Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detecting organelle-specific activity of potassium channels with a DNA nanodevice

Abstract

Cell surface potassium ion (K+) channels regulate nutrient transport, cell migration and intercellular communication by controlling K+ permeability and are thought to be active only at the plasma membrane. Although these channels transit the trans-Golgi network, early and recycling endosomes, whether they are active in these organelles is unknown. Here we describe a pH-correctable, ratiometric reporter for K+ called pHlicKer, use it to probe the compartment-specific activity of a prototypical voltage-gated K+ channel, Kv11.1, and show that this cell surface channel is active in organelles. Lumenal K+ in organelles increased in cells expressing wild-type Kv11.1 channels but not after treatment with current blockers. Mutant Kv11.1 channels, with impaired transport function, failed to increase K+ levels in recycling endosomes, an effect rescued by pharmacological correction. By providing a way to map the organelle-specific activity of K+ channels, pHlicKer technology could help identify new organellar K+ channels or channel modulators with nuanced functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: pHlicKer is a selective, combination reporter for pH and K+.
Fig. 2: Intracellular calibration of pHlicKer.
Fig. 3: pH and K+ maps in endocytic organelles.
Fig. 4: pH and K+ maps in RE of WT and TWIK2−/− BMDM cells.
Fig. 5: pHlicKer reveals Kv11.1 channel activity in TGN.
Fig. 6: pHlicKer probes channel activity, trafficking defects and rescue of trafficking.

Similar content being viewed by others

Data availability

All data related to the study are included in the article and supporting information. The raw data supporting Figs. 16, extended data figures and supplementary figures, respectively, are available for public access at figshare54,55,56,57,58,59,60,61(https://figshare.com/articles/dataset/Figure_1/23713359, https://figshare.com/articles/dataset/Figure_3/23713776, https://figshare.com/articles/dataset/Figure_4/23713821, https://figshare.com/articles/dataset/Figure_5/23713833, https://figshare.com/articles/dataset/Figure_6/23713851, https://figshare.com/articles/dataset/Extended_data_figures/23713899 and https://figshare.com/articles/dataset/Supplementary_Figures/23713947). Source data are provided with this paper.

References

  1. Foo, B., Williamson, B., Young, J. C., Lukacs, G. & Shrier, A. hERG quality control and the long QT syndrome. J. Physiol. 594, 2469–2481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saminathan, A. et al. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 16, 96–103 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Tao, X., Avalos, J. L., Chen, J. & MacKinnon, R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science 326, 1668–1674 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sambath, K. et al. Potassium ion fluorescence probes: structures, properties and bioimaging. ChemPhotoChem 5, 317–325 (2021).

    Article  CAS  Google Scholar 

  6. He, H., Mortellaro, M. A., Leiner, M. J. P., Fraatz, R. J. & Tusa, J. K. A fluorescent sensor with high selectivity and sensitivity for potassium in water. J. Am. Chem. Soc. 125, 1468–1469 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Padmawar, P., Yao, X., Bloch, O., Manley, G. T. & Verkman, A. S. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat. Methods 2, 825–827 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Schapiro, F. B. & Grinstein, S. Determinants of the pH of the Golgi complex. J. Biol. Chem. 275, 21025–21032 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Reeves, E. P. et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416, 291–297 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Chakraborty, K., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85, 349–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saminathan, A., Zajac, M., Anees, P. & Krishnan, Y. Organelle-level precision with next-generation targeting technologies. Nat. Rev. Mater. 7, 355–371 (2022).

    Article  Google Scholar 

  12. Krishnan, Y., Zou, J. & Jani, M. S. Quantitative imaging of biochemistry in situ and at the nanoscale. ACS Cent. Sci. 6, 1938–1954 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Saha, S., Prakash, V., Halder, S., Chakraborty, K. & Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10, 645–651 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Z. et al. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys. J. 74, 230–241 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Surana, S., Shenoy, A. R. & Krishnan, Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10, 741–747 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).

    Article  PubMed  Google Scholar 

  20. Bhatia, D., Surana, S., Chakraborty, S., Koushika, S. P. & Krishnan, Y. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

    Article  PubMed  Google Scholar 

  21. Veetil, A. T. et al. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. Nat. Nanotechnol. 12, 1183–1189 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Jani, M. S., Zou, J., Veetil, A. T. & Krishnan, Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat. Chem. Biol. 16, 660–666 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Osei-Owusu, J. et al. Proton-activated chloride channel PAC regulates endosomal acidification and transferrin receptor-mediated endocytosis. Cell Rep. 34, 108683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di, A. et al. The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity 49, 56–65.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, L. S. et al. Endosomal trafficking of two pore K+ efflux channel TWIK2 to plasmalemma mediates NLRP3 inflammasome activation and inflammatory injury. eLife 12, e83842 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sanguinetti, M. C., Jiang, C., Curran, M. E. & Keating, M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Keating, M. T. & Sanguinetti, M. C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Sanguinetti, M. C. & Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, Z., Gong, Q. & January, C. T. Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. J. Biol. Chem. 274, 31123–31126 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Anderson, C. L. et al. Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nat. Commun. 5, 5535 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Hardel, N., Harmel, N., Zolles, G., Fakler, B. & Klöcker, N. Recycling endosomes supply cardiac pacemaker channels for regulated surface expression. Cardiovasc. Res. 79, 52–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Mohammad, S., Zhou, Z., Gong, Q. & January, C. T. Blockage of the HERG human cardiac K+ channel by the gastrointestinal prokinetic agent cisapride. Am. J. Physiol. 273, H2534–H2538 (1997).

    CAS  PubMed  Google Scholar 

  35. Nakamura, N., Tanaka, S., Teko, Y., Mitsui, K. & Kanazawa, H. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J. Biol. Chem. 280, 1561–1572 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kellokumpu, S. Golgi ph, ion and redox homeostasis: how much do they really matter? Front. Cell Dev. Biol. 7, 93 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Solé, L. & Tamkun, M. M. Trafficking mechanisms underlying Nav channel subcellular localization in neurons. Channels 14, 1–17 (2020).

    Article  PubMed  Google Scholar 

  38. Smith, J. L. et al. Pharmacological correction of long QT-linked mutations in KCNH2 (hERG) increases the trafficking of Kv11.1 channels stored in the transitional endoplasmic reticulum. Am. J. Physiol. Cell Physiol. 305, C919–C930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ficker, E., Obejero-Paz, C. A., Zhao, S. & Brown, A. M. The binding site for channel blockers that rescue misprocessed human long QT syndrome type 2 ether-a-gogo-related gene (HERG) mutations. J. Biol. Chem. 277, 4989–4998 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Qile, M. et al. LUF7244 plus dofetilide rescues aberrant Kv11.1 trafficking and produces functional IKv11.1. Mol. Pharmacol. 97, 355–364 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Bischof, H. et al. Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat. Commun. 8, 1422 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Bian, J., Cui, J. & McDonald, T. V. HERG K+ channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ. Res. 89, 1168–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Rodriguez, N. et al. Phosphatidylinositol-4,5-bisphosphate (PIP(2)) stabilizes the open pore conformation of the Kv11.1 (hERG) channel. Biophys. J. 99, 1110–1118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tan, X., Thapa, N., Choi, S. & Anderson, R. A. Emerging roles of PtdIns(4,5)P2–beyond the plasma membrane. J. Cell Sci. 128, 4047–4056 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, X., Hu, M., Yang, Y. & Xu, H. Organellar TRP channels. Nat. Struct. Mol. Biol. 25, 1009–1018 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, H., Martinoia, E. & Szabo, I. Organellar channels and transporters. Cell Calcium 58, 1–10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Prakash, V. et al. Quantitative mapping of endosomal DNA processing by single molecule counting. Angew. Chem. Int. Ed. 58, 3073–3076 (2019).

    Article  CAS  Google Scholar 

  49. Delisle, B. P. et al. Thapsigargin selectively rescues the trafficking defective LQT2 channels G601S and F805C. J. Biol. Chem. 278, 35749–35754 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Magadán, J. G., Barbieri, M. A., Mesa, R., Stahl, P. D. & Mayorga, L. S. Rab22a regulates the sorting of transferrin to recycling endosomes. Mol. Cell. Biol. 26, 2595–2614 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  51. van Galen, J. et al. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network. J. Cell Biol. 206, 609–618 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Modi, S., Halder, S., Nizak, C. & Krishnan, Y. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways. Nanoscale 6, 1144–1152 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Delisle, B. P. et al. Intragenic suppression of trafficking-defective KCNH2 channels associated with long QT syndrome. Mol. Pharmacol. 68, 233–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Anees, P. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Figure 1. 3D surface plots and selectivity studies. Figshare https://doi.org/10.6084/m9.figshare.23713359.v1 (2023).

  55. Anees, P. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Figure 2. 2-IM plots. Figshare https://doi.org/10.6084/m9.figshare.23713554.v1 (2023).

  56. Anees, P. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Figure 3. Colocalization data and 2-IM plots. Figshare https://doi.org/10.6084/m9.figshare.23713776.v1 (2023).

  57. Anees, P. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Figure 4. Colocalization data and 2-IM plots. Figshare https://doi.org/10.6084/m9.figshare.23713821.v1 (2023).

  58. Anees, P. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Figure 5. 2-IM plots. Figshare https://doi.org/10.6084/m9.figshare.23713833.v1 (2023).

  59. Anees, P. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Figure 6. 2-IM plots, IV curves and peak current density plots. Figshare https://doi.org/10.6084/m9.figshare.23713851.v1 (2023).

  60. Anees, P. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Extended data figures. Fluorescence spectra, 2-IM plots, competition experiments, standard current–voltage (IV) relationships. Figshare https://doi.org/10.6084/m9.figshare.23713899.v1 (2023).

  61. Anees, P. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Supplementary figures. Fluorescence spectra, absorption spectra, 2-IM plots, colocalization data, blind test. Figshare https://doi.org/10.6084/m9.figshare.23713947.v1. (2023).

Download references

Acknowledgements

We thank E. Perozo and A. Lin Chun for valuable comments on the paper. We thank the integrated light microscopy facilities at the University of Chicago. Y.K. acknowledges funding from NIH grants DP1GM149751, 1R01NS112139-01A1, R21HL161825-01A1 (Y.K. and B.P.D), 1R01GM147197-01 and FA9550-19-0003 from the AFOSR, HFSP grant no. RGP0032/2022, and the Ono Pharma Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.A., A.S. and Y.K. designed the sensor and experiments related to its validation. P.A. designed and synthesized the TAC-Rh dye. P.A., B.P.D. and Y.K. designed experiments related to Kv11.1 channels. E.R.R. performed electrophysiology. P.A. performed all other experiments. P.A. and E.R.R. analyzed data. A.D. and A.B.M. provided TWIK2 KO BMDM cells. P.A., B.P.D. and Y.K. wrote the paper. All authors provided input on the paper.

Corresponding authors

Correspondence to Brian P. Delisle or Yamuna Krishnan.

Ethics declarations

Competing interests

Y.K. is co-founder of Esya Inc. and MacroLogic Inc., which use DNA nanodevices for diagnostics and therapeutics, respectively. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Haoxing Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 TAC-Rh fluorescence response as a function of both pH and K+.

a, Working principle of K+ sensing by TAC-Rh. b, Excitation (black) and emission (green) spectra of TAC-Rh. Emission intensity increased with increasing K+ concentration at pH = 7.0. c, Normalized O/R ratio of TAC-Rh/Alexa Fluor 647 with increasing [K+] at pH 7.0 and 6.0. Error bar represents mean + s.e.m. of three independent experiments. d, Fluorescence emission spectra of pHlicKerRE corresponding to TAC-Rh (green) and Alexa Fluor 647 (magenta) with increasing [K+] at pH = 7.0. e, Normalized O/R ratio of TAC-Rh/Alexa Fluor 647 with increasing [K+] at pH 7.0 Error bar represents mean + s.e.m. of three independent experiments.

Source data

Extended Data Fig. 2 Targeting modules (T) in organelle-specific pHlicKer variants.

a, pHlicKerRE localizes in recycling endosomes (REs) by transferrin receptor (TfR)-mediated endocytosis. T is an aptamer that binds TfR. b, pHlicKerTGN is retrogradely trafficked by an scFv-furin chimera to the trans Golgi network (TGN). T is a d(AT)4 sequence (cyan) in pHlicKer that sequence-specifically binds a single chain variable fragment (scFv) fused to the extracellular domain of furin. c, pHlicKerEE localizes in early endosomes (EEs) by scavenger receptor-mediated endocytosis. T is a duplex DNA domain, which is an excellent ligand for scavenger receptors. d–f, Three way (3W) junctions 3WRE, 3WTGN and 3WEE are made from the same sequences as pHlicKerRE, pHlicKerTGN and pHlicKerEE and lack the Alexa488 and TAC-Rh fluorophores for colocalization studies with fluorescent markers of the RE, TGN and EE. g, pHlicKerBiotin incorporates a biotin (grey pentagons) as indicated for immobilization on streptavidin coated beads.

Extended Data Fig. 3 Calibration of pHlicKer on beads.

a, Representative images of pHlicKerBiotin on beads clamped at indicated pH and K+ levels, imaged in the donor channel (D), acceptor channel (A), TMR (O), and Alexa Fluor 647 (R) channels. D/A and O/R are the corresponding pixel-wise pseudocolor images. (n = 100 beads). Scale bars, 5 μm. b–d, 2-IM profiles of beads clamped at indicated pH and [K+]. Experiments were performed in triplicate (n = 70–200 beads).

Source data

Extended Data Fig. 4 Targetability of 3WEE and 3WRE.

a, Uptake by HEK 293T cells expressing human scavenger receptor (hMSR1). Representative images of the uptake of Alexa 647 labelled 3WEE in untransfected and hMSR1 transfected HEK 293T cells. Scale bars, 5 μm. b, Normalized whole cell intensities for (a). Data represent mean ± s.e.m (n = 20–22 cells). hMSR1 expressing HEK 293T cells showed effective internalization of pHlicKerEE, revealing uptake is by scavenger receptors. c, Competition experiments with 3WRE and excess unlabelled transferrin (Tf) in HEK 293T cells. Representative fluorescence images of HEK 293T cells pulsed with 3WRE (500 nM) in the presence (+Tf, 20 μM) and absence (-Tf) of Tf. Cells are imaged in the Alexa 647 channel. AF, autofluorescence. Scale bars, 5 μm. d, Normalized intensities for (c). Data represent mean ± s.e.m (n = 18–22 cells). pHlicKerRE internalization by HEK 293T cell is competed out by excess Tf, revealing that uptake is mediated by transferrin receptor-mediated endocytosis.

Source data

Extended Data Fig. 5 Kv11.1 channel activity under transmembrane ion gradients equivalent to plasma membrane and recycling endosome.

a, b, Representative families of currents measured from cells stably expressing WT-Kv11.1 (black) or G601S- Kv11.1 (magenta) channel proteins using the voltage protocol shown in inset. a, Traces recorded using the standard extracellular saline or b, the modified extracellular saline to mimic recycling endosomes. Individual I-V relations were generated for each cell in each condition by plotting the peak current recorded during the test-pulse as a function of the pre-pulse (Fig. 6i,j). The individual I-V relations were described using a Boltzmann equation to calculate the IMAX (Fig. 6i–j), c, midpoint potential for IKv11.1 activation (V1/2), or d, the slope factor for IKv11.1 current activation (k). (Extended Data Fig. 5c: n = 9 for WT and n = 6 for G601S; Extended Data Fig. 5d: n = 4 for WT and n = 4 for G601S). Embedded box plots indicate the 25th–75th percentile. Boxes and bars represent the s.e.m. and standard deviation, respectively. *p=0.018; **p=0.001 (one-way ANOVA with Tukey post hoc test).

Source data

Supplementary information

Supplementary Information

Synthetic schemes 1–3, Supplementary Figs. 1–15, Notes 1–4 and Tables 1 and 2.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anees, P., Saminathan, A., Rozmus, E.R. et al. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Nat Biotechnol 42, 1065–1074 (2024). https://doi.org/10.1038/s41587-023-01928-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-023-01928-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing