Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Soil microbiome engineering for sustainability in a changing environment

Abstract

Recent advances in microbial ecology and synthetic biology have the potential to mitigate damage caused by anthropogenic activities that are deleteriously impacting Earth’s soil ecosystems. Here, we discuss challenges and opportunities for harnessing natural and synthetic soil microbial communities, focusing on plant growth promotion under different scenarios. We explore current needs for microbial solutions in soil ecosystems, how these solutions are being developed and applied, and the potential for new biotechnology breakthroughs to tailor and target microbial products for specific applications. We highlight several scientific and technological advances in soil microbiome engineering, including characterization of microbes that impact soil ecosystems, directing how microbes assemble to interact in soil environments, and the developing suite of gene-engineering approaches. This Review underscores the need for an interdisciplinary approach to understand the composition, dynamics and deployment of beneficial soil microbiomes to drive efforts to mitigate or reverse environmental damage by restoring and protecting healthy soil ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soil microorganisms carry out key ecosystem services and have the potential to help mitigate a variety of deleterious anthropogenic impacts on soil ecosystems.
Fig. 2: The three pillars of soil microbiome engineering are isolate discovery, assembled communities and genetic manipulation.
Fig. 3: Design of tractable communities of soil microbes.
Fig. 4: Schematic of a co-abundance network for microbial taxa.
Fig. 5: Platforms to edit and evaluate genome modifications of soil microbiome isolates.
Fig. 6: Genome-editing approaches for soil microbiome engineering.

Similar content being viewed by others

References

  1. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Nasrulhaq Boyce, A. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21, 573 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59 (2020).

    Google Scholar 

  3. Gong, T. et al. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. Sci. Total Environ. 628, 1258–1265 (2018).

    PubMed  Google Scholar 

  4. Rajkumar, M., Ae, N., Prasad, M. N. V. & Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28, 142–149 (2010).

    CAS  PubMed  Google Scholar 

  5. Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M. & Parra-Saldívar, R. Soil carbon sequestration—an interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 815, 152928 (2022).

    CAS  PubMed  Google Scholar 

  6. Intergovernmental Panel on Climate Change (ed.). Climate Change 2014: Synthesis Report (Intergovernmental Panel on Climate Change Fifth Assessment Report, 2014).

  7. Jansson, J. K. & Taş, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).

    CAS  PubMed  Google Scholar 

  8. Natali, S. M. et al. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl Acad. Sci. USA 118, e2100163118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Chang. Biol. 25, 2530–2543 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Furey, G. N. & Tilman, D. Plant biodiversity and the regeneration of soil fertility. Proc. Natl Acad. Sci. USA 118, e2111321118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cleary, D. W. et al. Long-term antibiotic exposure in soil is associated with changes in microbial community structure and prevalence of class 1 integrons. FEMS Microbiol. Ecol. 92, fiw159 (2016).

    PubMed  Google Scholar 

  12. Torsvik, V. & Øvreås, L. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5, 240–245 (2002).

    CAS  PubMed  Google Scholar 

  13. Thompson, L. et al. A communal catalogue reveals Earth’s multiscale 736 microbial diversity. Nature 551, 457–463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    CAS  PubMed  Google Scholar 

  15. Nelson, M. B., Martiny, A. C. & Martiny, J. B. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bodor, A. et al. Challenges of unculturable bacteria: environmental perspectives. Rev. Environ. Sci. Biotechnol. 19, 1–22 (2020).

    CAS  Google Scholar 

  17. Bartelme, R. P. et al. Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by high-throughput dilution-to-extinction cultivation. mSphere 5, e00024-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Ferrari, B. C., Binnerup, S. J. & Gillings, M. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71, 8714–8720 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, Y. et al. High-throughput microbial culturomics using automation and machine learning. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01674-2 (2023).

  20. Schöler, A., Jacquiod, S., Vestergaard, G., Schulz, S. & Schloter, M. Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol. Fertil. Soils 53, 485–489 (2017).

    Google Scholar 

  21. McArdle, A. J. & Kaforou, M. Sensitivity of shotgun metagenomics to host DNA: abundance estimates depend on bioinformatic tools and contamination is the main issue. Access Microbiol. 2, acmi000104 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Van der Walt, A. J. et al. Assembling metagenomes, one community at a time. BMC Genomics 18, 521 (2017).

    Google Scholar 

  23. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    CAS  PubMed  Google Scholar 

  24. Carvalhais, L. C., Dennis, P. G., Tyson, G. W. & Schenk, P. M. Application of metatranscriptomics to soil environments. J. Microbiol. Methods 91, 246–251 (2012).

    CAS  PubMed  Google Scholar 

  25. Hestrin, R. et al. Plant-associated fungi support bacterial resilience following water limitation. ISME J. 16, 2752–2762 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Callister, S. J. et al. Addressing the challenge of soil metaproteome complexity by improving metaproteome depth of coverage through two-dimensional liquid chromatography. Soil Biol. Biochem. 125, 290–299 (2018).

    CAS  Google Scholar 

  27. Lin, V. S. Interrogating plant–microbe interactions with chemical tools: click chemistry reagents for metabolic labeling and activity-based probes. Molecules 26, 243 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Whidbey, C. & Wright, A. T. In Activity-Based Protein Profiling (eds Cravatt, B. F., Hsu, K.-L. & Weerapana, E.) 1–21 (Springer International, 2019).

  29. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chowdhury, T. R. et al. Metaphenomic responses of a native prairie soil microbiome to moisture perturbations. mSystems 4, e00061-19 (2019).

  31. Forsberg, E. M. et al. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nat. Protoc. 13, 633–651 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmed, V., Verma, M. K., Gupta, S., Mandhan, V. & Chauhan, N. S. Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front. Microbiol. 9, 159 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Alvarez, T. M. et al. Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS ONE 8, e83635 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Lee, M. H. et al. A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl. Microbiol. Biotechnol. 88, 1125–1134 (2010).

    CAS  PubMed  Google Scholar 

  35. Da Rocha, U. N., Andreote, F. D., de Azevedo, J. L., van Elsas, J. D. & van Overbeek, L. S. Cultivation of hitherto-uncultured bacteria belonging to the Verrucomicrobia subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere. J. Soils Sediments 10, 326–339 (2010).

    Google Scholar 

  36. Sharma, S., Anand, G., Singh, N. & Kapoor, R. Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front. Plant Sci. 8, 906 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Sood, M. et al. Trichoderma: the ‘secrets’ of a multitalented biocontrol agent. Plants 9, 762 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Abdelfadil, M. R. et al. Clay chips and beads capture in situ barley root microbiota and facilitate in vitro long-term preservation of microbial strains. FEMS Microbiol. Ecol. 98, fiac064 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen, T., Zhao, M., Yuan, J., Kowalchuk, G. A. & Shen, Q. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecol. Lett. 3, 42–51 (2021).

    CAS  Google Scholar 

  40. Thuita, M. et al. Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biol. Fertil. Soils 48, 87–96 (2012).

    Google Scholar 

  41. Alves, B. J., Boddey, R. M. & Urquiaga, S. The success of BNF in soybean in Brazil. Plant Soil 252, 1–9 (2003).

    CAS  Google Scholar 

  42. Ghahremani, M. & MacLean, A. M. Home sweet home: how mutualistic microbes modify root development to promote symbiosis. J. Exp. Bot. 72, 2275–2287 (2021).

    CAS  PubMed  Google Scholar 

  43. Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4, e356 (2013).

    Google Scholar 

  44. Arora, N. K., Egamberdieva, D., Mehnaz, S., Li, W. J. & Mishra, I. Salt tolerant rhizobacteria: for better productivity and remediation of saline soils. Front. Microbiol. 12, 660075 (2021).

    PubMed  PubMed Central  Google Scholar 

  45. Akhtar, S. S. et al. Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 11, 297 (2020).

    PubMed  PubMed Central  Google Scholar 

  46. De Souza, R. S. C., Armanhi, J. S. L. & Arruda, P. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. Front. Plant Sci. 11, 1179 (2020).

    PubMed  PubMed Central  Google Scholar 

  47. Mendoza-Suárez, M., Andersen, S. U., Poole, P. S. & Sánchez-Cañizares, C. Competition, nodule occupancy, and persistence of inoculant strains: key factors in the Rhizobium–legume symbioses. Front. Plant Sci. 12, 690567 (2021).

  48. Kari, A. et al. Monitoring of soil microbial inoculants and their impact on maize (Zea mays L.) rhizosphere using T-RFLP molecular fingerprint method. Appl. Soil Ecol. 138, 233–244 (2019).

    Google Scholar 

  49. Enkerli, J., Widmer, F. & Keller, S. Long-term field persistence of Beauveria brongniartii strains applied as biocontrol agents against European cockchafer larvae in Switzerland. Biol. Control 29, 115–123 (2004).

    Google Scholar 

  50. Fu, L. et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 104, 39–48 (2017).

    CAS  Google Scholar 

  51. Mawarda, P. C., Le Roux, X., Van Elsas, J. D. & Salles, J. F. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol. Biochem. 148, 107874 (2020).

    CAS  Google Scholar 

  52. Xu, H. et al. Rhizobium inoculation drives the shifting of rhizosphere fungal community in a host genotype dependent manner. Front. Microbiol. 10, 3135 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Zhong, Y. et al. Genotype and Rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant Cell Environ. 42, 2028–2044 (2019).

    CAS  PubMed  Google Scholar 

  54. Hart, M. M., Antunes, P. M. & Abbott, L. K. Unknown risks to soil biodiversity from commercial fungal inoculants. Nat. Ecol. Evol. 1, 115 (2017).

    Google Scholar 

  55. Martignoni, M. M., Garnier, J., Hart, M. M. & Tyson, R. C. Investigating the impact of the mycorrhizal inoculum on the resident fungal community and on plant growth. Ecol. Modell. 438, 109321 (2020).

    Google Scholar 

  56. Chevrette, M. G., Bratburd, J. R., Currie, C. R. & Stubbendieck, R. M. Experimental microbiomes: models not to scale. mSystems 4, e00175-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. De Roy, K., Marzorati, M., Van den Abbeele, P., Van de Wiele, T. & Boon, N. Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ. Microbiol. 16, 1472–1481 (2014).

    PubMed  Google Scholar 

  58. Dolinšek, J., Goldschmidt, F. & Johnson, D. R. Synthetic microbial ecology and the dynamic interplay between microbial genotypes. FEMS Microbiol. Rev. 40, 961–979 (2016).

    PubMed  Google Scholar 

  59. Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).

    CAS  PubMed  Google Scholar 

  60. Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Herrera Paredes, S. et al. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol. 16, e2003962 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Lozano, G. L. et al. Introducing THOR, a model microbiome for genetic dissection of community behavior. mBio 10, e02846-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Shayanthan, A., Ordoñez, P. A. C. & Oresnik, I. J. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front. Agron. 58, 896307 (2022).

  64. Naylor, D. et al. Deconstructing the soil microbiome into reduced-complexity functional modules. mBio 11, e01349-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  65. McClure, R. et al. Development and analysis of a stable, reduced complexity model soil microbiome. Front. Microbiol. 11, 1987 (2020).

    PubMed  PubMed Central  Google Scholar 

  66. McClure, R. et al. Interaction networks are driven by community-responsive phenotypes in a chitin-degrading consortium of soil microbes. mSystems 7, e00372-22 (2022).

    PubMed  PubMed Central  Google Scholar 

  67. Cappellato, M., Baruzzo, G., Patuzzi, I. & Di Camillo, B. Modeling microbial community networks: methods and tools. Curr. Genomics 22, 267–290 (2021).

    CAS  Google Scholar 

  68. Matchado, M. S. et al. Network analysis methods for studying microbial communities: a mini review. Comput. Struct. Biotechnol. J. 19, 2687–2698 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, R. et al. Co-occurrence networks depict common selection patterns, not interactions. Soil Sci. Environ. 2, 1 (2023).

  70. Akkaya, Ö. & Arslan, E. Biotransformation of 2,4-dinitrotoluene by the beneficial association of engineered Pseudomonas putida with Arabidopsis thaliana. 3 Biotech 9, 408 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 4894 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Pfeiffer, S. et al. Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol. Ecol. 93, fiw242 (2017).

    PubMed  Google Scholar 

  73. Lee, S.-M., Kong, H. G., Song, G. C. & Ryu, C.-M. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J. 15, 330–347 (2021).

    CAS  PubMed  Google Scholar 

  74. Armanhi, J. S. L., de Souza, R. S. C., Biazotti, B. B., Yassitepe, J. E. D. C. T. & Arruda, P. Modulating drought stress response of maize by a synthetic bacterial community. Front. Microbiol. 12, 747541 (2021).

  75. Armanhi, J. S. L. et al. A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome. Front. Plant Sci. 8, 2191 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. De Souza, R. S. C., Armanhi, J. S. L., Damasceno, N. D. B., Imperial, J. & Arruda, P. Genome sequences of a plant beneficial synthetic bacterial community reveal genetic features for successful plant colonization. Front. Microbiol. 10, 1779 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Wang, C. et al. Functional assembly of root‐associated microbial consortia improves nutrient efficiency and yield in soybean. J. Integr. Plant Biol. 63, 1021–1035 (2021).

    CAS  PubMed  Google Scholar 

  78. Liu, H. et al. Effective colonisation by a bacterial synthetic community promotes plant growth and alters soil microbial community. J. Sustain. Agric. Environ. 1, 30–42 (2022).

    Google Scholar 

  79. Bankhead, S. B., Landa, B. B., Lutton, E., Weller, D. M. & Gardener, B. B. M. Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol. Ecol. 49, 307–318 (2004).

    CAS  PubMed  Google Scholar 

  80. Van Geel, M., De Beenhouwer, M., Lievens, B. & Honnay, O. Crop-specific and single-species mycorrhizal inoculation is the best approach to improve crop growth in controlled environments. Agron. Sustain. Dev. 36, 37 (2016).

    Google Scholar 

  81. Vestberg, M. The effect of vesicular–arbuscular mycorrhizal inoculation on the growth and root colonization of ten strawberry cultivars. Agric. Food Sci. 1, 527–535 (1992).

    Google Scholar 

  82. Felici, C. et al. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol. 40, 260–270 (2008).

    Google Scholar 

  83. Berendsen, R. L. et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 12, 1496–1507 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gerrits, G. M. et al. Synthesis on the effectiveness of soil translocation for plant community restoration. J. Appl. Ecol. 60, 714–724 (2023).

    Google Scholar 

  85. Pantoja Angles, A., Valle-Pérez, A. U., Hauser, C. & Mahfouz, M. M. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front. Bioeng. Biotechnol. 10, 830200 (2022).

    PubMed  PubMed Central  Google Scholar 

  86. De Lorenzo, V. & Danchin, A. Synthetic biology: discovering new worlds and new words. EMBO Rep. 9, 822–827 (2008).

    PubMed  PubMed Central  Google Scholar 

  87. Temme, K., Zhao, D. & Voigt, C. A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl Acad. Sci. USA 109, 7085–7090 (2012).

    PubMed  PubMed Central  Google Scholar 

  88. Del Valle, I. et al. Soil organic matter attenuates the efficacy of flavonoid-based plant–microbe communication. Sci. Adv. 6, eaax8254 (2020).

    PubMed  PubMed Central  Google Scholar 

  89. Shulse, C. N. et al. Engineered root bacteria release plant-available phosphate from phytate. Appl. Environ. Microbiol. 85, e01210-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Del Valle, I. et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences. Front. Microbiol. 11, 618373 (2020).

    PubMed  Google Scholar 

  91. Wen, A. et al. Enabling biological nitrogen fixation for cereal crops in fertilized fields. ACS Synth. Biol. 10, 3264–3277 (2021).

    CAS  PubMed  Google Scholar 

  92. Egbert, R. G. et al. A versatile platform strain for high-fidelity multiplex genome editing. Nucleic Acids Res. 47, 3244–3256 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sridhar, S., Ajo-Franklin, C. M. & Masiello, C. A. A framework for the systematic selection of biosensor chassis for environmental synthetic biology. ACS Synth. Biol. 11, 2909–2916 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nikel, P. I., Chavarria, M., Danchin, A. & de Lorenzo, V. From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr. Opin. Chem. Biol. 34, 20–29 (2016).

    CAS  PubMed  Google Scholar 

  95. Vo, P. L. H. et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489 (2021).

    CAS  PubMed  Google Scholar 

  96. Huang, P.-H. et al. M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform. PLoS Biol. 20, e3001727 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shih, S. C. C. et al. A versatile microfluidic device for automating synthetic biology. ACS Synth. Biol. 4, 1151–1164 (2015).

    CAS  PubMed  Google Scholar 

  98. Riley, L. A., Ji, L., Schmitz, R. J., Westpheling, J. & Guss, A. M. Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems. J. Ind. Microbiol. Biotechnol. 46, 1435–1443 (2019).

    CAS  PubMed  Google Scholar 

  99. Tourancheau, A., Mead, E. A., Zhang, X.-S. & Fang, G. Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing. Nat. Methods 18, 491–498 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yim, S. S. et al. Multiplex transcriptional characterizations across diverse bacterial species using cell‐free systems. Mol. Syst. Biol. 15, e8875 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Elmore, J. R. et al. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. Sci. Adv. 9, eade1285 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Younger, D., Berger, S., Baker, D. & Klavins, E. High-throughput characterization of protein–protein interactions by reprogramming yeast mating. Proc. Natl Acad. Sci. USA 114, 12166–12171 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    PubMed  Google Scholar 

  104. Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 5978–5983 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Garst, A. D. et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35, 48–55 (2017).

    CAS  PubMed  Google Scholar 

  108. Brophy, J. A. N. et al. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3, 1043–1053 (2018).

    CAS  PubMed  Google Scholar 

  109. Wang, G. et al. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat. Microbiol. 4, 2498–2510 (2019).

    PubMed  Google Scholar 

  110. Rottinghaus, A. G., Vo, S. & Moon, T. S. Computational design of CRISPR guide RNAs to enable strain-specific control of microbial consortia. Proc. Natl Acad. Sci. USA 120, e2213154120 (2023).

    CAS  PubMed  Google Scholar 

  111. Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2021).

    PubMed  PubMed Central  Google Scholar 

  113. Singh, J. S., Abhilash, P. C., Singh, H. B., Singh, R. P. & Singh, D. P. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480, 1–9 (2011).

    CAS  PubMed  Google Scholar 

  114. Pant, G. et al. Biological approaches practised using genetically engineered microbes for a sustainable environment: a review. J. Hazard. Mater. 405, 124631 (2021).

    CAS  PubMed  Google Scholar 

  115. Liu, L., Bilal, M., Duan, X. & Iqbal, H. M. N. Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci. Total Environ. 667, 444–454 (2019).

    CAS  PubMed  Google Scholar 

  116. Ronchel, M. C. & Ramos, J. L. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol. 67, 2649–2656 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Asin-Garcia, E. et al. Phosphite synthetic auxotrophy as an effective biocontainment strategy for the industrial chassis Pseudomonas putida. Microb. Cell Factories 21, 156 (2022).

    CAS  Google Scholar 

  118. Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chan, C. T. Y., Lee, J. W., Cameron, D. E., Bashor, C. J. & Collins, J. J. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12, 82–86 (2016).

    CAS  PubMed  Google Scholar 

  120. Rottinghaus, A. G., Ferreiro, A., Fishbein, S. R. S., Dantas, G. & Moon, T. S. Genetically stable CRISPR-based kill switches for engineered microbes. Nat. Commun. 13, 672 (2022).

  121. Park, S. et al. Construction of Bacillus thuringiensis simulant strains suitable for environmental release. Appl. Environ. Microbiol. 83, e00126-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Jaderlund, L., Hellman, M., Sundh, I., Bailey, M. J. & Jansson, J. K. Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field. FEMS Microbiol. Ecol. 63, 156–168 (2008).

    PubMed  Google Scholar 

  123. Yee, M. O. et al. Specialized plant growth chamber designs to study complex rhizosphere interactions. Front. Microbiol. 12, 625752 (2021).

    PubMed  PubMed Central  Google Scholar 

  124. Zengler, K. et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat. Methods 16, 567–571 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Aufrecht, J. et al. Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip. Lab Chip 22, 954–963 (2022).

    CAS  Google Scholar 

  126. Handakumbura, P. P., Rivas Ubach, A. & Battu, A. K. Visualizing the hidden half: plant–microbe interactions in the rhizosphere. mSystems 6, e0076521 (2021).

    PubMed  Google Scholar 

  127. Del Valle, I., Gao, X., Ghezzehei, T. A., Silberg, J. J. & Masiello, C. A. Artificial soils reveal individual factor controls on microbial processes. mSystems 7, e0030122 (2022).

    PubMed  Google Scholar 

  128. Tian, B., Pei, Y., Huang, W., Ding, J. & Siemann, E. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J. 15, 1919–1930 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).

  130. Geddes, B. A. et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat. Commun. 10, 3430 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. Haskett, T. L. et al. Engineered plant control of associative nitrogen fixation. Proc. Natl Acad. Sci. USA 119, e2117465119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kaeppler, S. M. et al. Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci. 40, 358–364 (2000).

    Google Scholar 

  133. Tosi, M., Mitter, E. K., Gaiero, J. & Dunfield, K. It takes three to tango: the importance of microbes, host plant, and soil management to elucidate manipulation strategies for the plant microbiome. Can. J. Microbiol. 66, 413–433 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE) Office of Biological and Environmental Research as part of the Genomic Science Program and is a contribution of the Pacific Northwest National Laboratory (PNNL) Secure Biosystems Design Science Focus Area entitled ‘Persistence Control of Engineered Functions in Complex Soil Microbiomes’. PNNL is a multiprogram national laboratory operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing and formulation of figures.

Corresponding author

Correspondence to Janet K. Jansson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Giles Oldroyd, Paul Bodelier, and Marnix Medema for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansson, J.K., McClure, R. & Egbert, R.G. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol 41, 1716–1728 (2023). https://doi.org/10.1038/s41587-023-01932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-023-01932-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research