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Supervised discovery of interpretable gene 
programs from single-cell data

Russell Z. Kunes1,2,7, Thomas Walle    1,3,4,5,7, Max Land    1, Tal Nawy    1 & 
Dana Pe’er    1,6 

Factor analysis decomposes single-cell gene expression data into a minimal 
set of gene programs that correspond to processes executed by cells in 
a sample. However, matrix factorization methods are prone to technical 
artifacts and poor factor interpretability. We address these concerns with 
Spectra, an algorithm that combines user-provided gene programs with 
the detection of novel programs that together best explain expression 
covariation. Spectra incorporates existing gene sets and cell-type labels as 
prior biological information, explicitly models cell type and represents input 
gene sets as a gene–gene knowledge graph using a penalty function to guide 
factorization toward the input graph. We show that Spectra outperforms 
existing approaches in challenging tumor immune contexts, as it finds 
factors that change under immune checkpoint therapy, disentangles the 
highly correlated features of CD8+ T cell tumor reactivity and exhaustion, 
finds a program that explains continuous macrophage state changes under 
therapy and identifies cell-type-specific immune metabolic programs.

A key challenge in the interpretation of single-cell RNA-sequencing 
(scRNA-seq) data is to retrieve coherent interpretable gene programs 
representing cellular processes and to quantify them in response to per-
turbation. Gene programs are sets of genes defined by common tasks, 
such as metabolic pathways or responses to inflammatory cues. Gene 
set scoring (for example, scanpy score_genes1,2) is a simple and widely 
used approach to query which known gene programs are active in which 
cells, but it is often confounded by gene set overlap and technical fac-
tors. The regulation of gene programs tends to be shared across cell 
subpopulations, creating collinearity in gene expression and imbuing 
high-dimensional cell-by-gene count matrices with low-dimensional 
structure. Matrix factorization can mine this structure to identify can-
didate gene programs3,4 and is a core tool in single-cell analysis; for 
example, factorization by principal component analysis appears in 
most analysis pipelines.

In principle, the power of factorization lies in summarizing bio-
logical activity as a set of cellular building blocks (a minimal vector 

representing the degree to which a cell activates each gene program) 
rather than a noisy vector of all observed genes or a single label denot-
ing cell type. Yet, there are many ways to decompose a matrix, and 
unsupervised approaches, such as principal component analysis and 
non-negative matrix factorization (NMF), produce factors that are 
often difficult to interpret or are driven by technical artifacts, such 
as batch effects, ambient RNA or gene expression scale differences4,5. 
Supervised approaches use known gene sets to make detected factors 
more interpretable6,7, but preexisting gene sets are typically defined 
in different biological contexts than those under study. In addition, 
cell-type factors tend to prevail in factor analysis because expression 
differences between cells are dominated by cell type5. The popular 
practice of partitioning data by cell type and factoring each subset 
separately mitigates this issue but makes it impossible to find shared 
programs.

We developed Spectra (supervised pathway deconvolution of 
interpretable gene programs) to provide meaningful annotations of 
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removing edges in the input graph. The algorithm incorporates back-
ground edge and non-edge rates (provided as input parameters or 
learned from the data) to determine edge addition and removal rates. 
Critically, Spectra can detach factors from graph penalization to learn 
entirely new factors. In effect, Spectra attempts to explain as many of 
the input gene counts as possible by adapting the input gene graph 
(providing highly interpretable factors) and uses the residual unex-
plained counts to identify non-penalized factors that can capture 
entirely novel biology.

Spectra factors predict ground truth signaling perturbations
We first curated a general resource of 231 immunological cell-type and 
cellular process gene sets that can be input into Spectra for analyzing 
any immune-related dataset (Fig. 1b, Supplementary Table 1 and Meth-
ods). To maximize how many processes can be dissected and to avoid 
size-driven effects, our cellular process gene sets have comparable 
size (median of 20 genes per set) and relatively little overlap (median 
of 40% pairwise overlap).

We used our immunology knowledge base to infer gene programs 
in a ground truth scRNA-seq dataset8 from human peripheral blood 
mononuclear cells (PBMCs) stimulated in vitro with interferon-γ (IFNγ), 
lipopolysaccharide (LPS) or phorbol myristate acetate (PMA), a protein 
kinase C activator used to mimic TCR activation (Fig. 1c). We ran Spectra in 
addition to expiMap9 and Slalom6 (factorization methods that also incor-
porate prior gene sets) and tested the association of factor cell scores 
with their corresponding perturbations. Only Spectra identified gene 
programs associated with all three perturbations in the correct condition 
and cell type (Fig. 1d), substantially outperforming Slalom and expiMap.

Spectra identifies robust factors in immuno-oncology data
We next applied Spectra to scRNA-seq data from the challenging 
context of individuals with non-metastatic breast cancer before and 
after pembrolizumab (anti-PD-1) treatment (‘Bassez dataset’; Fig. 2a)10. 
The original study used clustering and gene set analysis to identify 
therapy-induced changes and used TCR sequencing to define the clonal 
T cell expansion status of each participant treated with anti-PD-1 as a 
surrogate for immune checkpoint therapy (ICT) response10.

We annotated 14 broad cell types (including CD8+ T cells and 
macrophages), leaving Spectra to infer factors associated with finer 
cell-type distinctions, such as T cell activation or macrophage polariza-
tion (Fig. 2b, Extended Data Fig. 1, Supplementary Table 2 and Meth-
ods). Fitting the Spectra model with default parameters (Methods) and 
our cell-type labels and immunology knowledge base as input resulted 
in 152 global and 45 cell-type-specific factors, the latter including CD4+ 
T cells (n = 12), CD8+ T cells (n = 7) and myeloid cells (n = 6).

We determined overlap with known gene sets to assess whether 
Spectra can identify biologically interpretable programs. For every 
factor, Spectra estimates a dependence parameter (η) that quantifies 
reliance on the gene–gene graph. Most factors (171) are strongly con-
strained by the graph (η ≥ 0.25), whereas 26 are novel (Extended Data 
Fig. 2). We found that factors with η ≥ 0.25 generally share over 50% of 
their genes with an input gene set, whereas the unbiased factorization 
approaches NMF and scHPF4,5 produce factors that do not agree with 
annotated gene sets (Fig. 2c), underscoring the difficulty of interpret-
ing programs derived by these approaches.

Spectra uses cell-type labels and cell-type-specific input gene sets 
to restrict factors to their appropriate cell type, ensuring more biologi-
cally sensible factor loadings; for example, Spectra limits CD8-specific 
TCR signaling, tumor reactivity and exhaustion factors to CD8+ T cells 
(Extended Data Fig. 3). By contrast, the gene set-based factorization 
method Slalom6 and autoencoder-based method expiMap9 misassign 
some TCR activity, CD8+ T cell exhaustion and tumor reactivity to the 
myeloid, natural killer (NK) cell and plasma cell lineages (Extended 
Data Fig. 3a), likely because many genes in these factors participate 
in multiple programs.

cell function by balancing prior knowledge with data-driven discovery 
(https://github.com/dpeerlab/spectra). Spectra incorporates existing 
gene sets and cell-type labels as prior information, explicitly models 
cell type and represents input gene sets as a gene–gene knowledge 
graph using a penalty function to guide factorization toward the input 
graph. The graph representation enables data-driven modification of 
the input to reflect biological context and the identification of novel 
gene programs from residual unexplained variation. The degree of 
reliance on prior knowledge can be tuned with a global parameter.

The minimization of cell-type influence allows Spectra to identify 
factors that are shared across cell types. We show that Spectra outper-
forms existing approaches and solves longstanding challenges in tumor 
immune contexts, including the identification of an interpretable 
tumor reactivity factor in CD8+ T cells and a new invasion program in 
macrophages, which associate with response and resistance to can-
cer immunotherapy, respectively. Our open-source software scales 
to large atlases and overcomes batch effects to find factors that are 
stable across cohorts and even tumor types and are robust enough to 
be associated with clinical variables.

Results
Spectra identifies interpretable gene programs
We assume that each cell executes a small number of gene programs 
and that its observed expression is determined by the sum of its active 
programs. Spectra decomposes the cell-by-gene expression matrix 
into a cell-by-factor matrix that identifies and quantifies the programs 
executed by each cell and a factor-by-gene matrix representing the 
genes in each program (Fig. 1a and Methods). As input, the algorithm 
receives a normalized cell-by-gene count matrix, a cell-type annotation 
for each cell and either a list of gene sets or gene–gene relationships 
in the form of knowledge graphs. As output, Spectra provides a set of 
normalized global and cell-type-specific factor matrices that represent 
the gene loadings for each identified factor (gene scores), a sparse 
matrix of normalized factor loadings for each cell (cell scores) and 
a modified gene knowledge graph that represents factors inferred 
from the data (see Methods for a technical description of Spectra and 
parameter settings).

Two key features distinguish Spectra from other factorization 
methods, enabling it to identify more interpretable factors and dis-
cover new biology. First, Spectra uses known cell-type information and 
allows for cell-type-specific factors. Second, Spectra represents exist-
ing gene sets as an input gene–gene knowledge graph, enabling their 
data-driven modification and the derivation of entirely new factors.

Cell-type labels are provided as input to Spectra, which models the 
influence of a factor on gene expression relative to baseline expression 
per cell type, thereby mitigating its influence on the factors. The ability 
to incorporate cell-type-specific factors guides inference. For example, 
the T cell antigen receptor (TCR) activation program should be limited 
to T cells, but many of its genes are activated by additional programs in 
other cell types, which confuses traditional factor analysis.

Spectra attempts to balance prior knowledge and interpretability 
with faithfulness to the data. Its likelihood function ensures that the 
reconstituted matrix closely matches the input matrix, and its penalty 
function guides gene factorization toward the gene–gene knowledge 
graph (Methods). To capture prior knowledge, we use binary gene–
gene relationships and encourage these gene pairs to share similar 
factors. Spectra takes input gene sets and turns each into a fully con-
nected clique in the input graph, indicating their relationships. Factors 
are thus scored by how well they match the data and how many edges 
in the gene–gene graph support them.

Most gene sets are derived from multiple biological contexts, 
which differ from the context under study. Spectra can take a com-
pilation of gene sets and determine the subset supported by the 
data. Encoding prior knowledge as a graph facilitates computational 
efficiency and allows Spectra to adapt gene programs by adding or 
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Pleiotropy similarly confounds score_genes1,2. For example, Spec-
tra’s IFNγ response factor is well correlated with the gene encoding the 
IFNγ receptor upstream of this gene program and correctly captures it 
across all cell types, whereas the score_genes IFNγ response is detected 

almost exclusively in the myeloid population (Fig. 2d). This myeloid bias 
is due to differences in baseline expression across cell types, especially 
higher expression of genes encoding major histocompatibility complex 
class II (MHC class II) molecules by myeloid antigen-presenting cells 
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Fig. 1 | Spectra uses gene sets and cell types to guide gene program discovery 
from scRNA-seq data. a, As input, Spectra receives a gene expression count 
matrix with cell-type labels for each cell as well as predefined gene sets, which it 
converts to a gene–gene graph. The algorithm fits a factor analysis model using 
a loss function that optimizes reconstruction of the count matrix and guides 
factors to support the input gene–gene graph. As output, Spectra provides 
factor loadings (cell scores) and gene programs corresponding to cell types and 
cellular processes (factors). b, Gene set categories in the immunology knowledge 

base. c, Design of the perturbation experiments from Kartha et al.8. PBMCs 
(n = 23,754) from healthy human donors (n = 3) were incubated for 6 h with LPS, 
PMA or recombinant human IFNγ. d, Ability of different algorithms to identify 
gene programs associated with biological perturbations in the PBMC dataset. 
For select factors, mean per-donor cell scores are provided for T cells or innate 
lymphoid cells (T/ILCs), B cells (B) and myeloid cells (M; n = 3 donors). Boxes 
and lines represent interquartile range (IQR) and median, respectively; whiskers 
represent 1.5× IQR.
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(Extended Data Fig. 4). Spectra overcomes pleiotropy by implicitly down-
weighting the influence of genes whose expression could be explained 
by multiple factors. Specifically, Spectra decomposes gene expression 
using the factors best supported by total expression in a given cell. Spec-
tra is able to identify IFNγ activity and its previously reported activation 
by ICT11,12 across expected immune cell types13 (Extended Data Fig. 4b) 
because it learns these factors in a cell-type-specific manner.

Thus, in addition to yielding more interpretable gene programs 
than other supervised methods, Spectra is better at inferring which 
cells these programs are active in.

Spectra outperforms other methods on gene program 
benchmarks
We systematically benchmarked Spectra against other methods by 
measuring how well they identify coherent gene programs and assign 
activity to cells. A key feature of Spectra is that it can modify input 
gene sets in a data-driven manner. We held out 30% of genes from 20 
input gene sets and tracked their identification in the resulting factors 
(Methods). Spectra factors recover many more genes than Slalom6 
(Fig. 2e) and expiMap9 (Extended Data Fig. 5a–c). For example, among 
the 50 genes with the highest gene scores for the MYC factor, Spectra 
identified 7 of 33 held-out genes; moreover, it recovered additional MYC 
target genes DKC1 (ref. 14) and TOMM40 (ref. 15), which are absent from 
the training and hold-out sets, whereas MYC signaling was not captured 
by Slalom (Fig. 2e, Extended Data Fig. 5a and Methods).

To evaluate new gene detection, we reasoned that genes belong-
ing to a program should exhibit coherence; that is, they should be 

coexpressed in the same cells. We applied factor analysis with held-out 
cells and evaluated the coherence of inferred factors in the test set 
(Methods). Spectra and other methods that take the sparsity of 
scRNA-seq data into account (Slalom and scHPF) perform well, whereas 
generic models (NMF) do not (Fig. 2f). The key advantage of supervised 
approaches is that by seeding inference with a known gene set, coher-
ent genes are more likely to be biologically meaningful (Extended 
Data Fig. 5b,c).

Unlike other methods, Spectra’s use of prior knowledge enabled 
it to separate highly correlated factors in simulated data generated 
by a generic factor analysis model with both correlated and uncorre-
lated factors (Methods and Extended Data Fig. 5d). Estimating factor 
loadings in these data is particularly challenging because pleiotropy 
creates correlation between gene programs (Methods). As gene set 
overlap increases, score_genes1,2 surges in false-positive score esti-
mates, whereas Spectra correctly assigns expressed factors to cells 
(Extended Data Fig. 5e). Due to their multivariate nature and encour-
agement of sparsity, factorization methods select the factors that best 
explain the data globally, such that each factor accounts for expression 
not already explained by other factors. Factor analysis is thus superior 
to score_genes even for the simple task of scoring gene sets.

In contrast to Spectra, Slalom’s accuracy drops substantially as the 
number of active gene sets increases (Extended Data Fig. 5f). Moreover, 
Slalom can only assess a few dozen gene sets before run time becomes 
prohibitive, whereas Spectra scales to hundreds of thousands of cells 
and hundreds of gene programs. When run on a graphics processing 
unit (GPU), Spectra outperforms all methods, including NMF and the 
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Fig. 2 | Evaluation of Spectra performance on simulated data and an immuno-
oncology dataset. a, Treatment and scRNA-seq sampling regimen of individuals 
with breast cancer in the Bassez dataset10. b, t-Distributed stochastic neighbor 
embedding (t-SNE) of tumor-infiltrating leukocytes (n = 97,863 cells) from the 
Bassez dataset colored by cell type; B, B cell; DC, dendritic cell; γδT, γδ T cell; GC, 
germinal center; ILC3, type 3 innate lymphoid cell; Mac, macrophage; Mast, mast 
cell; NK, natural killer cell; pDC, plasmacytoid dendritic cell; Plasma, plasma 
cell; T, T cell; Treg, regulatory T cell. c, Maximum overlap coefficient of every 
global factor generated by Spectra (n = 152 global factors), expiMap9 (n = 155 
factors, soft_mask = True), Slalom6 (n = 20 factors), NMF (n = 100 factors) and 
scHPF4 (n = 100 factors) with every input gene set. Boxes and lines represent 
IQR and median, respectively; whiskers represent 1.5× IQR range. d, Cell scores 
for Spectra and scanpy.score_genes1,2 factors plotted against MAGIC-imputed 

(t = 3) IFNGR1 expression for each cell colored by cell type (n = 97,863 cells); IFN, 
interferon. e, Proportion of held-out genes recovered by Spectra or Slalom from 
the Bassez dataset for each input gene set tested. Lines connect identical input 
gene sets. f, Coherence (mean pairwise log-normalized co-occurrence rate among 
the top 50 markers) of factors generated by various factor analysis methods using 
a random sample of 10,000 cells from the Bassez dataset with 14 cell types and 20 
input genes sets (Slalom) or 181 input gene sets (other methods). The experiment 
was repeated n = 5 times. Boxes and lines represent IQR and median, respectively; 
whiskers represent 1.5× IQR. g, Run time dependence on cell number with 35 gene 
sets (left) and gene set number with 25,000 cells (right). The experiment was 
performed using one cell type with the methods in b and netNMFsc (net-NMF)7 
and was repeated n = 3 times; shading indicates 95% confidence interval; CPU, 
central processing unit.
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GPU-based expiMap (Fig. 2g). Similarly, Spectra’s peak memory usage 
remains low with increasing gene set numbers (Extended Data Fig. 5g). 
Spectra run time and memory increase proportionally with the number 
of cell types and remain low for typical cell-type numbers (Extended 
Data Fig. 5g,h). Our benchmarking demonstrates that Spectra is faster 
and infers programs with superior interpretability and coherence while 
retrieving more ground truth factors.

Spectra separates tumor reactivity and exhaustion features
To understand and ultimately improve therapeutic efficacy, we quan-
tified therapy-induced gene program changes in non-dysfunctional 
tumor-reactive CD8+ T cells, a subset of T cells that recognize 
tumor-associated antigens16 and are also cytotoxic17,18. These cells 
express clonal TCRs and specific markers and accumulate after PD-1/
PD-L1 checkpoint blockade (clonal expansion19,20). Conversely, T cells 
that expand clonally under ICT are likely to be tumor-reactive18,19. These 
cells may also gradually become exhausted (lose effector capacity) 
after prolonged antigen exposure in the tumor microenvironment21,22. 
Although exhaustion and tumor reactivity lead to different cellular 
behaviors with highly consequential phenotypes, their gene programs 
are correlated and challenging to discriminate computationally; clus-
tering approaches typically group exhaustion, tumor reactivity and 
cytotoxicity features together10,23.

We evaluated Spectra’s ability to deconvolve these programs, 
focusing on CD8+ T cells (Fig. 3a). The exhaustion and tumor reactivity 
factors scored high in Spectra’s information and importance scores 
(see Methods), suggesting that they explain relevant gene programs 
(Extended Data Fig. 6a). Genes from these two programs are correlated 
in these data (Extended Data Fig. 6b), explaining why they were not 
distinguished previously10,23. score_genes1,2 generates visually similar 
distributions of input gene sets in responders and non-responders  
(Fig. 3b), yet the absence of tumor-reactive, non-terminally exhausted 
states in responders is inconsistent with the treatment-induced clonal 
expansion of these states19,20,24,25, and it conflicts with the proven effi-
cacy of ICT in this clinical setting26.

Whereas gene set scores fail to distinguish expanding from 
non-expanding clones (Fig. 3b), Spectra clearly disentangles them 
(Extended Data Fig. 6c), identifying a substantial tumor-reactive popu-
lation that is almost exclusive to responders (Fig. 3c). Spectra extracts 
gene programs directly from the unlabeled data and does not need 
response status to successfully dissect these features. Spectra’s likeli-
hood function discourages overlap between gene programs when 
a single program is sufficient to explain the observed count matrix, 
harnessing unique features of each gene set to associate cells with 
the best fit program. We identified CXCL13 as the gene exhibiting the 
highest covariance with tumor reactivity as well as exhaustion factors 
(Extended Data Fig. 6b). Spectra assigns this tumor reactivity marker27 a 
high weight in tumor reactivity but not exhaustion and strongly weights 
genes related to TCR signaling, T cell activation and cytotoxicity in the 
tumor reactivity factor, whereas the exhaustion factor mostly includes 
genes encoding exhaustion-inducing transcription factors (TOX21,22 
and NR4A1 (ref. 28)) and PDCD1 (PD-1) (refs. 21,22).

In CD8+ T cells, tumor reactivity correlates with proliferative pro-
grams, as expected for clonally expanding cells, oxidative phosphoryla-
tion and glycolysis, processes associated with enhanced CD8+ T cell 
effector function29 and IFNγ signaling, a key mediator of ICT efficacy11 
(Fig. 3d). Of the top 50 marker genes in tumor-reactive CD8+ T cells, 42 
are outside the input gene set, but recent studies support their roles in 
tumor reactivity (Fig. 3e and Supplementary Table 3)30–35.

Expression of this factor is higher in responders at baseline 
than in non-responders, and it increases further under therapy in 
responders (Fig. 3f), consistent with the reported association between 
tumor-reactive cell clusters and therapeutic response36,37. Spectra thus 
disentangles a CD8+ T cell tumor reactivity program that is associated 
with response to ICT at the cell and patient levels.

T cells kill cancer cells after binding to mutation-associated neoan-
tigens (MANAs). To test whether our tumor reactivity program identi-
fies T cells with MANA-specific TCRs, we leveraged a lung cancer atlas 
of tumor-infiltrating T cells with functionally validated TCR antigen 
specificity30 (‘Caushi dataset’; Fig. 3g). Spectra detected tumor reactiv-
ity and 172 additional factors in these data. Despite the different context 
and tumor type, 13 genes overlap among the top 50 marker genes in the 
Caushi and Bassez reactivity factors (Extended Data Fig. 6d). Moreover, 
the Caushi reactivity factor is almost exclusively expressed in T cells 
with a MANA-specific TCR rather than in T cells with TCRs for unrelated 
antigens (Fig. 3h). This independent, functionally validated dataset 
provides strong support for the Spectra tumor reactivity factors and 
suggests that transcriptional features of tumor-reactive T cells are 
shared across tumor types.

In contrast to Spectra, Slalom6, scHPF4 and expiMap9 failed to 
deconvolve the two factors (Extended Data Fig. 6e). Only Spectra was 
able to distinguish a clonally expanding tumor-reactive T cell popula-
tion that is specific to responders (Extended Data Fig. 6f) and associates 
with patient-level response (Extended Data Fig. 6g).

Spectra is thus unique in its ability to disentangle tumor reactivity 
and exhaustion programs in CD8+ T cells, making it possible to iden-
tify tumor-reactive populations across cancer types and find novel 
mediators of tumor reactivity that can be associated with patient-level 
therapeutic responses and nominated as candidate targets for enhanc-
ing ICT efficacy.

Spectra uncovers metabolic pathway use in leukocytes
Metabolic processes are fundamental to cancer therapeutic response, 
but metabolic genes participate in multiple pathways, making their 
analysis very challenging38. We tested Spectra’s metabolic inference on 
immune cells in the Bassez dataset10 and identified programs related 
to all 89 metabolic input gene sets (overlap coefficient of >0.25), reca-
pitulating known macrophage characteristics, such as iron uptake, 
iron storage39,40 and cholesterol synthesis41,42 as well as DNA synthesis 
in cycling germinal center B cells (Fig. 4a).

Spectra also uncovered cell-type-specific expression of amino acid 
factors, such as lysine metabolism in plasma cells (Fig. 4a). Lysine is a 
scarce nutrient in malignant breast cancer tissue43. Lysine metabolism 
scored high in Spectra’s information and importance scores (Extended 
Data Fig. 7a). Its top 50 marker genes contain 72% of the input gene 
set, including all key metabolic enzymes (Fig. 4b), and Spectra added 
unfolded protein response genes, including the pivotal initiators 
XBP1 and ATF6 and their downstream targets (ERLEC1 (ref. 44), SDF2L1  
(ref. 45), HERPUD1 (ref. 46) and PDIA6 (ref. 47)). These genes are 
expressed more coherently and at higher levels in plasma cells than in 
other cells, as expected for a gene program (Extended Data Fig. 7b). 
Endoplasmic reticulum stress regulates the capacity of plasma cells 
to produce immunoglobulins48, likely because large quantities of mis-
folded antibodies48 must be degraded, generating lysine49. Other meth-
ods identified factors that are either not enriched for lysine metabolism 
genes or are uniformly expressed across cells (Extended Data Fig. 7c–e).

To gauge stability and reproducibility, we fit an independent Spectra 
model onto data from individuals with metastatic breast cancer biopsied 
before and during paclitaxel chemotherapy with or without anti-PD-L1 
treatment (Zhang dataset)23 using identical parameters (Extended Data 
Fig. 1b). Of the top 50 markers in the Bassez dataset10, 28 were also iden-
tified in the Zhang dataset (Fig. 4c), including 17 of the 37 new genes 
learned directly from both datasets and encompassing ER stress. Spectra 
lysine metabolism factors from both datasets are specifically expressed 
in plasma cells (Fig. 4d). Our results link lysine metabolism and ER stress 
as features of tumor-infiltrating plasma cells in breast cancer.

Macrophage states change continuously under therapy
Macrophages mediate resistance to ICT by becoming immunosuppres-
sive under therapy (adaptive resistance); however, the effect of ICT on 
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macrophage gene programs and the association with response remains 
unclear50,51. Bassez et al.10 linked a macrophage cluster expressing the 
complement gene C3 to therapy resistance (Extended Data Fig. 8a,b); 
yet, complement genes such as CFB (which activates C3 (ref. 52)) exhibit 
opposite trends to C3 and are more highly expressed in responders 
(Extended Data Fig. 8b,c).

To determine whether Spectra can identify more interpretable gene 
programs underlying adaptive resistance, we used diffusion compo-
nents (DCs) to visualize continuous states53. DC2 captures maturation 
from monocyte-like to macrophage states, and DC4 separates respond-
ers from non-responders (Fig. 5a and Extended Data Fig. 8d). Cell scores 

for Spectra factors form gradients along DC2, with successive peaks 
of tumor necrosis factor-α (TNF-α) signaling and CYP enzyme activity, 
followed by glycolytic activity54, a novel factor containing invasive and 
angiogenic mediators (‘invasion program’) and finally complement 
production, a key feature of mature macrophages55. Along DC4, Spectra 
identified programs for type 2 IFN signaling and MHC class II antigen 
presentation at one extreme, followed by the interleukin-4 (IL-4)/IL-13 
response, hypoxia signaling and the invasion program at the other  
(Fig. 5a; see Supplementary Table 4 for all DC-associated factors).

To find states that change in non-responders under ICT and could 
therefore confer adaptive resistance, we used Milo56, which revealed 
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overlapping cellular neighborhoods (states) that only expand under 
anti-PD-1 therapy in non-responders (Fig. 5b) and are high in the novel 
invasion program (Fig. 5c). This invasion program does not correspond 
to input gene sets (η = 0.24) but has high importance and information 
scores; moreover, Slalom6 and scHPF4 do not identify a similar pro-
gram (Extended Data Fig. 8e–g). Its constituent genes are coherently 
expressed in macrophages, only increase in non-responders and include 
genes encoding known invasion and metastasis mediators (CTSL57, 
CTSD58, CTSB59, CHI3L1 (ref. 60), SPP1 (ref. 61) and PLIN2 (ref. 62)).  
Furthermore, the invasion program includes genes of inflamma-
tion modulators (TREM1 (ref. 63), TREM2 (ref. 64) and GPNMB65) and  
cholesterol metabolism genes (APOE66,67, APOC1 (ref. 68) and CYP27A1 

(ref. 69)), some of which suppress inflammatory cytokine (IL-6 and 
TNF-α) release65. Our results suggest that in individuals who do not 
respond to ICT, macrophages may upregulate these genes coordinately 
(Fig. 5d). By focusing on residual expression that is not well explained 
by the gene knowledge graph, Spectra can thus find a gene program 
that is both interpretable and related to ICT response.

To test for replication, we ran Milo, identified macrophage popu-
lations in the Zhang dataset23 and scored expression of the top 50 
invasion factor genes. Despite the different setting of metastatic 
tumors, the invasion and cholesterol metabolism genes identified in 
the Bassez data have high expression in the Zhang data, validating our 
invasion program (Fig. 5c,d). Spectra thus identifies a prometastatic 
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Fig. 4 | Spectra reveals cell-type-specific metabolic profiles in breast cancer 
data. a, Mean cell scores among positive (score > 0.01) cells normalized to 
maximum cell scores of each factor and positive fractions per cell type for each 
Spectra metabolic factor identified in the Bassez data10 (n = 97,863 leukocytes). 
The box highlights the plasma cell-enriched lysine (LYS) metabolism factor; CYP, 
cytochrome P450; CYS, cysteine; ER, endoplasmic reticulum; HIS, histidine; 
mem, memory; TRP, tryptophan. b, Input genes and genes newly inferred by 

Spectra in the lysine metabolism pathway; CoA, coenzyme A; Glu, glutamine; PIP, 
pipecolic acid. c, Overlap between the input lysine metabolism gene set and the 
top 50 marker genes from lysine metabolism factors identified in the Bassez10 
and Zhang23 datasets. d, t-SNE embeddings of TILs colored by Spectra factor cell 
scores in the Bassez (n = 97,863 leukocytes) and Zhang (n = 150,985 leukocytes) 
datasets.
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gene program that is upregulated following anti-PD-1/PD-L1 treatment 
in individuals with therapy-resistant breast cancer, with implications 
for understanding adaptive resistance mechanisms and macrophage 
polarization.

Spectra factors generalize to hundreds of individuals
Batch correction of technical differences between samples and cohorts 
tends to remove subtle, yet important, biological signals70, so we asked 
whether Spectra can find shared features without explicit batch correction.
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Fig. 5 | Spectra reveals therapy-induced macrophage gene expression 
programs. a, Macrophage cells plotted along DCs 2 and 4 colored by patient-
level T cell expansion status (responder and non-responder) in the Bassez 
data10 (n = 12,132 cells). Heat maps indicate z-scored gene program cell scores 
along DCs smoothened by fitting a generalized additive model (Methods); 
IL, interleukin; TNF, tumor necrosis factor. b, Graph with nodes representing 
cellular neighborhoods (n = 858) plotted along DC2 and DC4 and edges 
representing overlap colored by log2 (fold change) under anti-PD-1 treatment, as 
estimated with Milo (Methods). The log2 (fold change) of non-significant (false 
discovery rate (FDR) ≥ 0.05) neighborhoods is set to 0. c, Average cell scores of 
macrophage neighborhoods (n = 858) enriched in non-responders under therapy 

and cell scores for all other macrophage neighborhoods in the independent 
Bassez and Zhang breast cancer datasets. Cell scores were calculated using 
the Spectra invasion factor (factor 182 from Bassez et al.10) or by using scanpy.
score_genes1,2 on the top 50 marker genes of factor 182 in Zhang et al.23. P values 
(two-sided) were calculated using Mann–Whitney U-tests (Bassez: P = 4.96 × 10–5, 
statistic = 1,060, Cohen’s d = 1.49; Zhang: P = 3.74 × 10–12, statistic = 600,886, 
Cohen’s d = 1.03). Boxes and lines represent IQR and median, respectively; 
whiskers represent 1.5× IQR. d, Mean expression z scored across cells (n = 12,132 
cells) and percentage of cells with at least one detected copy of the indicated 
factor genes in non-responder macrophage populations and other macrophage 
populations in the Bassez (n = 12,132 cells) and Zhang (n = 3,206 cells) datasets.
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Fig. 6 | Spectra gene programs are reproducible across multiple studies. 
a, Uniform manifold approximation and projection (UMAP) embeddings of 
whole tumor single cell suspensions (n = 1.28 million cells) colored by study 
(left) or cell type (right) in the Salcher atlas71; Endo, endothelial; Epi, epithelial; 
Fibro, fibroblast; Gran, granulocyte; Haber., Habermann; Lambr., Lambrechts; 
Laugh., Laughney; Madis., Madissoon; Mayn., Maynard; Reyfm., Reyfman; 
Travag., Travaglini. b, Expression and positive cell fraction of global Spectra 
factors with the lowest entropy across studies. The Adams study with batch 
effect is highlighted in red; met., metabolism. c, Overlap between the input gene 
set and the top 50 marker genes for lysine metabolism (left), tumor reactivity 
(middle) and macrophage invasion (right; new factor, no input set) factors. 
d, Mean cell scores, z-scored across cell type, of the lysine metabolism factor 
per study and cell type. Bars indicate mean z score per column (bottom) and 
participant numbers per study (right). Two-sided P values between plasma cells 
and other cell types were calculated using Wilcoxon matched-pairs signed-rank 

tests. (B cells: statistic = 2,903, Cohen’s d = 0.77; CD4+ T cells: statistic = 2,385, 
Cohen’s d = 0.88; CD8+ T cells: statistic = 4,555, Cohen’s d = 0.70; dendritic cells: 
statistic = 3,152, Cohen’s d = 0.76; granulocytes: statistic = 516, Cohen’s d = 0.91; 
macrophages: statistic = 2,350, Cohen’s d = 0.86; mast cells: statistic = 5,348, 
Cohen’s d = 0.52; NK cells: statistic = 3,883, Cohen’s d = 0.70; regulatory T cells: 
statistic = 4,441, Cohen’s d = 0.61; T cells: statistic = 3,345, Cohen’s d = 0.56). The 
studies listed in a, b and d are from Salcher et al.71. e,f, Mean cell scores per patient 
in positive (>0.001) CD8+ T cells (e) or macrophages (f) for the tumor reactivity 
factor (e) and the macrophage invasion factor (f) based on smoking (top) or EGFR 
mutation (bottom) status. P values were calculated using Mann–Whitney U-tests 
(two-sided); tumor reactivity smoking: n = 153, P = 0.0022, statistic = 3,500, 
Cohen’s d = 0.45; tumor reactivity EGFR: n = 30, P = 0.18, statistic = 78, Cohen’s 
d = 0.52; invasion smoking: n = 147, P = 0.051, statistic = 2,928, Cohen’s d = 0.30; 
invasion EGFR: n = 32, P = 0.010, statistic = 59, Cohen’s d = 1.17). Boxes and lines 
represent IQR and median, respectively; whiskers represent 1.5× IQR.
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The scRNA-seq lung cancer atlas from Salcher et al.71 is composed 
of 1.28 million cells from 19 studies and 318 individuals, including a 
study that uses cryopreserved cells and exhibits a strong batch effect 
(Fig. 6a). We applied Spectra with default parameters and our immunol-
ogy knowledge base and found 11 global factors with low cross-study 
entropy (Methods), 10 of which are specific to the cryopreserved cell 
study and account for its batch-driven variation (Fig. 6b).

Spectra identified lysine metabolism, CD8+ T cell-specific tumor 
reactivity and macrophage-specific invasion factors in the Salcher atlas 
without batch correction. Despite differences in tumor type and clinical 
cohort, multiple factor genes are shared across the Bassez, Zhang and 
Salcher datasets (Fig. 6c). Newly discovered shared genes include ER 
stress transcription factors XBP1 and ATF6 and targets (SDF2L1 (ref. 45) 
and PDIA6 (ref. 47; lysine metabolism factor)), the TCR signaling target 
BATF31,35 and the immune checkpoint gene LAG3 (refs. 32,72; tumor reac-
tivity factor), invasion mediators CTSL and CTSD57,58 and inflammatory 
mediators TREM1 (ref. 63) and GPNMB65 (macrophage invasion factor). 
The identified factors are very stable across the Salcher atlas, and lysine 
metabolism is significantly enriched in plasma cells (13 of 19 studies, 
P < 10−12), as observed in breast cancer (Fig. 6d).

Next, we tested for associations between Spectra factors and 
two clinically important variables, EGFR mutation and smoking sta-
tus. Although EGFR-mutated tumors are resistant to ICT73, smokers 
respond more frequently74. Tumor reactivity cell scores are higher in 
CD8+ T cells from tumors of smokers than from tumors of non-smokers 
(P = 0.002) and are higher in wild-type EGFR tumors than in mutated 
tumors (P = 0.180; Fig. 6e). The invasion factor similarly shows higher 
cell scores in macrophages from smokers (P = 0.051) and wild-type EGFR 
tumors (P = 0.010; Fig. 6f). In the breast cancer datasets, this factor is 
associated with ICT resistance (Fig. 5c), and studies of its marker genes 
suggest that they are involved in suppressing antitumor immunity 
(FABP5 (ref. 75) and TREM1 (ref. 63)).

Spectra thus finds subtle programs across batches and patients 
without requiring explicit batch correction. Although patient- or 
sample-level phenotypic association has been attempted with cell-type 
fractions, Spectra factors make it possible to associate clinical pheno-
types with cell-type-specific gene programs, a promising strategy for 
cancer research and biomarker discovery.

Discussion
Spectra anchors data-driven factorization with prior knowledge to 
infer factors that are coherently expressed, interpretable and not pol-
luted by cell-type markers. The algorithm modifies each factor to the 
dataset’s biological context by upweighting novel genes that are tightly 
expressed with factor genes, and it can dissect highly correlated factors, 
such as T cell exhaustion and tumor reactivity. We demonstrate that 
tumor reactivity program expression separates individuals with breast 
cancer by their clonal expansion status after anti-PD-1 treatment (other 
methods fail) and is replicated in a lung cancer setting with functionally 
validated T cell specificity.

We found that differences related to cell type dominate the mar-
ginal gene–gene covariance matrix, obscuring higher-resolution 
cell-type-conditional covariance structure. Spectra uniquely addresses 
this multiscale expression variance by accepting cell-type labels as input 
and explicitly modeling cell-type-specific factors that can account for 
local correlation patterns. As a result, Spectra reliably identifies programs 
that are conserved across multiple cell types related to metabolism, 
response to cytokine signaling, differentiation and growth and separately 
estimates the cell-type-specific components of these programs.

Our knowledge base of high-confidence gene sets can improve 
immune scRNA-seq data analysis using any supervised method, but 
Spectra does not strictly need good relevant gene sets; it adaptively 
tunes its reliance on prior information based on concordance of the 
input graph with observed data, and it allocates novel factors when prior 
information does not fully explain expression. This property allowed 

us to discover a cancer invasion program describing an axis of variation 
in tumor-associated macrophages that is strongly related to anti-PD-1 
therapy resistance and is replicated in two independent datasets.

The common simplifying assumption made by factor analysis 
methods is that factors combine linearly to drive expression, which is 
not always the case. Uncovering interpretable nonlinear relationships 
is a future goal of factorization methods development.

We designed Spectra to unravel heterogeneity in large-scale 
scRNA-seq studies. Spectra factors are stable across two breast cancer 
datasets and a lung cancer atlas totaling over 1.5 million cells from 375 
individuals and 21 studies, demonstrating the ability to find robust bio-
logical signal and overcome batch effects at this scale. Spectra factors 
make it possible to associate clinical covariates with cell-type-specific 
gene programs. In addition, the ability to transfer factors learned from 
one dataset to another can advance our ability to iteratively transfer 
and refine knowledge across scRNA-seq studies without requiring 
data integration.
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Methods
Overview of Spectra
Spectra (https://github.com/dpeerlab/spectra) grounds data-driven 
factors with prior biological knowledge (Supplementary Fig. 1). First, 
Spectra takes in prior biological information in the form of cell-type 
labels and explicitly models separate cell-type-specific factors that 
can account for local correlation patterns. This explicit separation of 
cell-type-specific and global factors enables the estimation of factors 
at multiple scales of resolution. Second, Spectra resolves indetermi-
nacy of the reconstruction loss function via a penalty derived from a 
gene–gene knowledge graph that encourages solutions that assign 
similar latent representations to genes with edges between them. 
To account for prior information of variable relevance and quality, 
Spectra adaptively tunes its reliance on prior information based on 
concordance of the prior and observed expression data. Third, novel 
factors are adaptively allocated when prior information is insufficient 
to explain the observed expression data.

In the first step of Spectra, a set of gene–gene similarity graphs is 
built by aggregating information across gene sets and/or other sources. 
This graph representation is flexible and can accommodate various 
types of prior knowledge; gene sets can be incorporated into graphs 
by including edges between genes that are annotated to the same 
pathway, whereas existing datasets can be used to generate annota-
tions by thresholding partial correlations or factor similarity scores. 
This representation lends computational convenience, as the graph 
dimensions are fixed regardless of the size of the input annotations. 
The annotations are either labeled as cell-type-specific or have global 
scope. A separate graph is thus built for each cell type alongside a 
global graph.

In the second step, Spectra learns a multidimensional parameter 
for each cell and each gene, representing each cell and each gene’s dis-
tribution over gene expression programs. Similarity of the parameters 
between genes indicates that these genes are likely to have an edge 
joining them, whereas similarity of the parameters between a cell and 
a gene indicates that the cell is likely to express that gene. Hence, the 
graph encodes the prior that genes with edges between them are likely 
to be expressed by the same set of cells. In practice, we take several 
additional steps to fulfill the desiderata: (1) factors not represented in 
the annotations can be discovered, (2) low-quality annotations can be 
removed, and (3) discrete cell types are assumed to be fixed and known 
and therefore not captured as factors by the model.

To avoid penalizing novel factors that have no relation to the anno-
tations, we introduce a weighting matrix that scales the computation of 
gene–gene similarity scores by factor-specific weights that are learned 
from the data. Factors that have low weight are not used in computing 
edge probabilities, whereas factors with high weights influence the 
edge probabilities directly. Hence, Spectra can estimate similar param-
eters for two genes without forcing a high edge probability between 
them as long as the factors corresponding to these genes also have 
low weight. These weights allow the addition of new, unbiased factors 
that are not influenced by the input annotations. Importantly, weights 
are estimated from the data, allowing for an adaptive determination 
of the relative number of unbiased and biased factors. An estimated 
background rate of edges in the graph allows for the removal of anno-
tations with little supporting evidence from gene expression data. 
Finally, Spectra explicitly separates global and cell-type-specific factors 
by enforcing a cell-type-determined block sparsity pattern in the cell 
loading matrix. Cell-type-specific factors capture within-cell-type vari-
ation, whereas global factors capture any variation that is shared across 
multiple cell types. To reduce the burden of modeling constitutively 
expressed cell-type marker genes, each factor’s contribution to gene 
expression is multiplied by a cell-type-specific gene weight. These 
cell-type-specific gene weights explain away the influence of cell-type 
marker genes and hence mitigate the tendency of these marker genes 
to influence the factors themselves.

Components of the Spectra objective function
Broadly speaking, Spectra fits a set of factors and cell scores by mini-
mizing an objective function with two components. The first compo-
nent of the objective function, ℒReconstruction , measures how well the 
estimated model parameters can reconstruct (or predict) the observed 
expression data using the set of all model parameters Θ. We write 
ℒReconstruction(Θ) to emphasize that ℒReconstruction is a function that maps 
a set of model parameters to a corresponding objective value. The 
second component of the objective function measures how well the 
set of model parameters Θ corresponds to our biological prior informa-
tion. This second component is denoted ℒGraph(Θ). We weight this term 
by a user-defined hyperparameter λ, which allows a user to control the 
level of confidence placed in the given biological prior information. 
The general form of the Spectra objective function is

ℒ(Θ) = λℒReconstruction(Θ) + ℒGraph(Θ)

Below, we describe the precise functional forms of each of the objective 
function components.

ℒℒℒReconstruction (Θ): modeling gene expression as a low-rank product
We assume that the expression variation observed in the count matrix 
is driven by variation in the activity of different biologically meaning-
ful gene programs as well as technical variation that often involves 
highly expressed genes. Therefore, our model of gene expression 
needs to account for both components. In more detail, interpretation 
of factors estimated from scRNA-seq data is often hindered by highly 
expressed genes, which factor analysis methods based on reconstruc-
tion loss functions must account for. Housekeeping genes required for 
basal cellular function, such as GAPDH, ACTB and ribosomal genes, are 
expressed at high levels and hence unduly influence the reconstruc-
tion loss function despite the fact that their expression variance is 
explained in large part by overall levels of transcription. As a result, 
existing matrix decomposition methods tend to put high weight on 
such nonspecifically expressed genes, although post hoc corrections 
can be applied for the interpretation of individual factors. However, 
certain important cytokine genes (for example, IL4, IL6, IL2 and IL10), 
chemokine receptor genes (CXCR1 and CXCR2) and transcription factor 
genes (RORC and BATF3) are expressed in low mRNA copy numbers. 
Normalization strategies that rescale features empirically tend to 
amplify measurement uncertainty associated with lowly expressed 
genes, leading matrix factorization methods to overfit and return 
low-quality gene expression programs. To address this, we introduce 
gene scale factors gj that are estimated from the data and allow the 
model to explain high expression and variability of certain genes with-
out increasing the magnitude of the gene factor weights. Because lowly 
expressed genes are correspondingly noisier, we bound the minimum 
gene scale factors below by a tuning parameter δ.

By way of notation, X refers to the processed gene expression 
matrix, with entry Xij containing the gene expression value for cell i and 
gene j. The matrix X has n rows (the number of cells) and p columns 
(the number of genes). K refers to the number of gene expression 
programs unless otherwise specified. Additionally, for a given cell 
indexed by i, the cell loading (a set of weights across the set of factors) 
is denoted by αi. The distribution across factors for gene j is denoted 
as θj, which sums to 1 over K gene expression programs, ∑K

k=1 θjk = 1. 
Unsubscripted variables refer to the collection containing all possible 
subscripts; for example, θ refers to the collection of all θj. The base 
expression model describing the gene expression measurement for 
cell i and gene j is

𝔼𝔼𝔼Xij] = (gj + δ)α⊤i θj

with gj ∈ [0, 1] a gene scaling parameter, αi ∈ ℝK+ and θj ∈ ΔK−1 (where ΔK−1 
is the set of positive K − vectors that sum to 1). The low-rank 
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decomposition of this expression model can be visualized in Supple-
mentary Fig. 2.

Incorporating cell types into modeling expression variation. Because 
expression variation is dominated by cell types, existing methods gener-
ally fit factors that are polluted with cell-type markers or alternatively 
must be run on a subset of the data. For example, TCR activation pro-
grams (consisting of marker genes such as NFATC1 and NFATC2) are 
confounded with T cell identity, and existing factor analysis methods 
tend to return identity marker genes, such as CD3, CD4 and CD8. Simi-
larly, programs representing metabolic pathways are often confounded 
with plasmacytoid dendritic cell (IL3R and BDCA2) or B cell (CD19 and 
CD79A) identity marker genes. Although it is challenging to fit a biologi-
cally meaningful factor model, successful cell typing of scRNA-seq data 
using clustering approaches is a solved problem for discrete cell types 
but not for intermediate states. Therefore, to mitigate this issue, Spectra 
assumes that discrete cell types are known and therefore not captured 
as factors by the model; instead, Spectra explicitly fits cell-type-specific 
and global factors, allowing Spectra to effectively deal with expression 
variance at multiple scales. To perform this cell-type-integrative factor 
analysis, for cell type c and cell i, the model is extended to

𝔼𝔼𝔼Xcij] = (gj + δ)α⊤c,i,∶Kθj + (gcj + δ)α⊤c,i,K+1∶θcj

where c is the cell-type label for cell i, gcj is cell-type-specific gene scal-
ing, and θcj ∈ ΔKc−1  is a cell-type-specific gene representation with 
αc,i ∈ ℝK+Kc. Single-subscript variables, such as gj and θj, denote global 
parameters, whereas the notation α:K indicates the first K elements of 
a vector (typically denoting global elements), and αK+1: indicates the 
tail of the vector from the K + 1st element (typically denoting 
cell-type-specific elements). The threshold δ restricts the maximum 
ratio of gene scaling factors to 1+δ

δ
.

Spectra models the presence of gene programs with highly limited 
scope in that they can only be activated by a specific cell type, which 
can be represented by a hard-coded sparsity pattern in the cell load-
ing matrix (Supplementary Fig. 3). The cell-type-specific gene scal-
ings (gcj) associated with these programs are encouraged to capture 
cell-type identity markers and constitutively active genes, enabling 
factors themselves to capture variation across cell types and within 
cell types (Supplementary Fig. 4). Spectra tends to assign constitu-
tive genes, such as EEF1A1 and ACTB, and identity marker genes, such 
as CD4 and CD3, high values of gj. Lowly expressed genes important 
for CD4+ T cell-specific gene programs, such as IL21, IL13 and IL6, are 
often assigned small values of gj, which allows Spectra to attend to gene 
expression differences that occur on a smaller scale (Supplementary 
Fig. 4). By default, Spectra runs with at least one cell-type-specific factor 
per cell type so that global factors do not capture cell-type identities.

Determining cell-type granularity. Spectra can accommodate 
cell-type labels at any level of granularity, subject to a linear increase 
in computational burden with the number of cell types in the dataset. 
Additionally, as the granularity increases, the effective sample size for 
estimating cell-type-specific factors decreases, leading to potentially 
lower-quality cell-type-specific factors. The correct cell-type granu-
larity depends on the dataset and the specific scientific questions at 
hand. First, the analyst should incorporate cell types that are known to 
be discrete and easily identifiable in the dataset via standard cluster-
ing analysis (for example, T cells, B cells, myeloid cells and epithelial 
cells). If cell subtypes exist that are not included as input to the model, 
Spectra devotes factors to describing variation across these subtypes. 
Moreover, if intermediate differentiation states between subtypes exist 
in the data, these subtypes should generally not be included as input to 
the model because (1) coarser cell-type-specific factors can describe 
these intermediate states, and (2) delineating between subtypes via 
clustering may be inaccurate.

ℒℒℒGraph (Θ): modeling gene–gene relationships in relation to 
expression data
In addition to faithful approximation of the input count matrix, we 
would also like interpretable factors that correspond known gene 
programs and biological processes (prior). Therefore, the second 
component of our likelihood function is a penalty term that guides 
the solution toward this prior. One aspect that makes Spectra unique is 
that it models this prior knowledge as a gene–gene community graph, 
which provides both computational efficiency and flexibility to adapt 
the graph structure to the data.

In this graph, nodes represent individual genes, and edges 
between genes occur when each gene has a similar distribution over 
factors. Communities within the graph, or densely connected subsets, 
then represent gene programs, whereas edges between communities 
contain information about genes that participate in multiple gene 
programs. Providing an imperfect, partially known graph structure as 
input, we can constrain our matrix factorization solution to respect 
the structure to yield interpretable gene programs. A main advantage 
of this approach is its flexibility. Gene sets are naturally incorporated 
into a graph by forming fully connected cliques among members  
of each set.

Further, more complex prior knowledge graph structures can 
be used as input, for example, arising from gene programs esti-
mated from a separate dataset or cell atlas. Most importantly, the 
structure of this input gene–gene graph can be improved by fitting 
it to the data and learning gene programs that are more faithful to 
the data.

A second advantage of the graph prior is its scalability. Although 
gene sets may be highly overlapping, especially when curated from 
several separate databases, this redundancy is eliminated when stor-
ing information at the level of gene–gene relationships. Redundant 
gene sets will be merged into highly overlapping communities, and 
so two redundant gene sets can be approximately described by a 
single factor. A further computational advantage over gene set pri-
ors is that the dimensions of the graph are fixed as the size of gene 
set database increases, with only the number of edges increasing, 
and eliminates the need for iterating over the gene set dimension. 
Finally, operations involving the graph are implemented via efficient 
and parallelizable matrix multiplications with the graph adjacency 
matrix, thus allowing Spectra to efficiently scale to a large number 
of gene sets and cells (Fig. 2g).

To encourage factors to capture our prior knowledge of gene pro-
grams, we assume that binary gene–gene relationships are evidence of 
a pair of genes having similar latent profiles. This assumption could be 
incorporated by assuming a model for edge probabilities depending 
on the similarity scores 〈θi, θj〉 for genes i and j. However, the naive inner 
product does not explicitly account for the fact that prior information 
is invariably imperfect in systematic ways. First, at the level of entire 
gene programs, not all gene programs are active in all datasets, and, 
therefore, entire graph communities may be unnecessary for describ-
ing the observed expression data, while there are likely novel gene 
programs observed in the expression data that are not represented 
by communities in the graph. Also gene programs are imperfect due 
to inaccuracy of annotation, and, more frequently, gene programs 
differ across biological contexts, and our prior information is typically 
derived from a different biological context. Therefore, genes may be 
misclassified into gene sets to which they do not belong (correspond-
ing to noisy edge observations), or gene sets may be incomplete (cor-
responding to missing edges). Spectra addresses these issues in the 
following two ways: (1) adaptively modeling background noise in the 
graph, allowing for the addition and removal of edges (Background 
edge rates), and (2) tuning the weight of the prior gene–gene matrix 
through the incorporation of a weight matrix, termed the factor inter-
action matrix, into the inner product between gene representations 
θi and θj (see below).
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The factor interaction matrix tunes the weight of the gene–
gene prior
To understand the purpose of the factor interaction matrix, let us first 
consider the ordinary inner product measuring gene–gene similarity 
in terms of gene program representations:

⟨θi,θj⟩ = θi1θj1 +⋯+ θiKθjK

The maximum value of this product is 1 and is achieved only when 
gene i and gene j put all their weight into a single gene program. Con-
sider what happens if genes i and j are important components of a 
gene program that exists only in the expression data and not in our 
prior information. Then, i and j are not connected in the graph, and 
so the inner product model encourages 〈θi, θj〉 ≈ 0. When 〈θi, θj〉 ≈ 0, 
genes i and j must be components of entirely separate programs. In 
this way, we see that the naive inner product discourages new factors 
from being estimated from the expression data. Such an inner product 
model estimates novel factors that are heavily biased by the graph.

Now, instead of the naive inner product, consider a weighted 
product weighted by scalar values (b1, b2,…, bK) that are between 0 and 1:

⟨θi,θj⟩b = b1θi1θj1 +⋯+ bKθiKθjK

To model the data, we can adjust the values of (b1,…, bK) to achieve 
the best fit. Consider the same situation as above, where i and j are not 
connected in the graph, but they are components of a gene program 
supported by expression data alone. The product model again encour-
ages ⟨θi,θj⟩b ≈ 0; however, now this constraint does not necessarily 
encourage θi and θj to be dissimilar. To see this, suppose that θi = [1, 0, 0] 
and θj = [1, 0, 0]. If b1 = 0, then

⟨θi,θj⟩b = b11 ∗ 1 + b20 ∗ 0 + b30 ∗ 0

= 0

Hence, novel gene programs can be estimated as long as the value of bk 
corresponding to that program is pushed toward 0. We can interpret 
gene programs corresponding to low values of bk as novel and gene 
programs corresponding to high values of bk as supported by prior 
information. We could equivalently write each weight bk as one of the 
non-zero elements of a diagonal matrix

B =
⎡
⎢
⎢
⎢
⎣

b1
⋱

bK

⎤
⎥
⎥
⎥
⎦

so that

⟨θi,Bθj⟩ = ⟨θi,θj⟩b
= b1θi1θj1 +⋯+ bKθiKθjK

In practice, we allow the off diagonals of this matrix B to be estimated 
as non-zero (Supplementary Fig. 5). The resulting matrix is termed the 
factor interaction matrix.

Allowing off diagonals of the factor interaction matrix to be 
non-zero serves two purposes. First, it allows the model to explain 
overlapping gene sets without forcing shared genes to have partial 
membership. For example, if two gene sets overlap but in reality repre-
sent two distinct biological processes that can be separated in the gene 
expression data, the model is not forced to assign partial membership 
to overlapping genes but can fully assign genes to one of two programs. 
To account for this, the off-diagonal element corresponding to this 
pair of gene programs (Bk,l for programs k and l) can be estimated as 
greater than 0. On real data, we see this occur for β-alanine metabolism 
and fatty acid metabolism (Supplementary Fig. 6). Second, non-zero 
off-diagonal elements of the factor interaction matrix serve to mitigate 

the effect of low-quality edges in the prior graph by allowing edges 
between genes that are in separate gene expression programs to arise 
with non-zero probability.

Full Spectra model
As a notation, we refer to the adjacency matrix of an input graph as 
A ∈ ℝp×p with element Aij = 1 if an edge exists between i and j and Aij = 0 
otherwise. Following the discussion above, the Spectra generative 
model states (Supplementary Fig. 5)

ℙ [Aij = 1] = ⟨θi,Bθj⟩

In the full Spectra model, each gene has a separate representation per 
cell type (in addition to its global representation), θci, where c indexes 
into the possible cell types. To supervise these representations in a 
cell-type-specific manner, the user (optionally) provides one graph 
for each cell type and a graph representing global gene–gene rela-
tionships (Supplementary Figs. 6 and 7). These graphs are modeled 
separately, where each graph’s edges can only be predicted using factor 
representations specific to that cell type. The cell-type-specific graphs 
are denoted Ac for cell type c, with Ac,ij = 1 if there is a cell-type-specific 
annotation between genes i and j for cell type c. The cell-type-specific 
graphs can only influence cell-type-specific factors and vice versa:

ℙ [Ac,ij = 1] = ⟨θci,Bcθcj⟩

diagrammed in Supplementary Fig. 7. Importantly, a separate factor 
interaction matrix, Bc, is learned for each cell type with a prior graph 
provided.

The computational cost of including granular cell-type-specific 
prior information can be large, as each cell type requires its own graph.

Background edge rates
Realistic annotation graphs have several edges that are not supported 
by expression data, and the model should be allowed the flexibility to 
attribute edges (or the lack thereof) in annotations to a background 
rate of noise. To allow flexibility in modifying the original graph, we 
incorporate background edge and non-edge rates κ and ρ that reflect 
noise rates in the observed graph. These parameters serve two separate 
purposes. First, these parameters deal with numerical stability issues by 
moving probabilities away from 0 and 1. Second, the parameters control 
the rate that edges are added and removed from the original graph. 
Intuitively, our inference procedure examines whether a relationship 
(or lack of a relationship) in the prior knowledge graph is consistent with 
expression data and if not can ascribe this relationship to random noise.

The generative process of our model is that with some probability 
ρ, edges between gene i and j are blocked out and cannot occur irrespec-
tive of the corresponding factor values θi and θj. If this does not occur, 
an edge will be generated by random chance with probability κ. Finally, 
if neither of these events occur, an edge is generated according to the 
factor similarity score 〈θi, Bθj〉. This yields the following distribution 
for the adjacency matrix:

ℙ [Aij = 1] = (1 − κ)(1 − ρ)θ⊤i Bθj + κ(1 − ρ)

ℙ [Aij = 0] = (1 − κ)(1 − ρ) (1 − θ⊤i Bθj) + ρ

where κ and ρ are (cell-type-specific) background rates of 1 and 0 in 
the adjacency matrix, respectively. κ and ρ can be estimated from the 
data or fixed to constants and treated as tunable hyperparameters.

Constructing the gene–gene prior graph
In most applications, Spectra receives a set of gene sets rather than a 
gene–gene graph as input, and the gene–gene graph is constructed 
from these gene sets. Large gene sets generally provide lower evidence 
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that any given gene is crucial to the process that the gene set represents. 
For example, hallmark gene sets often contain hundreds of genes76, 
some of which are upregulated as distant downstream targets. Addi-
tionally, larger cliques represent a larger component of the likelihood 
function, potentially biasing Spectra solutions toward attending to 
the largest gene communities. Therefore, by default, when Spectra 
takes in gene sets as input, the edge weights used to downweight the 
contribution of any individual graph edge are proportional to the size 
of the gene set that it is derived from. The default weighting scheme is 
to weight edges by the total number of edges in the clique. For a given 
gene set Gk, this involves downweighting by 1

(|Gk |
2
)
:

wij ∝
1

(
|Gk|

2
)

where ∣Gk∣ is the size of a gene set Gk containing genes i and j. The weights 
are rescaled so that the median weight across gene sets is 1. When a pair 
of genes exists in multiple gene sets, the weights accumulate additively. 
Another reasonable choice is wij =

1
max[d(i),d( j)]

, where d(i) is the degree 
of node i.

As an alternative weighting scheme, Spectra accommodates 
weighted graphs by scaling edges by edge-specific weights. This feature 
allows users to annotate the prior information graphs with additional 
quantitative information representing relative confidence in each 
individual annotation.

Pseudolikelihood function
The heretofore described model components describe the expected 
values of the expression data matrix X and the prior knowledge graph A 
under the Spectra generative process. Together with specific observa-
tion distributions, this would specify a likelihood function that serves 
as the maximization objective of Spectra, fit via either first-order meth-
ods or expectation maximization (EM). The loss function described 
below is the negative value of a proper likelihood function in the case 
where weights wij are equal to 1, λ = 1, and expression data X follow a 
Poisson distribution. In practice, these conditions are not satisfied, 
so we adopt the terminology pseudolikelihood function to describe 
the negative loss function. For ease of exposition, we first describe 
the pseudolikelihood function assuming a single cell type. Recall the 
general form of the Spectra objective, consisting of a term that meas-
ures the ability of Spectra factors to recapitulate expression data and a 
term that measures the concordance of Spectra factors with the prior 
knowledge database:

ℒ(Θ) = λℒReconstruction(Θ) + ℒGraph(Θ)

As edges are binary, combined with the assumption of independence, 
the log likelihood of Aij given a probability of 1, pij ∶= ℙ𝔼Aij = 1], is

logℙ(Aij) = Aij logpij + (1 − Aij) log(1 − pij)

With pij as described in Modeling gene–gene relationships in relation 
to expression data and The factor interaction matrix tunes the weight 
of the gene–gene prior,

logℙ(Aij) = Aij log [(1 − κ)(1 − ρ)θ⊤i Bθj + κ(1 − ρ)]

+(1 − Aij) log [(1 − κ)(1 − ρ)(1 − θ⊤i Bθj) + ρ]

To incorporate weights (following Constructing the gene–gene 
prior graph), we weight likelihood terms corresponding to each edge 
in the graph by an edge-specific weight wij:

logℙ(Aij) = wijAij log [(1 − κ)(1 − ρ)θ⊤i Bθj + κ(1 − ρ)]

+ (1 − Aij) log [(1 − κ)(1 − ρ)(1 − θ⊤i Bθj) + ρ]

Combining across all observations (i, j), this leads to the expression for 
ℒGraph(Θ):

ℒGraph(Θ) =
p
∑
i=1

p
∑

j=1,j≠i
[wijAij log ((1 − κ)(1 − ρ)θ⊤i Bθj + κ(1 − ρ))

+ (1 − Aij) log ((1 − κ)(1 − ρ)(1 − θ⊤i Bθj) + ρ)]

The loss function derived from the Poisson distribution has been 
widely used for modeling scRNA-seq counts4,56,77. Although processed 
data may not necessarily be well described by the Poisson observation 
model (that is, scran-processed data are on a log scale), the resulting 
log likelihood strikes a practical balance in scaling with gene expression 
magnitude. The resulting loss function has been used in contexts other 
than modeling count data as the KL divergence loss78. Additionally, 
under idealized settings, estimates obtained by minimizing this loss 
function inherit properties of M estimators analogous to those of 
maximum likelihood estimators, with few assumptions on the data 
distribution79. Here, we are primarily concerned with how the loss 
function behaves under changes in scale. For example, suppose we 
have an estimated expression value X̂ij. We can write X̂ij(Θ) as our pre-
dicted gene expression as a function of the model parameters. The 
least squares loss ℒ2(Θ) ∶= 𝔼Xij − X̂ij(Θ)]

2
 is quadratically dependent on 

the scale of Xij, because replacing both ground truth and estimate by 
scaled versions φXij and φX̂ij  leads to a loss of φ2ℒ2(Θ). Similar to the 
issues addressed in ‘LReconstruction (Θ): modeling gene expression as a 
low-rank product’, the squared loss function encourages factors to 
attend to highly expressed genes because scale differences amplify 
the loss quadratically. At the other extreme, consider the Itakura–Saito 
loss (IS loss) given by (we briefly assume that both ground truth and 
estimate are not 0)

ℒIS(Θ) ∶=
Xij

X̂ij(Θ)
− log

Xij
X̂ij(Θ)

− 1

If we scale observed counts and prediction φXij and φX̂ij, then the IS 
loss does not change. So, matrix factorization with the IS loss does 
not suffer from a bias toward highly expressed genes. However, 
forcing the model to predict all lowly expressed genes is not desir-
able, often leading to low-quality factors. The Poisson log likelihood 
exhibits a practically convenient balance between these two 
extremes:

ℒPois(Θ) ∶= −Xij log X̂ij(Θ) + X̂ij(Θ)

When Xij and X̂ij  are scaled by φ, ℒPois(Θ)  is scaled by φ. This linear 
dependence on expression scale achieves a good balance in the relative 
weighting between highly expressed and lowly expressed genes.

An additional advantage of this loss function is that the second 
term behaves as a lasso penalty80, inducing sparsity in the resulting 
estimates of X̂ij for sparse data X, noted by Gopalan et al.81. This sparsity 
allows for a parsimonious explanation of a cell’s gene expression using 
as few factors as possible. In Spectra, we have X̂ij ∶= α⊤i θj(gj + δ), yielding 
the expression

ℒReconstruction(Θ) =
n
∑
i=1

p
∑
j=1

Xij log [α⊤i θj(gj + δ)] − α
⊤
i θj(gj + δ)

Combining the components, the pseudo-log likelihood function is

ℒ(α,θ, g,B) = λ
n
∑
i=1

p
∑
j=1

Xij log (α⊤i θj(gj + δ)) − α
⊤
i θj(gj + δ)

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
ℒReconstruction

+
p
∑
i=1

p
∑

j=1, j≠i
[wijAij log ((1 − κ)(1 − ρ)θ⊤i Bθj + κ(1 − ρ))

+ (1 − Aij) log ((1 − κ)(1 − ρ)(1 − θ⊤i Bθj) + ρ)]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
ℒGraph
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Again, X is the data matrix after processing, whereas α, θ, g and B are 
the four model parameters that need to be estimated. The first term 
in the pseudo-log likelihood function comes from the log likelihood 
of the Poisson distribution (also referred to as the KL divergence loss 
function when multiplied by −1), while the second term is the log likeli-
hood of a Bernoulli distribution with positive observations scaled by 
wij. The pseudolikelihood function optimized by Spectra includes an 
optimization over cell-type-specific and global parameters, and so an 
additional sum over cell types is included in the pseudo-log likelihood 
(Supplementary Fig. 7).

ℒ(α,θ, g,B) =
C
∑
c=1

nc
∑
i=1
λc

p
∑
j=1

Xcij log ((gj + δ)α⊤c,i,∶Kθj + (gcj + δ)α⊤c,i,K+1∶θcj)

−
C
∑
c=1

nc
∑
i=1

p
∑
j=1
((gj + δ)α⊤c,i,∶Kθj + (gcj + δ)α⊤c,i,K+1∶θcj)

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
ℒReconstruction

+
C+1
∑
c=1

p
∑
i=1

p
∑

j=1, j≠i
[wc,ijAc,ij log ((1 − κc)(1 − ρc)θ⊤ciBcθcj + κc(1 − ρc))

+ (1 − Ac,ij) log ((1 − κc)(1 − ρc)(1 − θ⊤ciBcθcj) + ρc)]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
ℒGraph

As all discrete parameters have been integrated out, this pseudo-log 
likelihood can be directly maximized via first-order methods, such as 
gradient descent. Approximate second-order methods are not ideal 
due to the high dimension of the parameter space for practical prob-
lem sizes. However, for smaller-sized problems (in terms of number 
of genes and factors), we develop an EM approach that yields intuitive 
coordinate ascent updates of model parameters.

Spectra’s output
To describe the activity level of factor k in cell i, we compute cell scores 

as cell_scoreik = qkαik, where qk =
1
p
∑p
j=1 θjk. In other words, the cell scores 

are the loadings weighted by the total factor usage across all genes. 
This allows us to circumvent the non-identifiability of scale associated 
with factor analysis approaches. Regarding terminology, we will always 
refer to the unnormalized loadings αik as ‘loadings’ and the normalized 
loadings as cell scores. Additionally the cell-specific parameters of 
other matrix factorization methods are described as ‘loadings’. The 
ground truth parameters in our simulations are also described as 
‘loadings’.

To describe the relevance of gene j for factor k, we compute gene 

scores for gene j and factor k as ( gj+δ
gj+δ+offset

)θjk. The first term is near 0 

when gj is very small and near 1 when gj is large. This allows us to remove 
very lowly expressed genes from the factors while maintaining coher-
ence. By default, the offset term is set to 1, can be tuned and in some 
cases set to 0, which yields the factors θjk themselves. Each θjk is more 
directly influenced by the prior than gjθjk, and so setting offset to 0 
tends to yield marker lists closely resembling input gene sets.

Users can access additional parameters that facilitate inter-
pretation of the gene scores and cell scores. The factor interaction 
matrix per cell type (B; Supplementary Fig. 6) contains entries in 
the range [0, 1], where diagonal entries can be interpreted as the 
relevance of a given factor to the prior graph. Off-diagonal entries 
can be interpreted as a background rate of edges between genes 
that are expressed in separate factors. For each cell type, users can 
access a posterior graph that is denoised using information from 
the expression data. The posterior graph is computed by the inner 
product 〈θi, Bθj〉 for each pair of genes θi and θj after estimating θi, θj 
and B from the data.

Of importance are the diagonal elements of the interaction matri-
ces B, which contain information about the dependence of the factor 

on the input graph. We term these diagonal elements η, specifically 
ηc ≔ diag(Bc).

Factor importance and information scores
We adopt the following two metrics to prioritize factors in the output 
of Spectra: factor importance and factor information scores, each 
measuring a different property of the factor. Both metrics are com-
puted per cell type for all of the factors that are potentially relevant to 
that cell type. In other words, to prioritize the relevant factors for a cell 
type, the metrics are computed for each cell-type-specific factor and 
each global factor, resulting in 2(K + Kc) scores for cell type c. The factor 
importance score measures the overall contribution of a factor to 
explain the observed expression data (as measured by the reconstruc-
tion component of the loss function), regardless of whether this factor 
explains within-cell-type variation. The factor information score, com-
plementary to the factor importance score, measures whether the gene 
set associated with a factor captures meaningful within-cell-type vari-
ation. Factors with high scores in either of these categories are poten-
tially of interest for post hoc analysis. The factor importance score is 
a relative change in reconstruction error for a specific cell type when 
a certain factor is masked out. Let ̄Lc(θ,θj) be the reconstruction error 
for cell type c:

̄Lc(θ,θj) ∶=
nc
∑
i=1
λc

p
∑
j=1

Xcij log [(gj + δ)α⊤c,i,∶Kθj + (gcj + δ)α⊤c,i,K+1∶θcj] (1)

−
nc
∑
i=1

p
∑
j=1

[(gj + δ)α⊤c,i,∶Kθj + (gcj + δ)α⊤c,i,K+1∶θcj] (2)

Here, it is understood that all parameters except θ and θj are fixed to 
their fitted values. Further, let ϵk denote a vector of all 1 values of a 
dimension equal to the number of factors, except at k where it is 0: 
ϵk = 1 − ek. The importance score for cell-type-specific factor k is then 

ℱc,k =
̄Lc(θ,ϵk∘θj)− ̄Lc(θ,θj)

̄Lc(θ,θj)
, where ° represents elementwise product. Similarly 

the importance score for a global factor k is given by ℱ(g)
c,k =

̄Lc(ϵk∘θ,θj)− ̄Lc(θ,θj)
̄Lc(θ,θj)

Information scores are given by Definition (1) in Mimno et al.82 but 
computed per cell type to represent cell-type-specific information 
content. Specifically, given a marker list associated with a factor and 
with M set to 30 we have

Cc,k =
M
∑
m=2

m−1
∑
l=1

log
Dc(g(k)m , g(k)l ) + 1

Dc(g(k)l )
(3)

where g(k)m  is now the mth top gene for factor k, and Dc(⋅, ⋅) and Dc(⋅) are 
the co-occurrence frequency and frequency, respectively, within cell 
type c. We plot exp(Cc,k) as the information scores.

Optimization
We develop the following two optimization schemes: an auxiliary 
latent variable EM approach and gradient descent-based optimiza-
tion via Adam83. EM converges quickly in many situations; however, 
the memory requirements are substantially larger than the gradient 
descent-based optimization. Specifically the memory requirement of 
EM parameter storage is O(npK + p2K2) due to auxiliary parameter stor-
age, while the memory requirement of gradient descent is substantially 
lower, O(nK + pK + K2).

Although memory intensive, the EM solution is valuable for two 
reasons: (1) for problems with a small number of factors (<20) and genes 
(<2,500), EM is fast and less sensitive to initialization than gradient 
descent84, and (2) the EM updates are intuitive and give us an under-
standing of how our algorithm balances evidence from the graph and 
expression data.
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However, optimization with Adam can handle a large number 
of factors (>200) and genes (>10,000) and can exhibit stability with 
the appropriate initialization. By default, Spectra uses Adam for 
optimization.

EM
For ease of exposition, we describe the EM routine for the 
non-integrative model; the updates are easily extendable to incor-
porate cell-type labels. Additionally, we write the pseudolikelihood 
function equivalently (up to a scale factor) in terms of ̃λ ∶= 1

λ .  
To make EM possible, we exploit two facts about the distribution  
of (X, A)85.

The first is that if zijk ~ Pois[(gj + δ)αikθjk] and we define Xij = ∑K
k=1 zijk, 

then Xij still has the correct marginal distribution due to standard 
properties of the Poisson distribution81. Second, if we define 
̃zij ∼ Categorical(θi)  and ̃zji ∼ Categorical(θj)  and define a conditional 

distribution for Aij as

ℙ (Aij = 1| ̃zijk = 1, ̃zjil = 1) = Bkl

then Aij still has the correct marginal distribution86. As a result, we can 
optimize the marginal log likelihood via optimization of the expected 
complete data log likelihood 𝔼𝔼z, ̃z𝔼logp(X,A, z, ̃z)], where the expectation 
is taken over the posterior p(z, ̃z|A,X). The expected complete data log 
likelihood is given by

ℒ̃(α,B,θ, g) =
n
∑
i=1

p
∑
j=1

K
∑
k=1
ϕijk log((gj + δ)αikθjk) − (gj + δ)αikθjk

+ ̃λ
p
∑
i=1

p
∑

j=1, j≠i

K
∑
k=1

K
∑
l=1
ϕ̃ijkl (wijAij log ((1 − κ)Bkl + κ)

+ (1 − Aij) log ((1 − κ)(1 − ρ)(1 − Bkl) + ρ) + logθik + logθjl)

where ϕijk ∶= 𝔼𝔼(zijk|X) = Xij
αikθjk

∑K
k=1 αikθjk

 and

ϕ̃ijkl = ℙ ( ̃zijk = 1, ̃zjil = 1|A)

∝ θikθjl((1 − κ)Bkl + κ)
wijAij ((1 − κ)(1 − ρ)(1 − Bkl) + ρ)

1−Aij

Importantly, this manipulation moves summations outside of the logs, 
which permits analytic EM updates for B, α and g given by

αik ←
∑p

j=1 ϕijk
∑p

j=1 θjk(gj+δ)

gj ← proj[0,1] (
∑n

i=1 ∑
K
k=1 ϕijk

∑n
i=1 ∑

K
k=1 αikθjk

− δ)

Bkl ← proj[0,1] (
( ρ
1−ρ

+(1−κ))Ξkl−κ

(1−κ)(1+Ξkl)
)

where Ξkl ∶=
∑p

i=1 ∑
p
j=1 ϕ̃ijklwijAij

∑p
i=1 ∑

p
j=1 ϕ̃ijkl(1−Aij)

, representing an odds ratio between Ber-

noulli outcomes. Further, the complete data log likelihood has diagonal 
Hessian when viewed as a function of θ only, ̃L(θ), permitting linear time 
Newton Raphson updates

γjl ←
1
θjl
[
n
∑
i=1

p
∑
j=1
ϕijl + ̃λ

p
∑
i=1

K
∑
k=1
ϕ̃ijkl + ̃λ

p
∑
i=1

K
∑
k=1
ϕ̃jilk] − (gj + δ)

n
∑
i=1
αil

H−1
jl ←

−θ2jl
∑n

i=1 ∑
p
j=1 ϕijl+ ̃λ∑p

i=1 ∑
K
k=1 ϕ̃ijkl+ ̃λ∑p

i=1 ∑
K
k=1 ϕ̃jilk

Δj ← −
∑K

k=1 γjkH
−1
jk

∑K
k=1 H

−1
jk

θjk ← θjk − H−1
jk (Δj + γjk)

Algorithm 1. EM Spectra routine
Require: X ≥ 0,A ∈ {0, 1}p×p,T ∈ ℤ+, κ ∈ ℝ+,ρ ∈ ℝ+, ̃λ ∈ ℝ+
 initialize B, α, θ, g
 while ℒn − ℒn−1 > ϵ, do
  ϕijk ← Xij

αikθjk
∑K

k=1 αikθjk

  ϕ̃ijkl ← θikθjl((1 − κ)Bkl + κ)
wijAij ((1 − κ)(1 − ρ)(1 − Bkl) + ρ)

1−Aij

  ϕ̃ijkl ← ϕ̃ijkl/∑klϕ̃ijkl

  while t < T, do
    γjl ←

1
θjl
[∑n

i=1∑
p
j=1 ϕijl + ̃λ∑p

i=1∑
K
k=1 ϕ̃ijkl + ̃λ∑p

i=1∑
K
k=1 ϕ̃jilk]

−(gj + δ)∑
n
i=1 αil

   H−1
jl ←

−θ2jl
∑n

i=1 ∑
p
j=1 ϕijl+ ̃λ∑p

i=1 ∑
K
k=1 ϕ̃ijkl+ ̃λ∑p

i=1 ∑
K
k=1 ϕ̃jilk

   Δj ← −
∑K

k=1 γjkH
−1
jk

∑K
k=1 H

−1
jk

   θjk ← θjk − H−1
jk (Δj + γjk)

  αik ←
∑p

j=1 ϕijk
∑p

j=1 θjk(gj+δ)

  gj ← proj[0,1] (
∑n

i=1 ∑
K
k=1 ϕijk

∑n
i=1 ∑

K
k=1 αikθjk

− δ)

  Bkl ← proj[0,1] (
( ρ
1−ρ

+(1−κ))Ξkl−κ

(1−κ)(1+Ξkl)
)

  ℒn ← ℒ(α,θ,B, g)
The integrative version of Spectra uses analogous updates, with 

the bounds of summations appropriately modified; specifically, the E 
step updates are ϕijk = Xij

gc, jαikθjk
gj∑

K
k=1 αikθjk+gc, j∑

K+Kc
k=K+1 αikθjk

 for cell-type-specific 

factors and ϕijk = Xij
gjαikθjk

gj∑
K
k=1 αikθjk+gc, j∑

K+Kc
k=K+1 αikθjk

 for global factors.

Adam
For large scRNA-seq datasets, the memory requirement of EM for fitting 
a large number of factors is prohibitive. We optimize the marginal log 
likelihood with Adam83, a momentum-based gradient descent opti-
mizer implemented in pytorch, directly. In detail, the Adam hyperpa-
rameters β1 and β2 are set to default values 0.9 and 0.999, respectively. 
We use a learning rate schedule of [1.0, 0.5, 0.1, 0.01, 0.001, 0.0001], 
where training at subsequent learning rates occurs after convergence 
at higher learning rates. A maximum number of iterations is fixed to 
10,000. This default training scheme can be modified by the user. In 
particular, for faster convergence, either the maximum number of 
iterations can be made smaller or the smallest learning rates can be 
removed, allowing for solutions that are not as fine tuned.

Initialization
Because the Spectra objective function is non-convex and susceptible 
to suboptimal local maxima, initialization plays an important role in the 
quality of the eventual solutions. When Spectra is provided with gene 
sets as input, our strategy is to initialize factors as close to the gene sets 
as possible. Whenever the number of factors is greater than the number 
of gene sets, we resort to a gene set-based initialization procedure.

First, a hyperparameter t controls the strength of the initialization. 
By default, t is set to 25. For a given cell type, whenever the number of 
factors is at least as large as the number of gene sets, we initialize 
logθij ← t when gene i belongs to gene set j for each gene set j = 1,…, Ngs, 
and Ngs is the number of gene sets. Further, the factor interaction matrix 
is initialized with logitBjj ← t to encode the knowledge that this factor 
corresponds to a gene set. To encourage the last factor to capture genes 
that have no edges in the prior graph, we initialize the last row and 
column to small values, logit BK,j ← −t and logit Bj,K ← −t for all j = 1,…, K. 
Corollary 1 (Supplementary Note) explains why this leads to extremely 
fast convergence when λ is small.
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For a given cell type, when the number of factors is not greater 
than the number of gene sets, we resort to initialization with NMF87.

GPU acceleration
For all results involving GPU acceleration, a wrapper around the origi-
nal model implementation is provided, loading models onto the GPU 
via the pytorch syntax device = torch.device (‘cuda:0’) and model.to 
(device) when CUDA is available. Data (including adjacency matrices 
and expression data) are similarly loaded onto GPU. All GPU methods 
were run on an NVIDIA A100 Tensor Core GPU.

Determining the number of factors
We adopt two approaches to determine the number of factors. The 
first approach is to set the number of factors for each cell type equal 
to the number of gene sets available for that cell type + 1 (similar to the 
approach taken by Slalom), and the second approach is to estimate the 
number of factors from the data via bulk eigenvalue matching analy-
sis88. Fitting a large number of factors is possible; in our experiments, 
we fit a set of 197 factors.

The second approach involves three steps. In the first step, we 
estimate a null distribution of eigenvalues based on sampling variances 
σ2j ∼ Gamma(θ, 1/θ) and then subsequently an n × p Gaussian matrix 
Zij ∼ N(0,σ2j ). We sample B of these matrices and take the average of the 
sorted eigenvalues of 1

n
ZZt  over B samples. Typically B is set to 100. 

Given the average sorted eigenvalues, we compute a regression coef-
ficient without intercept between the ‘bulk’ of these eigenvalues and 
the bulk of the observed eigenvalues of the data covariance matrix. 
The bulk of the distribution are the values between some lower and 
upper quantiles, which are hyperparameters of the method. We per-
form a line search on θ to find a value of θ that minimizes the sum of 
squared residuals of this regression. Denoting this regression coeffi-
cient as β, in the second step, we simulate a background distribution 
based on sampling variance terms σ2j ∼ Gamma(θ,β/θ) , data from 
Zij ∼ N(0,σ2j ) and eigenvalues from 1

n
ZZt. Finally, K is estimated as the 

(1 − α) quantile of the simulated distribution of leading eigenvalues. 
We apply this process for every cell type separately.

Determining Spectra’s input parameters
We summarize all user-defined inputs to the Spectra algorithm.

X: Expression matrix with n cells and p genes (required).
λ: Regularization strength of prior graph (required).
Gene set dictionary: dictionary with cell types as keys and gene 

sets as values (optional).
Cell-type labels: list of cell types corresponding to expression 

matrix (optional).
δ: parameter that bounds minimum gene scale factor (optional).
w: graph edge weights (optional).
κ: background rate of edges (optional).
ρ: background rate of edge deletion.
The data matrix and regularization strength λ must be provided 

by the user, while prior information can be provided in the form of a 
dictionary of cell-type-specific and global gene sets (note that Spectra 
can also be run by providing graph adjacency matrices directly). Option-
ally, cell-type labels that align with keys of the gene set dictionary can be 
provided. The lower bound for gene scale factors, δ, controls the extent 
that gene expression is normalized and is set to a default value of 0.001. 
This translates to a maximum ratio of gene scale factors of ≈1,000. By 
default, the graph edge weights are set to be inversely proportional to 
the total number of edges induced by the gene set leading to a given edge 
and accumulate additively for genes in multiple sets. The background 
rate of noise edges, κ, and the rate at which edges are randomly removed 
from the graph, ρ, can be provided as fixed parameters that provide users 
with an extra degree of control over the extent that the graph is modified. 
If they are set to ‘None’ (default), they are estimated during the training 
process in the same manner that other model parameters are estimated.

For typically sized scRNA-seq datasets, as a rule of thumb, we rec-
ommend λ = 0.01 for studies in which factors should closely resemble 
the input gene sets and λ = 0.1 for studies where the factors should be 
allowed to deviate substantially from the gene sets. Values of δ rang-
ing from 0.0001 to 0.01 yield similar results, with δ > 0.01 providing 
solutions with typical highly expressed genes observed from NMF.

Validation metrics
Marker list coherence metrics. To evaluate the quality of factors 
computed from data, we follow previous work89,90 and use coherence, 
co-occurrence of factor genes in held-out data, to evaluate the qual-
ity of the inferred factors. For a given factor, we consider the 50 top 
marker genes with the highest gene scores for that factor. Between 
every pair of genes in the top 50 markers, we compute the pointwise 
mutual information as

PMI(gi, gj) = log
p(gi, gj)
p(gi)p(gj)

where probabilities denote the empirical occurrences in the held-out 
data. Coherence is defined as the average of this quantity across the 
marker gene list. This metric is used in Fig. 2f. To assess the coherence 
of Spectra and other methods, we allocated 9,787 cells as a hold-out set 
to compute the coherence scores at evaluation time. The remaining 
88,076 cells were used to fit the model. For each experiment, we sub-
sampled the 88,076 cells in the training set to a size of 10,000 without 
replacement (repeating this process five times to recapitulate the under-
lying data distribution). This number was chosen to be sufficiently large 
subject to the constraint that each of the methods under evaluation 
could run in a reasonable amount of time (<2 d). For each subsampled 
dataset, we computed the coherence score described above with the 
top 50 markers, where marker lists are determined via the method sug-
gested by the individual papers. For scHPF, we used the gene_scores 
function from the scHPF package to get the top 50 markers4. For Slalom, 
we multiplied the estimated parameter matrices, that is, the continuous 
posterior mean 𝔼𝔼W  and Bernoulli posterior mean 𝔼𝔼Z , as in Buettner 
et al.6. To evaluate NMF, we derive marker lists based on the absolute 
values of the estimated factor matrix as is standard practice91.

Reconstruction of held-out genes. To quantify the ability of methods 
to impute missing genes from gene sets, we ran Spectra and Slalom 
(scRNA-seq data preprocessing and analysis) on the full Bassez dataset 
but with randomly truncated gene sets. Due to Slalom’s computational 
demands and size of the dataset, we choose a small set of 24 gene sets 
to evaluate for both methods, which are chosen a priori and held fixed 
throughout the experiment. We hold out 40% of genes (selected ran-
domly) from the original set and measure the fraction of these genes 
recovered in the top 200 genes according to Slalom and Spectra’s gene 
scores. To match factors to gene sets, for both methods, we find the 
gene set (in our full database) with the highest Szymkiewicz–Simpson 
overlap coefficient (overlap coefficient) to the given factor and label 
the factor as corresponding to that gene set. The overlap coefficient 
for the sets X and Y is defined as the size of the intersection divided by 
the size of the smaller set:

overlap(X,Y) = |X ∩ Y|
min(|X|, |Y|)

If two factors both have the highest overlap coefficient to the 
same gene set, we take the one with the higher overlap coefficient. 
The accuracy reported is the fraction of held-out markers recovered in 
the top 200 highest gene scores (Fig. 2e and Extended Data Fig. 5a–c).

Simulation experiments
Robustness to correlated factors. Matrix factorization methods rely 
on reconstruction-based objective functions that implicitly encour-
age the estimation of a diverse set of gene programs. As a result, when 
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gene programs are expressed in similar contexts (for example, CD8+ 
T cell activation, exhaustion and tumor reactivity or TNF and type 2 IFN 
responses), matrix factorization methods often return a single program 
representing the combined set of correlated programs. Further, as the 
correlation between gene programs increases, the effective sample 
size of the estimation problem decreases, as most cells do not provide 
information to separate the gene programs. To illustrate that Spectra 
can incorporate prior information to maintain robust estimation in 
the presence of highly correlated gene programs, we simulated gene 
expression data from a generic factor analysis model where the cell 
loadings corresponding to factors 1 and 2 are simulated from a joint 
log normal distribution with non-zero correlation terms ranging from 
0.25 to 0.99 (Extended Data Fig. 5d). Factors themselves were simulated 
from a half-Cauchy distribution to achieve realistic levels of sparsity 
and extreme values. Conditional on simulated factors and loadings, 
gene expression was simulated from a Poisson distribution with the 
mean given by the matrix product of loadings and factors. A noisy prior 
knowledge graph was simulated by sampling the adjacency matrix 
from a Bernoulli distribution with parameters given by inner products 
between factors (as in the Spectra model) and used as input to Spectra. 
For each value of the correlation, we simulated ten datasets and ran 
Spectra (λ = 0.1), NMF, scHPF and Slalom (20 top genes per factor as 
input). We quantified estimation accuracy by the mean Pearson correla-
tion of ground truth factors with estimated factors across genes, both 
for the two correlated factors and for a third factor uncorrelated with 
the first two. While the unbiased methods, NMF and scHPF, correctly 
recover the factors when factors are weakly correlated, estimation 
accuracy deteriorates as the correlation increases (although the inac-
curate estimation of the correlated factors does not hurt performance 
on the uncorrelated factors). Spectra’s use of prior knowledge allows 
it to separate highly correlated factors.

In more detail, in our comparative simulation, study factors are 
correlated in the sense that they tend to be expressed by the same cells 
(Extended Data Fig. 5d). We simulate ground truth factor matrices with 
p features and K factors with each entry independently distributed 
according to a half-Cauchy distribution (chosen to obtain realisti-
cally sparse factor matrices). To obtain correlated factors, the factor 
loadings, α, are independently drawn from a correlated log normal 
distribution:
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If we denote the N × K loading matrix by α and the K × p factor matrix 
by θ, the count data are simulated by X ~ Pois(αθ + ϵ), where ϵ is a random 
noise term with variance σ2. An adjacency matrix is sampled 
coordinate-wise A ∼ Bern( ̃θ

⊤ ̃θ), where ̃θj =
θj

∑K
k=1 θjk

. We run 10 independ-

ent trials for 7 different levels of correlation ρ = {0.25, 0.5, 0.7, 0.85, 0.9, 
0.95, 0.99}, totaling 70 simulated datasets. Because NMF, scHPF, Slalom 
and Spectra each estimate a factor matrix, we compared the estimated 
(normalized) factor matrices to ̃θ via Pearson correlation (y axis of 
Extended Data Fig. 5d) after resolving the permutation of estimated 
factors that is closest to ground truth. Resolving the correct permuta-
tion for each estimate is done via finding the permutation that maxi-
mizes the average Spearman correlation between ground truth factors 
and estimates. Because we are interested in performance on correlated 
factors, we report the average correlation between estimation and 
ground truth for the first two correlated factors across the ten inde-
pendent trials.

In our experiment, N = 20, p = 500, K = 3 and σ2 = 4 (a setting with 
low signal-to-noise ratio). Spectra is provided with the simulated matrix 

A, whereas Slalom is provided with feature sets containing the correct 
top 20 features of each factor. Spectra uses a λ value of 0.1 and δ value 
of 0. All methods are run with the correctly specified number of factors 
and with default parameters.

Biasedness of gene set averaging for overlapping gene sets. When 
gene sets corresponding to gene programs overlap, simple gene set 
averaging approaches produce false-positive program activity calls. 
To illustrate this phenomenon, we simulated gene expression data 
driven by sets of overlapping gene programs with varying degrees of 
gene set overlap and showed that gene set averages are increasingly 
biased proxies for program activity as the degree of gene set overlap 
increases (Extended Data Fig. 5e). Specifically, we simulated factor 
matrices with known sparsity patterns determined by a set of gene 
sets (each non-zero entry independently Exponential(16)). Each gene 
set is designed to have an overlap coefficient ρ with at least one other 
gene set, with ρ ranging from 0 to 0.75. Loadings are generated by first 
sampling each coordinate LogNormal(0, 1) independently and then 
zeroing out components that are <1 to induce sparsity. Simulated 
expression data are from a Poisson distribution, with the mean given 
by the matrix product of simulated loadings and factors.

For each possible value of the overlap coefficient ρ in {0.0, 0.3, 
0.5, 0.75}, we create three simulated datasets and ran both Spectra and 
score_genes with the ground truth gene sets. Accuracy is measured by 
the Pearson correlation of estimated cell scores (or score_genes esti-
mates) and the ground truth factor loadings from the data generation 
process (y axis of Extended Data Fig. 5e). In this experiment, the gene set 
size is fixed to 20, the number of gene sets is 10, the number of features 
(genes) is 500, and the number of observations is 1,000.

Recovery of active gene sets. We compared Spectra to Slalom, 
another factor analysis method that uses prior information in the 
form of gene sets, in a simulation experiment where we measured the 
ability of each method to recover the gene sets involved in the true 
data-generating process. Here, we followed the simulation settings 
of the Buettner et al. manuscript6 closely. First, background factors 
are generated from an exponential distribution, as before. To simu-
late sparsity, entries smaller than 2 are zeroed out. Next, loadings are 
generated LogNormal independently, and entries <1 are zeroed out. 
We then generate both active and control gene set-based factors as 
in Buettner et al.6 and described in Biasedness of gene set averaging 
for overlapping gene sets, where gene sets overlap with an overlap 
coefficient of 0.3. Loadings corresponding to active gene set-based 
factors are also drawn from a standard LogNormal and zeroed out if 
less than 1. Next genes are randomly added to gene sets and removed 
from gene sets to achieve a false-positive rate of 0.2 and false-negative 
rate of 0.2. As a measure of success, we use the area under the receiver 
operating characteristic curve (AUC) based on Slalom’s relevance score 
and Spectra’s average cell score for a given factor. Spectra was robust to 
increasing the number of gene sets, whereas Slalom suffered a drop in 
AUC as the number of active gene sets increased (Extended Data Fig. 5f).

In our experiments, the numbers of active pathways vary on the 
x axis of Extended Data Fig. 5f, the number of control pathways is 5, 
the gene set size is 20, the number of genes is 300, the number of cells 
is 300, the number of unbiased factors is 5, and the gene set overlap 
coefficient is 0.3.

Run time and memory benchmarks. All memory and run time bench-
marks were performed on simulated data to allow for precise control 
over the number of cells, genes, factors and cell types. Data were simu-
lated as described in Simulation experiments, closely following the set-
tings described in Buettner et al.6. To benchmark run time and memory 
with respect to the number of cells, we scaled the number of cells in 
our simulated data from {300, 1,000, 5,000, 10,000, 25,000, 75,000, 
100,000, 200,000} cells. The number of genes was held constant at 
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2,000 genes. To benchmark the methods on the number of gene sets, 
we scaled the n_active_pathways parameter in our simulation from {10, 
20, 50, 100, 200} gene sets. Next, we note that to keep our gene set size 
of 20 constant with an overlap coefficient ρ = 0.3 between gene sets, 
we increase the number of genes to 3,000 genes. We used 25,000 cells 
for all experiments. To benchmark Spectra GPU and central process-
ing unit (CPU) on the number of cell types, we scaled the number of 
cell types from {2, 4, 8, 16, 32, 64} cell types. All experiments were run 
using 25,000 cells and 3,000 genes. We note that due to variation in 
the number of epochs until convergence, we forced both Spectra CPU 
and GPU to run to the default 10,000 epochs to study a pessimistic but 
low-variance run time quantity, although convergence was generally 
achieved between 2,000 and 7,000 epochs. All CPU methods were 
run on five CPU cores (Intel Xeon Gold 6230 at 2.10 GHz), while all GPU 
methods were run on an NVIDIA A100 Tensor Core GPU.

A human immunology knowledge base
Databases, such as the Gene Ontology Resource92, the Molecular Sig-
natures Database93, the Kyoto Encyclopedia of Genes and Genomes94 
and the Reactome database95, contain thousands of gene sets and 
their relationships, but they are noisy and often do not distinguish 
whether or not genes are transcriptionally regulated. For example, 
many genes with signaling pathway annotations are regulated at the 
post-translational level by phosphorylation or subcellular localization. 
Expression signatures in these databases are often derived from bulk 
sequencing data, which may not represent responses in individual cells. 
Moreover, the databases do not have a framework for distinguishing 
which gene sets are cell-type specific. To address these issues, we 
created an immunology knowledge base with the following criteria:

 1. Genes within a gene set define a cellular process at the tran-
script level.

 2. Gene sets represent cellular processes at the single-cell level.
 3. Gene sets can be specific to a defined cell type.

Our knowledge base includes 231 gene sets representing ‘cellular 
processes’ (n = 181) to be queried by Spectra and ‘cellular identities’ 
(n = 50) to obtain replicable high-quality cell-type annotations. To 
generate the resource, we developed 97 gene sets, including 14 from 
perturbation experiments, and added these to 134 gene sets from 
publications and external databases, some of which we modified. 
Of the cellular processes, 150 apply to most cell types in the data (for 
example, leukocytes) and are designated as global, and 31 apply to 
individual cell types.

Like Spectra, the knowledge base models gene sets as a graph 
wherein every gene set is a node connected to all individual gene nodes 
within the set as well as to a cell-type node. Cell-type nodes (currently 
50) are connected to ‘cellular identity’ gene sets, one for each cell type, 
which contain marker genes for their connected cell type. Metadata, 
such as the scientific publication the gene set was derived from, gene 
set version and original gene set authors, are stored as node proper-
ties. Cell-type nodes are organized in a hierarchy, reflecting that cell 
types are frequently subsets of other cell types. This hierarchy starts 
with a cell-type node labeled ‘all-cells’ to which gene sets for ‘cellular 
processes’ occurring in all cell types are connected. Thus, the knowl-
edge base can be queried for cellular processes that can be found in 
all cell types (for example, glycolysis) or a cellular process specific to 
a cell type, such as TCR signaling, which is only present in T cells. It also 
allows retrieving ‘cellular identity’ marker gene sets, which define the 
queried cell type.

Within this resource, 150 cellular processes apply to all leukocytes, 
and 31 apply to individual cell types. Of all 231 gene sets, 97 were gene 
sets newly curated from the literature, 14 used data from perturbation 
experiments, 11 were adopted from the literature with modifications, 
and 123 were taken from the literature and external databases without 
changes. Gene sets correspond to diverse cellular identities (n = 50) 

and cellular processes, such as homeostasis (n = 9), stress response 
(n = 3), cell death and autophagy (n = 18), proliferation (n = 6), signal-
ing (n = 12), metabolism (n = 90), immune function (n = 22), immune 
cell responses to external stimuli (n = 18) and hemostasis/coagulation 
(n = 3; Fig. 1b). We designed the gene sets for cellular processes to have 
comparable size (median n = 20 genes per gene sets) and relatively 
little overlap (median pairwise overlap coefficient of 40%) to enable 
dissection of a large number of cellular processes and to avoid gene 
set size-driven effects.

To specify Spectra input, the user first defines cell types at a granu-
larity of interest in their single-cell expression data and retrieves the 
cell-type-specific cellular process gene sets and gene sets applying to 
all cell types from the knowledge base. Next, the user can select cellu-
lar process gene sets pertaining to all cell types in the dataset, which 
should be set as ‘global’ in the Spectra model.

The user indicates which cellular processes can be considered 
global based on which cell types are present in the dataset under study. 
For example, if a dataset only contains T cells, all cellular processes 
pertaining to leukocytes and T cells should be considered global. If 
cellular processes apply to more than one but not all cell types in the 
data, there are two options:

 1. The gene set can be multiplied, and one copy can be assigned to 
each cell type. This will ensure that the cell scores of the result-
ing factors will be specific to those cell types but may result in 
separate factors for the same cellular process in each cell type.

 2. The gene set can be set as global, which will generally result in 
one factor. However, cell scores for this factor may be detected 
in other cell types also.

Users can take advantage of the hierarchical organization of cell 
types in the knowledge base by adding the children or parent classes 
of selected cell types. For example, cellular processes for both ‘CD4 
T cells’ and its parent ‘T cells’ can be retrieved and assigned to ‘CD4 
T cells’, making it possible to find broader processes (for example, 
TCR signaling) that are specific to CD4+ T cells. Alternatively, cellular 
processes for CD4+ T cells and for CD4+ subtypes ‘TH1’, ‘TH2’ and ‘TH17’ 
can be retrieved and assigned to ‘CD4 T cells’, thereby pooling rare 
cell types that may not contain enough training data for the Spectra 
model to converge to a generalizable solution. Moreover, hierarchical 
classification is advantageous when cellular processes are ambigu-
ously or incorrectly assigned. For example, CD4+ T cell subtypes are 
often presented as distinct lineages with distinct cellular processes. 
However, mixed CD4+ T cell subtypes have been reported, such as 
cells possessing both TH1 and TH2 polarization cellular processes96, 
suggesting that CD4+ T cells can be described using combinations of 
purportedly subtype-specific processes.

The newest version of our human immunology knowledge base 
is available on GitHub as the Cytopus Python package97. This includes 
20 additional cellular processes mostly for non-immune cells, such 
as fibroblasts (n = 7), which we curated from a list of perturbation 
experiments on bulk-sorted immune cells98. Users can load our default 
or a custom knowledge base using the KnowledgeBase class build on 
a NetworkX object. Cytopus includes methods to retrieve gene sets 
and corresponding cell types and can visualize them as a graph and 
convert them into a Spectra-compatible dictionary. The ‘celltypes’ 
method retrieves a list of available cell types, ‘processes’ generates a 
dictionary of all ‘cellular processes’ gene sets, and ‘identities’ gener-
ates a dictionary of all ‘cellular identity’ gene sets. Gene set metadata 
(for example, author, topic, date of generation and version) can be 
accessed as node properties of the gene sets. The get_celltype_pro-
cesses method retrieves cell-type-specific ‘cellular processes’ based on 
a user-provided list of cell types at the desired granularity (generally 
all cell types contained in the data).

Full Cytopus documentation can be found at https://github.com/
wallet-maker/cytopus. The tumor-infiltrating leukocyte gene sets used 

http://www.nature.com/naturebiotechnology
https://github.com/wallet-maker/cytopus
https://github.com/wallet-maker/cytopus


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01940-3

in the paper are included in the Spectra package at https://github.com/
dpeerlab/spectra and are in Supplementary Table 1.

scRNA-seq data preprocessing and analysis
An overview of all datasets used in this study and relevant patient 
metadata can be found in Supplementary Table 5.

PBMC dataset
The original dataset8 consists of scRNA-seq data from PBMCs from 
four healthy donors after incubation (1–6 h) in IFNγ, LPS or the protein 
kinase C and TCR stimulation mimetic PMA. For three donors and at 
the 6-h time point, they added Golgi inhibitors (GIs), which prevent 
exocytosis of cytokines from PBMCs after perturbation and second-
ary paracrine signaling events, and compared them to control cells 
treated with GIs alone. Thereby, the gene expression changes in the 
GI-treated perturbations compared to the GI-treated control cells can 
be attributed to direct signaling of the applied perturbations alone. We 
used the GI-treated conditions as a ground truth to benchmark factori-
zation methods. Information on ethics oversight was not available in 
the original manuscript8.

We obtained preprocessed count matrices (23,754 cells, four indi-
viduals) from the Gene Expression Omnibus (GEO; accession number 
GSE178431) from the Kartha et al.8 PBMC perturbation scRNA-seq 
dataset. We normalized gene expression counts to median library 
size and log 1p transformed the data. We selected the 10,000 most 
highly variable genes using scanpy’s pp.highly_variable_genes func-
tion with the seurat_v3 method on raw counts. To avoid discarding 
genes relevant to cell typing, we added a manually curated list of cell 
typing markers to highly variable genes (Supplementary Table 6). 
We then calculated the neighborhood graph on the first 50 princi-
pal components using these highly variable genes, which explained 
27.87% of the total variance, and calculated a UMAP embedding on 
this neighborhood graph.

To get coarse immune cell types, we clustered the data in principal 
component space using the scanpy implementation of phenograph. 
We chose the k = 40 parameter for PhenoGraph because of its ability 
to delineate immune cell from non-immune cell populations while 
showing stable clustering in a window of adjacent k parameters (pair-
wise rand indices > 0.7). We then annotated the clusters into coarse 
immune cell types (monocytes, T cells/innate lymphoid cells and B 
cells/plasma blasts) by assessing the mean marker gene expression 
per cluster (Supplementary Table 2).

Running Spectra. To run Spectra, we retrieved 188 input gene sets 
pertaining to PBMC data from the newest version of our Cytopus 
knowledge base (https://doi.org/10.5281/zenodo.7306238). This 
included gene sets for signaling/response programs to the ground 
truth perturbations (IFNγ response, LPS signaling in monocytes/
macrophages and TCR activation in T cells). We fitted Spectra on the 
union of the 10,000 most highly variable genes and the input gene 
sets for a total of 11,840 genes using the following parameters: λ of 
0.01, δ of 0.001 and ρ of 0.001. We obtained a total of 196 factors 
and found 1 factor for each of the input gene sets related to each 
perturbation according to our criteria below (overlap coefficient 
of the top 50 marker genes with input gene set > 0.2). We calculated 
the average cell score per cell type and sample and compared the 
perturbed and unperturbed conditions. Spectra was run on a com-
pute cluster with 64 CPU cores (Intel Xeon Gold 6230 CPU at 2.10 
GHz) with 512 GB RAM.

Running Slalom. For Slalom, expression data were preprocessed 
the same as Spectra. Because Slalom’s run time scales linearly with 
the number of gene sets (Fig. 2g), we had to subset the number of 
gene sets used to run Slalom on our dataset of interest. We pro-
vided Slalom only with the three gene sets corresponding to the 

investigated perturbations (LPS, IFNγ and PMA) plus ten additional 
factors. These gene sets were used to determine the I parameter of the 
Slalom initFA() function. The following additional input parameters 
were used: nHidden = 0, nHiddenSparse = 0, do_preTrain = False, 
minGenes = 1 and pruneGenes = False, with all other options set to 
default values.

Running expiMap. For expiMap, expression data were preprocessed 
the same as Spectra. We used expiMap’s default parameters as shown 
in the tutorials of the scArches GitHub repository (https://github.com/
theislab/scarches; version as of 20 March 2023). We provided expiMap 
with the same gene sets as Spectra. When using the default parameters, 
expiMap cannot learn new genes involved in gene programs related to 
the input gene sets nor can it learn new factors in the reference data, 
but only in the mapped query.

Immuno-oncology datasets
To study Spectra in an immuno-oncology context, we used two pub-
lished scRNA-seq datasets of tumor-infiltrating leukocytes from female 
individuals with breast cancer treated with immunotherapy. We chose 
this immuno-oncology context for the following reasons:

 1. The abundant prior knowledge of cellular processes and 
well-characterized cell types in tumor-infiltrating leukocytes 
enabled us to leverage the full power of gene set and cell-type 
priors.

 2. The availability of before- and on-treatment samples to test the 
sensitivity of factor cell scores to environmental perturbation 
with anti-PD-1/PD-L1 therapy.

 3. The clinical need for detecting cellular processes affected 
by anti-PD-1 in humans to improve current immunotherapy 
strategies.

 4. The availability of two studies in similar biological settings to 
enable validating findings in an independent dataset.

Bassez dataset. Bassez et al.10 was a prospective window-of-opportunity  
study reporting scRNA-seq as an exploratory endpoint. The authors 
analyzed scRNA-seq data from whole-tumor single-cell suspen-
sions from 42 individuals with operable breast cancer before and 
after anti-PD-1 immunotherapy (pembrolizumab, NCT03197389). 
Individuals received neoadjuvant chemotherapy as per standard 
of care (chemotherapy n = 11, no chemotherapy n = 31), followed 
by a single dose of anti-PD-1. Breast resections were performed 
7–14 d after anti-PD-1 treatment. Tissue from pre-anti-PD-1 biopsies 
(7–15 d before surgery) and from surgical resections was processed 
for scRNA-seq. The study was approved by the institutional review 
board of University Hospital Leuven (S60100). As a surrogate for 
response to therapy, the authors of the original study quantified the 
clonal expansion of T cells under therapy on the patient level using 
paired single-cell TCR sequencing; we used these annotations to 
find response-associated cellular processes in the data. The authors 
categorized participants as either exhibiting (we refer to as respond-
ers) or lacking (we refer to as non-responders) T cell clonal expan-
sion under therapy. To classify participants, the authors quantified 
the number of expanding T cell clones (T cells with identical TCR 
sequences) per participant, labeling participants with >30 expand-
ing clones as responders and those with ≤30 expanding clones as 
non-responders. A T cell clone had to fulfill the following two criteria 
to be labeled as expanded:
 1. Detected at least twice in the participant’s on-treatment 

sample.
 2. More frequent in the participant’s on-treatment samples than 

in the pretreatment sample either by the absolute cell number 
in that clone or by the cell number in that clone relative to the 
number of cells with a TCR detected.
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Zhang dataset. Zhang et al.23 was a retrospective clinical study ana-
lyzing tumor-infiltrating leukocyte scRNA-seq data of pre-, on- and 
post-therapy samples from 15 female individuals with advanced breast 
cancer receiving either anti-PD-L1 (atezolizumab) combined with 
chemotherapy (paclitaxel, n = 8) or chemotherapy alone (paclitaxel, 
n = 7). The study was approved by the Chinese Academy of Medical Sci-
ences ethics review board (18-216/1794). Notably, participants received 
corticosteroid premedication for paclitaxel. The authors assessed 
participant response to immunotherapy using radiological response 
according to RECIST v1.1 criteria99. RECIST v1.1 criteria are the standard 
criteria used for drug approval-relevant clinical trials and standard 
clinical management of individuals with metastatic solid tumors. The 
RECIST criteria classify individuals into responders (combining partial 
and complete response labels) and non-responders (combining pro-
gressive and stable disease labels) based on the change in the sum of 
tumor lesion diameters under therapy. We used this classification to 
identify response-associated cellular processes in the Zhang dataset. 
Relevant clinical variables distinguishing the Bassez and Zhang data 
are indicated below.

Bassez:
Operable disease: yes
n = 31 treated with anti-PD-1
n = 11 treated with chemotherapy and anti-PD-1
Received corticosteroids: no
Zhang:
Operable disease: no
n = 8 treated with chemotherapy and anti-PD-L1
n = 7 treated with chemotherapy
Received corticosteroids: yes

Processing strategy. To minimize systematic differences in cell-type 
annotations and normalization of gene expression counts, we per-
formed the same preprocessing for the Bassez10 and Zhang23 datasets. 
After basic filtering, removing residual low-quality cells and doublets 
and subsetting to leukocytes with scanpy2, we normalized the data 
using scran77. We hierarchically annotated cell types in the data by first 
labeling major immune subsets (T cells/innate lymphoid cells, B cells/
plasma cells and myeloid cells) by clustering on the most dominant 
principal components only. We then partitioned the data into these 
major immune subsets, renormalized the data within every subset 
using scran and clustered on more principal components to annotate 
granular cell types. We then combined the annotated data from major 
immune subsets for joint analysis using Spectra. We have outlined the 
details of the analysis strategy below.

Retrieving single-cell gene expression data. Count matrices of 
the Bassez data10 were kindly provided by the authors and are also 
available here (226,635 cells). Raw read counts are available in the 
European Genome–Phenome Archive (EGA; accession numbers 
EGAS00001004809 and EGAD00001006608). The count matrices 
for the Zhang data23 were downloaded from GEO using the accession 
number GSE169246 (489,490 cells).

Removing low-quality cells. To prepare the data for clustering, we 
removed cells with less than 200 genes per cell and genes observed in 
less than 20 cells as well as mitochondrial and ribosomal genes. This 
filtering procedure removed 2,971 and 203 genes, resulting in a total of 
22,639 and 20,898 genes in the Bassez10 and Zhang23 datasets, respec-
tively. We defined doublets in the data by running DoubletDetection100 
for each sample individually using standard parameters (clustering 
algorithm: PhenoGraph; P value threshold: 1 × 10–16; voter threshold: 
0.5). DoubletDetection detected 3,270 (1.4%) and 12,760 (2.6%) dou-
blets as well as 27 (0.01%) and 8 (0.001%) ambiguous doublets in the 
Bassez10 and Zhang23 datasets, respectively, which we removed from 
the data.

Retrieving tumor-infiltrating leukocytes for downstream annota-
tion. While the Zhang23 data contained sorted tumor-infiltrating leu-
kocytes, the Bassez10 data contained unsorted whole-tumor single-cell 
suspensions. To retrieve immune cells from the Bassez10 data for down-
stream annotation, we first performed standard median library size 
normalization and log 1p transformed the data so that the normalized 
expression of every gene j in cell i is x′ij, and the median of the sum of 
gene expression counts across all cells is med (∑n

j=1 xj):

x′ij = ln [med(
n
∑
j=1
xj) ∗

xij
∑n
j=1 xij

+ 1]

We then clustered the data using PhenoGraph101 on the most domi-
nant principal components, which we selected using the knee point of 
the principal component versus explained variance curve (calculated 
using the kneed package v.0.7.0 (ref. 102)) or the lowest number of prin-
cipal components explaining ≥20% of the total variance, whichever was 
higher. Using this procedure, we clustered the data with PhenoGraph 
on the first 26 principal components, explaining 20.1% of the total 
variance. We chose the k = 80 parameter for PhenoGraph because of 
its ability to delineate immune cell from non-immune cell populations 
while showing stable clustering in a window of adjacent k parameters 
(pairwise rand indices > 0.7). We then subsetted leukocytes for further 
analysis by their marker gene expression (myeloid cells, T cells, innate 
lymphoid cells, B cells and plasma cells) per PhenoGraph cluster (Sup-
plementary Table 2).

Annotating tumor-infiltrating leukocytes. We renormalized leu-
kocytes in the Bassez10 and Zhang23 data using scran because median 
library size normalization can generate artificial differential gene 
expression between cells of different library size, such as leukocytes77. 
After testing all genes and a range between 5,000 and 15,000 highly 
variable genes, we selected the top 15,000 highly variable genes 
for the Bassez10 data and all genes for the Zhang23 data, which led to 
the best separation of major immune cell subtypes using scanpy’s 
pp.highly_variable_genes function with the seurate_v3 method on raw 
counts. To avoid discarding genes relevant to cell typing, we added a 
manually curated list of 458 cell-typing markers to highly variable genes 
(Supplementary Table 6). We then repeated the clustering procedure 
outlined above (Bassez10: 24 principal components explaining 20.1% 
of total variance; Zhang23: 52 principal components explaining 20% 
of total variance; k = 50) and annotated major immune cell subsets 
(T cells/innate lymphoid cells, B cells/plasma cells and myeloid cells) 
by assessing their mean marker gene expression per cluster (Supple-
mentary Table 2). To obtain more granular annotations, we partitioned 
the data into major immune subtypes (T cells, innate lymphoid cells, B 
cells/plasma cells and myeloid cells), renormalized each subtype using 
scran, recalculated highly variable genes and principal components and 
clustered as described above. The following processing parameters for 
each subtype were used: Bassez data, numbers of highly variable genes 
and marker genes: 7,500, 7,500 and 15,000 for T cells/innate lymphoid 
cells, B cells/plasma cells and myeloid cells, respectively; numbers of 
principal components: 24, 10 and 16 for T cells/innate lymphoid cells, 
B cells/plasma cells and myeloid cells, respectively; variance explained 
by principal components: 20.3%, 20.1% and 20.1% for T cells/innate 
lymphoid cells, B cells/plasma cells and myeloid cells, respectively; 
k parameter for clustering: 30, 40 and 20 for T cells/innate lymphoid 
cells, B cells/plasma cells and myeloid cells, respectively; Zhang data, 
numbers of highly variable genes and marker genes: 19,379, 19,379, 
10,000 and 18,888 for T cells/innate lymphoid cells, innate lymphoid 
cells, B cells/plasma cells and myeloid cells, respectively; numbers of 
principal components: 100, 100, 17 and 23 for T cells/innate lymphoid 
cells, innate lymphoid cells, B cells/plasma cells and myeloid cells, 
respectively; variance explained by principal components: 17.9%, 17.7%, 

http://www.nature.com/naturebiotechnology
https://ega-archive.org/studies/EGAS00001004809
https://ega-archive.org/datasets/EGAD00001006608
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169246


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01940-3

20.4% and 20.1% for T cells/innate lymphoid cells, innate lymphoid cells, 
B cells/plasma cells and myeloid cells, respectively; k parameter for 
clustering: 40, 40, 60 and 20 for T cells/innate lymphoid cells, innate 
lymphoid cells, B cells/plasma cells and myeloid cells, respectively.

We then annotated granular immune cell types by assessing the 
mean marker gene expression per cluster (Supplementary Table 2). In 
the Bassez10 data, we detected clusters with low library size and lower 
complexity of gene–gene correlation patterns at this step (5,509 cells), 
which we removed from the data. Finally, we combined the annotated 
major immune subtypes for downstream joint analysis.

Running Spectra. After the filtering and preprocessing steps above, 
the Bassez data had 97,863 cells10, and the Zhang data had 150,985 
cells23. To run Spectra, we restrict the number of genes using scanpy’s 
highly_variable_genes function with the cell_ranger method, selecting 
the 3,000 most highly variable genes. We removed several genes that 
are highly abundant and may originate from ambient RNA in many cell 
types, thus adding noise to the analysis. This included mitochondrial, 
ribosomal, immunoglobulin (genes starting with IGHM, IGLC, IGHG, 
IGHA, IGHV, IGLV and IGKV), TCR variable domains (genes starting with 
TRBV, TRAV, TRGV and TRDV) and hemoglobin genes (genes starting 
with HB). The total numbers of genes used (the union of genes included 
in a gene set and highly variable genes) were 6,397 for the Bassez data-
set10 and 6,398 for the Zhang dataset23.

One hundred and eighty-one gene sets from our knowledge 
base were then converted into weighted adjacency matrices. One of 
Spectra’s strongest features is its ability to meaningfully modify the 
input gene–gene knowledge graph (gene sets) in a data-driven mat-
ter. With the influence parameter λ set to 0.01, the median overlap 
coefficient across all factors in the Bassez10 data was 88%, with 25% 
of factors relevantly deviating from the gene sets (overlap < 70%) 
and 7% of factors bearing little resemblance to the input gene sets 
(overlap < 20%). With the influence parameter set to 0.1, the median 
overlap coefficient across all factors was 82%, with 42% of factors 
relevantly deviating from the gene sets (overlap < 70%) and 12% of fac-
tors with an overlap of less than 20%. In terms of graph edit distance 
to the input graph (defined as the mean absolute difference between 
input and output graphs), at λ set to 0.1, we had 0.011, and at λ set to 
0.01, we had 0.0095 with diminishing returns in graph edit distance 
for lower λ (0.0095 again for λ = 1 × 10–4 and 0.0094 for λ = 1 × 10–5). 
For the analyses described below, we used an influence parameter λ 
between 0.1 and 0.01 depending on whether we wanted more (0.01) or 
less (0.1) adherence to the input gene sets. Because we obtained very 
similar results with these parameters in two independent datasets, 
it is likely that this also constitutes a good default for other datasets. 
Spectra was run on a compute cluster with 64 CPU cores (Intel Xeon 
Gold 6230 CPU at 2.10 GHz) with 512 GB RAM.

Running Slalom. Because Slalom’s run time scales linearly with the 
number of gene sets (Fig. 2g), we had to subset the number of gene 
sets used to run Slalom on our datasets of interest (n = 20 gene sets, 
run time 63.49 CPU hours, 40 GB of memory on the Bassez10 dataset). 
Expression data were preprocessed identically to Spectra. To compare 
results of Spectra and Slalom, we chose a subset of 20 gene sets of 
scientific relevance to the immune microenvironment under immune 
checkpoint blockade for the Bassez10 and Zhang23 datasets: CD8+ T cell 
tumor reactivity, type II IFN response, myeloid angiogenic effectors, 
post-translational modification, MHC class I presentation, G2/M transi-
tion, oxidative phosphorylation, type I IFN response, macrophage IL-4/
IL-13 response, glycolysis, DNA synthesis, G1/S transition, lysine metab-
olism, MHC class II presentation, hypoxia response, pentose phosphate 
pathway, CD8 terminal exhaustion, PD-1 signaling, TCR activation 
and cytotoxicity effectors. These gene sets were used to determine 
the I parameter of the Slalom initFA() function. The following addi-
tional input parameters were used: nHidden = 0, nHiddenSparse = 0, 

do_preTrain = False, minGenes = 1, pruneGenes = False, with all other 
options set to default values.

Running scHPF. scHPF was run with the following commands using 
the defaults in the class constructor of the scHPF package. from scHPF 
import *: model = scHPF(nfactors = K); model.fit(X).

Running expiMap. When using the default parameters, expiMap9 
cannot learn new genes involved in gene programs related to the input 
gene sets nor can it learn new factors in the reference data but only in 
the mapped query. We note that most demonstrations in the expiMap 
manuscript9 are based on these default parameters and do not involve 
adaptation to the data.

For the immunology datasets, where the specific task evaluated 
involved learning new genes and new factors, we modified the default 
parameters according to Lotfollahi et al.9. We refer to this mode as 
soft mode. These parameters include setting soft_mask = True in the 
expiMap model scarches.models.EXPIMAP and setting an L1 pen-
alty using the alpha_l1 parameter of the model.train method, which 
enables the latent nodes to use genes absent from the input gene 
sets with an L1 regularization. The alpha_l1 parameter was increased 
in steps of 0.1 starting from 0.5 until the share of inactive genes 
exceeded 0.95 (this information can be visualized by the print_stats 
parameter in the .train method). Using this strategy, we selected 
an alpha_l1 of 0.8. For the Extended Data Fig. 5b,c reconstruction 
experiment where the task involved recovering held-out genes, 
we used an alpha_l1 parameter of 0.4 because expiMap showed the 
strongest performance with this parameter in a similar experiment 
performed by the expiMap authors (Extended Data Fig. 7 in Lotfollahi 
et al.9). However, for most of our gene sets and in contrast to Spectra, 
expiMap did not recover a meaningful proportion of our input gene 
sets (Extended Data Fig. 5b,c). This is despite the fact that the Spectra 
model was complicated by including 16 new factors, while we did not 
add any new factors for expiMap9.

To learn new factors, one has to provide additional parameters, 
which is what we did for analyzing the Bassez10 dataset except for  
the reconstruction experiment in Extended Data Fig. 5b,c. We added 
16 new factors, the same number as for Spectra (n_ext, set to 16). We set 
the L1 regularization coefficient for these nodes gamma_ext to 0.6, ena-
bled the Hilbert–Schmidt independence criterion regularization (use_
hsic = True, hsic_one_vs_all = True) and provided the Hilbert–Schmidt 
independence criterion regularization coefficient beta = 3. Because 
expiMap removed relevant input gene sets, we had to perform two 
additional modifications of the steps provided in the tutorial for the soft 
mode. We increased the number of highly variable genes (4,000 instead 
of 2,000) to retain the input lysine metabolism gene set and decreased 
the minimum gene set size from 13 to 8 to retain our tumor reactivity 
gene set. We provided expiMap with the identical 181 gene sets used for 
Spectra. Because expiMap removes smaller gene sets in preprocessing 
steps, the final number of gene sets used for the model fit was 142, which 
resulted in 158 factors, including 16 new factors and 3 inactive factors.

Running NMF. NMF was run using the scikit learn package (sklearn.
decomposition.NMF) with default parameters, specifically 
nmf = NMF(n_components = k) and nmf.fit(X.astype(float)), where 
k is the number of factors and X is the processed expression matrix.

Running netNMFsc. netNMFsc7 was run with default parameters; how-
ever, max_iters was set to 100,000 as convergence was never achieved 
at the default tolerance level (1 × 10–2) at the default 20,000 iterations. 
Specifically the following operations were used: operator = netNMFsc.
netNMFGD(d = k, max_iter = max_iters); operator.N = adj_matrix; 
operator.X = X.T and W = operator.fit_transform(), where adj_matrix 
is the global graph provided to Spectra, X is the processed expression 
matrix, and k is the number of factors.
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Assigning factor labels. Factor labels were assigned using the overlap 
coefficient of the top 50 marker genes (genes with the highest gene 
scores) with each gene set. We observed a bimodal distribution of over-
lap coefficients, with one group of factors centered close to 0 and one 
group of factors centered close to 1 (Extended Data Fig. 2). We therefore 
chose a threshold of 0.2 to separate high-overlap from low-overlap 
factors. For every factor, if the maximum overlap coefficient was >0.2, 
we assigned the gene set label with the maximal overlap coefficient to 
that factor, and if the maximum overlap coefficient was ≤0.2, we did 
not assign a label to that factor.

Aggregating cell scores at the sample level. To aggregate cell scores 
at the sample level, we calculated either the mean or the mean of the 
positive cells. The latter was chosen for Spectra and scHPF, which show 
bimodal cell score distributions with one mode centered around 0. 
The mean will be skewed toward the more frequent zero mode and 
may therefore be inappropriate to estimate the central tendency of 
the distribution. Positive cells were defined as cells with a cell score of 
>0.001. This threshold was defined empirically to separate the positive 
and zero mode by inspecting the distributions of multiple factors. If all 
cells showed a cell score of ≤0.001 for a given gene program, the mean 
of the positive fraction was set to 0 for that gene program. Because 
expiMap and Slalom can take negative values, we used the mean value 
for these methods.

Lung cancer datasets
Caushi dataset. The Caushi et al.30 study performed paired scRNA-seq 
and single-cell TCR sequencing of 16 individuals with primary 
non-small cell lung cancer (560,916 cells). Moreover, PBMCs were 
pulsed with different peptides (specific for viral or tumor neoanti-
gens), and reactive, expanding T cell clones and their TCR sequences 
were identified using the MANA functional expansion of specific 
T cells assay103. The authors thereby identified TCR sequences of 
MANA-, Epstein–Barr virus- and influenza-reactive T cells. They used 
these TCR sequences to identify tumor (MANA) and virus-reactive 
T cells in the lung cancer tissue. The study was approved by the institu-
tional review boards at Johns Hopkins University and Memorial Sloan  
Kettering Cancer Center.

Preprocessed data were obtained from the original study’s 
authors30. The processed data can also be obtained from GEO under 
accession number GSE173351. Because cell-type annotations were 
not available, we obtained the original study authors’ cluster labels  
(details on preprocessing and clustering are in Caushi et al.30). We 
reannotated the original authors’ 15 clusters using marker genes (Sup-
plementary Table 2).

To preprocess the data for Spectra, we normalized raw counts to 
median library size and applied log 1p transformation. We restricted 
the number of genes using scanpy’s highly_variable_genes function 
with the cell_ranger method to the 3,000 most highly variable genes. 
We retrieved a total of 168 input global gene sets (n = 152) and T cell 
subtype-specific gene sets (CD4+ T cells, CD8+ T cells and regulatory 
T cells, n = 12) from the newest version of our Cytopus knowledge base 
(https://zenodo.org/record/7306238). We took the union of the highly 
variable genes and the genes included in these input gene sets for a 
total of 6,838 genes30 used for fitting the Spectra model using the fol-
lowing parameters: λ = 0.1, δ = 0.001 and ρ = 0.001. We ran Spectra on 
these data and obtained 173 factors, 1 of which matched the CD8+ T cell 
tumor reactivity gene set according to the criteria described above in 
Assigning factor labels. Spectra was run on a computer cluster with 64 
CPU cores (Intel Xeon Gold 6230 CPU at 2.10 GHz) with 512 GB RAM. We 
plotted and compared the tumor reactivity factor cell scores in 1,151 
CD8+ T cells with available TCR specificity information grouped by tar-
get antigen (Epstein–Barr virus, influenza virus and MANA). We found 
that this tumor reactivity factor was almost exclusively expressed in 
MANA-specific T cells.

Salcher atlas. The Salcher non-small cell lung cancer atlas com-
bined scRNA-seq data of whole-tumor single-cell suspensions or 
tumor-infiltrating leukocytes from 19 independent studies (1,283,972 
cells from 318 individuals). They also homogenized cell-type annota-
tions and metadata between datasets. The study was approved by the 
institutional review board at Medical University Innsbruck (AN214-
0293 342/4.5).

Preprocessed data, including unnormalized gene expres-
sion counts, were obtained from Zenodo (https://zenodo.org/
record/7227571) for the Salcher et al. lung cancer scRNA-seq atlas71. 
The authors’ cell-type annotations were summarized after vetting 
them for relevant marker expression profiles (Supplementary Table 2).

To run Spectra, we restricted the number of genes using scanpy’s 
highly_variable_genes function with the cell_ranger method, selecting 
the 3,000 most highly variable genes with the batch_key option, which 
calculates highly variable genes in each dataset in the atlas separately 
and then merges them based on in how many datasets they are cap-
tured. We removed several genes that are highly abundant and may 
originate from ambient RNA in many cell types, thus adding noise to 
the analysis. This included mitochondrial, ribosomal, immunoglobulin 
(genes starting with IGHM, IGLC, IGHG, IGHA, IGHV, IGLV and IGKV), TCR 
variable domains (genes starting with TRBV, TRAV, TRGV and TRDV) 
and hemoglobin genes (genes starting with HB). We retrieved a total 
of 198 input gene sets from the newest version of our Cytopus knowl-
edge base (https://zenodo.org/record/7306238). The total number 
of genes used (the union of genes included in a gene set and highly 
variable genes) was 7,322. We normalized and log 1p transformed the 
gene expression counts and ran Spectra with the parameters λ = 0.01, 
δ = 0.001 and ρ = 0.001 and obtained one factor each for CD8+ T cell 
tumor reactivity and lysine metabolism. We also obtained one factor 
that shared 20 of the top 50 marker genes with the macrophage inva-
sion factor from the Bassez10 dataset (overlap coefficient = 0.4). We 
then calculated the overlap of these factors with the factors obtained 
from the Bassez10 and Zhang23 datasets (Fig. 6c). Spectra was run on 
a computer cluster with 128 CPU cores (Intel Xeon Gold 6230 CPU at 
2.10 GHz) with 1,024 GB of RAM.

To calculate embeddings for plotting UMAPs, we calculated the 
neighborhood graph (k = 10) on the first 50 principal components using 
the top 3,000 highly variable genes, which explained 45.92% of the total 
variance, and calculated a UMAP embedding on this neighborhood 
graph using the scanpy implementation (Fig. 6a).

We obtained study-specific factors by their cross-study entropy. 
We first removed spuriously expressed factors with ≤100 positive (cell 
score > 0.001) cells. For each remaining factor, we then calculated the 
entropy of study label proportions in factor-positive cells. We selected 
the factors that showed a cross-study entropy higher than 2.0794, 
which is the entropy for a hypothetical factor where positive cells 
are absent in 11 of the 19 studies analyzed and where they are equally 
distributed among the remaining 8 studies. This resulted in 11 global 
(Fig. 6b) and 3 cell-type-specific factors.

To assess the stability of our lysine factor across studies, we plot 
its z-scored (across cell types) mean expression per cell type (Fig. 6d). 
We also calculated its mean expression per sample and cell type and 
compared the expression in plasma cells to the expression in other cell 
types using Wilcoxon matched-pairs signed-rank tests (Fig. 6d). To 
compare cell scores of the CD8+ T cell tumor reactivity and macrophage 
invasion factors in clinically relevant patient subgroups, we calculated 
their mean cell scores in positive (cell score > 0.001) CD8+ T cells and 
macrophages, respectively. We then compared these aggregated cell 
scores in ever smoker versus never smoker and wild-type EGFR versus 
mutated EGFR tumors. We excluded individuals with other driver 
mutations from wild-type EGFR tumors because these tumors have 
different clinical and biological behaviors. Correction for covariates 
was not performed because many covariates (sex and age) were only 
available for a small fraction of individuals with available smoking and 
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EGFR status (only for 13 individuals with EGFR-mutated tumors were 
both age and sex information were available).

Classifying new and modified factors
We classified all factors as new, modified or unspecified based on 
their input gene–gene knowledge graph dependency parameter η. 
The dependence parameter is a scalar value between 0 and 1 that 
quantifies its reliance on the input gene set graph. We observed a 
bimodal distribution of η, with one group of factors centered close 
to 0 and another group of factors centered close to 1 (Extended 
Data Fig. 2a). We therefore chose a threshold of 0.25 to separate 
high-dependence from low-dependence parameters. We defined 
new factors as factors with a graph dependency parameter of η < 0.25 
and modified factors as factors with a graph dependency parameter 
of η ≥ 0.25.

Analyzing breast cancer-infiltrating leukocytes
We compared the ability of Spectra, Slalom and scHPF to retrieve fea-
tures of tumor-infiltrating immune cells. We ran the three algorithms 
on all leukocytes in the Bassez dataset, as described above, using a λ 
parameter of 0.01 for Spectra. We also ran Spectra on the Zhang dataset 
using a λ parameter of 0.01. For cells with high library size, such as mac-
rophages (Bassez dataset median library size = 8,038), we calculated 
gene scores for Spectra factors using an offset of 1, which retrieved 
more stably expressed genes (for example, mean scran-normalized 
expression of the top 50 marker genes of the macrophage factor 182: 
1.15 with offset versus 0.41 with no offset). For remaining analyses 
with lower library size, such as T cells (Bassez dataset median library 
size = 3,127) or B cells (Bassez dataset median library size = 3,954), we 
calculated gene scores for Spectra using an offset of 0, which allowed 
for more sensitive retrieval of lowly expressed genes, such as transcrip-
tion factors involved in tumor reactivity and exhaustion (for example, 
EOMES and TOX) as well as metabolic processes (for example, PIPOX 
and BBOX1).

Visualizing scRNA-seq data. To visualize individual genes in embed-
dings and account for sparsity in scRNA-seq data, we imputed gene 
expression using scanpy’s implementation of MAGIC104 with a t param-
eter of 3 and the exact solver (Fig. 2d and Extended Data Figs. 3c, 6b, 7b 
and 8b). For visualizing all leukocytes, we calculated t-SNE embeddings 
on 57 principal components explaining 25.0% (Bassez dataset) or 55 
principal components explaining 20% of variance (Zhang dataset) 
with standard parameters including a learning rate of 1,000 using the 
scanpy implementation (Figs. 2b and 4d and Extended Data Figs. 3a, 
4a, 7e and 8a).

Gene set enrichment analysis. To find the most representative fac-
tors for a gene set in Spectra, Slalom and scHPF, we performed gene 
set enrichment analysis for the exhaustion and tumor reactivity input 
gene sets in the top 50 marker genes (genes with highest gene scores) 
of every factor using gseapy’s enrichr function105 (Extended Data Figs. 
6e and 7c). The enrichr function calculates enrichment using a hyper-
geometric test to calculate the probability of drawing the observed 
number of genes belonging to a gene set of interest when sampling 
from a pool of all genes without replacement (here, the union of the 
3,000 most highly variable genes plus the genes contained in the gene 
sets; see Running Spectra). We calculated the enrichment of gene 
sets in the top 50 markers genes (genes with highest gene scores) for 
each factor

p(k;N,K,n) =
(
K

k
) (

N − K

n − k
)

(
N

n
)

where n is the number of factor marker genes (here, 50), k is the number 
of genes from the gene set in the top 50 marker genes in the factor, N is 
the total number of genes contained in the data, and K is the number of 
genes from the gene set contained in the data. From this, we calculated 
an FDR using the Benjamini–Hochberg correction. We assumed that 
the factors with the lowest FDR for enrichment were representative of 
the respective gene sets if the FDR was <0.05.

CD8+ T cell analysis. We took the subset of CD8+ T cells (11 clusters) 
from the Bassez dataset to explore CD8+ T cell tumor reactivity (tumor 
reactivity) and CD8+ T cell exhaustion (exhaustion). The most repre-
sentative factors for the tumor reactivity and exhaustion gene sets 
were retrieved using the gene set enrichment procedure described 
above (Gene set enrichment analysis) for each factor analysis method 
(Extended Data Fig. 6e). Spectra factors were also compared to expres-
sion scores for the tumor reactivity and exhaustion gene sets using 
scanpy’s score_genes function (Fig. 3b and Extended Data Fig. 6b). To 
find genes driving score_genes expression, we calculated the covari-
ance of all genes within the tumor reactivity or exhaustion gene sets 
with the tumor reactivity and exhaustion gene scores (Extended Data 
Fig. 6b). To visualize force-directed layouts, we used scanpy’s tl.draw_
graph function and the ForceAtlas2 method on a nearest neighbors 
graph computed on CD8+ T cells using scanpy’s tl.neighbors function 
with n = 10 nearest neighbors (Fig. 3a–c and Extended Data Figs. 3b,c 
and 6b). Contour plots were created using seaborn’s jointplot kernel 
density estimation with standard parameters (Fig. 3b,c and Extended 
Data Fig. 6f). We compared Spectra’s ability to deconvolve processes 
of tumor reactivity and exhaustion (Fig. 3) with the factorization meth-
ods scHPF, Slalom and expiMap. In contrast to Spectra, Slalom only 
found a factor highly enriched for exhaustion genes in the Bassez 
dataset, which overlaps with the highest scoring factor for tumor 
reactivity by 35 genes (Extended Data Fig. 6e). scHPF factors are not 
enriched for either reactivity or exhaustion gene sets, whereas expiMap 
identified and successfully deconvolved the two factors (Extended 
Data Fig. 6e). However, only Spectra was able to distinguish a clonally 
expanding tumor-reactive T cell population that is specific to respond-
ers (Extended Data Fig. 6f). Moreover, Slalom, scHPF and expiMap 
tumor reactivity and Spectra exhaustion factors failed to associate 
with patient-level response, defined as a significant difference between 
expression in responders and non-responders before or during ICT 
(Extended Data Fig. 6g).

Metabolism analysis. We assessed the expression pattern of metabolic 
factors across cell types and found highly specific expression of the lysine 
metabolism program in plasma cells. In the Bassez dataset, we noticed 
a small (n = 114 cells, 0.1% of all cells, 3% of all plasma/B cells) group of 
heterotypic doublets expressing plasma cell and T cell markers (CD3E, 
CD3D, CD3G, IGHG4 and IGHG1), which was not apparent in previous 
analyses and not detected by DoubletDetection. We removed these cells 
from further analyses involving plasma cells (Fig. 4). We also inspected 
the mean expression per cell type of the MAGIC104-imputed (scanpy 
implementation, t = 3, exact solver) top 50 individual marker genes of 
the lysine factor genes with highest gene scores (Extended Data Fig. 7b). 
Slalom6 identified a factor in plasma cells with worse resemblance to 
lysine metabolism (Extended Data Fig. 7c), which is contaminated with 
cell-type markers (Extended Data Fig. 7d), possibly because Slalom does 
not use cell-type-specific gene scalings. expiMap9 and scHPF4 factors 
were homogeneously expressed across cells or not enriched in lysine 
metabolism genes, respectively (Extended Data Fig. 7c–e).

Macrophage analysis. To analyze differentiation gradients in mac-
rophages and to capture all possible maturation stages, we retained the 
subset of 18 clusters (12,132 cells) annotated as mature macrophages 
(12 clusters) or more immature myeloid-derived (suppressor) cells/
monocytic cells (6 clusters) in the Bassez dataset for further analysis 
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(Supplementary Table 2). We embedded the data using DCs, which 
preserve differentiation trajectories better than many common linear 
and nonlinear dimensionality reduction techniques53. Using a classifi-
cation strategy, we selected the DCs that best captured differentiation 
from more monocytic states to macrophages while separating indi-
viduals with (responders) and without (non-responders) clonal T cell 
expansion (Fig. 5a,b and Extended Data Fig. 8a,b,d). For every pair of 
the first 20 DCs, we performed (1) a linear regression with the DCs as 
the independent variable and the scran-normalized expression of the 
monocyte marker S100A8 as the dependent variable and (2) a logistic 
regression with the DCs as the independent variable and response sta-
tus as the dependent variable. We chose the DC pair with highest sum 
of the coefficient of determination R2 (linear regression) and highest 
mean accuracy (logistic regression). We calculated Spectra cell score 
trends over the DCs by fitting a generalized additive model as imple-
mented in Palantir’s _gam_fit_predict and calculate_gene_trends func-
tions106 using cell scores instead of gene expression and DCs instead 
of pseudotime (Fig. 5a):

yi, j,k = β0 + f(DCi,k)

where yi,j,k is the cell score of cell i, factor j and the kth DC, and DCi,k 
is the kth DC for cell i. We then visualized cell score trends using the 
plot_gene_trend_heatmap function from Palantir.

To calculate compositional changes during ICT, we used the Milo 
package56. Milo is analogous to differential gene expression analysis, 
but instead of identifying genes that differ between two groups of cells, 
it tests for differential cell density in (possibly overlapping) neigh-
borhoods of a k-nearest neighbors (KNN) cell–cell similarity graph 
across different conditions. We chose the default fraction of 0.1 to be 
sampled as index cells from the KNN graph, such that representative 
cellular neighborhoods were only constructed for those index cells. 
Milo counts the number of cells per sample in each neighborhood and 
uses a generalized linear model with a negative binomial distribution 
to test for differences in abundance. Milo also accounts for multiple 
comparison testing by computing a spatial FDR.

For the Bassez dataset, we constructed a KNN graph on mac-
rophages and monocytic cells. The Milo paper gives the following 
heuristic to estimate an optimal k parameter56:

k ≥ S ∗ a

where S is the number of samples (here, 79), and a is an arbitrary scal-
ing parameter. Following the authors’ suggestion of 3 ≤ a ≥ 5 resulted 
in an overly large k parameter 237 ≤ k ≥ 395. We therefore chose k to be 
smaller than the smallest population of cells identified by clustering 
(58 cells) but close to the k parameter obtained by the heuristic above, 
resulting in k = 50 to construct the KNN graph and to identify the near-
est 50 neighbors of the index cells.

We then assessed the fold change of cell states under PD-1 blockade 
using the following regression formula:

yns ∼ response + timepoint + timepoint ∗ response

where y is the number of cells from sample s in neighborhood n, and 
response status is defined as 0 for non-responders and 1 for respond-
ers. We defined the timepoint as 0 for before pretherapy and 1 for 
on-therapy. The notation timepoint * response indicates the interac-
tion between the timepoint and response variables. We then identi-
fied the neighborhoods specifically enriched for non-responders 
under therapy by taking the subset of neighborhoods based on the 
estimated regression coefficients. First, we identified the neighbor-
hoods specifically enriched under therapy by retaining a subset of 
all neighborhoods with an FDR of <0.05 and coefficient (log (fold 
change)) of >0 for the timepoint parameter for further analysis. 

From these, we took a subset of the neighborhoods enriched for 
non-responders compared to responders under therapy by selecting 
neighborhoods with an interaction FDR of <0.05 and an interaction 
coefficient (log (fold change)) of <0 for further analysis. We then 
compared the mean factor cell scores for these neighborhoods to 
all remaining neighborhoods.

The Zhang dataset contained fewer individuals treated with immu-
notherapy than the Bassez dataset (n = 8 versus n = 42) and therefore 
did not allow for testing as many covariates. We thus chose a slightly 
different strategy to find macrophage neighborhoods enriched for 
non-responders under therapy. For the Bassez dataset, we took a sub-
set of 16 clusters (11,466 cells) annotated as mature macrophages (12 
clusters and 9,385 cells) or more immature myeloid-derived (suppres-
sor) cells/monocytic cells (4 clusters and 2,081 cells; Supplementary  
Table 2) and selected samples from individuals classified as 
non-responders treated with anti-PD-L1 (see Zhang dataset) for a total 
of 4,318 cells and five samples. Analogous to the k parameter selection 
strategy above, we constructed a KNN graph using a k parameter of 
20, which was smaller than the smallest cell population detected by 
clustering (22 cells). We then defined Milo neighborhoods as the 30 
nearest neighbors of the index cells. We fitted the Milo model using 
the following regression formula:

yns ∼ timepoint

where y is the number of cells from sample s in neighborhood n, and 
timepoint is defined as either 0 for pretherapy or 1 for on-therapy. We 
took a subset of the neighborhoods with an FDR of <0.2 and a coeffi-
cient (log (fold change)) of >0 for the timepoint parameter for further 
analysis. As for the Bassez dataset, we then compared the factor cell 
scores for this group with all remaining neighborhoods.

Statistical analysis and visualization
P values were calculated as indicated above using the Milo, scipy and 
statsmodels Python packages. No normality assumption was made. We 
used a Mann–Whitney U-test for independent samples and a Wilcoxon 
matched-pairs signed-rank test for paired samples. If not indicated dif-
ferently, all P values are two-sided and corrected for multiple compari-
sons (Bejamini–Hochberg method). A P value of 0.05 was considered 
statistically significant. Cohen’s d was calculated according to the 
following formula:

d = |||
mean(a) −mean(b)

s
|||

where s is the pooled standard deviation, and mean(a) and mean(b) 
are the means of groups a and b, respectively.

Data were visualized using the matplotlib and seaborn Python 
packages and GraphPad Prism v9 for Microsoft Windows and were 
edited in Adobe Illustrator Creative Cloud (v27.0). Panels from Figs. 3c,f  
and 4d and Extended Data Fig. 3c are duplicated in Extended Data fig-
ures to enable side-by-side visual comparisons. The following software 
packages were used: absl-py (1.0.0), anndata (0.8.0), arpack (3.7.0), 
cython (0.29.28), fsclvm (1.0.0.dev10), h5py (3.6.0), igraph (0.10.1), 
intervaltree (2.1.0), jsonpickle (2.1.0), jsonschema (3.2.0), jupyter 
(1.0.0), leidenalg (0.8.8), matplotlib (3.5.0), networkx (2.6.3), numba 
(0.54.1), numpy (1.20.3), opt_einsum (3.3.0), pandas (1.3.5), pip (22.1.2), 
Python (3.7.6), python-igraph (0.10.1), pytorch (1.10.1), pyvis (0.1.9), 
scanpy (1.8.2), schpf (0.5.0), scikit-learn (1.0.2), scipy (1.7.3), seaborn 
(0.11.2), Slalom (1.0.0.dev11), Spectra (0.1.0), statsmodels (0.12.2), 
tqdm (4.62.3), umap-learn (0.5.2), zifa (0.1), anndata (0.8.0), cellrank 
(1.5.1), DoubletDetection (2.5.2), graphviz (2.50.0), joypy (0.2.6), jupy-
ter (1.0.0), kneed (0.7.0), leidenalg (0.8.10), notebook (6.4.12), numpy 
(1.21.6), numpy_groupies (0.9.17), palantir (1.0.1), pandas (1.4.2), phe-
nograph (1.5.7), pickleshare (0.7.5), plotly (5.10.0), pygam (0.8.0), 
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pygments (2.12.0), pygraphviz (1.9), python-utils (3.3.3), pyvis (0.3.0), 
r-base (4.1.3), rpy2 (3.5.1), scanpy (1.9.1), scikit-learn (1.1.1), scipy (1.8.1), 
seaborn (0.11.2), miloR (3.16), pytorch (1.7.0), matplotlib (3.5.1), cuda-
toolkit (10.2.89), h5py (3.3.0), hdf5 (3.3.0), igraph (0.9.4), networkx 
(2.5.1) and numba (0.51.1).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Count matrices for the PBMC8 and Zhang datasets23 were obtained from 
GEO (https://www.ncbi.nlm.nih.gov/geo/) using accession numbers 
GSE178431 and GSE169246, respectively. Count matrices of the Bassez10 
and Caushi30 datasets were kindly provided by the authors and are also 
available at http://biokey.lambrechtslab.org and GEO (GSE173351), 
respectively. Raw read counts for the Bassez10 dataset are available 
in the EGA (EGAS00001004809 and EGAD00001006608). Count 
matrices for the Salcher atlas71 were obtained from Zenodo (https://
doi.org/10.5281/zenodo.7227571). Gene sets from the Cytopus knowl-
edge base are available on GitHub and Zenodo (https://github.com/
wallet-maker/cytopus and https://doi.org/10.5281/zenodo.7306238). 
Source data are provided with this paper.

Code availability
Spectra is available as an open-source Python package at https://
github.com/dpeerlab/spectra/, and the immunology knowledge base 
is available at https://github.com/wallet-maker/cytopus/. Notebooks 
to reproduce figures are available at https://github.com/dpeerlab/
SpectraReproducibility.
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Extended Data Fig. 1 | Cell type annotations in breast cancer datasets. Related 
to Fig. 2. Marker gene expression for 14 and 17 broad cell-type annotations in 
the Bassez (a; n = 97,863 cells) and Zhang (b; n = 150,985 cells) data, respectively. 
Each gene is normalized to its maximal expression, and the percentage of cells 
that express the gene within a cluster is indicated (% positive cells). ILC3, innate 

lymphoid cell type 3; T, T cell; gdT, gamma-delta T cell; pDC, plasmacytoid 
dendritic cell; NK, natural killer cell; B, B cell; mac, macrophage; mast, mast cell; 
mem, memory; mono, monocyte; prol, proliferating; Treg, regulatory T cell;  
DC, dendritic cell; GC-B, germinal center B cell; plasma, plasma cell.
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Extended Data Fig. 2 | Dependence of Spectra factors on input gene sets. 
Related to Fig. 2. a, Maximum overlap coefficient for each factor (n = 197 
factors), denoting overlap with input gene sets, plotted against Spectra’s graph 
dependency parameter (eta, η). Factors are colored by cell type. Most factors 
are highly dependent on the gene-gene graph and exhibit correspondingly high 
overlap coefficients. b, Maximum overlap coefficient of each factor (n = 197 

factors) with input gene sets and a high (η ≥ 0.25) or low (η < 0.25) dependence 
parameter. Boxes and line represent interquartile range (IQR) and median, 
respectively; whiskers represent 1.5x IQR. ILC3, innate lymphoid cell type 3;  
T, T cell; gdT, gamma-delta T cell; pDC, plasmacytoid dendritic cell; NK, natural 
killer cell; B, B cell; mast, mast cell; Treg, regulatory T cell; DC, dendritic cell; GC 
B, germinal center B cell; plasma, plasma cell.
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Extended Data Fig. 3 | Spectra detects cell-type-specific gene programs. 
Related to Fig. 2. a, t-SNE embeddings colored by cell scores for the Spectra, 
expiMap or Slalom factors best representing CD8+ T-cell tumor reactivity 
and CD8+ TCR signaling (n = 97,863 cells). Black contours highlight aberrant 
expression in populations other than T cells. b, Force-directed layout (FDL) of 
CD8+ T cells (n = 31,925) colored by the cell scores of indicated factors. c, FDLs of 

CD8+ T cells (n = 31,925) colored by imputed expression (MAGIC t = 3) of relevant 
marker genes, ranked according to their gene scores. Many of these genes 
participate in multiple cellular processes (pleiotropy). For example, CISH is a 
member of the suppressor of cytokine signaling family that is induced by TCR 
activation, but also by IL-15 in NK cells, and is a critical regulator of dendritic cell 
differentiation.
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Extended Data Fig. 4 | Spectra discerns the effects of immune checkpoint 
therapy on interferon signaling. Related to Fig. 2. a, t-SNE embeddings of 
tumor-infiltrating leukocytes (n = 97,863) from the Bassez data, colored by cell 
scores for Spectra or scanpy.score genes interferon gamma (IFNg) response, 
or by expression of selected human leukocyte antigen (HLA) class II genes. 
HLA expression is scran-normalized and not imputed. b, Mean cell score of the 
positive fraction (cell score > 0.01) per sample and cell type before (blue, patient 
sample number, n = 40) and after (red, patient sample number, n = 40) anti-PD-1 
immune checkpoint blockade in breast tumor infiltrating leukocyte data from 
the Bassez data. Two-sided p values were calculated using Wilcoxon matched-
pairs signed rank tests. Test statistics, left panel: 282 (Treg: regulatory T cell), 184 
(memory B: memory B cell), 75 (mast: mast cell), 82 (pDC: plasmacytoid dendritic 
cell), 237 (CD4 T: CD4 T cell), 222 (DC: dendritic cell), 129 (naive B: naive B cell), 

289 (NK: Natural Killer cell), 293 (CD8 T: CD8 T cell), 76 (gdT: gamma-delta T cell), 
59 (GC-B: germinal center B cell), 339 (macrophage), 24 (ILC3: innate lymphoid 
cell type 3), 220 (plasma: plasma cell). Test statistics, right panel: 340 (Treg), 241 
(memory B), 168 (mast), 131 (pDC), 362 (CD4 T), 305 (DC), 121 (naïve B), 349 (NK), 
427 (CD8 T), 71 (gdT), 104 (GC-B), 356 (macrophage), 125 (ILC3), 262 (plasma). 
Cohen’s d, left panel: 0.049 (NK), 0.320 (CD4 T), 0.228 (GC B), 0.105 (CD8 T), 
0.075 (naïve B), 0.064 (Treg), 0.285 (DC), 0.142 (mast), 0.093 (Mac), 0.131 
(plasma), 0.171 (ILC3), 0.341 (pDC), 0.067 (gdT), 0.197 (memory B). Cohen’s d, 
right panel: 0.168 (NK), 0.142 (CD4 T), 0.039 (GC-B), 0.040 (CD8 T), 0.187  
(naïve B), 0.008 (Treg), 0.166 (DC), 0.003 (mast), 0.064 (mac), 0.139 (plasma), 
0.008 (ILC3), 0.202 (pDC), 0.170 (gdT), 0.146 (memory B). Boxes and line 
represent interquartile range (IQR) and median, respectively; whiskers  
represent 1.5x IQR.
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Extended Data Fig. 5 | Spectra recovers genes involved in diverse cellular 
processes. Related to Fig. 2. a, Top 50 factor marker genes identified by 
Spectra in the Bassez data, after holding out a random 40% subset from each 
corresponding input gene set. Marker genes are ranked by Spectra factor score. 
New genes (red, absent from input gene set) and held-out genes (blue) recovered 
by Spectra; GPI, Glycosylphosphatidylinositol. b, Proportion of held-out genes 
recovered by Spectra or expiMap from the Bassez data, for individual gene set 
tested; phosphor., phosphorylation. c, Reconstruction performance on each 
tested gene set (n = 23). Lines connect identical gene sets. d, Synthetic data was 
generated by sampling random ground truth loadings and factors from log-
normal and half-Cauchy distributions, respectively, and introducing correlations 
in two factors via off-diagonal entries in the log-normal covariance matrix. After 
multiplying loadings and factor matrices and introducing noise, models were fit 
to the data and output factors were correlated with ground truth factors;  
est., estimated. e, Correlation between ground truth and inferred loadings  

(cell scores) for score genes and Spectra versus gene set overlap in simulated 
data. Data consisted of overlapping synthetic gene sets and a random cell 
loading vector representing the expression of each gene set in a cell (Methods). 
The sum of gene sets weighted by the individual cell loadings for each cell was 
used to represent a mean for sampling Poisson gene expression counts. f, Gene 
expression data was simulated from a factor analysis model in which only a 
subset of gene sets are active in the data, similar to d and the original Slalom 
publication. AUC, area under the receiver operating characteristic (ROC) curve. 
Intervals and lines represent 95% confidence interval and mean, respectively, 
across n = 10 (d), n = 3 (e), and n = 5 (f) independent simulations. g, Memory 
dependence on cell (left panel, n = 35 gene sets, 1 cell type), gene set (middle 
panel, n = 25,000 cells, 1 cell type), and cell type number (right panel, n = 25,000 
cells, one gene set per cell type and one global). h, Runtime dependence on cell 
type number. Each experiment (g,h) was repeated n = 3 times, shading indicates 
95% confidence interval.
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Extended Data Fig. 6 | Existing methods fail to separate highly correlated 
features in CD8+ T cell data. Related to Fig. 3. Analysis of breast cancer 
infiltrating leukocytes from the Bassez data (n = 42 patients). a, Spectra 
information and importance scores (Methods) in CD8+ T cells, colored by η 
parameters. b, CXCL13 expression is most correlated with tumor reactivity and 
exhaustion, and maps to similar cells as both gene set scores in force directed 
layouts (FDL) of CD8+ T cells (n = 31,925). Cov., covariance of each gene-set with 
CXCL13. c, Overlap between the top 50 marker genes of CD8+ T cell exhaustion 
and tumor reactivity factors. d, Overlap between the top 50 marker genes of the 
CD8+ T cell tumor reactivity factors in the Bassez and Caushi data. e, Significance 
(-log10(FDR)) of CD8+ T cell exhaustion or tumor reactivity factors by gene set 
enrichment analysis (Spectra, n = 159; Slalom, n = 20; scHPF, n = 100 factors); 

FDR, false discovery rate. f, Contour plots indicating density of Spectra, Slalom 
or scHPF loading scores for CD8+ T cell exhaustion and tumor reactivity factors 
grouped by clonal T cell expansion status (n = 31,925 cells). g, Per-sample mean 
cell scores for the tumor reactivity factor. Boxes and line represent IQR and 
median, respectively; whiskers represent 1.5x IQR. P values (two-sided) were 
calculated using Mann-Whitney U tests (n = 40 pre anti-PD-1, n = 40 on anti-PD-1 
samples): Spectra: pre anti-PD-1: p = 3.84 x 10-5 statistic: 308 Cohen’s d (d): 1.510; 
on anti-PD-1: p = 2.00 x 10-5, statistic = 313 d: 1.491; expiMap, pre anti-PD-1 p = 0.99 
statistic: 167 d: 0.194; on anti-PD-1 p = 0.80 statistic: 159 d: 0.150; Slalom pre anti-
PD-1: p = 0.57 statistic: 198 d: 0.249 ; Slalom on anti-PD-1: p = 0.94 statistic: 155 d: 
0.059; scHPF pre anti-PD-1: p = 0.34 statistic: 216 d: 0.337; scHPF on anti-PD-1:  
p = 0.16 statistic: 201 d: 0.592.
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Extended Data Fig. 7 | Spectra finds highly specific and biologically coherent 
lysine metabolism factors. Related to Fig. 4. a, Spectra importance and 
information scores for factors in plasma cells, colored by η parameter. b, z-scored 
average MAGIC imputed (t = 3) cellular expression (per cell type) of lysine factor 
genes (n = 97,863 leukocytes). c, Significance (-log10(FDR)) and fold enrichment 
(odds ratio) of the lysine metabolism input gene set, among the 50 genes with 
highest gene scores, as calculated by gene set enrichment analysis (Spectra:  
n = 152; Slalom: n = 20; scHPF: n = 100 factors). d, Functional categories of 
the top 50 marker genes of lysine metabolism factors identified by different 

factorization methods; TF, transcription factor. e, t-SNE embeddings colored 
by cell scores for top-performing lysine metabolism factors (labeled in c) from 
different factorization methods (n = 97,863 leukocytes). Plasma, macrophage 
(Mac) and dendritic cell (DC) populations are outlined. ILC3, innate lymphoid 
cell type 3; T, T cell; gdT, γδ T cell; pDC, plasmacytoid dendritic cell; mac, 
macrophage; mono, monocyte; NK, natural killer cell; B, B cell; mast, mast cell; 
Treg, regulatory T cell; DC, dendritic cell; GC B, germinal center B cell; plasma, 
plasma cell.
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Extended Data Fig. 8 | Tumor-infiltrating macrophage cell states exist along 
continua that change under therapy. Related to Fig. 5. a, t-SNE embedding of 
all leukocytes (left) and distribution of macrophages/monocytes (n = 12,132) 
along diffusion components 2 and 4 (DC2 and DC4, right), highlighting cells of 
C3-positive macrophage cluster C7 from the Bassez data. b, Macrophages along 
DC2 and DC4, colored by MAGIC-imputed (t = 3) complement gene expression. 
c, Mean MAGIC-imputed (t = 3) complement gene expression per sample in 
macrophages from responsive or non-responsive patients sampled before  
(pre, n = 40) or during (on, n = 40) anti-PD-1 therapy. Boxes and line represent 
IQR and median, respectively; whiskers represent 1.5x IQR. d, Scran-normalized 

expression of macrophage and monocyte marker genes in cells sorted along DC2, 
showing diverging expression along this gradient. e, Overlap coefficient and 
graph dependency for Spectra factors (n = 197). f, scHPF (n = 100) and Slalom  
(n = 20) factors do not resemble the Spectra invasion factor (factor 182). Each 
factor is plotted by fold change of its cell score in macrophage neighborhoods 
enriched in non-responders under therapy, compared to its cell score in all 
remaining macrophages, and by the coefficient of overlap between the top  
50 marker genes of each factor and of the Spectra invasion factor (analogous to  
Fig. 5c,d). g, Spectra importance and information scores for factors in 
macrophages. Factors (points) colored by eta parameter indicated in color code.
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