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Characterization and integration of the genome, epigenome, transcriptome, 
proteome and metabolome of different datasets is difficult owing to a 
lack of ground truth. Here we develop and characterize suites of publicly 
available multi-omics reference materials of matched DNA, RNA, protein 
and metabolites derived from immortalized cell lines from a family quartet 
of parents and monozygotic twin daughters. These references provide 
built-in truth defined by relationships among the family members and the 
information flow from DNA to RNA to protein. We demonstrate how using 
a ratio-based profiling approach that scales the absolute feature values 
of a study sample relative to those of a concurrently measured common 
reference sample produces reproducible and comparable data suitable 
for integration across batches, labs, platforms and omics types. Our study 
identifies reference-free ‘absolute’ feature quantification as the root cause 
of irreproducibility in multi-omics measurement and data integration 
and establishes the advantages of ratio-based multi-omics profiling with 
common reference materials.

Multi-omics profiling is a new approach in which molecular phenomics 
data across multiple omics layers, including genomes, epigenomes, 
transcriptomes, proteomes and metabolomes, of a sample or set  
of samples are fully measured, analyzed and integrated from the same 

set of samples on a genome scale1–3. Multi-omics profiling quantifies 
biologically different signals across complementary omics layers  
and can therefore explore the intricacies of interconnections between 
multiple layers of biological molecules and identify system-level 
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metabolite reference materials should be prepared simultaneously, 
which can provide ‘built-in truth’ (the central dogma of information 
flow from DNA to RNA to protein) for validating the hierarchical rela-
tionship among identified features. Therefore, publicly accessible and 
well-characterized multi-omics reference materials at the genome scale 
are urgently needed47.

Notably, QC metrics relevant to research purposes are also  
critically important for assessing the quality of multi-omics profiling. 
Precision and recall are widely used QC metrics for qualitative genomic 
variant calling58–60, whereas correlation coefficients are widely used for 
quantitative omics profling55,56,61–64. However, multi-omics profiling 
is an integrated process; therefore, the QC process should be per-
formed on the basis of the entire sample-to-result pipeline. Integrat-
ing multi-omics information for more robust sample classifiers and 
multilayered interconnected molecular signatures is the major goal for 
multi-omics profiling. Therefore, QC metrics should be related to these 
two critical research objectives and should be suitable for evaluating 
the performance of each omics type ranging from data generation to 
multi-omics data integration.

We launched the Quartet Project (https://chinese-quartet.org/) 
to provide multi-omics ground truth as well as best practices for 
the QC and data integration of multi-omics profiling. The Quartet 
multi-omics reference material suites include references of DNA, 
RNA, protein and metabolites developed from B-lymphoblastoid cell 
lines (LCLs) derived from a quartet family of parents and monozy-
gotic twin daughters and were designed to objectively evaluate the 
wet-lab proficiency in data generation and reliability of computational 
methods for horizontal integration of data of the same omics type 
and for vertical inte gration of data of multiple omics types. A broad 
collection of the Quartet multi-omics data generated from key tech-
nologies provides rich resources for evaluating the performance of 
new labs, platforms, protocols and analytical tools. On the basis of 
the pedigree information for the Quartet samples, performance of 
horizontal and vertical data integration can be objectively evaluated, 
which provides unique insights into the commonly used multi-omics 
integration strategies. We also developed a user-friendly data portal 
for the community to conveniently use and improve the Quartet 
resources (https://chinese-quartet.org/). Most importantly, our 
study identifies absolute feature quantification as the root cause of 
irreproducibility in multi-omics measurement and data integration 
and urges a paradigm shift from absolute to ratio-based quantitative 
multi-omics profiling.

Results
Overview of the Quartet Project
The Quartet Project provides the community with multi-omics reference  
materials and reference datasets for QC and data integration in increas-
ingly large-scale multi-omics studies (Fig. 1a). Suites of large quantities 
of multi-omics reference materials (DNA, RNA, protein and metabolites) 
were simultaneously established from the same immortalized LCLs of 
a Chinese Quartet family from the Fudan Taizhou Cohort65 (Extended 
Data Fig. 1), including the father (F7), mother (M8) and monozygotic 
twin daughters (D5 and D6). As summarized in Extended Data Table 1, 
each reference material was stocked in more than 1,000 vials. These 
reference materials are suitable for a wide range of multi-omics tech-
nologies, including DNA sequencing, DNA methyl ation analysis, RNA 
sequencing (RNA-seq), microRNA sequencing (miRNA-seq), and liquid 
chromatography and tandem mass spectrometry (LC–MS/MS)-based 
proteomics and metabolomics. Notably, the DNA and RNA reference 
material suites have been approved by China’s State Administration for 
Market Regulation as the First Class of National Reference Materials  
(GBW 099000–GBW 099007) and are being used extensively for  
proficiency testing and method validation.

For comprehensive performance evaluation, the Quartet 
multi-omics reference material suites were profiled across commonly 

biomarkers4–8. Technology innovations and cost reduction have 
empowered increasingly large-scale multi-omics studies for data collec-
tion on the same group of individuals, providing a unique opportunity 
to fully understand and yield high-level insights into human diseases 
in a holistic fashion9–14.

Multi-omics data integration can be classified into sample and 
feature integration15. When the objective is to find relationships 
among samples, the common multi-omics integration strategy is to 
use a data-driven clustering approach or classify biological samples 
by combining complementary information, followed by extracting 
system-level biologically differentiated networks for endpoints such 
as wellness or disease subtyping16–19 or longitudinal trajectories20–22. 
When the objective is to look at measured features, multi layered 
molecular networks are identified so as to reveal the perturbed sig-
natures and potential actionable targets for disease prevention and 
treatment23–31. Assigning accurate sample groups and extracting  
true biological networks is challenging owing to the complexity  
and diversity of multi-omics datasets15,32,33. Moreover, large-scale 
consortia-based multi-omics data are often generated across plat-
forms, labs and batches, creating unwanted variations and multiplying 
the complexities. Therefore, efficient data integration is essential for 
reliable multi-omics studies32.

Data integration in large-scale multi-omics studies usually falls 
into two categories of application scenarios: horizontal and vertical34.  
Horizontal (within-omics) integration, that is, integration of diverse 
datasets from a single omics type, aims to combine multiple data-
sets from the same omics type across multiple batches, technologies 
and labs for downstream analysis. Unwanted variations can result 
in systematic deviations known as batch effects, confounded with 
critical study factors35,36. Currently, various horizontal integration 
methods are available for bulk and single-cell omics data37–39. Selection 
of horizontal integration methods based on arbitrary visualizations  
of integrated datasets is challenging owing to the lack of ground  
truth and objective quality control (QC) metrics for method selec-
tion. Vertical (cross-omics) integration, that is, integration of diverse 
datasets from multiple omics types, aims to combine multiple omics 
datasets with different modalities from the same set of samples,  
followed by design of appropriate downstream analysis to identify 
accurate sample groups or multilayered and interconnected networks 
of biomolecular features6,34,40,41.

Devising proper vertical integration strategies for sample cluster-
ing or feature identification is challenging in multi-omics profiling. 
First, different technologies result in varying numbers of features 
and statistical properties, which can have a strong influence on the 
integration step to appropriately select and weigh different modali-
ties. Second, each omics dataset has intrinsic technological limitations 
and noise structures. Combining multi-omics datasets also multiplies 
all the technical noise across different technologies, making it more 
difficult to integrate multiple datasets. Third, many multi-omics data 
integration algorithms and software programs have been developed on 
the basis of different statistical principles and assumptions42–44. Each 
multi-omics integration method can report a solution, but assessing 
its reliability is difficult owing to the lack of multi-omics ‘ground truth’ 
and QC methods for these complex processes.

Multi-omics reference materials and relevant QC metrics are 
required for quality assessment of each type of omics measurement 
and its horizontal integration before successful multi-omics-level 
vertical data integration45–48. Unrelated reference materials have been 
widely used as ground truth when evaluating technologies for the 
same omics type, such as genomic DNA49,50, tumor–normal paired 
DNA51–53, RNA, protein or metabolite reference materials54–57. However, 
multi-omics profiling requires measurement of multiple types of omics 
data from the same set of interconnected reference samples, thus 
allowing for assessment of the ability to distinguish different reference 
samples with integrated datasets. Moreover, DNA, RNA, protein and 
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used multi-omics platforms, including seven DNA sequencing plat-
forms, one DNA methylation platform, two RNA-seq platforms, two 
miRNA-seq platforms, nine LC–MS/MS-based proteomics platforms 
and five LC–MS/MS-based metabolomics platforms (Fig. 1b). For per-
formance evaluation, three technical replicates for each reference 
material were measured in each lab, except for the long-read DNA 

sequencing platforms, for which only one replicate was sequenced 
for each platform. Supplementary Table 1 summarizes the Quartet 
multi-omics datasets for the real-world assessment of commonly used 
multi-omics technologies. All the data can be accessed from the Quartet 
Data Portal (https://chinese-quartet.org/), which provides a landscape 
of data quality for each type of omics profiling.
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Fig. 1 | Overview of the Quartet Project. a, Design and production of Quartet 
family-based multi-omics reference material suites. b, Data generation across 
multiple platforms, labs, batches and omics types. DDA, data-dependent 
acquisition; DIA, data-independent acquisition; WGS, whole-genome 
sequencing. c, QC metrics for horizontal (within-omics) integration include 
the Mendelian concordance rate and SNR, which are also applicable to wet-
lab proficiency testing. Two types of QC metrics for vertical (cross-omics) 

integration were developed that assess the ability to detect cross-omics 
feature relationships that follow the central dogma and the ability to classify 
samples into either four phenotypically different groups (D5–D6–F7–M8) or 
three genetically driven clusters (daughters–father–mother). d, Ratio-based 
scaling using common reference materials empowers horizontal and vertical 
integration.
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The Quartet Project provides a set of metrics for QC and data 
integration in multi-omics profiling. For generation and horizontal 
integration of data from each omics type, the Quartet built-in QC 
metrics, that is, the Mendelian concordance rate for genomic variant 
calls and signal-to-noise ratio (SNR) for quantitative omics profiling, 
enable proficiency testing on a whole-genome scale using the Quar-
tet reference materials. In addition, the Quartet multi-omics design 
provides two types of QC metrics to evaluate the reliability of vertical 
integration. One assesses the ability to correctly classify the Quartet 
samples into both four different individuals (daughter1–daughter2–
father–mother) and three genetically driven clusters (daughters–
father–mother), which is related to the multi-omics research purpose 
of sample clustering. Another QC metric assesses the ability to cor-
rectly identify cross-omics feature relationships that follow the central 
dogma (information flow from DNA to RNA to protein) and can be used 
to evaluate the reliability of correlation-based multi-omics integration 
(Fig. 1c). We propose ratio-based profiling using common reference 
materials to empower horizontal and vertical omics data integration. 
Ratio-based data were derived by scaling the absolute feature values 
of study samples (such as D5, F7 and M8) relative to those of a concur-
rently measured reference sample (such as D6) on a feature-by-feature 
basis (Fig. 1d).

In this article, we provide an overview of the Quartet Project and 
propose a ratio-based quantitative profiling approach for multi-omics 
data integration using Quartet reference datasets across multiple 
omics types, platforms, batches and labs (Extended Data Fig. 2). Four 
accompanying papers detail the establishment of the DNA66, RNA67, 
protein68 and metabolite69 reference materials, reference datasets 
and QC methods for each type of omics profiling. Haplotype-resolved 
assemblies and a variant benchmark have also been provided70. Another 
paper71 is dedicated to benchmarking batch effect correction algo-
rithms (BECAs) using the Quartet multi-omics data. We have also devel-
oped the Quartet Data Portal (https://chinese-quartet.org/)72 for the 
community to conveniently access and share the Quartet multi-omics 
resources according to the regulations of the Human Genetic Resources 
Administration of China.

Wet-lab proficiency in omics data generation varies
Before data integration, the proficiency in data generation for each 
type of omics data was assessed. Except for the long-read sequencing 
platforms, the reference materials were profiled within a batch in a lab 
in three replicates for each of the four samples (donors). For long-read 
sequencing, one replicate for each reference material was sequenced 
and the resulting data were analyzed using 11 pipelines; therefore, the 
performance evaluation was conducted only at the level of analytical 
procedures. Details on data generation and analysis are provided in 
the Methods.

QC metrics for evaluation of objective performance are criti-
cally important. The number of measured features, coefficient of 
variation (CV) and technical reproducibility are widely used QC met-
rics across different omics platforms and were used in our study for 
cross-omics performance comparisons. As shown in Fig. 2, the number 
of features measured for each omics type varied by several orders of 
magnitude, from 60 metabolites to 4.8 million small DNA variants 
(single-nucleotide variants (SNVs) and indels) per sample (Fig. 2a). 
Within each omics type, the number of features detected varied among 
batches and labs. The reproducibility of detected features in each omics 
profiling type was evaluated using the number of replicates support-
ing a variant call for genomics and the CV among technical replicates 
within a batch in quantitative omics profiling (Fig. 2b). Most SNVs were 
supported by all three library replicates within the batch, whereas 
the number of analytical repeats supporting a structural variant (SV) 
call greatly varied. For quantitative omics profiling, the CVs of most 
quantified features were below 30%. In addition, the reproducibility of 
technical replicates was also evaluated at the individual sample level. 

Reproducibility was calculated as the Jaccard index from three library 
repeats within a batch. For the short-read sequencing platforms, all Jac-
card index values were above 93%. Moreover, the reproducibility of SVs 
from 11 call sets using different analytical pipelines was between 80% 
and 90%. Nanopore was found to be more reproducible than PacBio 
among the long-read sequencing platforms. The reproducibility of 
quantitative omics profiling was calculated as the Pearson correla-
tion coefficient (Pearson’s r) of technical replicates within a batch. 
The r values from all labs and metabolomic platforms were above 
95%, indicating high reproducibility in metabolomic profiling for the 
same sample. However, the r values for repeated measurements of the 
same sample were between 88.42% and 97.62% for transcriptomics and 
between 82.37% and 99.34% for proteomics (Fig. 2c).

On the basis of the Quartet multi-sample design, we defined 
two QC metrics to measure the ability to identify intrinsic biologi-
cal differences among various groups of samples, a key objective 
of omics profiling. The Quartet-based SNR metric is the ratio of 
inter-sample differences (that is, ‘signal’) to intra-sample differ-
ences among technical replicates (that is, ‘noise’). It is calculated as 
the ratio of the average distance between the Quartet samples to the 
average distance between technical replicates of the same sample 
(see Methods for details). For a measurement method with high 
resolution in differentiating biologically different groups of samples, 
the inter-sample differences of the Quartet samples should be much 
larger than the variation among technical replicates for the same 
sample. Principal-component analysis (PCA) showed clear separa-
tion among the Quartet samples (D5, D6, F7 and M8) for high-quality 
profiling experiments (Supplementary Fig. 1a) but not for low-quality 
profiling experiments (Supplementary Fig. 1b). Strikingly, high vari-
abilities in intra-batch data quality were observed in each omics 
platform (Fig. 2d), especially for the quantitative omics platforms, 
including for methylomics (SNR range of 15.5–27.1, s.d. = 4.5), tran-
scriptomics (SNR range of 8.7–31.0, s.d. = 7.1), miRNA profiling (SNR 
range of 1.9–20.5, s.d. = 6.8), proteomics (SNR range of 0.9–30.5, 
s.d. = 7.5) and metabolomics (SNR range of 4.6–27.1, s.d. = 5.1). Moreo-
ver, high variabilities of proficiency in data generation were evident 
for each technology platform. For example, both high and low SNRs 
were observed in RNA-seq for the Illumina and BGI platforms, but 
the average SNRs across multiple batches were very close for the 
two sequencing platforms (20.39 versus 19.54, P = 0.84). Similarly, 
high variabilities in SNR were observed within each MS platform for 
proteomics or metabolomics profiling. These results implied that 
the inherent proficiency of an individual wet lab, instead of a specific 
platform itself, was a more important factor affecting the reliability 
of data generation for each omics type.

In addition, we constructed high-confidence reference datasets 
(Supplementary Table 2) of differentially expressed features (DEFs) in 
terms of the level of differential expression between pairs of samples 
(D5–F7, D5–M8 and F7–M8 pairs) for each quantitative omics profiling 
type using a consensus-based integration strategy (Extended Data 
Fig. 3a). Root mean square error (RMSE) was used to quantitatively 
evaluate the consistency of a test dataset with the high-confidence 
reference dataset (Fig. 2e).

We further explored the relationships between SNR and the num-
ber of detected features, the reproducibility of features, the reproduc-
ibility of technical replicates and the RMSE of DEFs to evaluate data 
quality in quantitative omics profiling (Supplementary Fig. 2). These 
data suggested that none of the widely used QC metrics (number 
of measured features, CV of measured features and correlation of 
technical replicates) based on a single reference sample guarantee 
high resolution (SNR) in identifying inherent differences (that is, bio-
logical signals) among various biological sample groups. Therefore, 
multi-sample-based QC metrics are needed to identify labs with low 
proficiency in detecting intrinsic biological differences among sample 
groups.
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Fig. 2 | Wet-lab proficiency in omics data generation varies. a, The number of 
features detected from each dataset generated in different labs using different 
platforms. b, Distribution of the number of experiments supporting genomic 
variant calling or CV in quantitative omics profiling from technical replicates 
(analytical repeats in SV calling and library repeats for the others) within  
a batch. c, Technical reproducibility from three replicates within a batch, 
calculated as the Jaccard index for small variant calling and Pearson correlation 
coefficient (r) for quantitative omics profiling (n = 12). For SV call sets,  
technical reproducibility was defined as the Jaccard index between different 

analytical repeats (Oxford Nanopore, n = 28; PacBio Sequal, n = 55; PacBio 
Sequal2, n = 55). The box plots display the distribution of data, with the median 
represented by the line inside the box and the interquartile range represented 
by the box. Whiskers extend to 1.5× the interquartile range. d, SNR based on the 
Quartet multi-sample design (4 samples × 3 replicates per batch). e, RMSE of 
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F7–M8 pairs in each batch (n = 3), while the bar plots present the corresponding 
mean values.
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Ratio-based scaling enables horizontal integration
In large-scale omics studies, the reliability of horizontal integration of 
omics datasets across different platforms, labs or batches for the same 
omics type is essential. We propose a ratio-based scaling approach (for 
example, D5, F7 and M8 as study samples) using common reference 
material(s) (for example, D6) to enable horizontal integration of diverse 
datasets from the same omics type.

Technical variations are dominant during horizontal integration 
of the Quartet data at the absolute level. For methylation array data 
represented as M value, miRNA-seq data represented as log2(counts 
per million mapped reads (CPM)), RNA-seq data represented as 
log2(fragments per kilobase of transcript per million mapped reads 
(FPKM)), proteomics data represented as log2(fraction of total 
(FOT)) and metabolomics data represented as log2(intensity), sys-
tematic deviations were observed between two technical replicates 
(D5) from different batches after horizontal integration (Fig. 3a).  
The intercepts for the fitted lines for each scatterplot ranged from 
–0.084 to –11, with integrability being the worst for absolute metabo-
lomics profiling. However, after scaling the absolute feature values 
of D5 relative to those for a concurrently measured D6 sample on a 
feature-by-feature basis, the systematic deviations for each omics 
profiling type were reduced. The intercepts for all the fitted lines 
decreased; in particular, the intercept decreased markedly from –11 
(absolute) to –0.069 (ratio) for metabolomics profiling (Fig. 3b). 
In addition, the CV values of six technical replicates of D5 samples 
from an exhaustive combination of two batches of datasets were 
mostly decreased at the ratio level except for some combinations 
of metabolomics profiling from the same lab (Fig. 3c and Supple-
mentary Fig. 3).

We further compared the sources of variability in the Quartet 
data at the absolute and ratio levels. Technical factors dominated 
the variability in the absolute data, and the proportional contribu-
tion of each factor to the total variability is dependent on omics type 
(Extended Data Fig. 4). On the contrary, principal-variance component 
analysis (PVCA) results for the ratio data showed that the biological 
factor (‘donor/sample’) dominated the data variability in most omics 
types and its relative contribution over technical factors was mark-
edly higher when compared to the absolute data. The PVCA results 
clearly demonstrated the effectiveness of feature-by-feature ratio 
data in removing technical noise present in absolute multi-omics 
data, enabling the identification of true biological signals (that is, true  
differences among donors).

The reliability of horizontal integration can also be assessed using 
the Quartet-based SNR metric. The aforementioned five types of quan-
titative omics data all showed obvious batch-dominant clustering at 
absolute expression levels in horizontal integration (Fig. 3d). However, 
after converting the absolute omics data to a ratio scale relative to the 
same reference material (D6) within a batch on a feature-by-feature 
basis, PCA plots showed clear separation of the four types of reference 
samples (D5, D6, F7 and M8) and the strong batch effects seen at the 
absolute scale were largely absent (Fig. 3e). We further quantitatively 
measured the quality of horizontal data integration using the Quartet 
multi-sample-based SNR as the metric. A method of good quality for 
horizontal data integration at each omics level would clearly separate 
the four Quartet sample groups; that is, the inter-sample differences of 

the Quartet samples should be much larger than the variation among 
technical replicates of the same sample. As shown in Fig. 3d,e, the SNR 
values after horizontal integration of datasets for each omics type at  
the absolute level were all close to zero except for methylation data  
(Fig. 3d), whereas the SNR values of the integrated datasets were  
markedly higher at the ratio level for each omics type (Fig. 3e). Notably, 
these conclusions remain the same if one chooses D5, F7 or M8 instead 
of D6 as the reference sample (Extended Data Fig. 5), indicating the 
universal applicability of the ratio-based scaling approach.

In addition, we characterized the impact of the level of batch 
effects on the SNR for horizontal integration by randomly selecting  
samples from different batches and using the average of the Jaccard  
index for batches from the four sample groups as a measure of 
group-batch balance (see Methods for details). As shown in Fig. 3f, 
regardless of the level of balance of sample classes across batches, hori-
zontal integration at the ratio level resulted in much better discrimina-
tion between sample classes, that is, much higher SNR. However, the 
corresponding SNR values at the absolute level were all close to zero 
except for methylation data, whether there was group-batch balance or 
not. These results clearly demonstrate that quantitative omics profil-
ing data at the ratio level are much more comparable and suitable for 
horizontal integration than those at the absolute level.

Ratio-based profiling allows for more accurate determination 
of the subtle differences between any two Quartet samples on a 
feature-by-feature basis. For all three comparisons (D5–F7, D5–M8 
and F7–M8), compared to the log2-transformed fold differences in the 
absolute-based integration data, those for the ratio-based integration 
data showed a much higher level of agreement (and lower RMSE) with 
the corresponding reference dataset for each omics type (Extended 
Data Fig. 3b,c). Furthermore, the level of balance of sample groups 
across batches was helpful for the accurate detection of DEFs. This 
was reflected in the negative correlation between RMSE and the level 
of group-batch balance. It was also clear that a lack of group-batch 
balance affected absolute data integration much more severely than 
it did ratio-based data integration, with the former showing a much 
larger slope than the latter (Extended Data Fig. 3c).

The pervasiveness of batch effects in quantitative analysis tech-
niques at the absolute expression level presents a real challenge for 
horizontal integration. Our results demonstrate that the conversion of 
quantitative omics data to a ratio scale relative to a common reference  
sample (for example, the Quartet D6 sample) can effectively miti-
gate the detrimental impact of batch effects on sample classification,  
differential feature identification, etc.

Improved reliability of cross-omics feature correlations
One advantage of multi-omics studies is the ability to systematically 
discover cross-omics relationships from multiple interconnected bio-
logical layers. The correlation coefficient is one of the simplest ways to 
estimate the pairwise relevance for two types of omics features, which 
is the foundation of multi-omics integration for network analysis. In 
large multi-omics studies, the multi-omics datasets are usually gener-
ated in multiple batches, platforms and labs. Vertical integration of 
multi-omics datasets from various omics types is typically performed 
after horizontal integration of the same omics type73; thus, perfor-
mance of the final integration is influenced by both horizontal and 

Fig. 3 | Ratio-based scaling enables horizontal integration. a,b, Scatterplots 
of the feature abundance of inter-batch D5 samples in methylation, miRNA-seq, 
RNA-seq, proteomics and metabolomics datasets at the absolute level (raw data; 
a) and ratio level (ratio scaling to the D6 sample; b). The x and y axes show the 
average expression of the three D5 technical replicates from the two best quality 
batches from different labs (ranked by SNR). At the absolute level, features with a 
CV less than 0.2 for the technical replicates of D5 in both batches were retained; 
at the ratio level, features with a CV less than 0.2 for the technical replicates 
of D5 and D6 in both batches were retained. r denotes the Pearson correlation 

coefficient, and m denotes the number of features. Linear fits were performed on 
the basis of the feature abundance. c, Lollipop plots of CV in feature abundance 
for six D5 samples across two batches. The x axis represents the exhaustive 
two-by-two combination of all batches for each omics type. d,e, PCA plots of 
horizontal integration of all batches of methylation, miRNA-seq, RNA-seq, 
proteomics and metabolomics datasets at the absolute level (d) and ratio level 
(e). n denotes the number of samples, and m denotes the number of features. 
f, Scatterplots between SNR and degree of sample class-batch balance. Blue, 
absolute level; red, ratio level.
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vertical dimensions. Therefore, we evaluated the reliability of verti-
cal integration using horizontally integrated ratio-based data under 
different scenarios.

Cross-omics feature relationships calculated on the basis of 
multiple batches of data integrated at the ratio level (inter-batch) 
showed much stronger correlations with cross-omics single batches 
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(intra-batch) than those at the absolute level (Fig. 4a). These 
cross-feature correlations of methylation–miRNA, methylation–RNA, 
miRNA–RNA, RNA–protein and protein–metabolite types were derived 
from features of both omics types associated with the same genes, 
which may more closely follow the principle of the central dogma. In 
particular, for the relationships between proteins and metabolites, 
direct integration of multi-batch data at the absolute level could not 
easily identify true correlations for cross-omics feature pairs.

To evaluate the performance of vertical integration at the feature 
relationship level, we constructed Quartet cross-omics reference data-
sets (Supplementary Table 3) using a consensus voting approach, as 
depicted in Fig. 4b. This reference dataset consisted of the Pearson 
correlation coefficients between the expression levels of two different  
types of omics features. By exhaustively enumerating all batch combi-
nations of the above five cross-omics types, feature pairs that exceeded 
a predetermined threshold of batch combinations were selected for 
further analysis. The cross-omics relationships were classified as posi-
tive (r ≥ 0.5, P < 0.05) or negative (r ≤ –0.5, P < 0.05) on the basis of 
the outcomes of Pearson correlation analysis conducted for each 
feature pair. Feature pairs demonstrating positive or negative cor-
relations above 70% of all batch combinations were included in the 
high-confidence dataset, and the mean value for this category (that 
is, positive or negative) was used as the reference Pearson correlation 
coefficient.

The reference dataset comprises a comprehensive selection of 
high-confidence correlation feature pairs, consisting of 1,054 methyl-
ation–miRNA pairs, 1,134 methylation–RNA pairs, 637 miRNA–RNA 
pairs, 224 RNA–protein pairs and 29 protein–metabolite pairs  
(Fig. 4b). Within this dataset, a subset of 59 genes showed regulation 
influenced by both methylation and miRNA, alongside a strong posi-
tive association with protein (P < 0.05, r > 0.5), as depicted in Fig. 4c. 
This finding highlights the intricate interplay between different omics 
types and offers valuable insights into the coordinated regulation of 
gene expression.

The principle of the central dogma was well reflected in the  
Quartet multi-omics data, as it could be seen that the abundance of 
RNAs was almost exclusively positively correlated with that of pro-
teins in the reference dataset (224 RNA–protein pairs were positively 
correlated while no RNA–protein pair was negatively correlated). The 
positive RNA–protein correlations were better identified at the ratio 
level (r = 0.8) than at the absolute level (r = 0.39; Fig. 4d). The same 
phenomenon was demonstrated for other inter-omics associations; 
that is, ratio-based scaling improved the confidence of the identifica-
tion of cross-omics feature relationships in the reference datasets 
(Extended Data Fig. 6).

In large-scale cohort studies involving multi-omics quantitative 
analyses, issues related to uneven data quality and unbalanced sample  
groupings across batches often arise36,37. Confounded scenarios, 

charac terized by substantial confounding between biological factors  
and batch effects, are frequently encountered in longitudinal and 
multicenter cohort studies, presenting challenges in disentangling 
the influences of biological factors from batch effects. Although  
balanced scenarios, where samples from the biological group of inter-
est are evenly distributed across batches, represent an ideal situation, 
they are rarely achievable in practical settings. In this context, we 
further investigated the performance of the ratio-based approach 
under both scenarios.

In agreement with Fig. 4a, the concordance of correlation coeffi-
cients of cross-omics features with the reference Pearson r was higher 
(as indicated by lower RMSE values) in the horizontally integrated 
data based on the ratio level than those based on the absolute level 
(Fig. 4e,f). The ratio-based profiles exhibited lower RMSE values when 
detecting cross-omics feature relationships from datasets of different 
quality (as indicated by the SNR values). The performance of identify-
ing cross-omics feature relationships on the basis of ratio-based data 
is improved when the single-batch dataset is of higher quality (Fig. 4e). 
Furthermore, in different experimental scenarios, that is, balanced or 
confounded batch groups, the ratio-based data showed essentially the 
same good performance, whereas the absolute level was more sensitive 
to batch effects (Fig. 4f).

Facilitating vertical integration for sample classification
Another advantage of vertical integration of multi-omics data is the 
ability to distinguish subtypes of clinical samples with subtle differ-
ences that cannot be identified on the basis of a single type of omics 
data. Therefore, the ability to discover the true biological differences 
between sample groups is a key metric to measure the performance of 
multi-omics integration tools and procedures. The multi-sample and 
multi-omics design of the Quartet Project provides unique resources 
for assessing the reliability of vertical integration. Here we included 
six horizontal integration methods for evaluation, that is, ratio-based 
scaling (Ratio), ComBat74, Harmony75, RUVg76, z score and direct inte-
gration of the normalized values (Absolute). Five widely accepted 
vertical integration tools were subsequently used, that is, SNF5, iCluster-
Bayes77, MOFA+78, MCIA79 and intNMF80, generating 30 combinations of  
horizontal and vertical integration for performance assessment.

The adjusted Rand index (ARI)81 is a widely used QC metric to  
compare clustering results against external criteria. To quantitatively 
evaluate the reliability of vertical data integration at the multi-omics 
level, we used Quartet-based ARI (daughter1–daughter2–father–
mother (that is, D5–D6–F7–M8) as four independent sample groups 
or clusters) as the metric.

Ratio-based scaling data largely outperformed the absolute- 
level data with a much higher ARI when the same vertical integration 
algorithm was used (Fig. 5a). Furthermore, there was no significant 
difference between high- and low-quality groups, regardless of the 

Fig. 4 | Improved reliability of cross-omics feature correlations.  
a, Scatterplots of the cross-omics feature relationships of intra- and inter-batch 
(horizontally integrated) data at the absolute level (blue) and ratio level (red). 
The solid lines represent fitted curves from linear regression along with the 
Pearson correlation coefficient (r). b, Workflow for the construction of reference 
datasets of cross-omics feature relationships according to the following steps: (1) 
identification of detectable multi-omics features and per-sample normalization; 
(2) intra-batch QC by filtering out features that are not detectable or have 
low technical reproducibility; (3) identification of cross-omics feature pairs 
associated with the same genes or pathways; (4) cross-batch QC by retaining 
reliable feature pairs identified in a sufficient number of batches; (5) calculating 
Pearson correlation coefficients for each feature pair in each batch combination 
and classifying the relationships into positive (r ≥ 0.5, P < 0.05) and negative 
(r ≤ –0.5, P < 0.05) categories; and (6) voting based on the direction of the 
correlations (negative or positive) to screen the high-confidence cross-omics 
feature relationships. c, Chord plot of the reference dataset of cross-omics 

feature relationships. Each chord represents a positive (red) or negative (blue) 
correlation of any two cross-omics features. d, Scatterplots of the expression 
abundance of 224 positively correlated RNA–protein pairs at the absolute level 
(blue) and ratio level (red). Data were selected from the best quality batch in the 
RNA-seq and proteomics datasets. r denotes the Pearson correlation coefficient, 
and m denotes the number of features. e,f, Bar plots of RMSE of cross-omics 
feature relationships identified from different quality datasets (e; bad versus 
good) and different scenarios (f; confounded versus balanced) at the absolute 
level (blue) and ratio level (red) based on the reference datasets. The number of 
data sampling instances (n) used to derive statistics was as follows: bad, n = 10; 
good, n = 10; confounded, n = 200; balanced, n = 100. Data are presented as mean 
values ± s.d. The P values were calculated using unpaired two-tailed Wilcoxon 
rank-sum tests with false discovery rate (FDR) correction. ****P < 0.0001, 
***P < 0.001, **P < 0.01, *P < 0.05; not significant, P ≥ 0.05. Specific P values are 
listed in Supplementary Data 1 and 2.
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methods used (Extended Data Fig. 7a). This may be due to the relatively 
simple classification task and the integration of multi-omics data that 
effectively improves the discrimination between different samples.

In particular, ratio-based data showed an obvious advantage over 
the absolute level in confounded scenarios (Fig. 5b and Extended 
Data Fig. 7b). The vertical integration based on the ratio-level profiles 
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exhibited an ARI close to 1 at different levels of batch-group balance. 
Most of the popular batch correction methods (ComBat, Harmony and 
z score) showed lower ARI in the confounded scenario, and their perfor-
mance with all five vertical integration algorithms steadily improved as 
the degree of batch-group balance increased. RUVg, which is theoreti-
cally suitable for processing confounded datasets, had excellent per-
formance in extremely confounded and balanced scenarios. However, 
it was progressively less effective when the batch and sample groups 
were confounded. Interestingly, the absolute-level data exhibited a 
similar pattern of variation as RUVg, with the highest ARI under extreme 
confounding scenarios. However, it was batch information that was 
actually distinguished (Fig. 5c and Extended Data Fig. 7c). These results 
suggest that vertical integration for sample classification based on 
ratio-based scaling profiles is essentially unaffected by the degree of 
batch-group balance in the experimental design.

It is worth noting that ARI only qualitatively measures whether 
clustering results and external criteria have a similar clustering struc-
ture and does not indicate the degree of difference between clusters. 
When the ARI is the same, the biological features of sample groups 
after vertical integration may still differ. In this context, we extended 
the idea of SNR to quantitatively evaluate the vertically integrated 
results to improve the resolution of the assessment of the accuracy of 
sample classification (see Methods for details). In line with the previous 
findings, ratio-based scaling resulted in higher SNR values in different  
scenarios ranging from confounded to balanced, regardless of the 
vertical integration method used (Fig. 5d).

The ultimate performance of integration was influenced by both 
the horizontal integration methods and the vertical integration algo-
rithms. For example, regardless of the chosen horizontal integra-
tion method, MOFA+ performed better than MCIA in subsequent 
vertical integration. These results indicate that ratio-based scaling 
improves the vertical integration of sample clusters through reliable 
cross-sectional integration.

By conducting a comprehensive comparison with BECAs, we aim 
to provide a more robust depiction of the effectiveness of direct quan-
tification at the ratio level during data generation. When using ratio 
quantification directly, the ratio approach consistently produces 
high ARI values, indicating accurate sample classification, as well as 
high SNR values, indicating discriminatory power to correctly classify 
samples, regardless of whether the sample classes are balanced across 
batches. Furthermore, the additional use of BECAs in conjunction with 
ratio quantification produces superior outcomes compared to batch 
correction based on absolute quantification (Fig. 5e). Therefore, it 
is imperative to incorporate ratio-based profiling at the experimen-
tal measurement stage instead of data massage alone (for example, 
normalization and/or batch effect correction) after data generation.

Quartet design for genetics-driven ground truth
Multi-omics integration of molecular-level information and phenotypic 
characteristics holds great promise in advancing understanding of 
intricate genotype–phenotype relationships. Beyond straightforward 
differentiation of the four different individuals (daughter1–daughter2– 
father–mother, or D5–D6–F7–M8), the Quartet monozygotic twin  
family design offers a unique opportunity as well as a more challenging 

task of classification into the Quartet family-based groups and three 
genetically distinct groups (daughters–father–mother, or D–F–M). 
Here we integrated the multi-omics data of moderate quality (SNR in 
the range of the top 20% to 80%) including DNA variants, methylation, 
miRNA, RNA, protein and metabolites. For each vertical integration 
method, only one batch of data was selected for each omics type to 
prevent the influence of batch effects during horizontal integration. 
In addition, we conducted partitioning around medoids (PAM) cluster-
ing82 for each type of single omics data and calculated ARI as a control 
to assist in assessing the performance of the vertical integration.

The inter-sample similarity networks built using data from a single 
omics type (top) and multi-omics data integrated using SNF, iCluster-
Bayes, MOFA+, MCIA and intNMF (bottom) are visualized in Fig. 6a. 
At the DNA level, the samples for the identical twins (D5 and D6) were 
tightly clustered together owing to their near-identical DNA sequences. 
On the other hand, these samples showed no clear tendency to cluster 
together for the five types of quantitative omics data (methylation, 
miRNA, RNA, protein and metabolites) and could even appear relatively 
far apart (for example, D6 and F7 appeared closer in miRNA, RNA and 
protein data). This distinction in clustering tendency between DNA 
variants and quantitative omics data implies that the classification 
task (D–F–M) can be used to assess whether a vertical integration 
approach can reveal the intrinsic, built-in genetic truth in the Quartet 
family with identical twins.

Vertical integration reduced technical noise and improved sample 
clustering, as indicated by the fact that the ARIs for both the three clus-
ters (D–F–M) and four clusters (D5–D6–F7–M8) from multi-omics inte-
gration were higher than those with direct clustering of single-omics 
data (Fig. 6b). Nevertheless, there were still differences in perfor-
mance between the vertical integration algorithms when distinguish-
ing the three sample categories (D–F–M). SNF, iClusterBayes, MOFA+ 
and intNMF correctly classified the samples into the three Quartet 
family-based groups (D–F–M), whereas MCIA did not perform well 
(Fig. 6c). This demonstrates that the integration algorithms could 
be prioritized by whether they find potential genetic truth (identical 
twins) behind the four individuals with distinct differences in molecular 
phenotypic data.

To better decipher what influences D–F–M clustering, we anno-
tated the genomic coordinates of de novo and somatic small variants 
(abbreviated as DNMs) in addition to directly calculating DEFs for 
each omics type. The intersection of these indicates highly plausible 
multi-omics features affected by genomic-level differences between 
the Quartet identical twins (Fig. 6d). Further enrichment analysis 
yielded pathways and features with specific molecular insights into the 
impact of genomic variants on D–F–M clustering (Fig. 6e). Identifica-
tion of the primary immunodeficiency signaling pathway (IGHM, IGHD, 
IGLL1 and IGLL5) indicated potential differences in immune system 
functions between the cell lines derived from the twins that could 
affect immunoglobulin synthesis and secretion, likely resulting from 
the process of immortalization of B cells with Epstein–Barr virus (EBV). 
The Hippo signaling pathway (DLG2, PPP2R2C and SMAD1) is associated 
with cell proliferation, polarity and tissue morphology, suggesting that 
there could be structural and morphological differences between the 
two cell lines from the twins. The p70-S6K signaling pathway (IGHM, 

Fig. 5 | Facilitating vertical integration for sample classification. a,b, Bar 
plots of the ARI of vertically integrated multi-omics datasets of different quality 
(a; bad versus good) and different scenarios (b; confounded versus balanced) at 
the absolute level (blue) and ratio level (red) using SNF, iClusterBayes, MOFA+, 
MCIA and intNMF. The number of data sampling and integration instances (n) 
used to derive statistics was as follows: bad, n = 10; good, n = 10; confounded, 
n = 200; balanced, n = 100. Data are presented as mean values ± s.d. The P values 
were calculated using unpaired two-tailed Wilcoxon rank-sum tests with FDR 
correction. ****P < 0.0001, **P < 0.01, *P < 0.05; not significant, P ≥ 0.05. Specific 
P values are listed in Supplementary Data 3 and 4. c, Scatterplots of the degree 

of sample class-batch balance versus ARI with different data preprocessing 
methods. d, Scatterplots of the degree of sample class-batch balance versus 
SNR with different data preprocessing methods. SNR was calculated on the 
basis of a sample-to-sample similarity matrix. e, Curves of ARI and SNR with 
the degree of balance between sample classes and batches at the absolute level 
(blue, solid line), ratio level (red, solid line), absolute level combined with BECAs 
(blue, dotted line) and ratio level combined with BECAs (red, dotted line). Each 
point represents an instance of data sampling and integration. The solid lines 
correspond to fitted curves obtained from local regression, and the shading 
indicates the 95% confidence interval around the smoothing.
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IGHD, IGHV1-2, IGLV3-21, PLCL2 and PPP2R2C) is associated with  
protein synthesis, cell proliferation and metabolic regulation and 
could potentially account for variations in the culturing status of the 
two cell lines. The PI3K signaling pathway in B lymphocytes (IGHM, 
IGHD, IGHV1-2, IGLV3-21 and PLCL2) is specific to these cells and is also 

associated with protein synthesis, cell proliferation and metabolic 
regulation. Finally, identification of DNA methylation and transcrip-
tional repression signaling (CDK14 and TET1) suggested that there may 
be differences in these processes between the twins. Taking these find-
ings together, it is possible that some of the multi-omics differences 
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between the Quartet identical twins at the immune, cellular and meta-
bolic levels are due to genetic variation. Additional differences may be 
caused by environmental or random factors.

The similarity between the identical twins (D5 and D6) during 
vertical integration can be quantified to illustrate the impact of adding 
different layers of omics information on the clustering of the Quartet 
samples (see Methods for details). As shown in Fig. 6f, the similarity 
between D5 and D6 decreased both when gradually adding downstream 
omics data starting with genomics data (left, red) and when integrating 
upstream omics data starting with metabolomics data (right, blue; 
except for the eventual addition of DNA). This phenomenon again 
demonstrates that the genetic relationships between the Quartet 
identical twins are only reflected at the DNA level, and it also specifies 
the need to incorporate genomic data when using the three clusters 
(D–F–M) as a QC metric for vertical integration.

Best practices for QC using Quartet reference materials
QC comprises procedures to ensure the reliability of multi-omics profil-
ing using defined QC metrics and thresholds to meet the requirements 
of different research purposes. Large-scale multi-omics studies involve 
multicenter and long-term measurements for which unified QC metrics  
and universal integration strategies are needed to ensure quality  
during data generation and integration. We recommend including 
the Quartet reference materials (for example, four samples × three 
replicates) or a similar strategy when profiling each batch of study 
samples and propose best-practice guidelines for QC and data integra-
tion in three aspects, including intra-batch data generation, horizontal 
integration and vertical integration (Extended Data Table 2).

We have provided both reference dataset-free and reference 
dataset-based QC metrics to assess the wet-lab proficiency of data 
generation for the same omics type in terms of the capacity to iden-
tify subtle differences between sample groups. Without relying on 
the reference datasets, the Quartet-based SNR (D5–D6–F7–M8) can 
be calculated for quality assessment for all types of omics data. SNR 
calculated on the basis of the four Quartet sample groups was more 
sensitive when assessing wet-lab proficiency than generic QC metrics 
based on multiple technical replicates of a single sample (Fig. 2). We 
also recommend use of the Mendelian concordance rate based on 
the pedigree of the Quartet family as a QC metric for assessing the 
quality of genomic data66. With the reference datasets, the wet-lab 
proficiency was assessed by the concordance between the evaluated 
batch of data and the reference datasets. Precision, recall and F1-score 
are recommended for qualitative omics (small variants and SVs), and 
RMSE at the ratio level (scaling to D6) for feature expression and the 
differential expression between groups (D5–F7, F7–M8 and M8–D5) is 
recommended for quantitative omics (DNA methylation, transcriptom-
ics, proteomics and metabolomics). In addition, more comprehensive 
proficiency tests or inter-lab comparisons can be performed by obtain-
ing the relative quality ranking among the cumulative datasets within 
the Quartet Data Portal72.

For horizontal integration of multi-batch data, a paradigm shift 
from absolute to ratio-based profiling by incorporating common  

reference materials is essential and improves the reproducibility and 
resistance to batch effects. QC metrics used in intra-batch data genera-
tion can still be used in the quality assessment of horizontal integration. 
The reliability of further exploratory studies can be ensured as long as 
the horizontally integrated dataset can still distinguish the different 
Quartet samples with subtle built-in differences.

Vertical integration can be enhanced by ratio scaling the data 
on the basis of reference materials. The Quartet multi-omics and 
multi-sample reference materials provide two types of metrics for QC 
of vertical integration. The first type, referred to as the ‘built-in truth’, 
leverages clustering of the Quartet samples through the combined use 
of ARID–F–M and ARID6–D6–F7–M8 to synthetically characterize the quality 
of vertical integration. In addition, the ability to correctly distinguish 
samples into four clusters (D5, D6, F7 and M8), as measured by ARID6–

D6–F7–M8, indicates that the integrated multi-omics data must have the 
basic ability to differentiate the four different biological samples from 
technical replicates. On the other hand, the integration algorithm 
must be able to identify the multi-omics features driven by the built-in 
genetic truth of the Quartet identical twins, thus separating samples 
into three clusters (daughters, father and mother) by identifying true 
cross-omics associations. The second type of metrics focus on the 
hierarchical relationship across omics features following the principle 
of the central dogma. RMSE of cross-omics feature relationships cal-
culated on the basis of the high-confidence reference datasets can be 
used to evaluate the accuracy of the cross-omics feature correlations. 
These metrics provide insights into the fidelity of vertical integration 
by assessing the consistency between integrated data and known 
biological relationships.

Discussion
We developed suites of publicly available multi-omics reference mate-
rials, including matched DNA, RNA, protein and metabolites from 
immortalized LCLs of four individuals from a Chinese quartet family. 
We then profiled these reference materials using diverse multi-omics 
technology platforms in multiple labs across batches with repeated 
measurements. The reference datasets of measurands characterizing 
these reference materials at genomic scale were established on the 
basis of a consensus approach using multiple bioinformatics pipelines 
and data integration approaches. The Quartet reference materials 
and the reference datasets can facilitate objective quality assessment 
of multi-omics profiling by providing two types of metrics for QC of 
multi-omics data generation and data integration. One relates to the 
built-in truth clustering of the Quartet samples based on their intrinsic 
and subtle biological differences, and the other relates to the inherent  
relationships across omics features following the central dogma  
(DNA to RNA to protein). The resulting wealth of multi-omics resources 
has been made publicly available through the Quartet Data Portal 
(https://chinese-quartet.org/).

Wet-lab proficiency was consistently found to be a more important 
factor affecting the quality of data generated for each omics type than 
the choice of a specific technology platform (Fig. 2). Our findings are 
consistent with what has been reported previously on gene expression 

Fig. 6 | Quartet design for genetics-driven ground truth. a, Networks of six 
types of omics profiling based on the similarity between 12 samples within one 
batch (top) and sample similarity networks obtained with SNF, iClusterBayes, 
MOFA+, MCIA and intNMF (bottom), which integrated the six types of multi-
omics data. b, Bar plots of the ARI when clustering samples into three (D–F–M) 
or four (D5–D6–F7–M8) groups by single-omics clustering (yellow) versus 
multi-omics integration (orange). c, Bar plots of the ARI for multi-omics data 
integration using SNF, iClusterBayes, MOFA+, MCIA and intNMF. Light green 
represents data when the true labels of the samples were set to three clusters 
(D–F–M), while dark green represents four clusters (D5–D6–F7–M8). In b,c, data 
are presented as mean values ± s.d. A total of 60 batches of multi-omics datasets 
were used for single-omics PAM clustering, on the basis of which 100 cross-omics 

combinations were used for multi-omics integration with five algorithms. d, The 
number of multi-omics features associated with DNMs, DEFs identified from 
profiles and their intersections. e, Enrichment pathway maps for differential 
multi-omics features between D5 and D6, that is, the intersection of DNMs and 
DEFs. Darker colors indicate pathways and lighter colors indicate genes. The 
percentage of each circle of a specific color corresponds to the proportion of 
features associated with each omics type. f, Box plots of the similarity between 
D5 and D6 for integration of different types of omics data with 50 iterations. 
The multi-omics data were integrated starting with DNA (red) and ending with 
metabolites (gray) by using SNF. The box plots display the distribution of data 
with the median represented by the line inside the box and the interquartile range 
represented by the box. Whiskers extend to 1.5× the interquartile range.
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profiling with microarrays in MAQC-I55 and with RNA-seq in MAQC-III 
(SEQC)54 when the same pair of MAQC reference RNA samples, samples 
A (a mix of RNA from ten cancer cell lines) and B (a mix of RNA from the 
brain tissues of 23 donors), were analyzed using a given platform in 
multiple labs. This observation seems intuitive; however, no adequate 
solution has been validated or adopted by the scientific community, 
which has likely contributed to the lack of reproducibility of biomedi-
cal research83. Our observation highlights the urgent need for highly 

sensitive proficiency testing and training to improve internal lab profi-
ciency before profiling precious research and clinical samples. To this 
end, we have established appropriate reference materials and propose 
sensitive metrics for performance assessment.

The ability to correctly identify molecular phenotypic differences 
between various groups of samples or clinical subtypes of a disease is 
a fundamental requirement for any omics technology-based research. 
Thus, an appropriate performance metric should be taken into account 
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and multiple groups of samples must be included to meet this vital 
requirement. For each omics type, the Quartet study design included 
four groups of samples (D5–D6–F7–M8), allowing us to define a uni-
versal SNR metric for measuring the performance of any multi-omics 
technology. We found that the SNR metric was sensitive in identifying 
low-quality datasets that may otherwise be considered of high quality. 
For example, reproducibility of repeated measurements (or technical 
replicates) of the same sample, usually expressed as CV, Pearson cor-
relation coefficient or Jaccard index, is a widely used metric for identify-
ing quality issues in transcriptomics, proteomics and metabolomics 
data57,62,84. However, our study demonstrated the limitations of such 
single-sample-based metrics. In particular, a high Pearson correlation 
coefficient between technical replicates from a single sample did not 
ensure high quality in detecting the intrinsic biological differences 
between different groups of samples (Supplementary Fig. 2). Under 
such scenarios, unfortunately, the inter-sample differences between 
different groups of samples (that is, signal) and the intra-sample differ-
ences between technical replicates of the same sample (that is, noise) 
are at the same level, indicating that the measurement system does not 
have any differentiating ability. The Quartet multi-sample-based refer-
ence material suites and the SNR metric offer indispensable advantages 
in reliability assessment for each type of omics profiling.

Our results urge a paradigm shift from absolute to ratio-based 
profiling by incorporating common reference materials in the design 
and execution of multi-omics studies. A striking finding of our study 
was that multi-omics profiling data at the absolute level, such as FPKM 
in transcriptomics, FOT in MS-based proteomics and relative peak area 
in metabolomics, from a single sample are inherently irreproducible 
across platforms, labs and batches, leading to ‘batch effects’. Such batch 
effects, usually confounded with study factors of interest, hinder the 
discovery of reliable biomarkers either by mistaking batch differences 
as biological signals or by attenuating biological signals with the incor-
rect use or overuse of ‘batch effect correction’ methods (see details 
in an accompanying paper71). The presence of batch effects makes 
the horizontal integration of diverse datasets of the same omics type 
impossible, as can be seen by the lack of the ability to correctly cluster 
the Quartet samples (Fig. 3d; with SNR close to zero). Convincingly, 
by converting absolute profiling data for study samples to ratio scales 
relative to data from the same reference material (such as D6), the 
resulting ratio-based profiling data (such as D5/D6) were comparable 
across different protocols, instruments, labs and batches (Fig. 3e; 
with SNR much improved) and therefore were defined as quantitative 
reference datasets (Supplementary Table 2).

Ratio-based quantitative multi-omics profiling using common 
reference materials other than the Quartet samples also empowers data 
integration by substantially removing technical variability in absolute 
abundance data. We integrated microarray datasets55 and RNA-seq 
datasets54 from four well-characterized reference RNA samples, sam-
ples A (universal human reference RNA), B (human brain reference 
RNA), C (a mixture of samples A and B in a 3:1 ratio) and D (a mixture 
of samples A and B in a 1:3 ratio), from the MAQC/SEQC consortia 
(Supplementary Table 4). At the absolute abundance level, samples 
were clustered according to batch and there was a clear distinction 
between microarray and RNA-seq data and among different microarray 
platforms (Extended Data Fig. 8a). After converting the measurement 
data to a ratio scale relative to the reference material within a batch on 
a feature-by-feature basis, PCA plots showed clear separation of the 
four types of reference samples (Extended Data Fig. 8b). The marked 
batch effects seen at the absolute scale largely disappeared, and the 
SNR values of the integrated datasets were much higher. These results 
indicate that the advantages of ratio-based profiling are generalizable 
to sample types other than the Quartet cell lines.

The fact that the ratio-based approach can improve reproduci-
bility was mentioned in our MAQC-II studies on microarrays85.  
However, another study with simulated data appeared to conclude 

otherwise37. Unfortunately, the community is still largely using absolute 
abundance for quantitative profiling. Our present study systemati-
cally demonstrates the impact of ratio-based profiling on the quality 
of individual types of multi-omics data generated by a wide range of 
current techniques and on the integration of multi-omics data. More 
notably, our study generated multi-omics reference materials and 
datasets with ground truth, which should make the main finding of 
the need for a paradigm shift from absolute to ratio-based multi-omics 
profiling convincing for the omics field.

The rich resources from our study and the main findings support-
ing ratio-based profiling for multi-omics data integration are valu-
able to the community. First, although the concept of ‘ratio’ has been 
proposed previously for a single omics type37,54,55,85, the community is 
still largely using absolute abundance for quantitative profiling, and 
the advantages of ratios over absolute abundance for quantitative 
profiling have not been fully appreciated or realized. The lack of a 
convincing study as comprehensive as our current one, which includes 
well-characterized, publicly available multi-omics reference materi-
als and large amounts of multi-omics data from the same reference 
materials, might be a reason. Second, we clearly show the advantages of 
ratio-based measurement for profiling multiple omics types simultane-
ously. Third, we demonstrate the advantages of ratio-based profiling 
for the integration of multi-omics data. Finally, and notably, most prior 
studies have been based on either existing datasets or simulated data-
sets. By contrast, our study generated multi-omics reference materials 
and datasets in a systematic and well-thought-out manner to specifi-
cally investigate the underlying reasons behind the ‘idiosyncratic’ batch 
effects37 that have been hindering the identification of reliable omics 
biomarkers for realization of precision medicine.

The large differences in data reproducibility between absolute and 
ratio-based profiling can be explained, at least in part, by the fundamen-
tal principles and assumptions behind data representation for omics 
measurements. The concentration or abundance (C) of an analyte in a 
sample is important to biomedical research and what a measurement 
technology intends to provide. In quantitative omics profiling, the 
absolute instrument readout or intensity (I; for example, FPKM, FOT or 
peak area, regardless of whether per-sample scaling or normalization 
is applied) is typically used as a surrogate for C by assuming that there 
is a linear and fixed relationship (f, or sensitivity) between I and C under 
any experimental conditions86 such that I = f(C). In reality, however, the 
relationship f can vary because of differences in platform details, rea-
gent lots, lab conditions or operator biases, among other experimental 
factors, making I inherently irreproducible across batches. On the 
contrary, when a common reference sample (R) is analyzed in parallel 
with study samples (S) in the same experiment (batch), as a control, the 
resulting ratio of IS to IR from each batch will remain reproducible and 
accurately reflect the ratio of CS to CR. This is because the intensity I for 
the reference and study samples can be represented as IR1 = f1(CR) and 
IS1 = f1(CS) for batch 1 and IR2 = f2(CR) and IS2 = f2(CS) for batch 2, respec-
tively. Note that f remains fixed or comparable for both the reference 
and study samples being analyzed under the same experiment (batch). 
Thus, when we divide the intensity I of the study sample by that of the 
reference sample in the same batch, the resulting ratio, IS1/IR1 for batch 1 
and IS2/IR2 for batch 2, will remain the same and equal to CS/CR, a constant 
of biological significance with associated measurement uncertainties. 
In fact, the lack of reproducibility of absolute gene expression data in 
microarray55,87, RNA-seq54 and miRNA-seq84 experiments across batches 
or platforms has been widely documented, as has the increased repro-
ducibility at the ratio scale54,55,86. Ironically, mainstream practices still 
represent omics profiling data on the absolute scale, presumably owing 
to the lack of readily accessible reference materials as controls, lead-
ing to numerous challenges in integrating diverse datasets generated 
under various experimental conditions. It is gratifying to note that the 
Olink proteomics platform reports profiling data in ratio scales relative 
to its control samples (www.olink.com).
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Multi-omics profiling is an integrated process bridging genotype 
and phenotype, and performance validation should be conducted for 
the entire sample-to-result process. We observed that each component 
of the data generation and data integration procedures can affect 
the final results of multi-omics profiling. For each type of omics data 
generated, full-performance validation and proficiency testing should 
be conducted to assess whether the measurement system can identify 
the biological differences inherent between various sample groups, 
a fundamental goal of multi-omics profiling. Previous studies have 
mainly focused on performance validation of new technologies52,60, 
but our study revealed that horizontal and vertical data integration 
across technologies should also be assessed using ground truth-based 
objective QC metrics. The multi-omics design of the Quartet Project 
brings a unique dimension to understanding molecular phenomics, 
allowing us to demonstrate the advantages of multi-omics profiling 
over any single omics type and to objectively evaluate the pros and 
cons of various data integration methods in terms of clustering sam-
ples according to built-in between-group differences and identifying 
reliable features with cross-omics relationships obeying the central 
dogma. The Quartet Project has established a new framework for 
developing multi-omics reference materials, reference datasets and 
QC methods for multi-omics studies along with best-practice guide-
lines for QC and data integration in multi-omics profiling (Extended 
Data Table 2).

Several limitations and caveats of our study should be pointed 
out. First, the number of analytes (for example, mRNAs or proteins) 
expressed in the Quartet reference materials is limited. Each Quartet 
reference material was derived from a single LCL; thus, genes or pro-
teins not expressed in that LCL are not expected to be detectable in 
the Quartet reference materials. This is not a serious problem when 
the purpose is to use the Quartet reference materials for proficiency 
testing or internal optimization of technology platforms or for train-
ing of lab technicians. However, this could become a limitation if the 
Quartet reference materials were to be used as controls and profiled 
along with study samples to report ratio-based profiling data, as the 
denominator for nondetectable features would become zero. In this 
case, a fudge factor or flooring value can be added to make division 
possible. Second, the number of analytes with well-defined refer-
ence values of differential expression (ratio) between sample pairs is 
also limited because only large enough ratio values are reproducibly 
detectable. Third, the long-term stability of the Quartet protein and 
metabolite reference materials needs to be monitored in terms of both 
the stability of individual analytes and the stability of the ratio-based 
reference values. Finally, as is true for any reference materials, rep-
lication of the Quartet multi-omics reference materials will require 
recalibration of the reference datasets and batch-to-batch differences 
in production and characterization of the reference materials, such as 
potential genetic drift and variability in quantitative omics features  
at the methylation, RNA, protein and metabolite levels due to cell 
culturing, need to be carefully recorded and reported.

In summary, the Chinese Quartet Project provides the interna-
tional community with rich multi-omics resources, which can serve as a 
foundation for the research community to evaluate new technologies, 
labs, assays, products, lab operators and computational algorithms. 
Large-scale multi-omics studies usually involve complex multicenter 
and long-term measurements. To ensure the reliability of scientific 
research results, we highly recommend the use of unified Quartet 
reference materials or equivalents during generation, analysis and 
integration of heterogeneous datasets. In particular, the paradigm shift 
to a ratio-based approach using common references as side-by-side 
controls, when widely adopted, can fundamentally advance the inte-
gration of diverse multi-omics datasets from research and the clinic by 
making them inherently reproducible and resistant to batch effects, 
hence increasing the chance of discovering reliable biomarkers to 
realize precision medicine.
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M et ho ds
Human participants
This study was approved by the institutional review board of the  
School of Life Sciences, Fudan University (BE2050). It was conducted 
under the principles of the Declaration of Helsinki. Four healthy  
volunteers from a family quartet, as part of the Taizhou Longitudinal 
Study in Taizhou, Jiangsu, China, were enrolled and their peripheral 
blood was collected to establish immortalized LCLs. All four donors 
signed informed consent forms.

Establishment of the Quartet LCLs
We adopted the widely used protocol in which EBV is used to establish 
immortalized LCLs88. Peripheral blood mononuclear cells were isolated 
using a lymphocyte separation solution (Ficoll). Naive B cells were 
sorted by EasySep Human Naive B Cell Enrichment Kit (STEMCELL, 
 19254) and infected with EBV by centrifugation at 400g for 1 h. 
After incubation, successfully infected and immortalized cells were  
propagated in culture medium.

Cell culture
The Quartet LCLs were cultured in RPMI 1640 supplemented with 
2 mM l-glutamine, 10% heat-inactivated FBS and 1% penicillin–strep-
tomycin at 37 °C with 5% CO2. The cells were passaged every 72 h at a 
1:4 split ratio.

Preparation of the first batch of DNA reference materials
To obtain the first batch of DNA reference materials (lot no. 20160806), 
2 × 109 cells were collected simultaneously for each cell line. Specifically, 
the cells grew in suspension and were centrifuged at 300g for 5 min to 
obtain cell pellets. The cell pellets were then washed twice with cold PBS.

The DNA reference materials were isolated using the DNA with 
Blood & Cell Culture DNA Maxi Kit (Qiagen) according to the manu-
facturer’s instructions, divided into 1,000 aliquots for each of the 
Quartet members and then labeled as Quartet_DNA_D5_20160806, 
Quartet_DNA_D6_20160806, Quartet_DNA_F7_20160806 or Quartet_ 
DNA_M8_20160806. A single vial contains approximately 10 μg of 
genomic DNA (220 ng μl–1, 50 μl) in TE buffer (10 mM Tris pH 8.0, 1 mM 
EDTA, pH 8.0).

DNA integrity and long-term stability were evaluated with the 
Agilent 2200 TapeStation system (Agilent Technologies). Concentra-
tions were determined by NanoDrop ND-2000 spectrophotometer 
(Thermo Fisher Scientific).

Preparation of multi-omics reference materials
To obtain the second batch of multi-omics reference materials (lot no. 
20171028), 1 × 1010 cells were collected for each cell line.

Of these, 2 × 109 cells were used to prepare the second batch of 
DNA reference materials (lot no. 20171028) with the same method 
described above for the first batch of DNA. The second batch of DNA 
reference materials was stocked in 1,000 vials (220 ng μl–1, 50 μl) and 
labeled as Quartet_DNA_D5_20171028, Quartet_DNA_D6_20171028, 
Quartet_DNA_F7_20171028 and Quartet_DNA_M8_20171028. DNA QC 
and monitoring of stability were conducted using the same methods 
described above.

Additionally, 2 × 109 cells pretreated with TRIzol reagent were 
used to prepare RNA reference materials using the RNeasy Maxi kit 
(Qiagen) according to the manufacturer’s instructions. The extracted 
RNA was divided into 1,000 aliquots for the quartet members and 
labeled as Quartet_RNA_D5_20171028, Quartet_RNA_D6_20171028, 
Quartet_RNA_F7_20171028 and Quartet_RNA_M8_20171028. A single 
vial contains approximately 5 μg of RNA in water (520 ng μl–1, 10 μl). 
RNA integrity and long-term stability were assessed with a 2100  
Bioanalyzer using RNA 6000 Nano chips (Agilent Technologies) and 
a Qsep 100 system (BiOptic). Concentrations were determined by 
NanoDrop ND-2000 spectrophotometer (Thermo Fisher Scientific).

Cell pellets of 2 × 109 cells were used to prepare protein reference 
materials. Two batches of peptides were prepared separately at Fudan 
University (on 6 November 2017) and Novogene (on 16 June 2020), 
China. In brief, cells were lysed in 8 M urea lysis buffer supplemented 
with protease inhibitors. The extracted proteins were then digested 
with trypsin overnight at 37 °C. The resulting peptides were divided 
into 1,000 aliquots and dried under vacuum for each batch of pep-
tide reference materials. Four chemically synthesized peptides with 
13C- and 15N-labeled valine at fixed weight ratios were spiked into the 
second batch of the reference protein materials (lot no. 20200616) 
as external controls. The spiked peptides are YILAGVENSK (1:1,000), 
ADVTPADFSEWSK (1:3,000), DGLDAASYYAPVR (1:9,000) and DSP-
SAPVNVTVR (1:27,000).

Cell pellets of 1 × 109 cells were used to prepare metabolite refer-
ence materials. In brief, cells were extracted using a solution with a 6:1 
ratio of methanol to water. Eleven xenobiotics were spiked in at a known 
amount in each vial as external controls. These included indoleacetic 
acid (25 pmol), taurocholic acid (1 pmol), glycocholic acid (5 pmol), 
cholic acid (25 pmol), tauroursodeoxycholic acid (2.5 pmol), taurode-
oxycholic acid (7.5 pmol), glycoursodeoxycholic acid (1 pmol), glycode-
oxycholic acid (0.5 pmol), ursodeoxycholic acid (25 pmol), deoxycholic 
acid (50 pmol) and sulfadimethoxine (5 pmol). The cell extracts were 
divided into 1,000 vials and then dried under vacuum (Labconco) to 
obtain the cell extracts as metabolomics reference materials. Each 
vial contains dried cell extract from approximately 106 cells. Stability 
was monitored by P300 targeted metabolomics using a UPLC–MS/MS  
system at the Human Metabolomics Institute (Shenzhen, China).

Whole-genome short-read sequencing data
Data generation. To evaluate the intra-lab performance of 
whole-genome short-read sequencing, three replicates for each of the 
Quartet DNA samples were sequenced in a fixed order (D5_1, D6_1, F7_1, 
M8_1, D5_2, D6_2, F7_2, M8_2, D5_3, D6_3, F7_3 and M8_3). A total of 108 
libraries from six labs with either a PCR or PCR-free protocol were used 
in this study. The libraries were sequenced on short-read platforms, 
including Illumina HiSeq XTen, Illumina NovaSeq, MGI MGISEQ-2000 
and MGI DNBSEQ-T7. In paired-end mode, the sequencing depth was 
at least 30×. More information is detailed in the accompanying paper 
on DNA66.

Short-read sequencing read mapping and small variant calling. 
Read sequences were mapped to GRCh38 (https://gdc.cancer.gov/
about-data/gdc-data-processing/gdc-reference-files). Sentieon 
v2018.08.01 (https://www.sentieon.com/) was used to convert raw 
fastq files to GVCF files. The workflow included read mapping with 
BWA-MEM and duplicate removal, indel realignment, base quality score 
recalibration and variant calling with HaplotyperCaller in GVCF mode. 
We used default settings for all the processes.

Feature encoding for small variants. To perform vertical integration 
with other quantitative omics data, we used an encoding scheme for 
the genotypes of SNVs. For each genomic locus, we counted all alleles 
occurring in a total of 108 samples from nine batches and then encoded 
them. Heterozygotes that were consistent with the reference genome 
were encoded as 0, and the others were encoded as 1. We used chromo-
some 1 to represent the whole genome for the analysis.

Whole-genome long-read sequencing data
Data generation. We evaluated the performance of SV detection using 
different data analysis pipelines, without considering the technical 
variation from library preparation. A total of 12 libraries from three 
long-read sequencing platforms were generated for the Quartet DNA 
reference materials (one replicate for each sample). The long-read 
sequencing platforms used were Oxford Nanopore PromethION 
(~100×), PacBio Sequel (~100×) and PacBio Sequel II (~30×).

http://www.nature.com/naturebiotechnology
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Long-read sequencing read mapping and SV calling. Reads were 
mapped to GRCh38 (GCA000001405.15) from the UCSC Genome 
Brower (http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chro-
mosomes/). Three mappers (NGMLR, minimap2 and pbmm2) and five 
callers (cuteSV, NanoSV, Sniffles, pbsv and SVIM) were used to call SVs.

DNA methylation data
Data generation. To evaluate the intra-lab performance of DNA meth-
ylation analysis, three replicates for each of the Quartet sample groups 
were assayed in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, F7_2, 
M8_2, D5_3, D6_3, F7_3 and M8_3). Methylation data from 72 DNA sam-
ples generated by two labs using Illumina Infinium MethylationEPIC 
v1.0 BeadChip (850k) were used in this study.

Preprocessing of methylation data. Raw idat files were processed 
using the R packages ChAMP (v2.20.1)89 and minfi (v1.36.0)90. The 
single-sample Noob (ssNoob) method91,92 was used to correct for back-
ground fluorescence and dye bias. Next, samples with a proportion 
of failed probes (probe detection P > 0.01) above 0.1 were discarded. 
Probes that failed in more than 10% of the remaining samples were 
removed. Probes with <3 beads in at least 5% of samples were also 
removed. All non-CpG probes, SNP-related probes, multi-hit probes, 
and probes located on chromosomes X and Y were filtered out. After 
preprocessing, the methylation dataset contained 735,296 probes. 
Finally, the corrected methylated and unmethylated signals were used 
to calculate M values and β values. In this process, the offset was set to 
100 and the β threshold was set to 0.001.

Whole-transcriptome sequencing data
Data generation. To evaluate the intra-lab performance of whole- 
transcriptome sequencing, three replicates for each of the Quartet 
sample groups were sequenced in a fixed order (D5_1, D6_1, F7_1, M8_1, 
D5_2, D6_2, F7_2, M8_2, D5_3, D6_3, F7_3 and M8_3). A total of 252 libraries 
from eight labs with either a poly(A) selection or rRNA removal protocol 
were used in this study. On average, 100 million read pairs per replicate 
were sequenced on the Illumina NovaSeq or MGI DNBSEQ-T7 platform. 
More information is provided in the accompanying paper on RNA67.

Alignment and RNA quantification. HISAT2 v2.1 was used for read 
alignment to GRCh38 (version GRCh38_snp_tran; https://genome-idx.
s3.amazonaws.com/hisat/grch38_snptran.tar.gz)93. SAMtools v1.3.1 
was used to sort and convert SAM to BAM format94. StringTie v1.3.4 
was used for gene quantification with Ensembl reference annotation 
(Homo_sapiens.GRCh38.93.gtf)95. Ballgown v2.14.1 and prepDE.py 
(https://ccb.jhu.edu/software/stringtie/dl/prepDE.py) were used to 
produce a gene expression matrix in FPKM for downstream analysis.

miRNA-seq data
Data generation. To evaluate the intra-lab performance of miRNA-seq, 
three replicates for each of the Quartet sample groups were sequenced 
in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, F7_2, M8_2, D5_3, 
D6_3, F7_3 and M8_3). A total of 72 libraries from four labs using five 
library kits (NEBNext, NEXTFLEX, TruSeq, Vazyme and QIAseq) were 
used in this study. The Illumina NovaSeq or HiSeq 2500 platform was 
used to generate the miRNA-seq data.

Alignment and miRNA quantification. An extracellular RNA  
processing toolkit (exceRpt) was used to preprocess miRNA-seq96 
data. Raw reads were aligned to the hg38 genome and the transcrip-
tome in exceRptDB. CPM quantification of miRNA was extracted for 
downstream analysis.

Mass spectrometry-based proteomics data
Data generation. With the first batch of peptide reference materials, 
312 libraries based on the LC–MS system were generated under a DDA 

mode. Samples were analyzed in a random order for each dataset, 
which contained three technical replicates for each of the four bio-
logical samples (D5, D6, F7 and M8). Mass spectrometers from three 
platforms were used: (1) the Q Exactive hybrid quadrupole–Orbitrap 
series (Q Exactive, Q Exactive Plus, Q Exactive HF and Q Exactive HF-X), 
Orbitrap Fusion Tribrid series (Fusion and Fusion Lumos) and Orbitrap 
Exploris 480 (all from Thermo Fisher Scientific); (2) Triple-TOF 6600 
(from Sciex); and (3) timsTOF Pro (from Bruker Daltonics).

The second batch of peptide reference materials were analyzed 
in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, F7_2, M8_2, D5_3, 
D6_3, F7_3 and M8_3) on Q Exactive, Q Exactive HF, Q Exactive HF-X and 
Orbitrap Fusion Lumos instruments, generating 36 libraries based on 
DDA mode and 36 libraries based on DIA mode. All parameters were set 
according to the requirements of the manufacturers. More information 
is provided in the accompanying paper on protein68.

Peptide identification and protein quantification. Raw MS files gener-
ated using the first batch of peptide reference materials were searched 
against the NCBI human RefSeq protein database (updated on 7 April 
2013, 32,015 entries) using Firmiana 1.0 enabled with Mascot 2.3 (Matrix 
Science)97. Raw MS files generated with the second batch of peptide ref-
erence materials were searched against UniProt (http://www.uniprot. 
org; release-2021_04), using in-house pipelines from different  
labs (MaxQuant 1.5.3.17, Spectronaut 14.4, mProphet or Proteome 
Discoverer 2.2). Fixed modifications included carbamidomethylation 
(cysteine), and variable modifications included oxidation (methionine) 
and acetylation (protein N terminus). Proteins with at least one unique 
peptide with 1% FDR at the peptide level and a Mascot ion score greater 
than 20 were selected for further analysis. FOT values were used for 
downstream analysis. FOT was defined as a protein’s iBAQ divided by 
the total iBAQ for all the proteins identified in one sample. The FOT 
value was multiplied by 105 for ease of presentation.

Mass spectrometry-based metabolomics data
Data generation. To evaluate the intra-lab performance of MS-based 
metabolomics, three replicates for each of the Quartet sample groups 
were profiled in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, F7_2, 
M8_2, D5_3, D6_3, F7_3 and M8_3). Dried cell extracts were reconstituted 
in mobile phase in each lab, and a total of 264 libraries were generated 
from six labs. Nontargeted metabolomics datasets were generated 
using AB Sciex Triple TOF6600 and Thermo Scientific Q Exactive mass 
spectrometer systems in three different labs. Targeted metabolomics 
datasets were generated using Waters Xevo TQ-S, AB Sciex QTRAP 5500 
and AB Sciex QTRAP 6500+ mass spectrometers in four labs. More 
information is provided in the accompanying paper on metabolites69.

Compound identification and metabolite quantification. Raw data 
were extracted and underwent peak identification and QC processing 
using the in-house methods in each lab. Compound identification was 
conducted using an in-house library on the basis of the retention time/
index (RI), mass-to-charge (m/z) ratio and MS spectral data for each 
metabolite. Metabolite quantification was conducted using area under 
the curve or the concentration calculated by calibration curve using 
standards for each metabolite. All expression tables for metabolomics 
data were log2 transformed.

Microarray and RNA-seq datasets of reference RNA samples 
A–D from the MAQC and SEQC consortia
The microarray datasets55 and RNA-seq datasets54 of four 
well-characterized reference RNA samples, samples A (universal human 
reference RNA), B (human brain reference RNA), C (a mixture of samples 
A and B at a 3:1 ratio) and D (a mixture of samples A and B at a 1:3 ratio), 
were used to confirm the generalizability of the ratio-based profiling 
approach. These two datasets spanning 8 years were generated on 
different platforms across different labs.
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Microarray data in the MAQC-I study were generated on three 
platforms, including Affymetrix, Agilent Technologies (for two colors) 
and Illumina platforms. Each platform provider selected three sites for 
testing, and five replicates of each sample were processed at each site. 
For the RNA-seq data from the SEQC1 study, we selected sequencing 
data from three sites for the Illumina and Life Technologies platforms, 
with four replicates of each sample randomly selected from each site. A 
total of 179 replicates of microarray data and 96 replicates of RNA-seq 
data were included in this study.

Data preprocessing
In the analysis of this study, the methylation microarray data were 
converted to M values, miRNA data were normalized to log2(CPM), RNA 
data were normalized to log2(FPKM), proteomics data were normalized 
to log2(FOT) and metabolomics data were log2 transformed according 
to the quantitative intensity.

We used different strategies to handle missing values for different  
omics types when the analysis involved multiple batches of data. For 
methylation data, features with missing values were removed. For other 
omics data types, a feature was retained when it was detected in more 
than 90% of the samples. For miRNA-seq and RNA-seq data, a flooring 
value of 0.01 was added to each gene’s FPKM or CPM value before log2 
transformation. For proteomics and metabolomics data, we used  
the estim_ncpPCA and imputePCA functions of the missMDA v1.18 
package98 to fill in missing values.

PCA
PCA was performed using the prcomp function in R statistical packages 
(v4.0.5). PCA was conducted on single or multiple batches of data from 
a single omics type. In assessing the quality of single-batch data, we 
used data from 12 samples (4 donors with 3 replicates per donor) after 
removing features containing null values and performing normaliza-
tion. The results can be found in Fig. 2d and Supplementary Figs. 1 and 2.

For multi-batch data quality assessment, we first filtered out fea-
tures that were null in more than 10% of the samples and then per-
formed imputation as described in the ‘Data preprocessing’ section. 
PCA was calculated on the basis of the horizontally integrated data, 
and the corresponding results are presented in Fig. 3d–f and Extended 
Data Fig. 5.

PVCA
PVCA was used to measure the contribution of impact factors to the 
Quartet multi-omics profiles. PVCA uses two statistical methods, that 
is, PCA and variance component analysis. In addition to biological 
sample type (donor), technical factors taken into account included 
lab, platform and protocol. We performed PCA and then estimated 
the effects of each known factor using the lme4 v1.1-29 package99. The 
residual accounts for variability from other sources or factors not 
included.

Differential expression analysis
For each omics type, we identified DEFs in three types of comparisons, 
that is, D5 versus F7, D5 versus M8 and F7 versus M8, where D6 was used 
as the common reference (denominator in ratio calculation). Although 
the four samples were from a family of parents and identical twins, the 
replicated observations made on the samples were all independent of 
each other for the quantitative multi-omics characteristics. For the 
identical distribution problem, the small sample size (n = 3) made it 
impossible to determine precisely whether the two sets of data under 
comparison were from the same distribution. In this case, direct use of 
a nonparametric test (for example, the Wilcoxon test) is not an appro-
priate choice100. Therefore, we used a method that has been validated 
in a series of studies by the MAQC consortium to detect DEFs47,54,55.

According to recommendations from the MAQC/SEQC consortia55,101,  
a nonstringent t-test P-value cutoff with fold-change ranking could 

be used to identify differentially expressed genes. In this study, we 
assumed unequal variance and used Welsh’s modification for the 
degrees of freedom. A feature was identified as differentially expressed 
when it satisfied the criteria of P < 0.05 and log2(fold change) of ≥0.5 or 
≤–0.5 for miRNA, RNA, protein and metabolite profiling or P < 0.05 and 
log2(fold change) of ≥2 or ≤–2 for methylation M values. The DEFs were 
further classified as up- or downregulated on the basis of the positive 
or negative sign of the log2(fold change).

Workflow for construction of reference datasets
In the analysis of DEFs and cross-omics relationships, intra-batch 
QC was performed to minimize the influence of technical noise in 
the voting process. For each sample group, features that were not 
detected in more than one technical replicate or that had large vari-
ability (CV of >0.15 for methylation and >0.3 for other omics types) 
were excluded. Subsequently, we constructed reference datasets of 
DEFs and cross-omics feature relationships with the consensus voting 
approach described below.

Reference datasets for DEFs. Cross-batch QC was performed fol-
lowing the previous intra-batch QC. Features retained in more than a 
certain percentage of batches (70% for methylation, miRNA and RNA; 
30% for protein and metabolites) were kept for the subsequent dif-
ferential expression analysis.

For each omics type, we analyzed the DEFs between D5 and F7  
(D5–F7), D5 and M8 (D5–M8) and F7 and M8 (F7–M8) within each  
batch using the method described in the ‘Differential expression  
analysis’ section.

After identifying DEFs from each batch, we kept the DEFs present 
in more than 70% of batches with consistent regulatory directionality 
(up or down). Finally, we calculated the mean log2(fold change) values 
for all the retained intra-batch DEFs as reference values.

Reference datasets for cross-omics feature relationships. The refe-
rence datasets contained cross-omics feature relationships between 
methylation and miRNA, methylation and RNA, RNA and miRNA, RNA 
and protein, and protein and metabolites. We first performed feature 
selection to better identify biologically meaningful correlations by 
annotating cross-omics features to the same genes.

For methylation probes, we converted the features from the 
level of probes to genes by taking the mean value in the promoter 
region (TSS200 or TSS1500) to characterize the methylation level. 
For the other omics types, we did not perform transformation of 
feature values but simply searched for associated genes. RNA pro-
files were associated with gene names through Ensembl ID. Target 
genes associated with specific miRNAs in all of miRDB102 (prediction 
score of ≥80), miRTarBase103 (support type of ‘Functional MTI’) 
and TargetScan104 were considered as plausible. The proteomics 
profiles were characterized at the level of gene names. Metabolites 
were associated with genes in the same pathway on the basis of  
the HMDB database105.

Subsequently, we exhaustively enumerated all batch combina-
tions of the above five cross-omics types and conducted cross-batch 
QC. Associated feature pairs retained in more than a certain number 
of batch combinations were used for subsequent correlation analysis. 
This threshold was determined by the product of the respective batch 
and rate (70% for methylation, miRNA and RNA; 30% for protein and 
metabolites) of the two types of omics data being compared.

Next, we calculated the Pearson correlation coefficient for 
each feature pair in each batch combination of the five cross-omics 
types. According to the results of Pearson correlation analysis, the 
cross-omics relationships were classified as positive (r ≥ 0.5, P < 0.05), 
negative (r ≤ –0.5, P < 0.05) or none (P ≥ 0.05).

Finally, we preserved the cross-omics relationships with a category 
that accounted for more than 70% as high-confidence relationships. 
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The reference Pearson correlation coefficients were the mean value 
of the retained data.

Performance metrics
ARI. ARI is a widely used QC metric to compare clustering results 
against external criteria81. It measures the similarity of the true labels 
and the clustering labels while ignoring permutations with chance 
normalization, which means that random assignments will have an ARI 
score close to zero. ARI is in the range of –1 to 1, with 1 corresponding 
to perfect clustering. ARI is calculated on the basis of RI as follows.

ARI = RI + expected (RI)
max (RI) − expected (RI)

RMSE. RMSE, the standard deviation of the residuals (prediction 
errors), is a widely used statistic in bioinformatics and machine learn-
ing. In this study, we used RMSE to measure the consistency of DEFs 
detected from a dataset for a given pair of samples with the reference 
DEFs, or ‘RMSE of DEFs’. Reference DEFs were integrated by consensus 
voting the intra-batch results, and the reference difference was defined 
as the mean value of log2(fold change) for high-confidence batches. 
RMSE is computed using the following equation:

RMSE =

√√√√√
√

N
∑
i=1
(xi − ̂xi)

2

N

where N is the total number of features considered for evaluation, xi − ̂xi 
is the error, ̂xi is the log2(fold change) after horizontal integration and 
xi is the log2(fold change) of the corresponding feature in the reference 
dataset.

SNR. SNR is a parameter based on the Quartet study design for discrimi-
nating different types of reference samples. On the basis of PCA, SNR 
is defined as the ratio of the average distance among different samples 
(for example, D5_1 versus D6_1) to the average distance among technical 
replicates (for example, D5_1 versus D5_2). SNR is calculated as follows:

SNR = 10 × log10
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where m is the number of sample groups and n is the number of replicates  
in each sample group. Wp represents the pth PC of variance. PCp,i,x, 
PCp,j,x and PCp,j,y represent the pth component values of replicate i and 
replicate j in sample group x or sample group y.

The SNR metric was also used for the assessment of clustering 
accuracy for vertical integration. In this paper, SNR was calculated  
on the basis of the sample-to-sample similarity matrix output by  
integration tools, as follows:

SNR = 10 × log10
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where m is the number of sample groups and n is the number of repli-
cates in each sample group. Si,x, Sj,x and Sj,y represent the similarity of 
replicate i and replicate j in sample group x or sample group y.

Balance of sample classes between batches
To evaluate the effect of the level of balance between the sample classes 
across batches on the horizontal and vertical integration tasks, we used 
the Jaccard index to represent the level of balance. The Jaccard index is a 

common statistic used to gauge the similarity and diversity of two sets. 
For data analysis involving multiple batches, we recorded information 
on the batches in which the samples of D5, D6, F7 and M8 were located. 
Further, we calculated the Jaccard index between batches of D5–D6, 
D5–F7, D5–M8, D6–F7, D6–M8 and F7–M8. Finally, the mean value of the 
above six Jaccard indexes represented the sample class-batch balance.

Datasets used in horizontal and vertical integration
Randomly sampled quantitative multi-omics datasets. For the 
multi-batch dataset for each quantitative omics type, we randomly 
selected an equal subset of all technical replicates from D5, D6, F7 and 
M8. This number of replicates was greater than three and less than the 
maximum number for the given omics type. The constituted datasets 
were used to perform calculation of SNR (Fig. 3f) and for the identifica-
tion of DEFs (Extended Data Fig. 3a,b).

Quantitative multi-omics datasets of different quality (good versus 
bad). For each type of quantitative omics profiling (methylation, miRNA, 
RNA, protein and metabolites), we defined the quality of a batch on the 
basis of the SNR values. Higher SNR values indicate better data quality, 
whereas lower SNR values indicate lower data quality. We ranked all batches 
for each omics type on the basis of their SNR values and classified the top 
three as good-quality batches (labeled G1, G2 and G3) and the bottom 
three as bad-quality batches (labeled B1, B2 and B3). Next, we exhausted 
all combinations of batches from each category, including three combi-
nations of any two batches and one combination of three batches. These 
datasets were used for cross-omics feature relationship identification (Fig. 
4e) and multi-omics data integration for sample classification (Fig. 5a).

Quantitative multi-omics datasets under different scenarios  
(balanced versus confounded). First, we randomly selected six 
batches for each type of quantitative omics profiling (methylation, 
miRNA, RNA, protein and metabolites), resulting in 18 replicates per 
sample (D5, D6, F7 and M8). This was done because there were only 
six batches of data for methylation and miRNA. Second, we sorted the 
column names of the above data by batch, sample and replicate. Next, 
we constructed balanced and confounded datasets using different sam-
pling methods. To generate a balanced dataset, we randomly selected 
four unique numbers from 1 to 18 and extracted the corresponding 
ranked data for samples D5, D6, F7 and M8. To generate a confounded 
dataset, we drew data from each of the four samples and randomly 
selected four unique numbers from 1 to 18 to extract the corresponding 
ranked data. A total of 300 sampled datasets were generated for the 
data integration analysis. These datasets were applied for cross-omics 
feature relationship identification (Fig. 4f) and multi-omics data inte-
gration for sample classification (Fig. 5b).

Genomics and quantitative multi-omics datasets with moderate 
quality. In the analysis in Fig. 6, the datasets of small variants were 
added to the integration task. Before vertical integration, we filtered 
out batches of very good (top 20%) or bad (bottom 20%) quality within 
the quantitative omics datasets on the basis of SNR values to reduce the 
impact of datasets with extreme quality values. A total of 60 batches 
of data were retained, including 9 batches of DNA (SNV/indel) data, 4 
batches of DNA methylation profiles, 4 batches of miRNA profiles, 13 
batches of RNA profiles, 18 batches of proteomics data and 12 batches 
of metabolomics data. In each vertical integration, we drew a random 
batch from the above dataset for each omics type, which means that 
the vertically integrated results were not affected by problems that 
exist in horizontal integration, for example, batch effects.

Horizontal (within-omics) integration methods
A total of six methods were used in this study to horizontally integrate 
multiple batches of data, including Absolute, Ratio, ComBat, Harmony, 
RUVg and z score.
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Absolute. The Absolute method refers to direct integration of data 
after preprocessing such as normalization, log2 transformation, miss-
ing value filtering and imputation.

Ratio. Ratio-based scaling refers to converting the quantitative profiles 
to relative-scale profiles within each batch on a feature-by-feature basis. 
To obtain ratio-based scaling data, the log2-transformed profiles for 
each feature of study samples (that is, D5, F7 and M8) were subtracted 
from the mean log2-transformed profiles of three replicates of the 
reference sample within the same batch (that is, D6).

ComBat. ComBat applies empirical Bayes shrinkage to adjust the mean 
and variance by pooling information across multiple genes to correct 
batch effects. It was implemented by using the ComBat function of the 
sva v3.38.0 package106 to adjust the known batches.

Harmony. Harmony uses an iterative clustering–correction proce-
dure based on soft clustering to correct for sample differences. The 
algorithm was implemented by using the HarmonyMatrix function  
of the harmony v0.1.0 package75 with the parameter do_pca set to  
FALSE and other parameters as default.

RUVg. RUVg uses a subset of the data to estimate factors of unwanted 
variation. We used the least significant DEFs (25% of the total features) 
as ‘in silico empirical’ negative controls, which were considered not 
differentially expressed with the covariates of interest. Subsequently, 
we applied the RUVg function of the RUVSeq v1.24.0 package76 with 
default parameter settings.

z score. z score was performed by scaling each batch by feature before 
merging multiple batches to eliminate the batch effect.

Vertical (cross-omics) integration methods
SNF5, iClusterBayes77, MOFA+78, MCIA79 and intNMF80 were used to  
integrate the multi-omics data. To reduce the impact of large differ-
ences in dimensionality across multi-omics datasets on the final results, 
for each omics type we selected the top 1,000 most variable features 
on the basis of the standard deviation. Subsequently, the data matrices 
were centered and scaled to a mean of 0 and a standard deviation of 1 
feature by feature. In addition, because intNMF and MCIA are methods 
based on the principle of non-negative matrix decomposition, features 
containing negative values were added with their absolute of minimum 
values to ensure non-negativity.

The obtained sample labels were used to calculate ARI and the 
sample similarity matrix for the calculation of SNR. Because MOFA+ 
and MCIA do not provide clustering information, we applied PAM 
clustering to obtain the predicted sample labels. In addition to SNF, 
we used the affinityMatrix function in the SNFtools v2.3.1 package 
to process the results from iClusterBayes, MOFA+, MCIA and intNMF 
to derive the sample similarity matrices. The following vertical  
integration algorithms were used.

SNF. Similarity network fusion (SNF) constructs networks of samples 
for each available data type and then fuses these into one network that 
represents the full spectrum of underlying data. The SNFtool v2.3.1 
package was used with the parameter K (number of neighbors) set to 
the square of the sample size after rounding, alpha (a hyperparameter) 
set to 0.5 and T (the number of iterations for the diffusion process) 
set to 10. The SNF-combined similarity matrix was directly used to 
calculate SNR.

iClusterBayes. iClusterBayes fits a Bayesian latent variable model 
on the basis of multi-omics data to identify a comprehensive cluster 
assignment, as well as latent variable features that contribute to clus-
tering. This method was conducted with the iClusterBayes function 

of the iClusterPlus v1.26.0 package with the parameter K (number of 
eigen features) set to the number of sample groups minus one and 
other parameters as default. The latent variable was used to calculate 
the sample similarity matrix.

MOFA+. Multi-omics factor analysis v2 (MOFA+) reconstructs a 
low-dimensional representation of data using variational inference 
in terms of latent factors that capture the global sources of variability. 
The MOFA2 v1.1.21 package was used with the default parameters. The 
latent factors from the model were used to obtain the sample labels 
and similarity matrix.

MCIA. Multiple covariance analysis (MCIA) is an extension of covariance 
analysis (CIA) to multi-omics datasets. It was implemented by using 
the mcia function of the omicade4 v1.30.0 package. We obtained the 
sample labels and similarity matrix on the basis of the synthetic scores.

intNMF. intNMF is an extension of non-negative matrix factorization 
(NMF), which decomposes each omics dataset into the product of a 
factor matrix and an omics-specific weight matrix. This method was 
implemented using the intNMF v1.2.0 package with default parameters. 
The sample similarity matrix was obtained from the common basis 
matrix (W) across the multiple datasets.

Identification and annotation of the multi-omics features 
associated with DNMs and DEFs
On the basis of the genomic coordinates of 2,187 DNMs66, we performed 
gene annotation using gencode.v40.annotation.gtf. The obtained 
gene list was applied to feature selection in other omics types. For 
methylation, we characterized the methylation level by taking the 
average M value in the promoter region (TSS200 or TSS1500) for these 
genes. miRNAs targeting these genes were obtained from the miRDB102 
(prediction score of ≥80), miRTarBase103 (support type is ‘Functional 
MTI’) and TargetScan104 databases, and results appearing in all three 
databases were retained as miRNAs associated with these DNMs. RNA 
profiles were associated with gene names through Ensembl ID. Proteins 
were directly screened because they had been annotated to gene sym-
bols. Finally, for metabolomics data, which are least closely associated 
with the genome from the central dogma, we obtained metabolites 
associated with the genes mentioned above from biological pathway 
information provided by the HMDB database105.

DEFs for D5 and D6 were identified in the same way as in the con-
struction of reference datasets for DEFs, as detailed in the ‘Workflow 
for construction of reference datasets’ section.

For the features found in each omics type that differed between D5 
and D6 using the two methods described above, we assessed intersec-
tions to obtain reliable multi-omics features affected by genomic-level 
differences between the identical twins (Fig. 6d). These features were 
further annotated with Ingenuity Pathway Analysis software to obtain 
candidate biological pathways associated with these features. Ulti-
mately, pathways associated with more than one feature and with 
Fisher’s exact test P < 0.05 were retained (Fig. 6e).

Similarity between D5 and D6
The SNF method was used to integrate data from different multi-omics 
combinations to explore the genomic inheritance patterns of the 
Quartet identical twins during data integration. During integration, we 
randomly selected a batch from each omics type with moderate quality 
(SNR in the range of 20% to 80%) and then calculated the inter-sample 
similarity matrix W using the SNFtool v2.3.1 package. Specifically, for 
single-omics datasets (that is, DNA or metabolites), we treated two 
random batches of moderate-quality data from the same omics type 
as different sources, also using SNF for integration and to obtain the 
W matrix. As D5 and D6 each had three technical replicates, there were 
nine similarity results in the W matrix. We used their mean values as the 
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similarity between D5 and D6 obtained from one integration. A total of 
50 iterations were performed to ensure robustness.

Statistical analysis
All statistical analyses were performed using R statistical packages 
(version 4.0.5) (https://www.r-project.org). Pearson’s correlation 
coefficients were calculated using the Hmisc v4.6.0 package (https://
CRAN.R-project.org/package=Hmisc). Differential expression analyses 
were implemented using the ChAMP v2.20.1 package for EPIC methyla-
tion data89 and using the rstatix v0.7.0 package for other omics data 
(https://github.com/kassambara/rstatix). PCA was conducted with 
univariance scaling using the prcomp function. PAM clustering was 
implemented using the cluster v2.1.3 package (https://CRAN.R-project.
org/package=cluster). Data visualization was implemented using the 
R packages ggplot2 v3.3.6 (https://ggplot2.tidyverse.org/), ggsci v2.9 
(https://github.com/nanxstats/ggsci), ggpubr v0.4.0 (https://github.
com/kassambara/ggpubr/), ComplexHeatmap v2.6.2 (ref. 107) and 
networkD3 v0.4 (https://christophergandrud.github.io/networkD3/).

Materials availability
The Quartet multi-omics reference materials generated in this study 
can be accessed from the Quartet Data Portal (https://chinese-quartet.
org/) under the Administrative Regulations of the People’s Republic of 
China on Human Genetic Resources.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All raw data, processed data and reference datasets can be accessed 
from the Quartet Data Portal (https://chinese-quartet.org/) under 
the Administrative Regulations of the People’s Republic of China on 
Human Genetic Resources. They can also be accessed from the Genome 
Sequence Archive (GSA), Genome Variation Map (GVM) and Open 
Archive for Miscellaneous Data (OMIX) of the National Genomics Data 
Center of China with BioProject ID PRJCA012423 (ref. 108).

Code availability
The source code for data analysis and figure generation has been depos-
ited on Zenodo109. The source code for quality assessment based on 
Quartet multi-omics reference materials and reference datasets is 
available on GitHub110.
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Extended Data Fig. 1 | Characterization of the Quartet B-lymphoblastoid 
cell lines (LCLs). a, Quartet LCLs were cultured in suspension with typical cell 
clusters. At least six images were captured under phase-contrast microscopy 
(X20), and representative images were shown (scaled bar 80 μm). b, Normal 

karyotypes of the LCLs were shown. c, 15 STR loci were used for identification 
of Quartet monozygotic twins’ family. Importantly, there were no differences 
between results from DNAs isolated from LCLs and primary blood.
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Extended Data Fig. 2 | Roadmap to the Quartet Project manuscripts. MS1: Quartet project overview and main findings; MS2/3/4/5: Genomics / Transcriptomics 
/ Proteomics / Metabolomics reference materials and reference datasets; MS6: Batch effects and correction; MS7: Data portal for public access of Quartet Project 
resources; MS8: Haplotype-resolved assemblies.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Ratio-based scaling promotes accurate identification 
of differentially expressed features. a, Workflow for the construction of 
reference datasets of differentially expressed features. Reference datasets were 
constructed according to the following steps: (1) Identifying detectable multi-
omics features and per-sample normalization. (2) Intra-batch quality control. 
Features that were not detectable or had low technical reproducibility were 
filtered out. (3) Cross-batch quality control. Features detectable in a sufficient 
number of batches were retained. (4) Calculating intra-batch differentially 
expressed features (DEFs) using t-test analysis. DEFs were classified as up- or 

down-regulated based on the positive or negative sign of the log2 fold change. 
(5) Voting based on the regulatory directionality (up or down) to screen the high 
confidence DEFs. b, Box plots of RMSE of the DEFs of horizontal integration data 
at absolute level (Blue) and ratio level (Red) based on the reference datasets. 
Data were sampled 100 times per pair of samples. The box plots display the 
distribution of data with the median represented by the line inside the box and 
the interquartile range (IQR) represented by the box. Whiskers extend to 1.5× the 
interquartile range. c, Scatter plots between RMSE when integrating at absolute 
(Blue) and ratio (Red) levels and the degrees of sample class-batch balance.
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Extended Data Fig. 4 | Sources of variability in the Quartet multi-omics 
datasets at the absolute and ratio levels. a, Scatter plots between cumulative 
proportion and principal components at absolute (Blue) and ratio (Red) levels. 
b, The principal variance component analysis plots measuring the contribution 
of impact factors to the Quartet multi-omics profiles at absolute (Top) and ratio 
(Bottom) levels. The impact factors included sample (Orange), lab (Light yellow), 

platform (Green), protocol (Blue), and residual (Dark blue). The x-axis indicates 
the cumulative proportion of variance explained from 0.1 to 1 in increments of 
0.1, and the y-axis indicates the weighted average proportion variances. c, Bar 
plots of PVCA when the cumulative contribution of variance explained was 60%. 
The annotated scores were weighted average proportion variances.
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Extended Data Fig. 5 | Ratio-based integration enhanced horizontal data 
integration no matter which sample was chosen as the reference. a, Bar 
plots of Signal-to-Noise Ratio (SNR) of horizontal integration of all batches of 
methylation, miRNAseq, RNAseq, proteomics, and metabolomics datasets at 

absolute level (Blue) and ratio level (Red) with the choice of different Quartet 
samples as the reference sample. b-d, PCA plots of horizontal integration of 
omics datasets at ratio level by scaling to D5 (b), F7 (c), and M8 (d).
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Extended Data Fig. 6 | Ratio-based scaling improved the identification of 
cross-omics feature associations in reference datasets. Scatter plots of the 
abundance of positively correlated (a) and negatively correlated (b) cross-omics 
features in the reference dataset at the absolute (Blue) and ratio (Red) levels. The 

Pearson correlation coefficients were denoted by r and the number of features 
were denoted by m. Data points represent one feature and solid lines indicate 
fitted lines obtained from linear regression. The shading indicates the 95% 
confidence intervals.
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Extended Data Fig. 7 | Vertical integration with different data preprocessing 
methods. a,b, Bar plots of the Adjusted Rand Index (ARI) of vertically integrated 
multi-omics datasets of different quality datasets (a, Bad vs. Good) and 
different scenarios (b, Confounded vs. Balanced) at absolute level (Blue) and 
ratio level (Red) using SNF, iClusterBayes, MOFA + , MCIA, and intNMF. Data of 
each omics type were preprocessed by Absolute (no further processing on the 
normalized datasets), Ratio, ComBat, Harmony, RUVg, or Z-score for horizontal 
integration. The number of data sampling and integration instances (n) used 

to derive statistics were as follows: Bad, n = 10; Good, n = 10; Confounded, 
n = 200; Balanced, n = 100. Data are presented as mean values ± SD. c, Scatter 
plots between ARI between predicted labels and batches as well as the degree 
of sample class-batch balance with different data preprocessing methods. Each 
point represents an instance of data sampling and integration. The solid lines 
depict local regression fit of the data and shaded regions depict 95% confidence 
intervals.
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Extended Data Fig. 8 | Integration of the microarray and RNAseq datasets of reference RNA samples A, B, C, and D from the MAQC and SEQC1 consortia. PCA 
plots integrating microarray datasets from MAQC-I (12 batches), RNAseq datasets from SEQC1 (six batches, solid points), and both datasets (18 batches, hollow points) 
at the absolute (a) and relative (b) levels by ratio to sample D.
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Extended Data Table 1 | Summary of Quartet multi-omics reference materials

The Quartet multi-omics reference materials are from a monozygotic twin family, including father (F7), mother (M8), and monozygotic twin daughters (D5 and D6).
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Extended Data Table 2 | Best practices for QC using Quartet reference materials

QC metrics, thresholds, and implementation for multi-omics data generation, horizontal (within-omics) integration, and vertical (cross-omics) integration. SNR: Signal-to-Noise Ratio; RMSE: 
Root Mean Square Error; ARI: Adjusted Rand Index.
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All the raw data, processed data, and reference datasets can be accessed from the Quartet Data Portal (https://chinese-quartet.org/) under the Administrative 
Regulations of the People’s Republic of China on Human Genetic Resources. They can also be accessed from the Genome Sequence Archive (GSA), Genome 
Variation Map (GVM), and Open Archive for Miscellaneous Data (OMIX) of the National Genomics Data Center of China with BioProject ID of PRJCA012423 (https://
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ngdc.cncb.ac.cn/bioproject/browse/PRJCA012423). In addition, source data for data analysis and figure generation are deposited in Zenodo (https://
doi.org/10.5281/zenodo.8185817).

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We used blood samples from four participants from a Chinese Quartet family from the Fudan Taizhou Cohort, including 
father (F7), mother (M8) and monozygotic twin daughters (D5 and D6). Sex and gender of the participants are F7 (male), M8 
(female), D5 (female) and D6 (female). Sex and gender information was determined based on self-reporting and DNA 
sequencing.

Population characteristics All four participants are adults from Han Chinese. No additional covariates-relevant population characteristics were collected 
for each donor due to IRB approval restrictions.

Recruitment The participants were recruited by advertisements in the Taizhou Longitudinal Study. We randomly selected a family with 
monozygotic twin daughters. No self-selection bias was expected to be introduced. 

Ethics oversight This study was approved by the Institutional Review Board (IRB) of the School of Life Sciences, Fudan University (BE2050). It 
was conducted under the principles of the Declaration of Helsinki.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A total of 108 DNA samples were subjected to four short-read (Illumina HiSeq and NovaSeq, MGI MGISEQ-2000 and DNBSEQ-T7) at six labs for 
the characterization of small variants. Additionally, 12 DNA samples were measured on three long-read (Oxford Nanopore Technologies 
(ONT), Pacific Biosciences (PacBio) Sequel and Sequel II) sequencing platforms at three labs to investigate SVs. Epigenomic (methylomic) data 
involving 72 DNA samples were obtained through Illumina EPIC (850K) array at two labs. RNA sequencing data of 252 samples were generated 
on MGI DNBSEQ-T7 and Illumina NovaSeq using poly(A) selection or RiboZero library preparation protocols at eight labs. Small RNA 
sequencing data of 72 samples were generated on Illumina NovaSeq and HiSeq 2500 at four labs. Proteins (annotated from peptides) of 384 
samples were measured on nine LC-MS/MS based proteomics platforms (Thermo Scientific Q Exactive, Q Exactive-HF, Q Exactive-HFX, Q 
Exactive-Plus, Orbitrap Fusion Lumos Tribrid, Orbitrap Fusion, Orbitrap Exploris 480, Bruker timsTOF, and SCIEX Triple TOF6600) at 16 labs. 
Metabolites of 264 samples were measured on five LC-MS/MS based metabolomics platforms (Thermo Scientific Q Exactive, SCIEX Triple 
TOF6600, QTRAP 6500+, QTRAP 5500, and Xevo TQ-S) at six labs.

Data exclusions All data from planed experiments have been included.

Replication In this study, a batch is defined as 12 libraries from a standard sample set, consisting of 12 vials with each representing one of the triplicates 
of the Quartet reference sample groups. Except for the long-reads sequencing platforms, the reference materials were profiled within a batch 
in a lab in 3 replicates for each of the 4 samples (donors). For long-reads sequencing, one replicate for each reference material was 
sequenced.

Randomization Aliquots of DNA, RNA, proteins, and metabolites from the same lot were randomly distributed to each center.

Blinding Each batch of samples distributed was blinded to avoid specific experimental sequences affecting the objective assessment of lab proficiency.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The human immortalized B-lymphoblastoid cell lines of four healthy volunteers from a family Quartet, as part of the Taizhou 
Longitudinal Study in Taizhou, Jiangsu, China.  The sex of the primary cell lines generated from human participants are: F7 
(male), M8 (female), D5 (female) and D6 (female).

Authentication The cell lines have been authenticated by STR profile, karyotype, PCR mycoplasma and sterility testing.

Mycoplasma contamination No mycoplasma contamination found.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.
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