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Protein remote homology detection and 
structural alignment using deep learning

Tymor Hamamsy1,10, James T. Morton2,3,10, Robert Blackwell    4, 
Daniel Berenberg5,6, Nicholas Carriero4, Vladimir Gligorijevic6, 
Charlie E. M. Strauss    7, Julia Koehler Leman2, Kyunghyun Cho    1,5,6,8  & 
Richard Bonneau    1,5,6,9 

Exploiting sequence–structure–function relationships in biotechnology 
requires improved methods for aligning proteins that have low sequence 
similarity to previously annotated proteins. We develop two deep learning 
methods to address this gap, TM-Vec and DeepBLAST. TM-Vec allows 
searching for structure–structure similarities in large sequence databases. 
It is trained to accurately predict TM-scores as a metric of structural 
similarity directly from sequence pairs without the need for intermediate 
computation or solution of structures. Once structurally similar proteins 
have been identified, DeepBLAST can structurally align proteins using only 
sequence information by identifying structurally homologous regions 
between proteins. It outperforms traditional sequence alignment methods 
and performs similarly to structure-based alignment methods. We show 
the merits of TM-Vec and DeepBLAST on a variety of datasets, including 
better identification of remotely homologous proteins compared with 
state-of-the-art sequence alignment and structure prediction methods.

Detecting protein sequence homology using sequence similarity  
is the standard approach to identifying evolutionarily conserved  
functions that are common between proteins1,2. During the past  
50 years, sequence homology has enabled a wide array of applications, 
including annotating protein functions3–7, predicting protein struc-
ture and protein interactions8–13, aiding protein design14 and modeling  
evolutionary relationships1.

Many standard sequence homology approaches are reliable for 
proteins that have high sequence similarity (>25%). However, unlike 
sequence homology, structural homology can be retained across 
long evolutionary timescales15. More than half of all proteins do not 
have sequence homology in standard sequence databases owing 
to their distant evolutionary relationships16. Recent metagenomics 
studies have shown that the annotation rate could be boosted up to 

70% using structural homology detection17. The challenge of remote 
homology detection is identifying structurally similar proteins that 
do not necessarily have high sequence similarity. It is widely under-
stood that protein structure–structure alignments offer substan-
tially more structure–function value at longer evolutionary distances 
that typically elude methods based on protein sequence alignment. 
Using sequence-alignment-based methods for closely related pro-
teins and structure-alignment-based methods for distantly related 
proteins could be an ideal hybrid approach offering substantially 
better sensitivity.

When protein structures are available, structural alignment tools 
such as TM-align15, Dali18, FAST19 and Mammoth20 can provide a measure 
of structural similarity by aligning protein structures via superposi-
tion15,18,20–22. Although this approach can provide a measure of structural 
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than AlphaFold2, OmegaFold and ESMFold in combination with 
TM-align11. We also showcase the merits of DeepBLAST on different 
remote homology benchmarks, demonstrating that language model 
embeddings can capture more of the structural basis for alignment 
than purely sequence-based alignment. TM-Vec and DeepBLAST are 
broadly applicable tools that have the potential to enable the structural 
(and structural-similarity-based) annotation of proteins and their 
functions in the vast and growing biodiversity contained in protein 
sequence collections.

Results
Our contributions are twofold: (1) we introduce a framework to  
perform scalable structure-aware search, TM-Vec, that affords substan-
tial improvements in speed and sensitivity41 (Fig. 1 and Supple mentary 
Fig. 1); and (2) we introduce a differentiable sequence alignment  
algorithm, DeepBLAST, that performs structural alignments  
(Supplementary Fig. 2).

TM-Vec is a twin neural network model that produces protein  
vectors that can be efficiently indexed and queried41,42 (Fig. 1). To encode 
structural information in these protein vectors, TM-Vec is trained  
to approximate TM-scores (as a metric of structural similarity) of  
pairs of proteins with structures. Once a TM-Vec model has been 
trained, it can be used to encode large databases of protein sequences, 
producing structure-aware vector embeddings for these protein 
sequences. Upon creation of the TM-Vec vector-embedding data-
base, rapid protein structure search is possible by finding the nearest 
neighbors in the embedding space.

The basis of DeepBLAST is to predict the structural alignments 
of proteins by training models on proteins with both sequences and 
structures available. Our alignment strategy uses recent developments 
in differentiable dynamic programming and protein language models 
to predict the structural alignments given by TM-align for pairs of 
protein sequences (Supplementary Fig. 2).

We showcase the ability of DeepBLAST to extract structural align-
ments from remote homologs on the Malidup43 and Malisam44 structure 
databases compared with existing alignment algorithms. Furthermore, 
we evaluate the ability of TM-Vec to perform remote homology search 
on the CATH37, SWISS-MODEL38, Malidup43 and Malisam44 structure 
databases. Finally, we showcase the merits of using TM-Vec in tandem 
with DeepBLAST in the context of the BAGEL bacteriocin database45.

Scalable structural alignment search using neural networks
The challenge of applying our proposed structural alignment algorithm 
to large-scale protein databases is the demanding runtime require-
ments. Each DeepBLAST structural alignment takes on the order of 
milliseconds and scales linearly with database size, making structural 
alignment searches on large databases impractical. To mitigate this 
issue, we developed TM-Vec, a model that is designed to efficiently 
query structurally similar proteins. Our strategy relies on the construc-
tion of twin neural networks, whose purpose is to provide per-protein 
vectors for fast indexing. The cosine distance of these vectors approx-
imates the TM-score between pairs of proteins. This model can then 
be applied to entire protein databases to create an index over all the 
protein vectors. The resulting database can be efficiently queried in 
O(log2n) time for n proteins41, providing sublinear scaling to retrieve 
structurally similar proteins based on their TM-score.

To evaluate the viability of our TM-score prediction strategy, 
we benchmarked TM-Vec on the SWISS-MODEL and CATH databases 
(Fig. 2), and compared our approach with multiple state-of-the-art 
structure-based and sequence-based methods. After training TM-Vec 
on approximately 150 million protein pairs from SWISS-MODEL (from 
277,000 unique SWISS-MODEL chains), we observed a low prediction 
error (in the range of 0.025) that was independent of sequence iden-
tity across 1 million held-out protein pairs (Fig. 2a). Like traditional 
sequence alignment methodologies, TM-Vec can accurately estimate 

similarity in low-sequence-similarity scenarios, there are two major 
limitations. First, protein structures are not available for most pro-
teins. Despite the rapid advances made by AlphaFold2, there remains 
a large gap between known protein sequences and predicted protein 
structures23. In metagenomics samples alone, 2.4 billion24 to 68 billion25  
unique proteins have been observed, highlighting the small percent-
age of proteins with known structures. Furthermore, AlphaFold2  
has limited utility in the context of predicting structures for proteins 
with short sequences26. Work on structure prediction that uses single 
or few homologous sequences is ongoing, but most methods exhibit 
reduced accuracy and take substantial time and memory resources 
per sequence, limiting scaling to genomic protein databases.

Given the rapid growth of protein structure databases, most exist-
ing structural alignment tools are far too computationally intensive 
to run at scale, requiring brute-force all-versus-all comparisons to 
query structurally similar proteins. Although there are emerging tools 
for scalable homology search on structural databases27, as well as for 
embedding proteins for either search or alignment28,29 (Table 1), tools 
that perform explicit structural similarity search and alignment on 
large protein sequence databases are also needed.

To enable scalable structurally aware search and alignments on 
protein sequences, we developed two tools, TM-Vec and DeepBLAST. 
TM-Vec can compute accurate structural similarity scores; it out-
puts vector representations of proteins and can be used to construct  
indexable databases to enable efficient querying of proteins by struc-
tural similarity. DeepBLAST can compute structural alignments from 
pairs of sequences. Building on recent advances in protein language 
models30–36, we developed neural networks that can be fine-tuned 
on protein structures to (1) predict TM-scores between pairs of pro-
teins using twin neural networks and (2) predict structural alignments 
between proteins using a differentiable Needleman–Wunsch algorithm.

We showcase the merits of TM-Vec models in the context of CATH37 
and SWISS-MODEL38 to show how our tool can scale with regard to 
database size while maintaining high precision in identifying struc-
turally similar proteins. Our benchmarks suggest that TM-Vec can 
extrapolate beyond known fold space, and we contrast TM-Vec with 
AlphaFold2 (ref. 10), OmegaFold39 and ESMFold40 in a case study where 
TM-Vec can distinguish between bacteriocin classes more accurately 

Table 1 | Inputs and outputs of methods used for 
benchmarking

Input data Output alignment

Tool Sequence Structure Sequence Structure

Needleman–Wunsch ✓ ✓

Smith–Waterman ✓ ✓

BLAST ✓ ✓

HMMER ✓ ✓

Diamond ✓ ✓

HHBlits ✓ ✓

MMseq2 ✓ ✓

ProtTucker/EAT ✓ ✓

FoldSeek ✓ ✓ ✓

TM-align ✓ ✓ ✓

Dali ✓ ✓ ✓

FAST ✓ ✓ ✓

Mammoth ✓ ✓ ✓

TM-Vec + DeepBLAST ✓ ✓ ✓

Our pipeline, consisting of TM-Vec + DeepBLAST, is highlighted.
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structural differences when the sequence identity is greater than  
90% (median error = 0.005). Unlike traditional sequence alignment 
methods, which typically cannot resolve sequence differences below 
25% sequence identity46, TM-Vec can resolve structural differences 
(and detect significant structural similarity) between sequence pairs 
with percentage sequence identity less than 0.1 (median error = 0.026). 
Overall, there was a strong correlation between the TM-scores pre-
dicted by TM-Vec and those produced by running TM-align (r = 0.97, 
P < 1 × 10−5) (Supplementary Fig. 4a).

We next validated TM-Vec on CATH protein domains that were 
clustered at 40% sequence similarity. For this, we validated predic-
tions of TM-Vec on three CATH held-out datasets: (1) pairs (of domains) 
that were never seen in training together; (2) domains that were held 
out; and (3) folds that were held out. TM-Vec accurately predicted 
TM-scores for proteins from held-out pairs (r = 0.936, P < 1 × 10−5, 
median error = 0.023) as well as held-out domains (r = 0.901, P < 1 × 10−5, 
median error = 0.023) (Fig. 2b and Supplementary Fig. 4b). TM-Vec’s 
prediction errors were highest for pairs with TM-scores in the [0.75–1.0] 
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Fig. 1 | Schematic method overview. a, An integrated TM-Vec + DeepBLAST 
pipeline could consist of two stages: retrieval and alignment. First, TM-Vec takes 
a query protein sequence and rapidly retrieves proteins that are predicted to 
have similar structures (TM-scores) to the query. Then, DeepBLAST produces 
alignments for the proteins with the highest predicted structural similarity. 
Note that benchmarking was carried out for TM-Vec and DeepBLAST separately. 
b, TM-Vec is trained on pairs of amino acid sequences and their TM-scores. We 
first input a pair of sequences (domains, chains, proteins) and use a pretrained 
deep protein language model to extract embeddings for every residue of the 
sequence. Next, we apply a twin neural network, called ϕ, to the embeddings of 
each sequence and produce a vector representation, z, for each sequence. The 
ϕ network is trained on millions of pairs of sequences, and its architecture is 
detailed in Supplementary Fig. 1. Finally, we compute the cosine similarity of the 

vector representations, which is our prediction for the TM-score of the pair. c, We 
build a TM-Vec database by encoding large databases of protein sequences using 
a trained TM-Vec model. As an example, we input the sequences from Swiss-Prot, 
extract vector representations for every sequence and finally build an indexed 
database of TM-Vec’s structure-aware vector representations of proteins.  
d, Demonstration of protein structure search using the TM-Vec pipeline. As 
the indexed database of vector representations has already been built, protein 
search consists of first encoding the query sequence using the trained TM-Vec 
model and then performing fast vector search and TM-score prediction using 
cosine similarity as the search metric. As search results, we return the k nearest 
neighbors with the highest predicted structural similarity (TM-score) to the 
query sequence. e, As a last step, we apply DeepBLAST to produce structural 
alignments for the k nearest neighbors to a query sequence.
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Fig. 2 | TM-Vec structural similarity prediction. a–d, Two TM-Vec models were 
built and benchmarked against protein pairs from SWISS-MODEL and CATHS40. 
a, SWISS-MODEL TM-score prediction errors (absolute value of difference 
between the known TM-score from running TM-align on structures and the  
TM-Vec-predicted TM-score) for 1.01 million pairs with different sequence 
identities. Sequence similarity as measured by sequence identity ranges from 
[0, 0.1) (least similar) to (0.9, 1.0] (most similar). b, TM-Vec absolute value of 
prediction error obtained from protein sequences compared with TM-scores 
from TM-align obtained from protein structures. Prediction errors were stratified 
across 681,000 proteins from three test benchmarking datasets: pairs, domains 
and folds. The pairs test dataset included protein sequence pairs that were left 
out of model training and/or validation. Similarly, the domains and folds test 
dataset included protein pairs derived from domains and folds that were never 
seen in model training and/or validation. Bounds of the boxplots denote 25% 
and 75% percentiles, the center is the 50% percentile and the whiskers denote the 

1.5× interquartile range. c, t-SNE (t-distributed stochastic neighbor embedding) 
visualization of protein embeddings from the top five most represented 
categories from each CATH classification tier (class, topology, architecture, 
homology) within the test dataset. For each CATH classification tier, TM-Vec 
embeddings were observed to separate structural categories better than the 
default protein sequence embeddings generated by ProtTrans. d, Quantitative 
benchmarks of the ability of TM-Vec to predict CATH labels. We compared with 
ProtTrans and five structure-based methods: cliques, GRAFENE, ORCA, CNN 
(influenced by DeepFRI) and GCN (influenced by the Kipf and Welling GAE). 
Adjusted mutual information was computed by comparing spectral clustering 
assignments with structural label assignments for each CATH classification tier. 
Triplet-scoring AUPR is a metric that determines how often cosine embedding 
distances from within structural categories are smaller than cosine embedding 
distances across structural categories.
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range, and its accuracy declined on held-out folds. However, the incre-
mental increase in the generalization error for proteins in the held-out 
folds (r = 0.781, P < 1 × 10−5, median error = 0.042) shows that TM-Vec is 
robust to out-of-distribution observations, a critical requirement for 
extrapolating beyond the experimental structures within the Protein 
Data Bank (PDB)47 (Fig. 2b and Supplementary Fig. 4b).

To further validate this finding, we applied the TM-Vec model 
trained on SWISS-MODEL chains to the Microbiome Immunity Project  
(MIP)48, which contains 200,000 de novo protein structure predic-
tions from previously unknown proteins, including 148 putative 
folds. The correlation between our predictions and the TM-scores 
from MIP protein pairs with putative folds (r = 0.785, P < 1 × 10−5) was 
surprisingly close to the estimates we observed with the held-out 
CATH folds. Supplementary Table 1 shows a confusion matrix for  
our TM-score predictions for protein pairs where each protein has 
a putative fold; we observed that TM-Vec had a 99.9% true positive 
rate for predicting whether a pair shared a fold (TM-score ≥ 0.5) and a  
false positive rate of 3.9%. Taken together, these validation benchmarks 
across SWISS-MODEL, CATH and MIP show that TM-Vec is suitable  
for detecting similarities between proteins with previously  
unknown protein structures and folds, extending the general utility 
of this work.

Capturing structural information in the latent space
We visualized and benchmarked the learned representations produced 
by TM-Vec against an array of alternative methods that depend on either 
sequence or structure alone. The results of our benchmarks show that 
TM-Vec implicitly learns representations that correlate well with struc-
tural classifications (Fig. 2). As shown in Fig. 2c, TM-Vec embeddings 
capture the latent structural features of the CATH hierarchy. For com-
parison, embeddings produced by ProtTrans35, the pretrained language 
model on which TM-Vec is based, are shown side by side with those of 
TM-Vec after training (Fig. 2c). The ProtTrans embeddings for proteins 
are calculated by averaging the ProtTrans per-residue embeddings. 
Across every tier of CATH, TM-Vec separates CATH structural classes 
more clearly than the default ProtTrans embeddings.

To further evaluate the structural information of TM-Vec protein 
vectors, we encoded the CATH database using TM-Vec and performed 
search and classification. In our search benchmarks, we observed 
that TM-Vec was able to correctly retrieve proteins with the same fold 
(topology level in CATH) in CATHS100 (97% accuracy) and CATHS40 
(88.1% accuracy) for queried proteins (Supplementary Table 2). We next 
compared TM-Vec retrieval with FoldSeek (which performs its struc-
ture search on the ground truth CATH domain structures)27, MMseqs2 
(which uses the CATH sequences)49, and another structure-aware 
protein embedding method, ProtTucker29, which is trained on CATH 
domain sequences and uses contrastive learning to learn domain 
representations (Supplementary Table 3). To make a head-to-head 
comparison with ProtTucker and these other methods, we trained a 
TM-Vec model on the same domains as ProtTucker’s model and evalu-
ated TM-Vec on their test set of 219 domains (ProtTucker benchmark 
data). Across each level of the CATH hierarchy, TM-Vec outperformed 
FoldSeek, MMseqs2 and ProtTucker (Supplementary Table 3). At 
the homology level, TM-Vec retrieved proteins with 81% accuracy, 
ProtTucker (EAT) retrieved proteins with 78% accuracy and FoldSeek 
retrieved proteins with 77% accuracy. As this test set of 219 proteins was 
quite small, we chose to also compare these different methods on the 
CATHS20 dataset, alongside other methods including HHBlits50 and 
DIAMOND51 (Online methods). Here, the lookup and query databases 
were both CATHS20, and the TM-Vec model was the same model trained 
on the ProtTucker domains (Supplementary Table 4). Our evaluation 
criterion was the accuracy of retrieving the correct CATH homology 
for a query domain (which was itself excluded from the lookup data-
base). Here, the TM-Vec model trained on CATH domains performed 
the best (88% accuracy), followed by FoldSeek (85%), ProtTucker (71%) 

and HHBlits (49%) (Supplementary Table 4). Notably, a TM-Vec model 
trained on SWISS-MODEL chains achieved 71% accuracy on this CATH 
domain benchmark.

In our classification benchmarks, we compared TM-Vec with  
several state-of-the-art methods (cliques, CNN, GCN, GRAFENE, ORCA 
and ProtTrans; Methods) using cluster-adjusted mutual information 
and triplet-scoring area under the precision–recall curve (AUPR) to 
assess the representation quality of each method (Methods). TM-Vec 
outperformed the sequence-based and structure-based methods for 
topology, homology and architecture classification as demonstrated 
by its higher macro AUPR values for these tiers, indicating that TM-Vec 
was convolving both sequence and structure knowledge bases (Fig. 2d). 
At the class level, cliques and CNN achieved higher macro AUPR values 
than TM-Vec. At the topology level, TM-Vec had the highest macro 
AUPR value (0.94), and the second best method was GRAFENE (macro 
AUPR = 0.79). The performance gap between the pretrained ProtTrans  
model (macro AUPR = 0.66) and the fine-tuned model obtained  
with TM-Vec highlights the importance of fine-tuning with a 
structure-based objective.

Furthermore, the fact that TM-Vec outperformed sequence-based 
representations on the CATH dataset that was clustered at 40% 
sequence similarity provides evidence that TM-Vec learns quality 
structural features rather than a trivial feature of the underlying data 
or a function of sequence similarity.

Extracting structural alignments from sequence
We benchmarked DeepBLAST against three sequence alignment 
methods, Needleman–Wunsch52, BLAST1 and HMMER2, in addition 
to four structural alignment methods that work directly with the 
atomic coordinates, FAST19, TM-align15, Dali18 and Mammoth-local20 
(Table 2). TM-align achieves global alignment by maximizing the 
three-dimensional (3D) spatial overlap of the atoms in each protein. 
Conversely, the Mammoth-local structure alignment scores feasible 
residue pairings between the proteins according to the structural simi-
larity of seven-contiguous-neighbor windows, as opposed to a remote 
homology philosophy where the full length structure is allowed to be 
flexible and does not require all the aligned atoms to overlap simul-
taneously after a rigid body orientation. Dali uses a distance matrix 
computed from hexapeptide contacts to align the two protein struc-
tures. FAST tries to preserve similar residue–residue contact patterns. 

Table 2 | Malisam and Malidup benchmarks

Malidup Malisam

Method F1 score Number 
detected

F1 score Number 
detected

BLAST 0.019 ± 0.019 5 0.000 ± 0.000 2

HMMER 0.020 ± 0.02 8 0.020 ± 0.020 3

Needleman–
Wunsch

0.098 ± 0.010 234 0.025 ± 0.003 129

Smith–Waterman 0.114 ± 0.010 234 0.031 ± 0.003 129

DeepBLAST 0.265 ± 0.020 234 0.066 ± 0.009 129

Mammoth-local 0.483 ± 0.020 234 0.187 ± 0.017 129

FAST 0.569 ± 0.026 234 0.300 ± 0.030 129

TM-align 0.576 ± 0.024 234 0.393 ± 0.031 129

Dali 0.791 ± 0.014 234 0.619 ± 0.029 129

Sequence and structure alignment methods measured by their F1 score. FAST, TM-align, 
Dali and Mammoth-local are structure–structure alignment methods and provide a 
structure-informed upper bound for this benchmark, as many of the most challenging 
alignments in this benchmark are ultimately structure derived or curated with a structure–
structure alignment as an oracle. The best F1 scores for sequence and structure alignment 
methods are highlighted in bold.
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We extracted the local structure alignment from the first phase of the 
Mammoth algorithm. These structure alignment algorithms span the 
range of expert opinions as to the most meaningful structure alignment 
(from emphasizing long-range overlap to contacts and local similarity)  
and thus span potential disagreement across different previous 
approaches. No structure alignment algorithms tested took sequence 
similarity into account.

Our method DeepBLAST uses sequence alone; we do not supply  
the atomic coordinates of either protein to the algorithm after training 

it. To form a common reference for an optimal alignment, we focused 
on two gold-standard benchmark sets comprising manually curated 
structural alignments, named Malisam44 and Malidup43. Manual struc-
ture alignment is intuitive human assessment, typically emphasizing 
3D overlap and topology preservation, as those features are easier  
to visualize than a plethora of local alignments and contacts53–55. 
All methods tend to agree when the problem is trivial owing to near 
sequence identity and near structural identity. Therefore, the most 
valuable gold-standard alignment benchmark set is where the dataset 
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Fig. 3 | Annotating and aligning proteins in the Malidup benchmark.  
a, Comparison of different sequence and structural alignment methods with 
DeepBLAST and TM-Vec. DeepBLAST, Needleman–Wunsch and Smith–Waterman 
are sequence alignment methods, whereas Fast, Dali, Mammoth and TM-align 
are structural alignment methods. The y axis represents the predicted TM-score 
(for the alignment methods, this is given by a predicted alignment), and the x axis 
represents the TM-score from a manually curated alignment. The performance 
of TM-Vec was comparable with that of structural alignment methods, and its 
trend line overlapped with that of TM-align. The performance of DeepBLAST was 
similar to that of Mammoth, a structure alignment method, and it outperformed 

the other sequence alignment method, Needleman–Wunsch. Data are presented 
as mean values estimated with a locally estimated scatterplot smoothing fit  
with 95% confidence intervals. b, A predicted alignment of two duplicated 
Annexin domains from Malidup, where DeepBLAST could accurately align  
(TM-score = 0.81) and Needleman–Wunsch struggled to align (TM-score = 0.33). 
c, Manual alignment of the two duplicated Annexin domains; the agreement  
with DeepBLAST is highlighted. d, Visualization of the manual structural 
alignment of the Malidup; the chains that DeepBLAST aligned correctly are 
highlighted in yellow.
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members have low sequence identity as well as varied degrees of 
structural similarity. Our benchmarks were performed on the curated 
Malisam44 and Malidup43 protein structural alignment benchmark-
ing datasets (which are heavily skewed towards difficult-to-detect, 
low-sequence-identity remote homology).

As shown in Table 2, DeepBLAST outperformed all tested sequence 
alignment methods (Supplementary Fig. 3) but did not challenge the 
structural alignment methods. In both benchmarks, most of the protein 
alignments did not pass the filtering steps in both BLAST and HMMER. 
As a result, these tools were not able to detect the vast majority of 
the alignments. This left Needleman–Wunsch and Smith–Waterman  
as the baseline for sequence alignment methods. It is important to 
note again that there is no one definition of the best structural align-
ment56,57 and that this task becomes increasingly ambiguous as the 
remoteness of the homolog increases and the number of homo logous 
residues declines. This was apparent in the Malidup benchmark, where 
the variation in differences between TM-Vec and TM-align as well as 
DeepBLAST and TM-align increased for proteins with TM-score < 0.5 
(Supplementary Fig. 5a). Thus, the above F1 score tracks well with 
alignment accuracy but is limited in that it only scores sequence align-
ments with respect to a single reference alignment contained within 
the curated set.

Remote homology detection and alignment
To gauge the performance of TM-Vec compared with existing structural 
alignment methods, we applied TM-Vec to the curated Malidup protein 
structural alignment benchmarking dataset43, a difficult benchmark 
with low sequence identity and varied degrees of structural similarity. 
Each pair of proteins in this benchmark has a significant structurally 
similar region, a manually curated structure–structure alignment, 
and low sequence similarity that is either below or at the threshold of 
detection by sequence alignment tools. One of the challenges of bench-
marking structural alignment methods is defining the ground truth 
structural alignment. As shown in Fig. 3a, there were subtle disagree-
ments between the manual alignments and the structural alignment 
methods, highlighting the uncertainty in defining the optimal struc-
tural alignment. This is highlighted in scenarios where TM-align obtains 
a better structural superposition compared with the manual align-
ment (TM-align superimposes more atoms, or a greater extent of back-
bone regions, than the manual alignment). All of the structure-aware  
methods agreed at high structural similarity, TM-score = 1 being  
perfect superposition of all atoms, but increasingly disagreed as the 
TM-score declined.

We observed that TM-Vec was directly comparable with structure- 
aware methods, and the confidence bands for its trend line overlapped 
with the trend line for TM-align (Fig. 3a). We also found that DeepBLAST 
was directly comparable with the structure-aware method Mammoth, 
as their trend lines and predictions were very similar. Although the 
trend lines overlapped, the prediction errors of TM-Vec and DeepBLAST 
had higher variance than those of the structure-aware methods. To 
determine the agreement between sequence alignment methods  
and structural alignment methods, the TM-score was calculated for  
the predicted alignment. Although DeepBLAST does not always  
generalize for divergent proteins, to illustrate an example where our 
method did obtain correct alignments for highly divergent proteins, we 
focused on two duplicated Annexin domains with a sequence identity  
of 24.7%. DeepBLAST accurately aligned these proteins 
(TM-score = 0.81) and four of the five folds that were superimposed 
were in agreement with the manual alignment (Fig. 3b–d). By contrast, 
Needleman–Wusnch was not able to identify any structural similar-
ity between these two proteins (TM-score = 0.33). On the Malidup 
benchmark, the Spearman rank correlation between the DeepBLAST 
and TM-Vec TM-scores was 0.75, and the correlations for DeepBLAST 
and TM-Vec with TM-align’s TM-scores were 0.81 and 0.66, respectively 
(Supplementary Fig. 5).

The differences between Needleman–Wunsch and DeepBLAST 
were clear across all the protein pairs in Malidup and Malisam. Based 
on the percentage of structural similarity, given by the percentage of 
the smaller protein that aligns, scores shown in Supplementary Fig. 6, 
the high confidence alignments predicted by DeepBLAST were largely 
in agreement with the manually curated structural alignments. Fur-
thermore, the sequence identity scores shown in Supplementary Fig. 6  
indicate that DeepBLAST is able to obtain structural alignments for 
pairs that have ≤25% sequence identity, a known barrier for sequence 
alignment methods but one that can be resolved with the known pro-
tein structures. Taken together, these metrics suggest that DeepBLAST 
can perform local structural alignment.

Full repository-level scaling and runtime
To show that TM-Vec can be applied to modern protein repositories, 
we benchmarked its search runtime in multiple scenarios. After the 
creation of a TM-Vec database, a query is performed for a new protein 
sequence by first encoding it using the TM-Vec model and then per-
forming rapid vector search on the indexed protein TM-Vec database 
(Fig. 1). Search runtimes for different numbers of queries and database 
sizes (Supplementary Fig. 7) empirically show that encoding of queries 
is linear in time, with an ability to encode 50,000 queries on one GPU 
within 40 min (Supplementary Fig. 7a). Supplementary Fig. 7b shows 
sublinear search performance. The search runtime benchmarks for 
different database sizes show that 50,000 queries on a database of  
5 million proteins can be performed within 20 s on a single GPU, demon-
strating that encoding of sequences is the computational bottleneck in 
search. To contrast the TM-Vec query search time with that of existing 
sequence-based methods, we compared the TM-Vec query runtimes to 
those of DIAMOND51 and BLAST. TM-Vec was not as fast as DIAMOND, 
which is optimized for short-reads and is known to have remote homo-
logy sensitivity and alignment performance similar to BLAST. TM-Vec 
did outperform BLAST in all cases, including in modes adapted for 
scaling TM-Vec described here, and its performance will scale sub-
linearly with database size (Supplementary Fig. 7c). For example,  
TM-Vec achieved a 10× speedup compared with BLAST when perform-
ing 1,000 queries on a database of 100,000 proteins, and this speedup 
will increase exponentially as the database size increases: on a 1 million 
protein database there is a 100× speedup.

The development of TM-Vec overcomes two major challenges to 
applying structural alignments predicted from DeepBLAST at scale: 
avoiding all-versus-all pairwise comparisons and predicting struc-
tural similarity. Thus, TM-Vec can be used to carry out full repository 
searches and large all-versus-all queries, and can do so with vastly 
improved remote homology detection and sensitivity. Further gains 
in computational performance are likely to be achievable (this work 
focuses on accuracy and sensitivity with respect to structure–structure 
quality alignments).

Once structurally similar proteins have been identified, struc-
tural alignments via DeepBLAST can identify structurally homologous 
regions. Our structural alignment runtime benchmarks show that 
unlike the Needleman–Wunsch CPU implementations, the structural 
alignment runtime of our differentiable Needleman–Wunsch GPU 
implementation does not increase linearly with respect to the batch 
size, demonstrating how our method can process multiple alignments 
in parallel on a single GPU (Supplementary Fig. 7d). Furthermore, both 
the CPU and GPU implementations scale linearly with regard to the 
length of both proteins, with our GPU implementation consistently 
yielding a 10× speedup over the CPU implementation.

As shown in Supplementary Table 5, we further evaluated the 
ability of TM-Vec to scale to full repositories and achieve competitive 
results by evaluating its performance on the DIAMOND benchmark 
(Methods), which has UniRef50 (ref. 16) as a lookup database and 
comprises both single-domain and multiple-domain proteins. For 
this benchmark, we used the TM-Vec model trained on SWISS-MODEL 
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chains up to 1,000 residues long. DIAMOND has a sensitivity of 99% for 
the top protein on this benchmark (for all proteins). After embedding 
proteins in the UniRef50 lookup database, we compared our perfor-
mance on all query proteins versus only multiple-domain proteins, and 
on proteins with different length thresholds (600 and 1,000 residues). 
For all proteins up to 1,000 residues long, the top nearest neighbor 
shared the same family annotation 92.1% of the time, and among the 

top 50 nearest neighbors, the sensitivity was 96.9% (Supplementary 
Table 5). For only multiple-domain proteins, the top nearest neighbor 
shared the same family annotations 86.2% of the time for proteins up 
to 600 residues long, and 82.6% of the time for proteins up to 1,000 
residues long. Among the top 50 returned proteins, the sensitivity 
was 94.6% for multiple-domain proteins up to 1,000 residues long 
(Supplementary Table 5). When returning many nearest neighbors 
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Fig. 4 | Annotating and aligning unclassified putative bacteriocins using 
TM-Vec. a, Visualization of TM-Vec embeddings using t-SNE for 689 proteins 
across three classes of bacteriocins in addition to 28 unclassified putative 
bacteriocins. For 94% of the annotated bacteriocins, the nearest neighbor to a 
classified bacteriocin was in the same bacteriocin class. b, Visualization of class 
1 bacteriocins by subclass, highlighting how TM-Vec can recover multiple levels 
of manual annotation without protein structures. c, Comparison of TM-Vec’s 
TM-score predictions with the TM-scores produced by running TM-align on 
structures predicted by AlphaFold2, OmegaFold and ESMFold for 238,000 pairs 

of bacteriocins. Using a TM-score of 0.5 as a structural similarity cutoff, TM-Vec 
could distinguish pairs of proteins that were in the same class versus different 
classes and in the same subclass for class 1 bacteriocins, whereas TM-align on 
predicted structures from AlphaFold2, OmegaFold and ESMFold could not. 
Bounds of the boxplots denote 25% and 75% percentiles, the center is the 50% 
percentile and the whiskers are denoted by the 1.5× interquartile range.  
d, DeepBLAST alignments for a putative bacteriocin, YP_006656667, and its  
three nearest neighbors in embedding space (that is, those with the highest 
predicted TM-scores).

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

(Supplementary Table 6) on one GPU, once vectors were available, 
TM-Vec could efficiently return 1 million nearest neighbors for 100 
queries on a lookup database of 10 million proteins in about 1 s. In 
terms of resources, we could index and search over UniRef50 (ref. 16)  
on one GPU, but as repositories scale to billions of proteins, multiple- 
GPU or high-memory CPU setups using Faiss41 are recommended for  
running a TM-Vec + DeepBLAST pipeline.

Case study: bacteriocins
We analyzed a structurally diverse set of families, bacteriocins, using 
the BAGEL database45. Bacteriocins are small peptide-derived molecules 
produced by bacteria and often serve as antimicrobial peptides to tar-
get competing microbial species. They can also be involved in cell–cell 
communication. Several bacterial species encode bacteriocins, and 
bacteria are under evolutionary pressure to obfuscate these genes  
in light of their strong ecological benefits. As a result, bacteriocins  
show substantial sequence and structural diversity and are notoriously 
difficult to detect using sequence homology tools58. To date, fewer 
than 1,004 bacteriocins have been identified and classified, despite 
there being trillions of microbial species59 that have the potential to 
produce antimicrobial peptides.

Previous studies have shown that bacteriocin structures can be 
characterized by their highly modified polypeptides, suggesting struc-
tural cues to identify new bacteriocins where sequence similarity 
approaches fail. Our analysis revealed that TM-Vec can clearly partition 
bacteriocins according to their BAGEL annotations (Fig. 4a,b). Notably, 
unannotated bacteriocins identified by Morton et al.58 were found to 
be structurally similar to lanthipeptide A and B (Fig. 4b). As shown in  
Fig. 4c, we compared TM-Vec with AlphaFold2 (ref. 10), OmegaFold39 
and ESMFold40 on this bacteriocin dataset. For each pair of bacteriocins, 
we ran TM-align on the structures predicted by each structure predic-
tion method (AlphaFold2 via ColabFold11, OmegaFold and ESMFold).  
We found that TM-Vec distinguished bacteriocin classes more  
accurately than these structure prediction methods in combination 
with TM-align. We suspect that this performance gap could be due  
to the lengths of the proteins. Bacteriocins tend to be short sequences 
of fewer than 50 amino acids, which are known to be difficult to fold 
using AlphaFold2 (ref. 26). For a few of the bacteriocins with structures 
in the PDB, we found that the structures predicted by AlphaFold2 
had TM-scores < 0.5 with the ground truth structures, highlighting  
how AlphaFold2 struggles to accurately predict bacteriocin struc-
tures. The performance of the structure prediction methods on this  
benchmark is likely to result from a combination of inaccurate  
bacteriocin structure predictions and the effects of applying structure 
alignments (TM-align) to predictions (structure predictions)60. Last, 
Fig. 4d shows a DeepBLAST alignment for the three nearest classi-
fied bacteriocin neighbors of a putative bacteriocin identified by  
Hamid et al.61.

As shown in Supplementary Fig. 8a, we found that nontoxins (that 
is, genes that are within the same biosynthetic gene cluster but do  
not directly encode the toxin) were clearly separated from the  
different bacteriocin class clusters based on structural similarity. 
We further tested our ability to distinguish bacteriocins by training a 
k-nearest-neighbor classifier for bacteriocin classes and nontoxins; 
the overall precision and recall of these classifiers were 98% and 93%, 
respectively (Supplementary Fig. 8b).

Discussion
We have shown that DeepBLAST and TM-Vec have the potential to close 
the remaining gap between protein sequence and structural informa-
tion by enabling structural alignments from sequence information 
and remote homology search on repository-scale protein sequence 
databases. On our SWISS-MODEL and CATH benchmarks, TM-Vec can 
accurately predict TM-scores to quantify the structural similarities 
across widespread structural diversity, including remote homologs 

that fall below the 10% sequence identity threshold. When compared 
with sequence-based and structure-based methods, TM-Vec could 
competitively differentiate tiers of the CATH hierarchy, despite not 
being explicitly trained to classify CATH classes. Furthermore, TM-Vec 
is able to predict structural similarity with performance close to that of 
existing structural similarity methods, while being able to query struc-
turally similar proteins with both higher accuracy and lower runtimes 
than BLAST. TM-Vec search scales sublinearly with respect to protein 
database size and can handle millions of queries on tree-of-life-scale 
databases per day on a single GPU machine. Given the runtime scal-
ing properties of TM-Vec, there is enormous potential to apply these  
methodologies to large-scale metagenomics datasets. However, 
realizing the full potential of TM-Vec will require improvements to  
encoding speed in addition to massively parallel GPU computing  
in order to query hundreds of millions of proteins in metagenomics 
samples and billions of proteins in sequence databases.

In addition to TM-Vec measuring structural similarity, DeepBLAST 
can provide structural alignments that compare with existing structural 
alignment methods. On the Malidup benchmark, although there were 
certain remote homologs that our aligner missed, DeepBLAST consist-
ently outperformed sequence alignment methods. When we applied 
TM-Vec to the BAGEL database, we were able to accurately cluster 
bacteriocins based on both their class and subclass labels, a task that 
AlphaFold2 struggles with. We also were able to confidently annotate 
28 putative bacteriocins by finding their nearest class or subclass clus-
ters. These results hint at the potential to lower the barrier for natural 
product discovery.

Although TM-Vec and DeepBLAST have promising advantages 
compared with existing methodologies, there are a few limitations to 
consider. TM-Vec is not well suited to detection of structural differ-
ences induced by point mutations. From a benchmark using the VIPUR 
dataset, TM-Vec was unable to detect structural differences caused by 
both deleterious and synonymous point mutations in proteins14,62–66. 
TM-Vec is trained to predict TM-scores, which are a measure of the 
global similarity of protein structures. For many remote homology 
tasks, local similarity is instead desired. On the DIAMOND benchmark, 
for example, the goal of retrieving proteins with the same SCOP family  
annotations is more of a local than a global similarity task. On this 
benchmark, although TM-Vec had high sensitivity, it did not perform as 
well as DIAMOND, suggesting that there is room to improve TM-Vec on 
this task if TM-Vec is trained with a local structural similarity objective 
instead of TM-scores67. Regarding structural alignments, DeepBLAST 
struggles to detect large insertions or deletions, which are commonly 
observed in remote homologs as suggested by TM-align generated 
training data. Recent advances incorporating linear affine gap costs 
into differentiable dynamic programming algorithms28 could play 
a part in resolving these challenges. Furthermore, integrating the 
TM-score prediction and the structural alignments into a multitask 
framework with a single pretrained protein language model may help 
to boost the structural alignment accuracy.

Given the widespread biomedical applications and use cases of 
sequence search and alignment using tools such as BLAST, we anticipate  
that structural similarity search with TM-Vec and alignment  
with DeepBLAST will provide new opportunities for biological 
annotation. Owing to their high structural precision and fast query  
speed, TM-Vec and its future iterations are well positioned to  
close the sequence–structure–function gap across the billions of 
observed proteins.
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Methods
We used our model, which can produce structure-aware embeddings  
of protein sequences, to build large, searchable databases of protein  
representations that can be queried to find proteins with similar  
structures using only their sequence information. The last piece  
of our pipeline produces protein structure alignments using sequences 
alone for the proteins that are predicted to have the most similar 
structures.

TM-Vec search
TM-Vec embedding model. The TM-Vec model is trained on pairs 
of protein sequences and their TM-scores (the measure of protein 
structure similarity we use), and leverages the latest advances in 
deep protein language models. When protein sequences are fed into 
the pipeline, a pretrained deep protein language model ProtTrans 
(ProtT5-XL-UniRef50) is used to produce embeddings for every resi-
due in the protein35. These residue embeddings are then fed into a 
twin neural network that we train, called ϕ. Supplementary Fig. 1 
shows the function ϕ which takes residue embeddings and produces 
a flattened vector representation of dimension 512 for each protein. 
ϕ is composed of several transformer encoder layers (see the TM-Vec 
training section for transformer details), followed by average pooling, 
dropout and fully connected layers. Finally, we calculate the cosine 
distance between the reduced representations of each protein in the 
pair, and our training objective is to minimize the L1 distance between 
the cosine similarity of the reduced representations of the pairs  
and their TM-score. Therefore, for any pair of protein sequences, a 
forward pass of our model can predict the TM-score of the pairs, and 
can also be used to produce structure-aware embeddings for each 
protein sequence.

TM-Vec database creation. To build a large database of structure-aware 
protein embeddings, we started with large databases of protein 
sequences, including SWISS-Prot68, CATH37 and UniRef50 (ref. 16). After 
encoding each protein sequence, we built an indexed vector-searchable 
database of protein embeddings using the Faiss package41. When this 
database was queried with a new sequence, we first embedded the 
protein using a forward pass of the TM-Vec embedding model and 
then returned the nearest neighbors of the query according to cosine 
similarity (the proteins in our database with the highest predicted 
structural similarity or TM-score). Although one of our goals was to 
return the nearest neighbors in structure space for any query proteins, 
another goal was to include the structural alignments for the nearest 
neighbors with the query protein, using sequences alone. Thus, the pre-
dicted most similar proteins (structurally), their predicted TM-scores 
and their predicted structural alignments can all be returned by the 
TM-Vec + DeepBLAST pipeline, and the number of proteins for which 
to retrieve this information is a user-defined parameter (the pipeline 
will return the user-defined top n).

DeepBLAST alignment module. The DeepBLAST module uses a  
differentiable Needleman–Wunsch algorithm (Supplementary Fig. 2). 
Proteins X and Y are fed into the pretrained protein language model 
ProtTrans35 to obtain embeddings HX and HY. These residue-level 
embeddings are then propagated through the match embeddings 
(M) and gap embeddings (G) to obtain the match scores μ and the  
gap scores g. The match and gap scores are used to evaluate the 
differen tiable dynamic programming algorithm and generate a 
predicted alignment traceback. These alignments can then be fine- 
tuned using a training dataset of ground truth alignments.

Protein language modeling for alignment. To obtain an alignment 
from dynamic programming, scoring parameters for matches and gaps 
must be obtained. Here, we use a number of pretrained protein lan-
guage models to estimate these scoring parameters. These pretrained 

models ultimately construct a function, mapping a sequence of resi-
dues represented as one-hot encodings to a set of residue vectors, 
providing an alternative representation of these proteins. Often, these 
models will learn the representations by being trained to predict ran-
domly masked residues within a protein sequence. Multiple studies 
have shown the merits of these models when performing protein struc-
ture prediction, remote homology and protein design31–36,69. Here, we 
use the pretrained ProtTrans language model35 to represent two pro-
teins X and Y by embeddings HX ∈ ℝp×d  and HY ∈ ℝq×d , where p and q 
represent the lengths of proteins X and Y, and d is the embedding 
dimension of the language model. Given these representations, we can 
construct mappings M and G to obtain match scores and gap scores for 
the differentiable dynamic programming as follows

μ = σμ (M(HX)M(HY)
T) ∈ ℝp×q, g = σg (G(HX)G(HY)

T) ∈ ℝp×q

The functions M ∶ ℝt×d → ℝt×d  and G ∶ ℝt×d → ℝt×d  are intermediate 
functions that take as input a set of t residue vectors. These functions 
are parameterized by convolutional neural networks, which can be 
fine-tuned through the backpropagation enabled by the differentiable 
dynamic programming. Activation functions σμ and σg are softplus and 
log-sigmoid functions to ensure that the match scores μ are strictly 
positive and the gap scores g are strictly negative. These constraints 
are used to penalize gaps and reward matches. This also helps enforce 
identifiability of the model, which we have found to improve the  
accuracy of the model in practice.

Differentiable dynamic programming. Our proposed differential 
dynamic programming framework does not learn any parameters; it 
is designed purely to enable backpropagation to fine-tune the scoring 
functions M and G. Differentiable dynamic programming has been 
extensively explored in the context of dynamic time warping70,71. Koide 
et al.72 and Ofitserov et al.73 suggested that a differentiable Needleman– 
Wunsch alignment algorithm could be derived, but the implementation 
has remained elusive. Here, we provide a GPU-accelerated implementa-
tion of the differentiable Needleman–Wunsch algorithm.

Previous work71 has shown that backpropagation can be performed 
on dynamic programming algorithms by introducing smoothed maxi-
mum and argmax functions. Doing so will enable the computation 
of derivatives while providing a tight approximation to the optimal 
dynamic programming solution. The traditional Needleman–Wunsch 
algorithm can be defined with the following recursion

vi, j = μi, j +max
⎧⎪
⎨⎪
⎩

vi−1, j−1 (Match)

gi, j + vi−1, j (Insert)

gi, j + vi, j−1 (Delete)

(1)

where the alignment score vi, j is evaluated on position i in the first 
sequence X and on position j in the second sequence Y. Sequences X and 
Y are of lengths n and m, respectively. μi, j represents the log-odds score 
of residues Xi and Yj being aligned and gij represents the log-odds score 
of an insertion or a deletion at positions i and j. Owing to the structure of 
dynamic programming problems, vn,m is guaranteed to be the optimal 
alignment score between the two sequences. Furthermore, the optimal 
alignment can be obtained by tracing the highest-scoring path through 
the alignment matrix via argmax operations.

As neither the max nor the argmax operations are differentiable, 
the alignment scores and the traceback cannot be differentiated in the 
traditional formulation of the traceback operations needed to gener-
ate alignments. Accordingly, Mensch et al.71 introduced smoothed 
differentiable operators

̃max = log (∑
i
exp(xi)) , argmaxΩ(x) =

exp(xxx)
∑i exp(xi)
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where the smooth max operator ̃max  is given by the log sum exp func-
tion and the smoothed argmaxΩ(x) is given by the softmax function. 
As the softmax function can be derived from the derivative of maxΩ, 
the traceback matrix can also obtained by differentiating the resulting 
alignment matrix. The resulting traceback matrix will yield the 
expected alignment between the two proteins.

As the loss function is defined as the difference between the 
predicted traceback matrix and the ground truth traceback matrix, 
the derivatives of the traceback matrix also need to be defined. This 
requires both the computations of the directional derivatives and the 
local Hessians of the alignment matrix (Algorithm 2).

In practice, dynamic programming can be a major computational 
bottleneck owing to GPU data transfer and the quadratic runtime of 
the Needleman–Wunsch algorithm. To address this, we implemented 
a GPU-accelerated differentiable Needleman–Wunsch algorithm 
inspired by Manavski et al.74. As can be seen from the benchmarks 
shown in Supplementary Fig. 7d, this algorithm is an order of magni-
tude faster than the naive CPU-bound Needleman–Wunsch implemen-
tation. Furthermore, this algorithm enables batching, allowing multiple 
alignments to be processed in parallel. As shown in Supplementary  
Fig. 7d, larger batch sizes can further improve the scaling compared 
with CPU-bound alignments.

Algorithm 1. Compute DeepBLASTΩ(θ)and ∇ DeepBLASTΩ(θ)
Require:θ = [μ, g] ∈ ℝ2×p×q
 Forward pass
 vM0,0 = 1; v

∗
0,. = 0; v

∗
.,0 = 0

 for i ∈ {1…p}, j ∈ {1…q} do
  vi, j = maxΩ (μi, j + (vi−1, j−1, gi, j + vi−1, j, gi, j + vi, j−1))
  ωi, j = ∇argmaxΩ (μi, j + (vi−1, j−1, gi, j + vi−1, j, gi, j + vi, j−1)) ∈ ℝ3
 end for

 Backward pass
 ep,q+1 = 0; ep+1,q = 0; ep+1,q+1 = 1
 for i ∈ {p…1}, j ∈ {q…1} do
  ei, j = ωm

i+1, j+1ei+1, j+1 + ωx
i+1, jei+1, j + ωy

i, j+1ei, j+1
 end for

  W = (ω)p+1,q+1i, j,k=1 ; E = (e)p+1,q+1i, j=1  7D2; intermediate computations to 
be used in Algorithm 2

 return DeepBLASTΩ(θ) = vp,q,∇DeepBLASTΩ(θ) = (e)p,qi, j=1

Algorithm 2. Compute 〈 ∇ DeepBLASTΩ(θ), Z〉 and ∇2DeepBLASTΩ(θ)Z
Require θ = [μ, g] ∈ ℝ2×p×q,Z = [zμ, zg] ∈ ℝ2×p×q
 Forward pass
 v0,0 = 1; v0,. = 0; v.,0 = 0
 for i ∈ {1…p}, j ∈ {1…q} do
  ̇vi, j = zμi, j + ωm

i, j(vi−1, j−1) + ωx
i, j(zgi, j + vi−1, j) + ωy

i, j(zgi, j + vi, j−1)
  ω̇i, j=−JΩ(ωi, j) (ωm

i, j( ̇vi−1, j−1), ωx
i, j(zgi, j+ ̇vi−1, j),ωy

i, j(zgi, j+ ̇vi, j−1)) ∈ ℝ3
 end for

 Backward pass
 ep,q+1 = 0; ep+1,q = 0; ep+1,q+1 = 1
 for i ∈ {p…1}, j ∈ {q…1} do
  ̇ei, j = ω̇m

i+1, j+1ei+1, j+1 + ωm
i+1, j+1 ̇ei+1, j+1

   + ω̇x
i+1, jei+1, j + ωx

i+1, j ̇ei+1, j
   + ω̇ y

i, j+1ei, j+1 + ωy
i, j+1 ̇ei, j+1

 end for
 return ⟨∇DeepBLASTΩ(θ),Z⟩ = ̇vp,q,∇2DeepBLASTΩ(θ)Z = ( ̇e)p,qi, j=1

Alignment loss function. By defining a loss function between the pre-
dicted alignment and the structural alignment from TM-align, we can 
evaluate the accuracy of DeepBLAST and fine-tune the functions M and 
G. Mensch et al.71 proposed using the Euclidean distance between the 
predicted and ground truth alignments as a loss function. However, we 

found that a cross-entropy loss provided more reasonable alignment 
results. This loss is given by

L(e∗, e) = ∑
i, j

e∗i, j log(ei, j) + (1 − e∗i, j) log(1 − ei, j) (2)

where e* is the ground truth alignment and e is the predicted alignment. 
As shown by Mensch et al.71, the predicted traceback matrix represents 
the expectation across all possible predicted alignments, which is  
represented as a matrix of probabilities. As a result, the resulting align-
ment problem can be interpreted as a classification task to identify 
whether two residues between a pair of proteins are alignable. This pro-
vides additional motivation for using cross-entropy as a loss function.

Datasets
TM-Vec search. TM-Vec was trained on pairs of protein–domain 
sequences, along with data about the structural alignment for the pair. 
For every pair of proteins in our training dataset, we ran the method 
TM-align, which is an algorithm for protein structure comparison that 
is independent of protein sequences. TM-align produces a TM-score 
between 0 and 1, where a score below 0.2 represents a pair of unrelated 
proteins; a score above 0.5 implies that proteins are in the same fold; 
and 1 is a perfect match, indicating the same protein structure. Part of 
our pipeline involved validating whether our model could predict the 
TM-scores of pairs of proteins.

Protein-chain-pairs dataset. The model that we ultimately used  
to encode protein sequences was trained on pairs of protein chains. 
We sampled pairs of chains from SWISS-MODEL, which contains more 
than 500,000 chains. We made two different protein-chain-pair data-
sets, one with protein chains up to 300 residues long, and another 
with protein chains up to 1,000 residues long. For example, when we 
filtered out protein chains that were longer than 300 residues, we 
were left with 277,000 chains. With these chains in hand, we made 
pairs of chains, ensuring that we oversampled pairs of proteins with 
similar folds, using information from Gene3D75 about the predicted 
domains within protein chains. For all our pairs of protein chains, we 
ran TM-align using their SWISS-MODEL structures. We pulled out the 
TM-scores and sequence identity for every pair of chains. Last, we split 
our dataset into training, validation and test sets. For the chain-pairs 
dataset with chains up to 300 residues long, our train/validation split 
(randomly split during training) had 141 million pairs, and our held-out 
test dataset had 1 million pairs. Our chain-pairs dataset with chains  
up to 1,000 residues long had 320 million pairs.

Domain-pairs dataset. To determine whether our model could 
approxi mate TM-scores for domains and remote homologs, we built 
a dataset of pairs from the heavily curated CATH domains dataset. We 
started with the CATH nonredundant dataset of protein domains with 
no more than 40% sequence similarity. This dataset comprised 31,000 
protein domains. We then filtered out domains that were longer than 
300 residues, leaving 30,000 domains. All pairwise combinations of 
these 30,000 domains would lead to 450 million pairs; however, we 
aimed to build a balanced dataset, and dissimilar protein structures 
represented the vast majority of pairs (that is, domains with very dif-
ferent folds). Therefore, we undersampled pairs of CATH domains 
that came from different folds. The CATH dataset that we used for our 
experiments included 23 million pairs of domains.

We further split this dataset into training/validation and testing 
splits, and we evaluated performance on CATHS40 on left-out domain 
pairs (where the domain pair was not in the training/validation data-
set), left-out domains (either one or both domains not in the training/ 
validation dataset) and left-out folds (either one or both domains  
from folds that were not in the training/validation dataset). Here, the 
fold family was from the topology classification in the CATH hierarchy. 
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Our training/validation dataset contained 19 million pairs, our left-out 
pairs dataset contained 100,000 pairs, our left-out domains dataset 
contained 100,000 pairs, and our left-out folds dataset contained 
500,000 pairs.

Malidup and Malisam datasets. Some of our sequence alignment 
benchmarks were performed on the curated Malisam44 and Malidup43 
protein structural alignment benchmarking datasets. All the structural 
alignments analyzed were provided from the original benchmark43,44. 
We also used Malidup to benchmark TM-Vec and DeepBLAST. Malidup 
consists of 241 pairwise structure alignments for homologous domains 
within the same chain. These pairs are structurally similar remote 
homologs. Malisam consists of 130 pairs of analogous motifs.

Structure alignment dataset. We trained DeepBLAST on 1.5 million 
alignments from the PDB47 obtained using TM-align15. These proteins 
were obtained from a curated collection of 40,000 protein structures76. 
Details of the model specification and training can be found in ref. 77.

Bacteriocins dataset. The bacteriocin sequences and metadata we 
used were from the bacteriocin database BAGEL45, and the putative 
unannotated bacteriocins were from Morton et al.58.

MIP novel fold dataset. In this project, there were protein structure 
predictions for 200,000 diverse microbial protein sequences, repre-
senting 148 putative novel folds, and the authors calculated TM-scores 
for pairs of proteins with novel folds48. We evaluated our TM-score 
predictions on 184,000 pairs of MIP proteins for which at least one 
protein in the pair had a novel fold.

ProtTucker benchmark dataset. ProtTucker was built to embed  
protein domains in a structure-aware way and uses CATH domains for 
its contrastive learning approach29. For this benchmark, we followed 
the ProtTucker training–lookup–test splits for the purpose of direct 
comparison with their method. Their training and lookup datasets 
consisted of 66,000 and 69,000 CATH domains, respectively. The test 
dataset did not include any domains with an HSSP-value > 0 with any 
of the lookup domains78 and consisted of 219 domains. We created a 
domain-pairs dataset from their set of 66,000 training domains in  
the same manner as our other CATH domain-pairs dataset by sampling 
pairs of domains and then running TM-align to produce TM-scores  
for the pairs. Our final training dataset included 35 million  
domain pairs.

DIAMOND benchmark dataset. The DIAMOND benchmark51 consisted 
of a large query dataset and a large lookup dataset of single and multi-
domain proteins. The lookup dataset was from the 14 September 2019 
release of UniRef50 (ref. 16), which contained 37.5 million sequences; 
the authors then reduced this to a representative dataset of 7.74 million 
protein sequences with protein family annotations (SCOP)53. The query 
dataset was from the 25 October 2019 release of the NCBI nr database 
and also used the SCOP family annotations for proteins; the authors 
reduced this dataset to include at most 1,000 protein sequences for 
each SCOP superfamily, resulting in a dataset of 1.71 million queries. 
Finally, the authors locally shuffled both the query and the lookup 
sequences in this benchmark in 40-letter windows outside their anno-
tation ranges.

Embedding methods data. For this evaluation we used the CATH 
NR-S40 dataset (NR-S40) (ref. 37), a collection of approximately 30,000 
proteins of maximally 40% sequence identity, representing a diverse 
sampling of each tier in the CATH hierarchy. The dataset was parti-
tioned into training, validation and test sets. All the benchmarks were 
conducted on the test set, and all trainable methods in the comparison 
study were trained using the training and validation sets.

TM-Vec training
The TM-Vec models trained on CATHS40 and SWISS-MODEL chains up 
to 300 residues long both had 17.3 million trainable parameters and 
were 199MB in size. These models contained two transformer encoder 
layers. The TM-Vec models trained on CATHS100 domains (ProtTucker 
training domains) and SWISS-MODEL chains (up to 1,000 residues long) 
both had 34.1 million trainable parameters and were 391 MB in size. 
These models contained four transformer encoder layers.

The pretrained deep protein language model that we used, 
ProtTrans (ProtT5-XL-UniRef50), had no trainable parameters in our 
pipeline (the model parameters were frozen), as we used the model 
exclusively for extracting residue embeddings with a dimension of 
1,024. Our transformer encoder layers had four multihead attention 
heads and a dimension of 2,048 in their feedforward network model. 
We used the Adam optimizer to train the weights, with an initial learning 
rate of 1 × 10−4. A batch size of 32 was used. In terms of training require-
ments, for the TM-Vec model trained on SWISS-MODEL chains up to 
300 residues long, we trained TM-Vec on eight Nvidia V100 GPUs for 5 
days. This represented five epochs of training.

DeepBLAST training
The final DeepBLAST model consisted of eight convolutional layers of 
dimension 1,024 to parameterize the match embeddings M and gap 
embeddings G. We used the same ProTrans model to estimate residue 
vectors. The resulting model had more than 1.2 billion parameters. We 
used the Adam optimizer to train the weights, with an initial learning 
rate of 5 × 10−4, and the pretrained model weights were frozen. A batch 
size of 360 alignments was used for training. DeepBLAST was trained 
for 20 epochs on 24 Nvidia A100 GPUs for 6 days. The DeepBLAST 
model was trained on a dataset of 5 million alignments obtained from 
TM-align. Alignments containing more than 10 consecutive gaps or 
with TM-score less than 0.6 were excluded from the training dataset.

DeepBLAST alignment accuracy assessment
Alignment accuracy was assessed on a held-out test dataset of 1 million 
structural alignments. Validation loss was recorded during training, 
and we stopped training once the validation loss stopped decreasing 
(Supplementary Fig. 9). To determine how well DeepBLAST general-
izes, a subset comprising more than 120,000 alignments that were 
in the held-out TM-align alignments used to train DeepBLAST were 
analyzed. To evaluate the accuracy of the alignments, precision and 
recall were computed from the number of correctly identified match-
ing residues. As each alignment can be represented as a bipartite graph 
where the edges represents matching residues between two proteins, 
precision and recall can be extracted by comparing the edge sets of the 
predicted alignment and the known alignments. Supplementary Fig. 9 
shows the distribution of correctly identified alignment edges, with a 
median recall and precision of 87%, suggesting that these models can 
generalize well beyond the training dataset.

DIAMOND benchmark
The metric that we used to evaluate the performance of our method 
on the DIAMOND benchmark was sensitivity, which we defined as the 
percentage of the time the family annotations of the query protein were 
among the family annotations of the returned top n nearest neighbor 
proteins. For example, for the top 10 nearest neighbors, this quantifies 
the percentage of the time that the family annotations of the query 
protein are included in the family annotations of the returned top 10 
nearest neighbor proteins.

Bacteriocin benchmark
We compared TM-Vec with three structure prediction methods for 
this benchmark: AlphaFold2, ESMFold and OmegaFold. ColabFold11 
was used to run AlphaFold2 (ref. 10) using default parameters and 
the MMseqs2 pipeline. ESMFold v.1 was used for ESMFold structure 
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predictions, and OmegaFold model 1 was used for OmegaFold struc-
ture predictions.

Embedding methods benchmarks
As shown in Fig. 2b, we compared TM-Vec with six other representa-
tions: one sequence-based method, ProtTrans35; and five different 
structure-based methods: cliques, GRAFENE79, ORCA80, CNN (influ-
enced by DeepFRI81) and GCN (influenced by the Kipf and Welling 
graph autoencoder (GAE))82. Each structure-based method in some 
manner consumes a thresholded distance matrix, or contact map, and 
is used to output a fixed-sized feature vector that is meant to encode 
structural information.

The structure-based methods cliques, GRAFENE and ORCA output 
so-called manually engineered features; in particular, these feature 
vectors are histograms over known nonredundant graph substruc-
tures called graphlets. We introduce cliques as a simple baseline that 
consists of counting the ratio of nonoverlapping cliques up to size 7 
inside a given contact map. ORCA and GRAFENE count more advanced 
graphlet substructures including graphlet orbits (which consider  
the relative node identity within the graphlet).

We also evaluated against two other methods that admit learned 
structure-based representations: DeepFRI and the Kipf and Welling 
GAE. Each method consists of training an autoencoder on contact 
maps and extracting average-pooled representations from one of the 
hidden layers in the inference mode. DeepFRI is a CNN autoencoder, 
whereas the GAE is a graph autoencoder. Both models are trained to 
minimize the binary cross-entropy of the original contact map and its 
reconstruction.

Of the five selected structure-based methods, four were per-
mutation invariant; the exception was DeepFRI, which considers the 
canonical sequence ordering and treats the input matrix as an image. 
In addition, the manual crafted feature vectors do not scale well with 
graph density and hence cannot be evaluated for larger angstrom 
thresholds.

Evaluation metrics shown in Fig. 2b include cluster-adjusted 
mutual information and triplet-scoring AUPR. Each benchmark was 
applied to the top five most represented categories of each of the four 
CATH tiers separately. For cluster-adjusted mutual information, we 
applied spectral clustering using five clusters to the input feature vec-
tors and calculated the adjusted mutual information between the clus-
ter assignments and the actual label assignments. For triplet-scoring 
AUPR, we chose triplets in which two of the three shared the same label 
assignment, whereas the third was drawn from a different category. 
We constructed a balanced classification problem by considering the 
same-label pairs as the positive class and the same number of differ-
ently labeled pairs as the negative class. We used the cosine similarity 
among the selected positive and negative pairs as a classification pre-
diction and calculated the AUPR.

Supplementary Tables 3 and 4 show the results of our comparison 
of TM-Vec with several methods on the CATHS20 benchmark and Prot-
Tucker benchmarks. The commands used to run FoldSeek, HHBlits, 
MMseqs2 and Diamond are included in the TM-Vec software repository.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the protein sequences and structures used in this study for train-
ing and evaluation are publicly available. CATH domain sequences 
and structures are publicly available at http://www.cathdb.info/ (ref. 
37). SWISS-MODEL sequences and structures are available at https://
swissmodel.expasy.org/ (ref. 38). Our evaluation included several dif-
ferent datasets. Malidup can be found at http://prodata.swmed.edu/
malidup/ (ref. 43); Malisam at http://prodata.swmed.edu/malisam/ 

(ref. 44); the MIP at https://zenodo.org/record/6611431 (ref. 48); and 
the Bagel dataset at http://bagel.molgenrug.nl (ref. 45). DeepBLAST 
and TM-Vec are trained on protein sequences as well as TM-align out-
puts. Training and test datasets used for DeepBLAST can be found in 
the following repository: https://zenodo.org/record/7731163 (ref. 83); 
and training datasets for the different TM-Vec models can be found at 
https://zenodo.org/record/8038377 (ref. 84). Source code and data 
for all of the TM-Vec data visualizations are provided on Zenodo at 
https://zenodo.org/record/8021495 (ref. 85). Source code for all of the 
DeepBLAST data visualizations are provided at https://doi.org/10.5281/
zenodo.7731163 (ref. 86).

Code availability
TM-Vec can be found on GitHub at https://github.com/tymor22/
tm-vec and on Zenodo at https://doi.org/10.5281/zenodo.8021495 
(ref. 85). DeepBLAST can be found on GitHub at https://github.com/
flatironinstitute/deepblast and on Zenodo at https://doi.org/10.5281/
zenodo.8021480 (ref. 86). The structure visualizations presented in 
Figs. 1 and 3 were created using PyMOL v.2.4.0 (ref. 87). Our TM-Vec data  
visualizations were created using RStudio (v.2022.12.0+353) (ref. 88) 
and tidyverse (v.1.3.2) (ref. 89). Detailed installation instructions for 
installing both packages together or separately can be found at https://
github.com/flatironinstitute/deepblast/wiki/Installation (ref. 86).
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