation of major immune cell subtypes using scanpy’s
pp.highly_variable_genes function with the seurate_v3 method onraw
counts. To avoid discarding genes relevant to cell typing, we added a
manually curated list of 458 cell-typing markers to highly variable genes
(Supplementary Table 6). We then repeated the clustering procedure
outlined above (Bassez': 24 principal components explaining 20.1%
of total variance; Zhang?*: 52 principal components explaining 20%
of total variance; k = 50) and annotated major immune cell subsets
(T cells/innate lymphoid cells, B cells/plasma cells and myeloid cells)
by assessing their mean marker gene expression per cluster (Supple-
mentary Table 2). To obtain more granular annotations, we partitioned
the datainto majorimmune subtypes (T cells, innate lymphoid cells, B
cells/plasma cells and myeloid cells), renormalized each subtype using
scran, recalculated highly variable genes and principal components and
clustered as described above. The following processing parameters for
each subtype were used: Bassez data, numbers of highly variable genes
and marker genes: 7,500, 7,500 and 15,000 for T cells/innate lymphoid
cells, B cells/plasma cells and myeloid cells, respectively; numbers of
principal components: 24,10 and 16 for T cells/innate lymphoid cells,
B cells/plasma cells and myeloid cells, respectively; variance explained
by principal components: 20.3%, 20.1% and 20.1% for T cells/innate
lymphoid cells, B cells/plasma cells and myeloid cells, respectively;
k parameter for clustering: 30,40 and 20 for T cells/innate lymphoid
cells, B cells/plasma cells and myeloid cells, respectively; Zhang data,
numbers of highly variable genes and marker genes: 19,379, 19,379,
10,000 and 18,888 for T cells/innate lymphoid cells, innate lymphoid
cells, B cells/plasma cells and myeloid cells, respectively; numbers of
principal components:100,100,17 and 23 for T cells/innate lymphoid
cells, innate lymphoid cells, B cells/plasma cells and myeloid cells,
respectively; variance explained by principal components: 17.9%,17.7%,
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20.4%and 20.1% for T cells/innate lymphoid cells, innate lymphoid cells,
B cells/plasma cells and myeloid cells, respectively; k parameter for
clustering: 40, 40, 60 and 20 for T cells/innate lymphoid cells, innate
lymphoid cells, B cells/plasma cells and myeloid cells, respectively.
We then annotated granular immune cell types by assessing the
mean marker gene expression per cluster (Supplementary Table 2).In
the Bassez'® data, we detected clusters with low library size and lower
complexity of gene-gene correlation patterns at this step (5,509 cells),
whichwe removed from the data. Finally, we combined the annotated
majorimmune subtypes for downstream joint analysis.

Running Spectra. After the filtering and preprocessing steps above,
the Bassez data had 97,863 cells', and the Zhang data had 150,985
cells. Torun Spectra, we restrict the number of genes using scanpy’s
highly_variable_genes function with the cell_ranger method, selecting
the 3,000 most highly variable genes. We removed several genes that
are highly abundant and may originate fromambient RNA in many cell
types, thus adding noise to the analysis. This included mitochondrial,
ribosomal, immunoglobulin (genes starting with /GHM, IGLC, IGHG,
IGHA, IGHV, IGLV and IGKV), TCR variable domains (genes starting with
TRBV, TRAV, TRGV and TRDV) and hemoglobin genes (genes starting
with HB). The totalnumbers of genes used (the union of genesincluded
inagenesetand highly variable genes) were 6,397 for the Bassez data-
set'®and 6,398 for the Zhang dataset”.

One hundred and eighty-one gene sets from our knowledge
base were then converted into weighted adjacency matrices. One of
Spectra’s strongest features is its ability to meaningfully modify the
input gene-gene knowledge graph (gene sets) in a data-driven mat-
ter. With the influence parameter A set to 0.01, the median overlap
coefficient across all factors in the Bassez'® data was 88%, with 25%
of factors relevantly deviating from the gene sets (overlap < 70%)
and 7% of factors bearing little resemblance to the input gene sets
(overlap <20%). With the influence parameter set to 0.1, the median
overlap coefficient across all factors was 82%, with 42% of factors
relevantly deviating from the gene sets (overlap <70%) and 12% of fac-
tors with an overlap of less than 20%. In terms of graph edit distance
totheinputgraph (defined as the mean absolute difference between
input and output graphs), at A set to 0.1, we had 0.011, and at A set to
0.01, we had 0.0095 with diminishing returns in graph edit distance
for lower A (0.0095 again for A=1x10"*and 0.0094 for A=1x107).
For the analyses described below, we used an influence parameter A
between 0.1and 0.01depending on whether we wanted more (0.01) or
less (0.1) adherence to the input gene sets. Because we obtained very
similar results with these parameters in two independent datasets,
itis likely that this also constitutes a good default for other datasets.
Spectra was run on a compute cluster with 64 CPU cores (Intel Xeon
Gold 6230 CPU at 2.10 GHz) with 512 GB RAM.

Running Slalom. Because Slalom’s run time scales linearly with the
number of gene sets (Fig. 2g), we had to subset the number of gene
sets used to run Slalom on our datasets of interest (n =20 gene sets,
runtime 63.49 CPU hours, 40 GB of memory on the Bassez'° dataset).
Expression datawere preprocessed identically to Spectra. Tocompare
results of Spectra and Slalom, we chose a subset of 20 gene sets of
scientificrelevance to theimmune microenvironment underimmune
checkpointblockade for the Bassez'° and Zhang® datasets: CD8" T cell
tumor reactivity, type Il IFN response, myeloid angiogenic effectors,
post-translational modification, MHC class I presentation, G2/M transi-
tion, oxidative phosphorylation, type I IFN response, macrophage IL-4/
IL-13 response, glycolysis, DNA synthesis, G1/S transition, lysine metab-
olism, MHC class Il presentation, hypoxia response, pentose phosphate
pathway, CD8 terminal exhaustion, PD-1 signaling, TCR activation
and cytotoxicity effectors. These gene sets were used to determine
the I parameter of the Slalom initFA() function. The following addi-
tional input parameters were used: nHidden = 0, nHiddenSparse =0,

do_preTrain = False, minGenes =1, pruneGenes = False, with all other
options set to default values.

Running scHPF. scHPF was run with the following commands using
the defaultsin the class constructor of the scHPF package. from scHPF
import*: model = scHPF(nfactors = K); model.fit(X).

Running expiMap. When using the default parameters, expiMap’
cannotlearnnew genesinvolvedin gene programsrelated to the input
gene sets nor canitlearn new factors in the reference databut onlyin
the mapped query. We note that most demonstrationsin the expiMap
manuscript’ are based on these default parameters and do notinvolve
adaptationto the data.

For theimmunology datasets, where the specific task evaluated
involved learning new genes and new factors, we modified the default
parameters according to Lotfollahi et al.’. We refer to this mode as
soft mode. These parametersinclude setting soft_ mask = True inthe
expiMap model scarches.models.EXPIMAP and setting an L1 pen-
alty using the alpha_l1 parameter of the model.train method, which
enables the latent nodes to use genes absent from the input gene
setswith an L1regularization. The alpha_I1 parameter was increased
in steps of 0.1 starting from 0.5 until the share of inactive genes
exceeded 0.95 (thisinformation can be visualized by the print_stats
parameter in the .train method). Using this strategy, we selected
an alpha_I1 of 0.8. For the Extended Data Fig. 5b,c reconstruction
experiment where the task involved recovering held-out genes,
we used an alpha_l1 parameter of 0.4 because expiMap showed the
strongest performance with this parameter in a similar experiment
performed by the expiMap authors (Extended Data Fig. 7 in Lotfollahi
etal.’). However, for most of our gene sets and in contrast to Spectra,
expiMap did not recover ameaningful proportion of our input gene
sets (Extended Data Fig. 5b,c). Thisis despite the fact that the Spectra
model was complicated by including 16 new factors, while we did not
add any new factors for expiMap®.

To learn new factors, one has to provide additional parameters,
which is what we did for analyzing the Bassez'® dataset except for
the reconstruction experiment in Extended Data Fig. 5b,c. We added
16 new factors, the same number as for Spectra (n_ext, set to 16). We set
theLlregularization coefficient for these nodes gamma_extto 0.6, ena-
bled the Hilbert-Schmidt independence criterion regularization (use_
hsic =True, hsic_one_vs_all = True) and provided the Hilbert-Schmidt
independence criterion regularization coefficient beta = 3. Because
expiMap removed relevant input gene sets, we had to perform two
additional modifications of the steps provided in the tutorial for the soft
mode. Weincreased the number of highly variable genes (4,000 instead
0f2,000) toretain the input lysine metabolism gene set and decreased
the minimum gene set size from 13 to 8 to retain our tumor reactivity
gene set. We provided expiMap with theidentical 181 gene sets used for
Spectra. Because expiMap removes smaller gene sets in preprocessing
steps, the finalnumber of gene sets used for the model fit was 142, which
resulted in158 factors, including 16 new factors and 3 inactive factors.

Running NMF. NMF was run using the scikit learn package (sklearn.
decomposition.NMF) with default parameters, specifically
nmf=NMF(n_components = k) and nmf.fit(X.astype(float)), where
kisthe number of factors and Xis the processed expression matrix.

Running netNMFsc. netNMFsc’ was run with default parameters; how-
ever, max_iters was set to100,000 as convergence was never achieved
atthedefaulttolerance level (1 x 1072) at the default 20,000 iterations.
Specifically the following operations were used: operator = netNMFsc.
netNMFGD(d = k, max_iter = max_iters); operator.N = adj_matrix;
operator.X=X.T and W = operator.fit_transform(), where adj_matrix
is the global graph provided to Spectra, Xis the processed expression
matrix, and kis the number of factors.
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Assigning factor labels. Factor labels were assigned using the overlap
coefficient of the top 50 marker genes (genes with the highest gene
scores) witheach gene set. We observed abimodal distribution of over-
lap coefficients, with one group of factors centered close to 0 and one
group of factors centered close to1(Extended DataFig.2). We therefore
chose a threshold of 0.2 to separate high-overlap from low-overlap
factors. Forevery factor, if the maximum overlap coefficient was >0.2,
we assigned the gene set label with the maximal overlap coefficient to
that factor, and if the maximum overlap coefficient was <0.2, we did
notassign alabel to that factor.

Aggregating cell scores at the sample level. To aggregate cell scores
at the sample level, we calculated either the mean or the mean of the
positive cells. The latter was chosen for Spectraand scHPF, which show
bimodal cell score distributions with one mode centered around 0.
The mean will be skewed toward the more frequent zero mode and
may therefore be inappropriate to estimate the central tendency of
the distribution. Positive cells were defined as cells witha cell score of
>0.001. This threshold was defined empirically to separate the positive
and zero mode by inspecting the distributions of multiple factors. If all
cellsshowed acell score of<0.001 for agiven gene program, the mean
of the positive fraction was set to O for that gene program. Because
expiMap and Slalom can take negative values, we used the mean value
for these methods.

Lung cancer datasets

Caushi dataset. The Caushi et al.*’ study performed paired scRNA-seq
and single-cell TCR sequencing of 16 individuals with primary
non-small cell lung cancer (560,916 cells). Moreover, PBMCs were
pulsed with different peptides (specific for viral or tumor neoanti-
gens), and reactive, expanding T cell clones and their TCR sequences
were identified using the MANA functional expansion of specific
T cells assay'®®. The authors thereby identified TCR sequences of
MANA-, Epstein-Barr virus- and influenza-reactive T cells. They used
these TCR sequences to identify tumor (MANA) and virus-reactive
Tcellsinthelung cancer tissue. The study was approved by the institu-
tionalreview boards atJohns Hopkins University and Memorial Sloan
Kettering Cancer Center.

Preprocessed data were obtained from the original study’s
authors®. The processed data can also be obtained from GEO under
accession number GSE173351. Because cell-type annotations were
not available, we obtained the original study authors’ cluster labels
(details on preprocessing and clustering are in Caushi et al.>°). We
reannotated the original authors’15 clusters using marker genes (Sup-
plementary Table 2).

To preprocess the data for Spectra, we normalized raw counts to
median library size and applied log 1p transformation. We restricted
the number of genes using scanpy’s highly_variable_genes function
with the cell_ranger method to the 3,000 most highly variable genes.
We retrieved a total of 168 input global gene sets (n=152) and T cell
subtype-specific gene sets (CD4" T cells, CD8" T cells and regulatory
Tcells, n =12) fromthe newest version of our Cytopus knowledge base
(https://zenodo.org/record/7306238). We took the union of the highly
variable genes and the genes included in these input gene sets for a
total of 6,838 genes*® used for fitting the Spectra model using the fol-
lowing parameters:A=0.1,6=0.001and p = 0.001. We ran Spectra on
these dataand obtained 173 factors, 1of whichmatched the CD8' T cell
tumor reactivity gene set according to the criteria described above in
Assigning factor labels. Spectrawas run onacomputer cluster with 64
CPU cores (Intel Xeon Gold 6230 CPU at2.10 GHz) with 512 GBRAM. We
plotted and compared the tumor reactivity factor cell scores in 1,151
CD8'T cellswithavailable TCR specificity information grouped by tar-
getantigen (Epstein—-Barr virus, influenza virusand MANA). We found
that this tumor reactivity factor was almost exclusively expressed in
MANA-specific T cells.

Salcher atlas. The Salcher non-small cell lung cancer atlas com-
bined scRNA-seq data of whole-tumor single-cell suspensions or
tumor-infiltrating leukocytes from 19 independent studies (1,283,972
cells from 318 individuals). They also homogenized cell-type annota-
tions and metadata between datasets. The study was approved by the
institutional review board at Medical University Innsbruck (AN214-
0293342/4.5).

Preprocessed data, including unnormalized gene expres-
sion counts, were obtained from Zenodo (https://zenodo.org/
record/7227571) for the Salcher et al. lung cancer scRNA-seq atlas”.
The authors’ cell-type annotations were summarized after vetting
them forrelevant marker expression profiles (Supplementary Table 2).

TorunSpectra, werestricted the number of genes using scanpy’s
highly_variable_genes function with the cell_ranger method, selecting
the 3,000 most highly variable genes with the batch_key option, which
calculates highly variable genes in each dataset in the atlas separately
and then merges them based on in how many datasets they are cap-
tured. We removed several genes that are highly abundant and may
originate from ambient RNA in many cell types, thus adding noise to
theanalysis. Thisincluded mitochondrial, ribosomal,immunoglobulin
(genesstarting withIGHM, IGLC,IGHG, IGHA, IGHV,IGLV and IGKV), TCR
variable domains (genes starting with TRBV, TRAV, TRGV and TRDV)
and hemoglobin genes (genes starting with HB). We retrieved a total
of 198 input gene sets from the newest version of our Cytopus knowl-
edge base (https://zenodo.org/record/7306238). The total number
of genes used (the union of genes included in a gene set and highly
variable genes) was 7,322. We normalized and log 1p transformed the
gene expression counts and ran Spectra with the parameters1=0.01,
6=0.001and p=0.001 and obtained one factor each for CD8" T cell
tumor reactivity and lysine metabolism. We also obtained one factor
that shared 20 of the top 50 marker genes with the macrophage inva-
sion factor from the Bassez'” dataset (overlap coefficient = 0.4). We
then calculated the overlap of these factors with the factors obtained
from the Bassez'* and Zhang? datasets (Fig. 6¢). Spectra was run on
a computer cluster with 128 CPU cores (Intel Xeon Gold 6230 CPU at
2.10 GHz) with 1,024 GB of RAM.

To calculate embeddings for plotting UMAPs, we calculated the
neighborhood graph (k=10) onthe first 50 principal components using
the top 3,000 highly variable genes, which explained 45.92% of the total
variance, and calculated a UMAP embedding on this neighborhood
graph using the scanpy implementation (Fig. 6a).

We obtained study-specific factors by their cross-study entropy.
We first removed spuriously expressed factors with <100 positive (cell
score > 0.001) cells. For each remaining factor, we then calculated the
entropy of study label proportions in factor-positive cells. We selected
the factors that showed a cross-study entropy higher than 2.0794,
which is the entropy for a hypothetical factor where positive cells
are absent in 11 of the 19 studies analyzed and where they are equally
distributed among the remaining 8 studies. This resulted in 11 global
(Fig. 6b) and 3 cell-type-specific factors.

To assess the stability of our lysine factor across studies, we plot
itsz-scored (across cell types) mean expression per cell type (Fig. 6d).
We also calculated its mean expression per sample and cell type and
compared the expressionin plasma cellsto the expressionin other cell
types using Wilcoxon matched-pairs signed-rank tests (Fig. 6d). To
compare cellscores ofthe CD8' T cell tumor reactivity and macrophage
invasion factorsinclinically relevant patient subgroups, we calculated
their mean cell scores in positive (cell score > 0.001) CD8" T cells and
macrophages, respectively. We then compared these aggregated cell
scoresin ever smoker versus never smoker and wild-type EGFR versus
mutated EGFR tumors. We excluded individuals with other driver
mutations from wild-type EGFR tumors because these tumors have
different clinical and biological behaviors. Correction for covariates
was not performed because many covariates (sex and age) were only
available for asmallfraction of individuals with available smoking and
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EGFR status (only for 13 individuals with EGFR-mutated tumors were
both age and sexinformation were available).

Classifying new and modified factors

We classified all factors as new, modified or unspecified based on
their input gene-gene knowledge graph dependency parameter 7.
The dependence parameter is a scalar value between 0 and 1 that
quantifies its reliance on the input gene set graph. We observed a
bimodal distribution of i, with one group of factors centered close
to 0 and another group of factors centered close to 1 (Extended
Data Fig. 2a). We therefore chose a threshold of 0.25 to separate
high-dependence from low-dependence parameters. We defined
new factors as factors with agraph dependency parameter of 7 < 0.25
and modified factors as factors with agraph dependency parameter
ofn=0.25.

Analyzing breast cancer-infiltrating leukocytes

We compared the ability of Spectra, Slalom and scHPF to retrieve fea-
tures of tumor-infiltrating immune cells. We ran the three algorithms
on all leukocytes in the Bassez dataset, as described above, usinga A
parameter of 0.01for Spectra. We alsoran Spectra on the Zhang dataset
using aAparameter of 0.01. For cells with high library size, suchas mac-
rophages (Bassez dataset median library size = 8,038), we calculated
gene scores for Spectra factors using an offset of 1, which retrieved
more stably expressed genes (for example, mean scran-normalized
expression of the top 50 marker genes of the macrophage factor 182:
1.15 with offset versus 0.41 with no offset). For remaining analyses
with lower library size, such as T cells (Bassez dataset median library
size =3,127) or B cells (Bassez dataset median library size = 3,954), we
calculated gene scores for Spectra using an offset of 0, which allowed
for more sensitive retrieval of lowly expressed genes, such as transcrip-
tion factorsinvolved in tumor reactivity and exhaustion (for example,
EOMES and TOX) as well as metabolic processes (for example, PIPOX
and BBOX1).

Visualizing scRNA-seq data. To visualize individual genes inembed-
dings and account for sparsity in scRNA-seq data, we imputed gene
expression using scanpy’simplementation of MAGIC'** with a t param-
eter of 3and the exact solver (Fig.2d and Extended Data Figs. 3¢, 6b, 7b
and 8b). For visualizing all leukocytes, we calculated t-SNE embeddings
on 57 principal components explaining 25.0% (Bassez dataset) or 55
principal components explaining 20% of variance (Zhang dataset)
with standard parametersincluding alearning rate of 1,000 using the
scanpy implementation (Figs. 2b and 4d and Extended Data Figs. 3a,
4a,7eand 8a).

Gene set enrichment analysis. To find the most representative fac-
tors for a gene set in Spectra, Slalom and scHPF, we performed gene
setenrichment analysis for the exhaustion and tumor reactivity input
genesets inthe top 50 marker genes (genes with highest gene scores)
of every factor using gseapy’s enrichr function'® (Extended Data Figs.
6eand 7c). The enrichr function calculates enrichment using a hyper-
geometric test to calculate the probability of drawing the observed
number of genes belonging to a gene set of interest when sampling
from a pool of all genes without replacement (here, the union of the
3,000 most highly variable genes plus the genes contained in the gene
sets; see Running Spectra). We calculated the enrichment of gene
setsin the top 50 markers genes (genes with highest gene scores) for

eachfactor
K\ /(N-K
()0

(o)

plk;N,K,n) =

where nis the number of factor marker genes (here, 50), kis the number
of genes fromthe gene setin the top 50 marker genesin the factor, Nis
the total number of genes contained inthe data, and K'is the number of
genes fromthe gene set contained inthe data. From this, we calculated
an FDR using the Benjamini-Hochberg correction. We assumed that
the factors with the lowest FDR for enrichment were representative of
therespective gene setsif the FDR was <0.05.

CD8+ T cell analysis. We took the subset of CD8" T cells (11 clusters)
from the Bassez dataset to explore CD8" T cell tumor reactivity (tumor
reactivity) and CD8" T cell exhaustion (exhaustion). The most repre-
sentative factors for the tumor reactivity and exhaustion gene sets
were retrieved using the gene set enrichment procedure described
above (Gene set enrichment analysis) for each factor analysis method
(Extended DataFig. 6e). Spectrafactors were also compared to expres-
sion scores for the tumor reactivity and exhaustion gene sets using
scanpy’s score_genes function (Fig. 3b and Extended Data Fig. 6b). To
find genes driving score_genes expression, we calculated the covari-
ance of all genes within the tumor reactivity or exhaustion gene sets
with the tumor reactivity and exhaustion gene scores (Extended Data
Fig. 6b). Tovisualize force-directed layouts, we used scanpy’s tl.draw_
graph function and the ForceAtlas2 method on a nearest neighbors
graph computed on CD8" T cells using scanpy’s tl.neighbors function
with n =10 nearest neighbors (Fig. 3a-c and Extended Data Figs. 3b,c
and 6b). Contour plots were created using seaborn’s jointplot kernel
density estimation with standard parameters (Fig. 3b,c and Extended
DataFig. 6f). We compared Spectra’s ability to deconvolve processes
of tumor reactivity and exhaustion (Fig. 3) with the factorization meth-
ods scHPF, Slalom and expiMap. In contrast to Spectra, Slalom only
found a factor highly enriched for exhaustion genes in the Bassez
dataset, which overlaps with the highest scoring factor for tumor
reactivity by 35 genes (Extended Data Fig. 6e). scHPF factors are not
enriched foreither reactivity or exhaustion gene sets, whereas expiMap
identified and successfully deconvolved the two factors (Extended
DataFig. 6e). However, only Spectra was able to distinguish a clonally
expanding tumor-reactive T cell population thatis specific to respond-
ers (Extended Data Fig. 6f). Moreover, Slalom, scHPF and expiMap
tumor reactivity and Spectra exhaustion factors failed to associate
with patient-level response, defined as asignificant difference between
expression in responders and non-responders before or during ICT
(Extended DataFig. 6g).

Metabolism analysis. We assessed the expression pattern of metabolic
factorsacross celltypes and found highly specific expression of the lysine
metabolism program in plasma cells. In the Bassez dataset, we noticed
asmall (n=114 cells, 0.1% of all cells, 3% of all plasma/B cells) group of
heterotypic doublets expressing plasma cell and T cell markers (CD3E,
CD3D, CD3G, IGHG4 and IGHGI), which was not apparent in previous
analyses and not detected by DoubletDetection. We removed these cells
from further analyses involving plasma cells (Fig. 4). We also inspected
the mean expression per cell type of the MAGIC'**-imputed (scanpy
implementation, ¢ =3, exact solver) top 50 individual marker genes of
thelysine factor genes with highest gene scores (Extended DataFig. 7b).
Slalom® identified a factor in plasma cells with worse resemblance to
lysine metabolism (Extended Data Fig. 7c), which is contaminated with
cell-type markers (Extended Data Fig. 7d), possibly because Slalom does
not use cell-type-specific gene scalings. expiMap’ and scHPF* factors
were homogeneously expressed across cells or not enriched in lysine
metabolism genes, respectively (Extended Data Fig. 7c—e).

Macrophage analysis. To analyze differentiation gradients in mac-
rophages and to capture all possible maturation stages, we retained the
subset of 18 clusters (12,132 cells) annotated as mature macrophages
(12 clusters) or more immature myeloid-derived (suppressor) cells/
monocytic cells (6 clusters) in the Bassez dataset for further analysis
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(Supplementary Table 2). We embedded the data using DCs, which
preserve differentiation trajectories better than many common linear
and nonlinear dimensionality reduction techniques®. Using a classifi-
cationstrategy, we selected the DCs that best captured differentiation
from more monocytic states to macrophages while separating indi-
viduals with (responders) and without (non-responders) clonal T cell
expansion (Fig. 5a,b and Extended Data Fig. 8a,b,d). For every pair of
the first 20 DCs, we performed (1) a linear regression with the DCs as
theindependent variable and the scran-normalized expression of the
monocyte marker SIOOA8as the dependent variable and (2) alogistic
regression with the DCs as theindependent variable and response sta-
tus as the dependent variable. We chose the DC pair with highest sum
of the coefficient of determination R? (linear regression) and highest
mean accuracy (logistic regression). We calculated Spectra cell score
trends over the DCs by fitting a generalized additive model as imple-
mented in Palantir’'s_gam_fit_predictand calculate_gene_trends func-
tions'® using cell scores instead of gene expression and DCs instead
of pseudotime (Fig. 5a):

Yijk = Bo +fDCyy)

where y, ;. is the cell score of cell i, factor,j and the kth DC, and DC;
is the kth DC for cell i. We then visualized cell score trends using the
plot_gene_trend_heatmap function from Palantir.

To calculate compositional changes during ICT, we used the Milo
package®. Milo is analogous to differential gene expression analysis,
butinstead ofidentifying genes that differ between two groups of cells,
it tests for differential cell density in (possibly overlapping) neigh-
borhoods of a k-nearest neighbors (KNN) cell-cell similarity graph
across different conditions. We chose the default fraction of 0.1to be
sampled as index cells from the KNN graph, such that representative
cellular neighborhoods were only constructed for those index cells.
Milo counts the number of cells per sample in each neighborhood and
uses a generalized linear model with a negative binomial distribution
to test for differences in abundance. Milo also accounts for multiple
comparison testing by computing aspatial FDR.

For the Bassez dataset, we constructed a KNN graph on mac-
rophages and monocytic cells. The Milo paper gives the following
heuristic to estimate an optimal k parameter>®:

k>Sxa

where Sis the number of samples (here, 79), and ais an arbitrary scal-
ing parameter. Following the authors’ suggestion of 3 < a > 5resulted
inanoverlylarge k parameter 237 < k > 395. We therefore chose kto be
smaller than the smallest population of cells identified by clustering
(58 cells) but close to the k parameter obtained by the heuristic above,
resultingin k= 50 to construct the KNN graph and toidentify the near-
est 50 neighbors of the index cells.

Wethenassessed the fold change of cell states under PD-1blockade
using the following regression formula:

Yns ~ response + timepoint + timepoint  response

where yis the number of cells from sample sin neighborhood n, and
responsestatus is defined as O for non-responders and 1 for respond-
ers. We defined the timepoint as O for before pretherapy and 1 for
on-therapy. The notation timepoint * response indicates the interac-
tion between the timepoint and response variables. We then identi-
fied the neighborhoods specifically enriched for non-responders
under therapy by taking the subset of neighborhoods based on the
estimated regression coefficients. First, we identified the neighbor-
hoods specifically enriched under therapy by retaining a subset of
all neighborhoods with an FDR of <0.05 and coefficient (log (fold
change)) of >0 for the timepoint parameter for further analysis.

From these, we took a subset of the neighborhoods enriched for
non-responders compared to responders under therapy by selecting
neighborhoods with an interaction FDR of <0.05 and an interaction
coefficient (log (fold change)) of <0 for further analysis. We then
compared the mean factor cell scores for these neighborhoods to
allremaining neighborhoods.

The Zhang dataset contained fewer individuals treated withimmu-
notherapy than the Bassez dataset (n =8 versus n =42) and therefore
did not allow for testing as many covariates. We thus chose a slightly
different strategy to find macrophage neighborhoods enriched for
non-responders under therapy. For the Bassez dataset, we took a sub-
set of 16 clusters (11,466 cells) annotated as mature macrophages (12
clustersand 9,385 cells) or moreimmature myeloid-derived (suppres-
sor) cells/monocytic cells (4 clusters and 2,081 cells; Supplementary
Table 2) and selected samples from individuals classified as
non-responders treated with anti-PD-L1 (see Zhang dataset) for a total
of 4,318 cells and five samples. Analogous to the k parameter selection
strategy above, we constructed a KNN graph using a k parameter of
20, which was smaller than the smallest cell population detected by
clustering (22 cells). We then defined Milo neighborhoods as the 30
nearest neighbors of the index cells. We fitted the Milo model using
the following regression formula:

Yns ~ timepoint

where y is the number of cells from sample s in neighborhood n, and
timepointis defined as either O for pretherapy or 1for on-therapy. We
took a subset of the neighborhoods with an FDR of <0.2 and a coeffi-
cient (log (fold change)) of >0 for the timepoint parameter for further
analysis. As for the Bassez dataset, we then compared the factor cell
scores for this group with all remaining neighborhoods.

Statistical analysis and visualization

Pvalues were calculated as indicated above using the Milo, scipy and
statsmodels Python packages. No normality assumption was made. We
used aMann-Whitney U-test for independent samples and a Wilcoxon
matched-pairs signed-rank test for paired samples. If not indicated dif-
ferently, all Pvalues are two-sided and corrected for multiple compari-
sons (Bejamini-Hochberg method). A Pvalue of 0.05 was considered
statistically significant. Cohen’s d was calculated according to the
following formula:

_ mean(a) — mean(b)
s

d

where sis the pooled standard deviation, and mean(a) and mean(b)
are the means of groups a and b, respectively.

Data were visualized using the matplotlib and seaborn Python
packages and GraphPad Prism v9 for Microsoft Windows and were
editedin Adobe lllustrator Creative Cloud (v27.0). Panels from Figs. 3c,f
and 4d and Extended Data Fig. 3c are duplicated in Extended Data fig-
uresto enable side-by-side visual comparisons. The following software
packages were used: absl-py (1.0.0), anndata (0.8.0), arpack (3.7.0),
cython (0.29.28), fsclvm (1.0.0.dev10), h5py (3.6.0), igraph (0.10.1),
intervaltree (2.1.0), jsonpickle (2.1.0), jsonschema (3.2.0), jupyter
(1.0.0), leidenalg (0.8.8), matplotlib (3.5.0), networkx (2.6.3), numba
(0.54.1), numpy (1.20.3), opt_einsum (3.3.0), pandas (1.3.5), pip (22.1.2),
Python (3.7.6), python-igraph (0.10.1), pytorch (1.10.1), pyvis (0.1.9),
scanpy (1.8.2), schpf (0.5.0), scikit-learn (1.0.2), scipy (1.7.3), seaborn
(0.11.2), Slalom (1.0.0.dev11), Spectra (0.1.0), statsmodels (0.12.2),
tqdm (4.62.3), umap-learn (0.5.2), zifa (0.1), anndata (0.8.0), cellrank
(1.5.1), DoubletDetection (2.5.2), graphviz (2.50.0), joypy (0.2.6), jupy-
ter (1.0.0), kneed (0.7.0), leidenalg (0.8.10), notebook (6.4.12), numpy
(1.21.6), numpy_groupies (0.9.17), palantir (1.0.1), pandas (1.4.2), phe-
nograph (1.5.7), pickleshare (0.7.5), plotly (5.10.0), pygam (0.8.0),
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pygments (2.12.0), pygraphviz (1.9), python-utils (3.3.3), pyvis (0.3.0),
r-base (4.1.3), rpy2 (3.5.1), scanpy (1.9.1), scikit-learn (1.1.1), scipy (1.8.1),
seaborn (0.11.2), miloR (3.16), pytorch (1.7.0), matplotlib (3.5.1), cuda-
toolkit (10.2.89), h5py (3.3.0), hdf5 (3.3.0), igraph (0.9.4), networkx
(2.5.1) and numba (0.51.1).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Count matrices for the PBMC® and Zhang datasets® were obtained from
GEO (https://www.ncbi.nlm.nih.gov/geo/) using accession numbers
GSE178431and GSE169246, respectively. Count matrices of the Bassez™
and Caushi*° datasets were kindly provided by the authorsand are also
available at http://biokey.lambrechtslab.org and GEO (GSE173351),
respectively. Raw read counts for the Bassez'” dataset are available
in the EGA (EGAS00001004809 and EGAD00001006608). Count
matrices for the Salcher atlas” were obtained from Zenodo (https://
doi.org/10.5281/zenodo.7227571). Gene sets from the Cytopus knowl-
edge base are available on GitHub and Zenodo (https://github.com/
wallet-maker/cytopus and https://doi.org/10.5281/zenodo.7306238).
Source data are provided with this paper.

Code availability
Spectra is available as an open-source Python package at https://
github.com/dpeerlab/spectra/,and theimmunology knowledge base
isavailable at https://github.com/wallet-maker/cytopus/. Notebooks
to reproduce figures are available at https://github.com/dpeerlab/
SpectraReproducibility.
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Extended Data Fig.1| Cell type annotations in breast cancer datasets. Related  lymphoidcelltype 3; T, T cell; gdT, gamma-delta T cell; pDC, plasmacytoid
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Extended Data Fig. 3| Spectra detects cell-type-specific gene programs.
Related to Fig. 2. a, t-SNE embeddings colored by cell scores for the Spectra,
expiMap or Slalom factors best representing CD8" T-cell tumor reactivity

and CD8’ TCR signaling (n =97,863 cells). Black contours highlight aberrant
expression in populations other than T cells. b, Force-directed layout (FDL) of
CD8' T cells (n=31,925) colored by the cell scores of indicated factors. ¢, FDLs of

CD8'T cells (n=31,925) colored by imputed expression (MAGIC ¢ =3) of relevant
marker genes, ranked according to their gene scores. Many of these genes
participate in multiple cellular processes (pleiotropy). For example, CISHis a
member of the suppressor of cytokine signaling family thatis induced by TCR
activation, but also by IL-15in NK cells, and is a critical regulator of dendritic cell
differentiation.
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Extended Data Fig. 4 | Spectra discerns the effects ofimmune checkpoint
therapy oninterferonsignaling. Related to Fig. 2. a, t-SNE embeddings of
tumor-infiltrating leukocytes (n=97,863) from the Bassez data, colored by cell
scores for Spectra or scanpy.score genes interferon gamma (IFNg) response,

or by expression of selected human leukocyte antigen (HLA) class Il genes.

HLA expressionis scran-normalized and notimputed. b, Mean cell score of the
positive fraction (cell score > 0.01) per sample and cell type before (blue, patient
sample number, n=40) and after (red, patient sample number, n=40) anti-PD-1
immune checkpoint blockade in breast tumor infiltrating leukocyte data from
the Bassez data. Two-sided p values were calculated using Wilcoxon matched-
pairs signed rank tests. Test statistics, left panel: 282 (Treg: regulatory T cell), 184
(memory B: memory B cell), 75 (mast: mast cell), 82 (pDC: plasmacytoid dendritic
cell),237 (CD4 T: CD4 T cell), 222 (DC: dendritic cell), 129 (naive B: naive B cell),

cell score
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289 (NK: NaturalKiller cell), 293 (CD8 T: CD8 T cell), 76 (gdT: gamma-delta T cell),
59 (GC-B: germinal center B cell), 339 (macrophage), 24 (ILC3: innate l[ymphoid
celltype 3), 220 (plasma: plasma cell). Test statistics, right panel: 340 (Treg), 241
(memory B), 168 (mast), 131 (pDC), 362 (CD4 T), 305 (DC), 121 (naive B), 349 (NK),
427 (CD8T),71(gdT),104 (GC-B), 356 (macrophage), 125 (ILC3), 262 (plasma).
Cohen’s d, left panel: 0.049 (NK), 0.320 (CD4 T), 0.228 (GC B), 0.105 (CDS8T),
0.075 (naive B), 0.064 (Treg), 0.285 (DC), 0.142 (mast), 0.093 (Mac), 0.131
(plasma), 0.171(ILC3), 0.341 (pDC), 0.067 (gdT), 0.197 (memory B). Cohen’s d,
right panel: 0.168 (NK), 0.142 (CD4 T), 0.039 (GC-B), 0.040 (CD8T), 0.187

(naive B), 0.008 (Treg), 0.166 (DC), 0.003 (mast), 0.064 (mac), 0.139 (plasma),
0.008(ILC3),0.202 (pDC), 0.170 (gdT), 0.146 (memory B). Boxes and line
represent interquartile range (IQR) and median, respectively; whiskers
represent 1.5x IQR.
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Extended Data Fig. 5| Spectrarecovers genes involvedin diverse cellular
processes. Related to Fig. 2. a, Top 50 factor marker genes identified by
Spectrainthe Bassez data, after holding out arandom 40% subset from each
corresponding input gene set. Marker genes are ranked by Spectra factor score.
New genes (red, absent from input gene set) and held-out genes (blue) recovered
by Spectra; GPI, Glycosylphosphatidylinositol. b, Proportion of held-out genes
recovered by Spectra or expiMap from the Bassez data, for individual gene set
tested; phosphor., phosphorylation. ¢, Reconstruction performance on each
tested gene set (n=23). Lines connect identical gene sets. d, Synthetic datawas
generated by sampling random ground truth loadings and factors from log-
normal and half-Cauchy distributions, respectively, and introducing correlations
intwo factors via off-diagonal entries in the log-normal covariance matrix. After
multiplying loadings and factor matrices and introducing noise, models were fit
to the data and output factors were correlated with ground truth factors;

est., estimated. e, Correlation between ground truth and inferred loadings

(cell scores) for score genes and Spectra versus gene set overlap in simulated
data. Data consisted of overlapping synthetic gene sets and arandom cell
loading vector representing the expression of each gene setin a cell (Methods).
The sum of gene sets weighted by the individual cell loadings for each cell was
used to represent amean for sampling Poisson gene expression counts. f, Gene
expression data was simulated from a factor analysis modelinwhich only a
subset of gene sets are active in the data, similar to d and the original Slalom
publication. AUC, area under the receiver operating characteristic (ROC) curve.
Intervals and lines represent 95% confidence interval and mean, respectively,
acrossn=10(d),n=3(e),and n=>5 (f) independent simulations. g, Memory
dependence on cell (left panel, n =35 gene sets, 1 cell type), gene set (middle
panel, n=25,000 cells, 1cell type), and cell type number (right panel, n=25,000
cells, one gene set per cell type and one global). h, Runtime dependence on cell
type number. Each experiment (g,h) was repeated n =3 times, shading indicates
95% confidence interval.
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Extended Data Fig. 6 | Existing methods fail to separate highly correlated
featuresin CD8+ T cell data. Related to Fig. 3. Analysis of breast cancer
infiltrating leukocytes from the Bassez data (n =42 patients). a, Spectra
information and importance scores (Methods) in CD8" T cells, colored by
parameters. b, CXCLI3 expression is most correlated with tumor reactivity and
exhaustion, and maps to similar cells as both gene set scores in force directed
layouts (FDL) of CD8" T cells (n=31,925). Cov., covariance of each gene-set with
CXCL13.c,Overlap between the top 50 marker genes of CD8" T cell exhaustion
and tumor reactivity factors. d, Overlap between the top 50 marker genes of the
CD8'T cell tumor reactivity factors in the Bassez and Caushi data. e, Significance
(-log,o(FDR)) of CD8" T cell exhaustion or tumor reactivity factors by gene set
enrichment analysis (Spectra, n=159; Slalom, n=20; scHPF, n=100 factors);

non-response

0
non-response
On anti-PD-1

response non-response response
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FDR, false discovery rate. f, Contour plots indicating density of Spectra, Slalom
or scHPF loading scores for CD8" T cell exhaustion and tumor reactivity factors
grouped by clonal T cell expansion status (n =31,925 cells). g, Per-sample mean
cellscores for the tumor reactivity factor. Boxes and line represent IQR and
median, respectively; whiskers represent 1.5x IQR. P values (two-sided) were
calculated using Mann-Whitney U'tests (n =40 pre anti-PD-1, =40 on anti-PD-1
samples): Spectra: pre anti-PD-1: p = 3.84 x 10 statistic: 308 Cohen’s d (d): 1.510;
onanti-PD-1: p=2.00 x 10°, statistic = 313 d: 1.491; expiMap, pre anti-PD-1p=0.99
statistic:167 d: 0.194; on anti-PD-1p = 0.80 statistic: 159 d: 0.150; Slalom pre anti-
PD-1: p=0.57 statistic: 198 d: 0.249 ; Slalom on anti-PD-1: p = 0.94 statistic: 155 d:
0.059; scHPF pre anti-PD-1: p = 0.34 statistic: 216 d: 0.337; scHPF on anti-PD-1:
p=0.16 statistic: 201 d: 0.592.
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Extended Data Fig. 7| Spectra finds highly specific and biologically coherent
lysine metabolism factors. Related to Fig. 4. a, Spectraimportance and
information scores for factors in plasma cells, colored by n parameter. b, z-scored
average MAGIC imputed (¢=3) cellular expression (per cell type) of lysine factor
genes (n=97,863 leukocytes). ¢, Significance (-log,,(FDR)) and fold enrichment
(odds ratio) of the lysine metabolism input gene set, among the 50 genes with
highest gene scores, as calculated by gene set enrichment analysis (Spectra:
n=152;Slalom: n=20; scHPF: n=100 factors). d, Functional categories of

the top 50 marker genes of lysine metabolism factors identified by different

factorization methods; TF, transcription factor. e, t-SNE embeddings colored
by cell scores for top-performing lysine metabolism factors (labeled in ¢) from
different factorization methods (n=97,863 leukocytes). Plasma, macrophage
(Mac) and dendritic cell (DC) populations are outlined. ILC3, innate lymphoid
celltype3; T, T cell; gdT, y6 T cell; pDC, plasmacytoid dendritic cell; mac,
macrophage; mono, monocyte; NK, natural killer cell; B, B cell; mast, mast cell;
Treg, regulatory T cell; DC, dendritic cell; GC B, germinal center B cell; plasma,
plasmacell.
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Extended Data Fig. 8 | Tumor-infiltrating macrophage cell states exist along
continua that change under therapy. Related to Fig. 5. a, t-SNE embedding of
allleukocytes (left) and distribution of macrophages/monocytes (n=12,132)
along diffusion components 2 and 4 (DC2 and DC4, right), highlighting cells of
C3-positive macrophage cluster C7 from the Bassez data. b, Macrophages along
DC2 and DC4, colored by MAGIC-imputed (¢ =3) complement gene expression.
¢, Mean MAGIC-imputed (t=3) complement gene expression per sample in
macrophages from responsive or non-responsive patients sampled before

(pre, n=40) or during (on, n=40) anti-PD-1therapy. Boxes and line represent
IQR and median, respectively; whiskers represent 1.5x IQR. d, Scran-normalized
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expression of macrophage and monocyte marker genes in cells sorted along DC2,
showing diverging expression along this gradient. e, Overlap coefficient and
graph dependency for Spectra factors (n=197).f, scHPF (n=100) and Slalom
(n=20) factors do not resemble the Spectrainvasion factor (factor 182). Each
factor is plotted by fold change of its cell score in macrophage neighborhoods
enrichedin non-responders under therapy, compared to its cell scoreinall
remaining macrophages, and by the coefficient of overlap between the top

50 marker genes of each factor and of the Spectrainvasion factor (analogous to
Fig.5c,d).g, Spectraimportance and information scores for factorsin
macrophages. Factors (points) colored by eta parameter indicated in color code.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Count matrices for the PBMC and Zhang dataset were obtained from the Gene expression Omnibus (GEO, https://www.ncbi.nIm.nih.gov/geo/) using the following
accession number: GSE178431, GSE169246, respectively. Count matrices of the Bassez and Caushi dataset were kindly provided by the authors and are also
available at (http://biokey.lambrechtslab.org) and GEO (GSE173351), respectively. Raw read counts for the Bassez data are available in the European Genome-
phenome Archive (EGA) (EGAS00001004809, EGAD00001006608). Count matrices for the Salcher atlas were obtained from Zenodo (https://doi.org/10.5281/
zen0do.6411867). Gene sets from the cytopus knowledge base are available on github and zenodo (https://github.com/wallet-maker/cytopus, 10.5281/
zenodo.7306238).
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender One of four PBMC donors is of female sex in the PBMC dataset. All patients in the breast cancer datasets are of female sex.
Male breast cancer is rare (<1% of all breast cancers) and this minority was not included. 9 of 16 and 133 of 297 patients
with known sex status were of female sex in the Caushi and Salcher lung cancer studies, respectively. Gender identity was not
reported.

Population characteristics Population characteristics are outlined in Supplementary methods. Mean patient age: 61,47,68,60,28 and %female:
100,100,56,41, 25% and Union for International Cancer Control % stage 4: 0,53,0,10,0 for the Bassez, Zhang, Caushi, Salcher
and Kartha data respectively.

Recruitment Retrospective cohort study (Kartha et al, Caushi et al.). Prospective recruitment registered trial (Bassez et al.), prospective
chart review unregistered trial (Zhang et al.). Meta-analysis (Salcher et. al). Full study details in the original publications:
10.1016/j.xgen.2022.100166, 10.1038/s41586-021-03752-4, 10.1016/j.ccell.2021.09.010, 10.1038/s41591-021-01323-8,
10.1016/j.ccell.2022.10.008

Ethics oversight This manuscript includes multiple datasets approved by ethics oversight at the original authors' institutions:
local medical ethics committee of the University Hospitals Leuven (S60100),
Institutional Review Boards (IRB) at Johns Hopkins University (JHU) and Memorial Sloan Kettering Cancer Center,
Ethical Committee of National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (No. 18-216/1794), and
the institutional review board at Medical University Innsbruck, Austria (AN214-0293 342/4.5)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed for this study. Sample size estimation for original studies can be retrieved from the original
publications. 10.1016/j.xgen.2022.100166, 10.1038/s41586-021-03752-4, 10.1016/j.ccell.2021.09.010, 10.1038/s41591-021-01323-8,
10.1016/j.ccell.2022.10.008

Data exclusions  No data were excluded. In addition to the low quality cells removed by the original study authors we removed cells with low library size, low
library complexity and high mitochondrial gene content as outlined in Methods under "Immunooncology datasets".
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Replication The manuscript validates the tumor reactivity, lysine metabolism and macrophage invasion factors on 3 to 4 datasets (including one atlas, all
with independently fit Spectra models) for a total of >2,000,000 cells, 395 patients and 23 studies.

Randomization  No randomization was performed. This study is to explore biological aspects which do not require randomization or cannot be randomized
such as time course comparisons within a patient (Figure 3,5) or associations with biological or behavioral variables such as cancer driver
mutations or smoking (Figure 6). While time-course data is matched within a patient and does not required controlling covariates, datasets for




which relevant biological or behavioral variables were available were too small to regress out covariates (only for 13 EGFR mutated patients
both age and sex were available).

Blinding The study is exploratory in nature therefore no blinding was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  NCT03197389

Study protocol Study protocol for the Bassez et al. study can be found in the original publication. 10.1038/s41591-021-01323-8 . For all other studies
no study protocols are available.

Data collection DTHealth TrakCare System at National Cancer Center, Beijing, China (before 12/2021, period unknown). University Hospitals Leuven
(01/18-02/20). Johns Hopkins Sidney Kimmel Comprehensive Cancer Center and Memorial Sloan Kettering Cancer Center
(2015-2018). PBMC from the Kartha data were purchased from AllCells (before September 2022, period unknown) . Salcher
metanalysis from multiple studies (collection dates before 2023, period unknown).

Outcomes Outcomes measures were prospectively defined (clinicaltrials.gov identifier NCT03197389) for the Bassez study. The primary
outcome measure was: PD-1 expression after a single dose of pembrolizumab. We do not know whether the authors have reported
this outcome measure anywhere. All other studies were explorative in nature without registration of outcome measures.
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