
Nature Biotechnology

nature biotechnology

https://doi.org/10.1038/s41587-023-01917-2Article

Protein remote homology detection and
structural alignment using deep learning

Tymor Hamamsy1,10, James T. Morton2,3,10, Robert Blackwell   4,
Daniel Berenberg5,6, Nicholas Carriero4, Vladimir Gligorijevic6,
Charlie E. M. Strauss   7, Julia Koehler Leman2, Kyunghyun Cho   1,5,6,8 &
Richard Bonneau   1,5,6,9

Exploiting sequence–structure–function relationships in biotechnology
requires improved methods for aligning proteins that have low sequence
similarity to previously annotated proteins. We develop two deep learning
methods to address this gap, TM-Vec and DeepBLAST. TM-Vec allows
searching for structure–structure similarities in large sequence databases.
It is trained to accurately predict TM-scores as a metric of structural
similarity directly from sequence pairs without the need for intermediate
computation or solution of structures. Once structurally similar proteins
have been identified, DeepBLAST can structurally align proteins using only
sequence information by identifying structurally homologous regions
between proteins. It outperforms traditional sequence alignment methods
and performs similarly to structure-based alignment methods. We show
the merits of TM-Vec and DeepBLAST on a variety of datasets, including
better identification of remotely homologous proteins compared with
state-of-the-art sequence alignment and structure prediction methods.

Detecting protein sequence homology using sequence similarity
is the standard approach to identifying evolutionarily conserved
functions that are common between proteins1,2. During the past
50 years, sequence homology has enabled a wide array of applications,
including annotating protein functions3–7, predicting protein struc-
ture and protein interactions8–13, aiding protein design14 and modeling
evolutionary relationships1.

Many standard sequence homology approaches are reliable for
proteins that have high sequence similarity (>25%). However, unlike
sequence homology, structural homology can be retained across
long evolutionary timescales15. More than half of all proteins do not
have sequence homology in standard sequence databases owing
to their distant evolutionary relationships16. Recent metagenomics
studies have shown that the annotation rate could be boosted up to

70% using structural homology detection17. The challenge of remote
homology detection is identifying structurally similar proteins that
do not necessarily have high sequence similarity. It is widely under-
stood that protein structure–structure alignments offer substan-
tially more structure–function value at longer evolutionary distances
that typically elude methods based on protein sequence alignment.
Using sequence-alignment-based methods for closely related pro-
teins and structure-alignment-based methods for distantly related
proteins could be an ideal hybrid approach offering substantially
better sensitivity.

When protein structures are available, structural alignment tools
such as TM-align15, Dali18, FAST19 and Mammoth20 can provide a measure
of structural similarity by aligning protein structures via superposi-
tion15,18,20–22. Although this approach can provide a measure of structural

Received: 7 September 2022

Accepted: 26 July 2023

Published online: xx xx xxxx

 Check for updates

1Center for Data Science, New York University, New York, NY, USA. 2Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY,
USA. 3Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of
Health, Bethesda, MD, USA. 4Scientific Computing Core, Flatiron Institute, Simons Foundation, New York, NY, USA. 5Department of Computer Science,
Courant Institute of Mathematical Sciences, New York University, New York, NY, USA. 6Prescient Design, New York, NY, USA. 7Bioscience Division,
Los Alamos National Laboratory, Los Alamos, NM, USA. 8CIFAR, Toronto, Ontario, Canada. 9Department of Biology, New York University, New York, NY, USA.
10These authors contributed equally: Tymor Hamamsy, James T. Morton.  e-mail: kc119@nyu.edu; bonneaur@gene.com

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01917-2
http://orcid.org/0000-0002-9450-9240
http://orcid.org/0000-0003-3639-4673
http://orcid.org/0000-0003-1669-3211
http://orcid.org/0000-0003-4354-7906
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-023-01917-2&domain=pdf
mailto:kc119@nyu.edu
mailto:bonneaur@gene.com

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

than AlphaFold2, OmegaFold and ESMFold in combination with
TM-align11. We also showcase the merits of DeepBLAST on different
remote homology benchmarks, demonstrating that language model
embeddings can capture more of the structural basis for alignment
than purely sequence-based alignment. TM-Vec and DeepBLAST are
broadly applicable tools that have the potential to enable the structural
(and structural-similarity-based) annotation of proteins and their
functions in the vast and growing biodiversity contained in protein
sequence collections.

Results
Our contributions are twofold: (1) we introduce a framework to
perform scalable structure-aware search, TM-Vec, that affords substan-
tial improvements in speed and sensitivity41 (Fig. 1 and Supple mentary
Fig. 1); and (2) we introduce a differentiable sequence alignment
algorithm, DeepBLAST, that performs structural alignments
(Supplementary Fig. 2).

TM-Vec is a twin neural network model that produces protein
vectors that can be efficiently indexed and queried41,42 (Fig. 1). To encode
structural information in these protein vectors, TM-Vec is trained
to approximate TM-scores (as a metric of structural similarity) of
pairs of proteins with structures. Once a TM-Vec model has been
trained, it can be used to encode large databases of protein sequences,
producing structure-aware vector embeddings for these protein
sequences. Upon creation of the TM-Vec vector-embedding data-
base, rapid protein structure search is possible by finding the nearest
neighbors in the embedding space.

The basis of DeepBLAST is to predict the structural alignments
of proteins by training models on proteins with both sequences and
structures available. Our alignment strategy uses recent developments
in differentiable dynamic programming and protein language models
to predict the structural alignments given by TM-align for pairs of
protein sequences (Supplementary Fig. 2).

We showcase the ability of DeepBLAST to extract structural align-
ments from remote homologs on the Malidup43 and Malisam44 structure
databases compared with existing alignment algorithms. Furthermore,
we evaluate the ability of TM-Vec to perform remote homology search
on the CATH37, SWISS-MODEL38, Malidup43 and Malisam44 structure
databases. Finally, we showcase the merits of using TM-Vec in tandem
with DeepBLAST in the context of the BAGEL bacteriocin database45.

Scalable structural alignment search using neural networks
The challenge of applying our proposed structural alignment algorithm
to large-scale protein databases is the demanding runtime require-
ments. Each DeepBLAST structural alignment takes on the order of
milliseconds and scales linearly with database size, making structural
alignment searches on large databases impractical. To mitigate this
issue, we developed TM-Vec, a model that is designed to efficiently
query structurally similar proteins. Our strategy relies on the construc-
tion of twin neural networks, whose purpose is to provide per-protein
vectors for fast indexing. The cosine distance of these vectors approx-
imates the TM-score between pairs of proteins. This model can then
be applied to entire protein databases to create an index over all the
protein vectors. The resulting database can be efficiently queried in
O(log2n) time for n proteins41, providing sublinear scaling to retrieve
structurally similar proteins based on their TM-score.

To evaluate the viability of our TM-score prediction strategy,
we benchmarked TM-Vec on the SWISS-MODEL and CATH databases
(Fig. 2), and compared our approach with multiple state-of-the-art
structure-based and sequence-based methods. After training TM-Vec
on approximately 150 million protein pairs from SWISS-MODEL (from
277,000 unique SWISS-MODEL chains), we observed a low prediction
error (in the range of 0.025) that was independent of sequence iden-
tity across 1 million held-out protein pairs (Fig. 2a). Like traditional
sequence alignment methodologies, TM-Vec can accurately estimate

similarity in low-sequence-similarity scenarios, there are two major
limitations. First, protein structures are not available for most pro-
teins. Despite the rapid advances made by AlphaFold2, there remains
a large gap between known protein sequences and predicted protein
structures23. In metagenomics samples alone, 2.4 billion24 to 68 billion25
unique proteins have been observed, highlighting the small percent-
age of proteins with known structures. Furthermore, AlphaFold2
has limited utility in the context of predicting structures for proteins
with short sequences26. Work on structure prediction that uses single
or few homologous sequences is ongoing, but most methods exhibit
reduced accuracy and take substantial time and memory resources
per sequence, limiting scaling to genomic protein databases.

Given the rapid growth of protein structure databases, most exist-
ing structural alignment tools are far too computationally intensive
to run at scale, requiring brute-force all-versus-all comparisons to
query structurally similar proteins. Although there are emerging tools
for scalable homology search on structural databases27, as well as for
embedding proteins for either search or alignment28,29 (Table 1), tools
that perform explicit structural similarity search and alignment on
large protein sequence databases are also needed.

To enable scalable structurally aware search and alignments on
protein sequences, we developed two tools, TM-Vec and DeepBLAST.
TM-Vec can compute accurate structural similarity scores; it out-
puts vector representations of proteins and can be used to construct
indexable databases to enable efficient querying of proteins by struc-
tural similarity. DeepBLAST can compute structural alignments from
pairs of sequences. Building on recent advances in protein language
models30–36, we developed neural networks that can be fine-tuned
on protein structures to (1) predict TM-scores between pairs of pro-
teins using twin neural networks and (2) predict structural alignments
between proteins using a differentiable Needleman–Wunsch algorithm.

We showcase the merits of TM-Vec models in the context of CATH37
and SWISS-MODEL38 to show how our tool can scale with regard to
database size while maintaining high precision in identifying struc-
turally similar proteins. Our benchmarks suggest that TM-Vec can
extrapolate beyond known fold space, and we contrast TM-Vec with
AlphaFold2 (ref. 10), OmegaFold39 and ESMFold40 in a case study where
TM-Vec can distinguish between bacteriocin classes more accurately

Table 1 | Inputs and outputs of methods used for
benchmarking

Input data Output alignment

Tool Sequence Structure Sequence Structure

Needleman–Wunsch ✓ ✓

Smith–Waterman ✓ ✓

BLAST ✓ ✓

HMMER ✓ ✓

Diamond ✓ ✓

HHBlits ✓ ✓

MMseq2 ✓ ✓

ProtTucker/EAT ✓ ✓

FoldSeek ✓ ✓ ✓

TM-align ✓ ✓ ✓

Dali ✓ ✓ ✓

FAST ✓ ✓ ✓

Mammoth ✓ ✓ ✓

TM-Vec + DeepBLAST ✓ ✓ ✓

Our pipeline, consisting of TM-Vec + DeepBLAST, is highlighted.

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

structural differences when the sequence identity is greater than
90% (median error = 0.005). Unlike traditional sequence alignment
methods, which typically cannot resolve sequence differences below
25% sequence identity46, TM-Vec can resolve structural differences
(and detect significant structural similarity) between sequence pairs
with percentage sequence identity less than 0.1 (median error = 0.026).
Overall, there was a strong correlation between the TM-scores pre-
dicted by TM-Vec and those produced by running TM-align (r = 0.97,
P < 1 × 10−5) (Supplementary Fig. 4a).

We next validated TM-Vec on CATH protein domains that were
clustered at 40% sequence similarity. For this, we validated predic-
tions of TM-Vec on three CATH held-out datasets: (1) pairs (of domains)
that were never seen in training together; (2) domains that were held
out; and (3) folds that were held out. TM-Vec accurately predicted
TM-scores for proteins from held-out pairs (r = 0.936, P < 1 × 10−5,
median error = 0.023) as well as held-out domains (r = 0.901, P < 1 × 10−5,
median error = 0.023) (Fig. 2b and Supplementary Fig. 4b). TM-Vec’s
prediction errors were highest for pairs with TM-scores in the [0.75–1.0]

Pr
et

ra
in

ed
la

ng
ua

ge
 m

od
elSequence X

Sequence Y

ф(Hy)Hy

Z1

Z2

Zn

ф(Hx)

Hx
Tr

ai
ne

d
TM

-V
ec

m
od

el

Sequence 1

Sequence 2

Sequence n

Query
sequence

Similar protein 1

Similar protein 2

Similar protein k

Alignment with similar protein k

b Train TM-Vec model

c Build TM-Vec database

Zx = ф(HX)
Zy = ф(HX)

Similarity(Zx, Zy)

Input: pairs of amino acid
sequences Extract embeddings

Apply twin neural
network ф to
embeddings

Compute cosine similarity of vector
representations of sequences

(predicting their TM-score)

Input: large database of
n protein sequences

(SWISS-Prot)

Extract vector
representation Z for

every sequence

Build database of vector
representations for N

proteins

Fast vector search + TM-
score prediction using

cosine similarity

Retrieve k nearest
neighbors with highest

predicted TM-score

Produce DeepBLAST
alignment for k nearest

neighbors

d Run TM-Vec search by querying database

a TM-Vec + DeepBLAST workflow

Query sequence
TM-Vec search: find proteins with

highest predicted structural similarity
(TM-score) to query

DeepBLAST: produce a structure-
aware sequence alignment for most

similar proteins

Retrieve most similar
proteins, their

sequences and TM-
scores

Output structural
alignments

Tr
ai

ne
d

TM
-V

ec
m

od
el

e Run DeepBLAST to produce alignments for nearest neighbors

Similar protein 1

Similar protein 2

Similar protein k

Input: k nearest
neighbors with highest

predicted TM-score

b, c and d e

Z1

Z2

Zn

Zn–1

Z1

Zquery

Z2

Zn

Zn–1

Fig. 1 | Schematic method overview. a, An integrated TM-Vec + DeepBLAST
pipeline could consist of two stages: retrieval and alignment. First, TM-Vec takes
a query protein sequence and rapidly retrieves proteins that are predicted to
have similar structures (TM-scores) to the query. Then, DeepBLAST produces
alignments for the proteins with the highest predicted structural similarity.
Note that benchmarking was carried out for TM-Vec and DeepBLAST separately.
b, TM-Vec is trained on pairs of amino acid sequences and their TM-scores. We
first input a pair of sequences (domains, chains, proteins) and use a pretrained
deep protein language model to extract embeddings for every residue of the
sequence. Next, we apply a twin neural network, called ϕ, to the embeddings of
each sequence and produce a vector representation, z, for each sequence. The
ϕ network is trained on millions of pairs of sequences, and its architecture is
detailed in Supplementary Fig. 1. Finally, we compute the cosine similarity of the

vector representations, which is our prediction for the TM-score of the pair. c, We
build a TM-Vec database by encoding large databases of protein sequences using
a trained TM-Vec model. As an example, we input the sequences from Swiss-Prot,
extract vector representations for every sequence and finally build an indexed
database of TM-Vec’s structure-aware vector representations of proteins.
d, Demonstration of protein structure search using the TM-Vec pipeline. As
the indexed database of vector representations has already been built, protein
search consists of first encoding the query sequence using the trained TM-Vec
model and then performing fast vector search and TM-score prediction using
cosine similarity as the search metric. As search results, we return the k nearest
neighbors with the highest predicted structural similarity (TM-score) to the
query sequence. e, As a last step, we apply DeepBLAST to produce structural
alignments for the k nearest neighbors to a query sequence.

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

0

0.1

0.2

0.3

[0,0.25] (0.25,0.5] (0.5,0.75] (0.75,1]

TM-score

CATH validationba

d

c ProtTrans TM-Vec

Dimension 1

D
im

en
si

on
 2 Class

Alpha beta

Mainly alpha

Mainly beta

ProtTrans TM-Vec

Dimension 1
D

im
en

si
on

 2

Architecture

Test dataset

2-layer sandwich

Pairs

Domains

Folds

3-layer (ABA)
sandwich
Orthogonal bundle

Roll

Sandwich

Dimension 1

D
im

en
si

on
 2

M
ac

ro
 A

U
PR

Topology

Model

Alpha–beta plaits
Arc repressor
mutant, subunit A
Immunoglobulin-like

Jelly rolls

Rossmann fold

Tm-Vec

ProtTrans

ORCA

GRAFENE

GCN

CNN

Cliques

Dimension 1

D
im

en
si

on
 2

Homology

Alpha–beta plaits

Immunoglobulins

Jelly rolls
P-loop-containing
nucleotide
triphosphate
hydrolases
Rossmann fold

0

0.025

1.00

0.75

0.50

0.25

0

Class Architecture

CATH tier

Topology Homology

0.050

0.075

0.100

[0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]

Percentage sequence identity

TM
-s

co
re

 p
re

di
ct

io
n

er
ro

r
(a

bs
ol

ut
e

va
lu

e)

TM
−s

co
re

 p
re

di
ct

io
n

er
ro

r
(a

bs
ol

ut
e

va
lu

e)

SWISS-MODEL validation

ProtTrans T-Vec ProtTrans TM-Vec

AM
I

1.00

0.75

0.50

0.25

0

Class Architecture

CATH tier

Topology Homology

Model
Tm-Vec

ProtTrans

ORCA

GRAFENE

GCN

CNN

Cliques

Fig. 2 | TM-Vec structural similarity prediction. a–d, Two TM-Vec models were
built and benchmarked against protein pairs from SWISS-MODEL and CATHS40.
a, SWISS-MODEL TM-score prediction errors (absolute value of difference
between the known TM-score from running TM-align on structures and the
TM-Vec-predicted TM-score) for 1.01 million pairs with different sequence
identities. Sequence similarity as measured by sequence identity ranges from
[0, 0.1) (least similar) to (0.9, 1.0] (most similar). b, TM-Vec absolute value of
prediction error obtained from protein sequences compared with TM-scores
from TM-align obtained from protein structures. Prediction errors were stratified
across 681,000 proteins from three test benchmarking datasets: pairs, domains
and folds. The pairs test dataset included protein sequence pairs that were left
out of model training and/or validation. Similarly, the domains and folds test
dataset included protein pairs derived from domains and folds that were never
seen in model training and/or validation. Bounds of the boxplots denote 25%
and 75% percentiles, the center is the 50% percentile and the whiskers denote the

1.5× interquartile range. c, t-SNE (t-distributed stochastic neighbor embedding)
visualization of protein embeddings from the top five most represented
categories from each CATH classification tier (class, topology, architecture,
homology) within the test dataset. For each CATH classification tier, TM-Vec
embeddings were observed to separate structural categories better than the
default protein sequence embeddings generated by ProtTrans. d, Quantitative
benchmarks of the ability of TM-Vec to predict CATH labels. We compared with
ProtTrans and five structure-based methods: cliques, GRAFENE, ORCA, CNN
(influenced by DeepFRI) and GCN (influenced by the Kipf and Welling GAE).
Adjusted mutual information was computed by comparing spectral clustering
assignments with structural label assignments for each CATH classification tier.
Triplet-scoring AUPR is a metric that determines how often cosine embedding
distances from within structural categories are smaller than cosine embedding
distances across structural categories.

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

range, and its accuracy declined on held-out folds. However, the incre-
mental increase in the generalization error for proteins in the held-out
folds (r = 0.781, P < 1 × 10−5, median error = 0.042) shows that TM-Vec is
robust to out-of-distribution observations, a critical requirement for
extrapolating beyond the experimental structures within the Protein
Data Bank (PDB)47 (Fig. 2b and Supplementary Fig. 4b).

To further validate this finding, we applied the TM-Vec model
trained on SWISS-MODEL chains to the Microbiome Immunity Project
(MIP)48, which contains 200,000 de novo protein structure predic-
tions from previously unknown proteins, including 148 putative
folds. The correlation between our predictions and the TM-scores
from MIP protein pairs with putative folds (r = 0.785, P < 1 × 10−5) was
surprisingly close to the estimates we observed with the held-out
CATH folds. Supplementary Table 1 shows a confusion matrix for
our TM-score predictions for protein pairs where each protein has
a putative fold; we observed that TM-Vec had a 99.9% true positive
rate for predicting whether a pair shared a fold (TM-score ≥ 0.5) and a
false positive rate of 3.9%. Taken together, these validation benchmarks
across SWISS-MODEL, CATH and MIP show that TM-Vec is suitable
for detecting similarities between proteins with previously
unknown protein structures and folds, extending the general utility
of this work.

Capturing structural information in the latent space
We visualized and benchmarked the learned representations produced
by TM-Vec against an array of alternative methods that depend on either
sequence or structure alone. The results of our benchmarks show that
TM-Vec implicitly learns representations that correlate well with struc-
tural classifications (Fig. 2). As shown in Fig. 2c, TM-Vec embeddings
capture the latent structural features of the CATH hierarchy. For com-
parison, embeddings produced by ProtTrans35, the pretrained language
model on which TM-Vec is based, are shown side by side with those of
TM-Vec after training (Fig. 2c). The ProtTrans embeddings for proteins
are calculated by averaging the ProtTrans per-residue embeddings.
Across every tier of CATH, TM-Vec separates CATH structural classes
more clearly than the default ProtTrans embeddings.

To further evaluate the structural information of TM-Vec protein
vectors, we encoded the CATH database using TM-Vec and performed
search and classification. In our search benchmarks, we observed
that TM-Vec was able to correctly retrieve proteins with the same fold
(topology level in CATH) in CATHS100 (97% accuracy) and CATHS40
(88.1% accuracy) for queried proteins (Supplementary Table 2). We next
compared TM-Vec retrieval with FoldSeek (which performs its struc-
ture search on the ground truth CATH domain structures)27, MMseqs2
(which uses the CATH sequences)49, and another structure-aware
protein embedding method, ProtTucker29, which is trained on CATH
domain sequences and uses contrastive learning to learn domain
representations (Supplementary Table 3). To make a head-to-head
comparison with ProtTucker and these other methods, we trained a
TM-Vec model on the same domains as ProtTucker’s model and evalu-
ated TM-Vec on their test set of 219 domains (ProtTucker benchmark
data). Across each level of the CATH hierarchy, TM-Vec outperformed
FoldSeek, MMseqs2 and ProtTucker (Supplementary Table 3). At
the homology level, TM-Vec retrieved proteins with 81% accuracy,
ProtTucker (EAT) retrieved proteins with 78% accuracy and FoldSeek
retrieved proteins with 77% accuracy. As this test set of 219 proteins was
quite small, we chose to also compare these different methods on the
CATHS20 dataset, alongside other methods including HHBlits50 and
DIAMOND51 (Online methods). Here, the lookup and query databases
were both CATHS20, and the TM-Vec model was the same model trained
on the ProtTucker domains (Supplementary Table 4). Our evaluation
criterion was the accuracy of retrieving the correct CATH homology
for a query domain (which was itself excluded from the lookup data-
base). Here, the TM-Vec model trained on CATH domains performed
the best (88% accuracy), followed by FoldSeek (85%), ProtTucker (71%)

and HHBlits (49%) (Supplementary Table 4). Notably, a TM-Vec model
trained on SWISS-MODEL chains achieved 71% accuracy on this CATH
domain benchmark.

In our classification benchmarks, we compared TM-Vec with
several state-of-the-art methods (cliques, CNN, GCN, GRAFENE, ORCA
and ProtTrans; Methods) using cluster-adjusted mutual information
and triplet-scoring area under the precision–recall curve (AUPR) to
assess the representation quality of each method (Methods). TM-Vec
outperformed the sequence-based and structure-based methods for
topology, homology and architecture classification as demonstrated
by its higher macro AUPR values for these tiers, indicating that TM-Vec
was convolving both sequence and structure knowledge bases (Fig. 2d).
At the class level, cliques and CNN achieved higher macro AUPR values
than TM-Vec. At the topology level, TM-Vec had the highest macro
AUPR value (0.94), and the second best method was GRAFENE (macro
AUPR = 0.79). The performance gap between the pretrained ProtTrans
model (macro AUPR = 0.66) and the fine-tuned model obtained
with TM-Vec highlights the importance of fine-tuning with a
structure-based objective.

Furthermore, the fact that TM-Vec outperformed sequence-based
representations on the CATH dataset that was clustered at 40%
sequence similarity provides evidence that TM-Vec learns quality
structural features rather than a trivial feature of the underlying data
or a function of sequence similarity.

Extracting structural alignments from sequence
We benchmarked DeepBLAST against three sequence alignment
methods, Needleman–Wunsch52, BLAST1 and HMMER2, in addition
to four structural alignment methods that work directly with the
atomic coordinates, FAST19, TM-align15, Dali18 and Mammoth-local20
(Table 2). TM-align achieves global alignment by maximizing the
three-dimensional (3D) spatial overlap of the atoms in each protein.
Conversely, the Mammoth-local structure alignment scores feasible
residue pairings between the proteins according to the structural simi-
larity of seven-contiguous-neighbor windows, as opposed to a remote
homology philosophy where the full length structure is allowed to be
flexible and does not require all the aligned atoms to overlap simul-
taneously after a rigid body orientation. Dali uses a distance matrix
computed from hexapeptide contacts to align the two protein struc-
tures. FAST tries to preserve similar residue–residue contact patterns.

Table 2 | Malisam and Malidup benchmarks

Malidup Malisam

Method F1 score Number
detected

F1 score Number
detected

BLAST 0.019 ± 0.019 5 0.000 ± 0.000 2

HMMER 0.020 ± 0.02 8 0.020 ± 0.020 3

Needleman–
Wunsch

0.098 ± 0.010 234 0.025 ± 0.003 129

Smith–Waterman 0.114 ± 0.010 234 0.031 ± 0.003 129

DeepBLAST 0.265 ± 0.020 234 0.066 ± 0.009 129

Mammoth-local 0.483 ± 0.020 234 0.187 ± 0.017 129

FAST 0.569 ± 0.026 234 0.300 ± 0.030 129

TM-align 0.576 ± 0.024 234 0.393 ± 0.031 129

Dali 0.791 ± 0.014 234 0.619 ± 0.029 129

Sequence and structure alignment methods measured by their F1 score. FAST, TM-align,
Dali and Mammoth-local are structure–structure alignment methods and provide a
structure-informed upper bound for this benchmark, as many of the most challenging
alignments in this benchmark are ultimately structure derived or curated with a structure–
structure alignment as an oracle. The best F1 scores for sequence and structure alignment
methods are highlighted in bold.

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

We extracted the local structure alignment from the first phase of the
Mammoth algorithm. These structure alignment algorithms span the
range of expert opinions as to the most meaningful structure alignment
(from emphasizing long-range overlap to contacts and local similarity)
and thus span potential disagreement across different previous
approaches. No structure alignment algorithms tested took sequence
similarity into account.

Our method DeepBLAST uses sequence alone; we do not supply
the atomic coordinates of either protein to the algorithm after training

it. To form a common reference for an optimal alignment, we focused
on two gold-standard benchmark sets comprising manually curated
structural alignments, named Malisam44 and Malidup43. Manual struc-
ture alignment is intuitive human assessment, typically emphasizing
3D overlap and topology preservation, as those features are easier
to visualize than a plethora of local alignments and contacts53–55.
All methods tend to agree when the problem is trivial owing to near
sequence identity and near structural identity. Therefore, the most
valuable gold-standard alignment benchmark set is where the dataset

Annexin second domain

An
ne

xi
n

fir
st

 d
om

ai
n

Residue alignm
ent probability

KYTRGTVTAFSPFDARADAEALRKAMKGMGTDEETILKILTSRNNAQRQEIASAFKTLFGRDLVDDLKSELTGKFETLMVSLMRP

SV----P-A---YFA-E---TLYYSMKGAGTDDDTLIRVMVSRSEIDLLDIRHEFRKNFAKSLYQMIQKDTSGDYRKALLLLCGG

1.0

TM-Vec

TM-align

Dali

FAST

Mammoth

Smith–Waterman

Needleman–Wunsch

DeepBLAST

0.80.60.4

0

84
80
76
72
68
64
60
56
52
48
44
40
36
32
28
24
20
16
12
8
4
0 1.0

0.8

0.6

0.4

0.2

0

84807672686460565248444036322824201612840

0.25

0.50

TM
-s

co
re

Manual TM-score

Method
0.75

1.00
a

db

c

Fig. 3 | Annotating and aligning proteins in the Malidup benchmark.
a, Comparison of different sequence and structural alignment methods with
DeepBLAST and TM-Vec. DeepBLAST, Needleman–Wunsch and Smith–Waterman
are sequence alignment methods, whereas Fast, Dali, Mammoth and TM-align
are structural alignment methods. The y axis represents the predicted TM-score
(for the alignment methods, this is given by a predicted alignment), and the x axis
represents the TM-score from a manually curated alignment. The performance
of TM-Vec was comparable with that of structural alignment methods, and its
trend line overlapped with that of TM-align. The performance of DeepBLAST was
similar to that of Mammoth, a structure alignment method, and it outperformed

the other sequence alignment method, Needleman–Wunsch. Data are presented
as mean values estimated with a locally estimated scatterplot smoothing fit
with 95% confidence intervals. b, A predicted alignment of two duplicated
Annexin domains from Malidup, where DeepBLAST could accurately align
(TM-score = 0.81) and Needleman–Wunsch struggled to align (TM-score = 0.33).
c, Manual alignment of the two duplicated Annexin domains; the agreement
with DeepBLAST is highlighted. d, Visualization of the manual structural
alignment of the Malidup; the chains that DeepBLAST aligned correctly are
highlighted in yellow.

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

members have low sequence identity as well as varied degrees of
structural similarity. Our benchmarks were performed on the curated
Malisam44 and Malidup43 protein structural alignment benchmark-
ing datasets (which are heavily skewed towards difficult-to-detect,
low-sequence-identity remote homology).

As shown in Table 2, DeepBLAST outperformed all tested sequence
alignment methods (Supplementary Fig. 3) but did not challenge the
structural alignment methods. In both benchmarks, most of the protein
alignments did not pass the filtering steps in both BLAST and HMMER.
As a result, these tools were not able to detect the vast majority of
the alignments. This left Needleman–Wunsch and Smith–Waterman
as the baseline for sequence alignment methods. It is important to
note again that there is no one definition of the best structural align-
ment56,57 and that this task becomes increasingly ambiguous as the
remoteness of the homolog increases and the number of homo logous
residues declines. This was apparent in the Malidup benchmark, where
the variation in differences between TM-Vec and TM-align as well as
DeepBLAST and TM-align increased for proteins with TM-score < 0.5
(Supplementary Fig. 5a). Thus, the above F1 score tracks well with
alignment accuracy but is limited in that it only scores sequence align-
ments with respect to a single reference alignment contained within
the curated set.

Remote homology detection and alignment
To gauge the performance of TM-Vec compared with existing structural
alignment methods, we applied TM-Vec to the curated Malidup protein
structural alignment benchmarking dataset43, a difficult benchmark
with low sequence identity and varied degrees of structural similarity.
Each pair of proteins in this benchmark has a significant structurally
similar region, a manually curated structure–structure alignment,
and low sequence similarity that is either below or at the threshold of
detection by sequence alignment tools. One of the challenges of bench-
marking structural alignment methods is defining the ground truth
structural alignment. As shown in Fig. 3a, there were subtle disagree-
ments between the manual alignments and the structural alignment
methods, highlighting the uncertainty in defining the optimal struc-
tural alignment. This is highlighted in scenarios where TM-align obtains
a better structural superposition compared with the manual align-
ment (TM-align superimposes more atoms, or a greater extent of back-
bone regions, than the manual alignment). All of the structure-aware
methods agreed at high structural similarity, TM-score = 1 being
perfect superposition of all atoms, but increasingly disagreed as the
TM-score declined.

We observed that TM-Vec was directly comparable with structure-
aware methods, and the confidence bands for its trend line overlapped
with the trend line for TM-align (Fig. 3a). We also found that DeepBLAST
was directly comparable with the structure-aware method Mammoth,
as their trend lines and predictions were very similar. Although the
trend lines overlapped, the prediction errors of TM-Vec and DeepBLAST
had higher variance than those of the structure-aware methods. To
determine the agreement between sequence alignment methods
and structural alignment methods, the TM-score was calculated for
the predicted alignment. Although DeepBLAST does not always
generalize for divergent proteins, to illustrate an example where our
method did obtain correct alignments for highly divergent proteins, we
focused on two duplicated Annexin domains with a sequence identity
of 24.7%. DeepBLAST accurately aligned these proteins
(TM-score = 0.81) and four of the five folds that were superimposed
were in agreement with the manual alignment (Fig. 3b–d). By contrast,
Needleman–Wusnch was not able to identify any structural similar-
ity between these two proteins (TM-score = 0.33). On the Malidup
benchmark, the Spearman rank correlation between the DeepBLAST
and TM-Vec TM-scores was 0.75, and the correlations for DeepBLAST
and TM-Vec with TM-align’s TM-scores were 0.81 and 0.66, respectively
(Supplementary Fig. 5).

The differences between Needleman–Wunsch and DeepBLAST
were clear across all the protein pairs in Malidup and Malisam. Based
on the percentage of structural similarity, given by the percentage of
the smaller protein that aligns, scores shown in Supplementary Fig. 6,
the high confidence alignments predicted by DeepBLAST were largely
in agreement with the manually curated structural alignments. Fur-
thermore, the sequence identity scores shown in Supplementary Fig. 6
indicate that DeepBLAST is able to obtain structural alignments for
pairs that have ≤25% sequence identity, a known barrier for sequence
alignment methods but one that can be resolved with the known pro-
tein structures. Taken together, these metrics suggest that DeepBLAST
can perform local structural alignment.

Full repository-level scaling and runtime
To show that TM-Vec can be applied to modern protein repositories,
we benchmarked its search runtime in multiple scenarios. After the
creation of a TM-Vec database, a query is performed for a new protein
sequence by first encoding it using the TM-Vec model and then per-
forming rapid vector search on the indexed protein TM-Vec database
(Fig. 1). Search runtimes for different numbers of queries and database
sizes (Supplementary Fig. 7) empirically show that encoding of queries
is linear in time, with an ability to encode 50,000 queries on one GPU
within 40 min (Supplementary Fig. 7a). Supplementary Fig. 7b shows
sublinear search performance. The search runtime benchmarks for
different database sizes show that 50,000 queries on a database of
5 million proteins can be performed within 20 s on a single GPU, demon-
strating that encoding of sequences is the computational bottleneck in
search. To contrast the TM-Vec query search time with that of existing
sequence-based methods, we compared the TM-Vec query runtimes to
those of DIAMOND51 and BLAST. TM-Vec was not as fast as DIAMOND,
which is optimized for short-reads and is known to have remote homo-
logy sensitivity and alignment performance similar to BLAST. TM-Vec
did outperform BLAST in all cases, including in modes adapted for
scaling TM-Vec described here, and its performance will scale sub-
linearly with database size (Supplementary Fig. 7c). For example,
TM-Vec achieved a 10× speedup compared with BLAST when perform-
ing 1,000 queries on a database of 100,000 proteins, and this speedup
will increase exponentially as the database size increases: on a 1 million
protein database there is a 100× speedup.

The development of TM-Vec overcomes two major challenges to
applying structural alignments predicted from DeepBLAST at scale:
avoiding all-versus-all pairwise comparisons and predicting struc-
tural similarity. Thus, TM-Vec can be used to carry out full repository
searches and large all-versus-all queries, and can do so with vastly
improved remote homology detection and sensitivity. Further gains
in computational performance are likely to be achievable (this work
focuses on accuracy and sensitivity with respect to structure–structure
quality alignments).

Once structurally similar proteins have been identified, struc-
tural alignments via DeepBLAST can identify structurally homologous
regions. Our structural alignment runtime benchmarks show that
unlike the Needleman–Wunsch CPU implementations, the structural
alignment runtime of our differentiable Needleman–Wunsch GPU
implementation does not increase linearly with respect to the batch
size, demonstrating how our method can process multiple alignments
in parallel on a single GPU (Supplementary Fig. 7d). Furthermore, both
the CPU and GPU implementations scale linearly with regard to the
length of both proteins, with our GPU implementation consistently
yielding a 10× speedup over the CPU implementation.

As shown in Supplementary Table 5, we further evaluated the
ability of TM-Vec to scale to full repositories and achieve competitive
results by evaluating its performance on the DIAMOND benchmark
(Methods), which has UniRef50 (ref. 16) as a lookup database and
comprises both single-domain and multiple-domain proteins. For
this benchmark, we used the TM-Vec model trained on SWISS-MODEL

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

chains up to 1,000 residues long. DIAMOND has a sensitivity of 99% for
the top protein on this benchmark (for all proteins). After embedding
proteins in the UniRef50 lookup database, we compared our perfor-
mance on all query proteins versus only multiple-domain proteins, and
on proteins with different length thresholds (600 and 1,000 residues).
For all proteins up to 1,000 residues long, the top nearest neighbor
shared the same family annotation 92.1% of the time, and among the

top 50 nearest neighbors, the sensitivity was 96.9% (Supplementary
Table 5). For only multiple-domain proteins, the top nearest neighbor
shared the same family annotations 86.2% of the time for proteins up
to 600 residues long, and 82.6% of the time for proteins up to 1,000
residues long. Among the top 50 returned proteins, the sensitivity
was 94.6% for multiple-domain proteins up to 1,000 residues long
(Supplementary Table 5). When returning many nearest neighbors

0

Class 1

Bacteriocin class

YP
_0

06
65

66
67

H
yp

ot
he

tic
al

 p
ro

te
in

Residue alignm
ent probability

Near neighbor 1a d

b

c

Near neighbor 2

Near neighbor 3

Class_1, Curvopeptin
Thermomonospora curvata

Class_1, Thurincin_H_(thuricin17)
Bacillus thuringiensis

Class_1, SGR_1512_putative_Linaridin
Streptomyces griseus NBRC13350

YP
_0

06
65

66
67

H
yp

ot
he

tic
al

 p
ro

te
in

YP
_0

06
65

66
67

H
yp

ot
he

tic
al

 p
ro

te
in

Subclass (class 1)

Method

Class 2

Class 3

Unclassified

Cyanobactin

Lanthipeptide

Lanthipeptide A

Lanthipeptide B

Lasso peptide

Linaridin

Dimension 1

Dimension 1

D
im

en
si

on
 2

D
im

en
si

on
 2

Unclassified

Thiopeptide
TIGR04149 family rSAM-
modified RiPP

0.25

0.50

0.75

1.00

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0

0 1.0

0.8

0.6

0.4

0.2

0

Residue alignm
ent probability

1.0

0.8

0.6

0.4

0.2

0

Residue alignm
ent probability

1.0

0.8

0.6

0.4

0.2

0

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Part of di�erent
class

Part of same
class

Part of same
subclass (class 1)

Bacteriocin class or subclass status for pair

TM
-s

co
re

TM-Vec

ESMFold

Omegafold

AlphaFold2

3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Fig. 4 | Annotating and aligning unclassified putative bacteriocins using
TM-Vec. a, Visualization of TM-Vec embeddings using t-SNE for 689 proteins
across three classes of bacteriocins in addition to 28 unclassified putative
bacteriocins. For 94% of the annotated bacteriocins, the nearest neighbor to a
classified bacteriocin was in the same bacteriocin class. b, Visualization of class
1 bacteriocins by subclass, highlighting how TM-Vec can recover multiple levels
of manual annotation without protein structures. c, Comparison of TM-Vec’s
TM-score predictions with the TM-scores produced by running TM-align on
structures predicted by AlphaFold2, OmegaFold and ESMFold for 238,000 pairs

of bacteriocins. Using a TM-score of 0.5 as a structural similarity cutoff, TM-Vec
could distinguish pairs of proteins that were in the same class versus different
classes and in the same subclass for class 1 bacteriocins, whereas TM-align on
predicted structures from AlphaFold2, OmegaFold and ESMFold could not.
Bounds of the boxplots denote 25% and 75% percentiles, the center is the 50%
percentile and the whiskers are denoted by the 1.5× interquartile range.
d, DeepBLAST alignments for a putative bacteriocin, YP_006656667, and its
three nearest neighbors in embedding space (that is, those with the highest
predicted TM-scores).

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

(Supplementary Table 6) on one GPU, once vectors were available,
TM-Vec could efficiently return 1 million nearest neighbors for 100
queries on a lookup database of 10 million proteins in about 1 s. In
terms of resources, we could index and search over UniRef50 (ref. 16)
on one GPU, but as repositories scale to billions of proteins, multiple-
GPU or high-memory CPU setups using Faiss41 are recommended for
running a TM-Vec + DeepBLAST pipeline.

Case study: bacteriocins
We analyzed a structurally diverse set of families, bacteriocins, using
the BAGEL database45. Bacteriocins are small peptide-derived molecules
produced by bacteria and often serve as antimicrobial peptides to tar-
get competing microbial species. They can also be involved in cell–cell
communication. Several bacterial species encode bacteriocins, and
bacteria are under evolutionary pressure to obfuscate these genes
in light of their strong ecological benefits. As a result, bacteriocins
show substantial sequence and structural diversity and are notoriously
difficult to detect using sequence homology tools58. To date, fewer
than 1,004 bacteriocins have been identified and classified, despite
there being trillions of microbial species59 that have the potential to
produce antimicrobial peptides.

Previous studies have shown that bacteriocin structures can be
characterized by their highly modified polypeptides, suggesting struc-
tural cues to identify new bacteriocins where sequence similarity
approaches fail. Our analysis revealed that TM-Vec can clearly partition
bacteriocins according to their BAGEL annotations (Fig. 4a,b). Notably,
unannotated bacteriocins identified by Morton et al.58 were found to
be structurally similar to lanthipeptide A and B (Fig. 4b). As shown in
Fig. 4c, we compared TM-Vec with AlphaFold2 (ref. 10), OmegaFold39
and ESMFold40 on this bacteriocin dataset. For each pair of bacteriocins,
we ran TM-align on the structures predicted by each structure predic-
tion method (AlphaFold2 via ColabFold11, OmegaFold and ESMFold).
We found that TM-Vec distinguished bacteriocin classes more
accurately than these structure prediction methods in combination
with TM-align. We suspect that this performance gap could be due
to the lengths of the proteins. Bacteriocins tend to be short sequences
of fewer than 50 amino acids, which are known to be difficult to fold
using AlphaFold2 (ref. 26). For a few of the bacteriocins with structures
in the PDB, we found that the structures predicted by AlphaFold2
had TM-scores < 0.5 with the ground truth structures, highlighting
how AlphaFold2 struggles to accurately predict bacteriocin struc-
tures. The performance of the structure prediction methods on this
benchmark is likely to result from a combination of inaccurate
bacteriocin structure predictions and the effects of applying structure
alignments (TM-align) to predictions (structure predictions)60. Last,
Fig. 4d shows a DeepBLAST alignment for the three nearest classi-
fied bacteriocin neighbors of a putative bacteriocin identified by
Hamid et al.61.

As shown in Supplementary Fig. 8a, we found that nontoxins (that
is, genes that are within the same biosynthetic gene cluster but do
not directly encode the toxin) were clearly separated from the
different bacteriocin class clusters based on structural similarity.
We further tested our ability to distinguish bacteriocins by training a
k-nearest-neighbor classifier for bacteriocin classes and nontoxins;
the overall precision and recall of these classifiers were 98% and 93%,
respectively (Supplementary Fig. 8b).

Discussion
We have shown that DeepBLAST and TM-Vec have the potential to close
the remaining gap between protein sequence and structural informa-
tion by enabling structural alignments from sequence information
and remote homology search on repository-scale protein sequence
databases. On our SWISS-MODEL and CATH benchmarks, TM-Vec can
accurately predict TM-scores to quantify the structural similarities
across widespread structural diversity, including remote homologs

that fall below the 10% sequence identity threshold. When compared
with sequence-based and structure-based methods, TM-Vec could
competitively differentiate tiers of the CATH hierarchy, despite not
being explicitly trained to classify CATH classes. Furthermore, TM-Vec
is able to predict structural similarity with performance close to that of
existing structural similarity methods, while being able to query struc-
turally similar proteins with both higher accuracy and lower runtimes
than BLAST. TM-Vec search scales sublinearly with respect to protein
database size and can handle millions of queries on tree-of-life-scale
databases per day on a single GPU machine. Given the runtime scal-
ing properties of TM-Vec, there is enormous potential to apply these
methodologies to large-scale metagenomics datasets. However,
realizing the full potential of TM-Vec will require improvements to
encoding speed in addition to massively parallel GPU computing
in order to query hundreds of millions of proteins in metagenomics
samples and billions of proteins in sequence databases.

In addition to TM-Vec measuring structural similarity, DeepBLAST
can provide structural alignments that compare with existing structural
alignment methods. On the Malidup benchmark, although there were
certain remote homologs that our aligner missed, DeepBLAST consist-
ently outperformed sequence alignment methods. When we applied
TM-Vec to the BAGEL database, we were able to accurately cluster
bacteriocins based on both their class and subclass labels, a task that
AlphaFold2 struggles with. We also were able to confidently annotate
28 putative bacteriocins by finding their nearest class or subclass clus-
ters. These results hint at the potential to lower the barrier for natural
product discovery.

Although TM-Vec and DeepBLAST have promising advantages
compared with existing methodologies, there are a few limitations to
consider. TM-Vec is not well suited to detection of structural differ-
ences induced by point mutations. From a benchmark using the VIPUR
dataset, TM-Vec was unable to detect structural differences caused by
both deleterious and synonymous point mutations in proteins14,62–66.
TM-Vec is trained to predict TM-scores, which are a measure of the
global similarity of protein structures. For many remote homology
tasks, local similarity is instead desired. On the DIAMOND benchmark,
for example, the goal of retrieving proteins with the same SCOP family
annotations is more of a local than a global similarity task. On this
benchmark, although TM-Vec had high sensitivity, it did not perform as
well as DIAMOND, suggesting that there is room to improve TM-Vec on
this task if TM-Vec is trained with a local structural similarity objective
instead of TM-scores67. Regarding structural alignments, DeepBLAST
struggles to detect large insertions or deletions, which are commonly
observed in remote homologs as suggested by TM-align generated
training data. Recent advances incorporating linear affine gap costs
into differentiable dynamic programming algorithms28 could play
a part in resolving these challenges. Furthermore, integrating the
TM-score prediction and the structural alignments into a multitask
framework with a single pretrained protein language model may help
to boost the structural alignment accuracy.

Given the widespread biomedical applications and use cases of
sequence search and alignment using tools such as BLAST, we anticipate
that structural similarity search with TM-Vec and alignment
with DeepBLAST will provide new opportunities for biological
annotation. Owing to their high structural precision and fast query
speed, TM-Vec and its future iterations are well positioned to
close the sequence–structure–function gap across the billions of
observed proteins.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41587-023-01917-2.

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01917-2

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

References
1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic

local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
2. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server:

interactive sequence similarity searching. Nucleic Acids Res. 39,
W29–W37 (2011).

3. Ashburner, M. et al. Gene ontology: tool for the unification of
biology. Nat. Genet. 25, 25–29 (2000).

4. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids
Res. 36, D281–288 (2008).

5. Blum, M. et al. The InterPro protein families and domains
database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).

6. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally
and phylogenetically annotated orthology resource based
on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47,
D309–D314 (2018).

7. Loewenstein, Y. et al. Protein function annotation by homology-
based inference. Genome Biol. 10, 207 (2009).

8. Greener, J. G., Kandathil, S. M. & Jones, D. T. Deep learning
extends de novo protein modelling coverage of genomes using
iteratively predicted structural constraints. Nat. Commun. 10,
3977 (2019).

9. Senior, A. W. et al. Improved protein structure prediction using
potentials from deep learning. Nature 577, 706–710 (2020).

10. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

11. Mirdita, M. et al. ColabFold: making protein folding accessible to
all. Nat. Methods 19, 679–682 (2022).

12. Baek, M. et al. Accurate prediction of protein structures and
interactions using a three-track neural network. Science 373,
871–876 (2021).

13. Chowdhury, R. et al. Single-sequence protein structure prediction
using a language model and deep learning. Nat. Biotechnol.
https://doi.org/10.1038/s41587-022-01556-z (2022).

14. Shin, J.-E. et al. Protein design and variant prediction using
autoregressive generative models. Nat. Commun. 12, 2403
(2021).

15. Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment
algorithm based on the TM-score. Nucleic Acids Res. 33,
2302–2309 (2005).

16. Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable
alternative for improving sequence similarity searches.
Bioinformatics 31, 926–932 (2014).

17. Vanni, C. et al. Unifying the known and unknown microbial coding
sequence space. Elife 11, e67667 (2022).

18. Holm, L., Kääriäinen, S., Wilton, C. & Plewczynski, D. Using Dali
for structural comparison of proteins. Curr Protoc Bioinformatics
https://doi.org/10.1002/0471250953.bi0505s14 (2006).

19. Zhu, J. & Weng, Z. FAST: a novel protein structure alignment
algorithm. Proteins 58, 618–627 (2005).

20. Ortiz, A. R., Strauss, C. E. & Olmea, O. MAMMOTH (matching
molecular models obtained from theory): an automated method
for model comparison. Protein Sci. 11, 2606–2621 (2009).

21. Xu, J., Li, M., Kim, D. & Xu, Y. RAPTOR: optimal protein threading by
linear programming. J. Bioinform. Comput. Biol. 1, 95–117 (2003).

22. Gligorijević, V. et al. Structure-based protein function prediction
using graph convolutional networks. Nat. Commun. 12, 1–14
(2021).

23. Varadi, M. et al. AlphaFold Protein Structure Database: massively
expanding the structural coverage of protein-sequence space
with high-accuracy models. Nucleic Acids Res. 50, D439–D444
(2021).

24. Richardson, L. et al. MGnify: the microbiome sequence data
analysis resource in 2023. Nucleic Acids Res. 51, D753–D759
(2023).

25. Nordberg, H. et al. The genome portal of the Department of
Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res.
42, D26–D31 (2014).

26. Monzon, V., Haft, D. H. & Bateman, A. Folding the unfoldable:
using AlphaFold to explore spurious proteins. Bioinform. Adv. 2,
vbab043 (2022).

27. van Kempen, M. et al. Fast and accurate protein structure search
with Foldseek. Nat. Biotechnol. https://doi.org/10.1038/s41587-
023-01773-0 (2023).

28. Llinares-López, F. et al. Deep embedding and alignment of protein
sequences. Nat. Methods 20, 104–111 (2023).

29. Heinzinger, M. et al. Contrastive learning on protein embeddings
enlightens midnight zone. NAR Genom. Bioinform. https://doi.org/
10.1093/nargab/lqac043 (2022).

30. Bepler, T. & Berger, B. Learning protein sequence embeddings
using information from structure. In Proc. 7th International
Conference on Learning Representations 1–17 (ICLR, 2019);
https://arxiv.org/abs/1902.08661

31. Rives, A. et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences.
Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).

32. Heinzinger, M. et al. Modeling aspects of the language of life
through transfer-learning protein sequences. BMC Bioinformatics
20, 723 (2019).

33. Rao, R. et al. Evaluating protein transfer learning with tape.
Adv. Neural Inf. Process. Syst. 32, 9689–9701 (2019).

34. Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M.
Unified rational protein engineering with sequence-based deep
representation learning. Nat. Methods 16, 1315–1322 (2019).

35. Elnaggar, A. et al. ProtTrans: towards understanding the language
of life through self-supervised Learning. IEEE Trans. Pattern
Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2021.3095381
(2022).

36. Lu, A. X., Zhang, H., Ghassemi, M. & Moses, A. Self-supervised
contrastive learning of protein representations by mutual
information maximization. Preprint at bioRxiv https://doi.org/
10.1101/2020.09.04.283929v1 (2020).

37. Sillitoe, I. et al. CATH: increased structural coverage of functional
space. Nucleic Acids Res. 49, D266–D273 (2021).

38. Waterhouse, A. et al. SWISS-MODEL: homology modelling
of protein structures and complexes. Nucleic Acids Res. 46,
W296–W303 (2018).

39. Wu, R. et al. High-resolution de novo structure prediction from
primary sequence. Preprint at bioRxiv https://doi.org/10.1101/
2022.07.21.500999 (2022).

40. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein
structure with a language model. Science 379, 1123–1130
(2023).

41. Johnson, J., Douze, M. & Jégou, H. Billion-scale similarity search
with GPUs. IEEE Trans. Big Data 7, 535–547 (2019).

42. Bromley, J. et al. Signature verification using a Siamese time delay
neural network. Int. J. Pattern Recogn. Artific. Intell. https://doi.org/
10.1142/s0218001493000339 (1993).

43. Cheng, H., Kim, B. H. & Grishin, N. V. MALIDUP: a database of
manually constructed structure alignments for duplicated
domain pairs. Proteins 70, 1162–1166 (2008).

44. Cheng, H., Kim, B. H. & Grishin, N. V. MALISAM: a database of
structurally analogous motifs in proteins. Nucleic Acids Res. 36,
211–217 (2008).

45. van Heel, A. J., de Jong, A., Montalbán-López, M., Kok, J. &
Kuipers, O. P. BAGEL3: automated identification of genes
encoding bacteriocins and (non-)bactericidal posttranslationally
modified peptides. Nucleic Acids Res. 41, W448–W453 (2013).

46. Smith, J. M. & Smith, N. Synonymous nucleotide divergence: what
is “saturation”? Genetics 142, 1033–1036 (1996).

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-022-01556-z
https://doi.org/10.1002/0471250953.bi0505s14
https://doi.org/10.1038/s41587-023-01773-0
https://doi.org/10.1038/s41587-023-01773-0
https://doi.org/10.1093/nargab/lqac043
https://doi.org/10.1093/nargab/lqac043
https://arxiv.org/abs/1902.08661
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1101/2020.09.04.283929v1
https://doi.org/10.1101/2020.09.04.283929v1
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1142/s0218001493000339
https://doi.org/10.1142/s0218001493000339

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

47. Berman, H., Henrick, K., Nakamura, H. & Markley, J. L. The
worldwide Protein Data Bank (wwPDB): ensuring a single, uniform
archive of PDB data. Nucleic Acids Res. 35, D301–D303 (2007).

48. Koehler Leman, J. et al. Sequence-structure-function
relationships in the microbial protein universe. Nat. Commun. 14,
2351 (2023).

49. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets.
Nat. Biotechnol. 35, 1026–1028 (2017).

50. Steinegger, M. et al. HH-suite3 for fast remote homology
detection and deep protein annotation. BMC Bioinformatics 20,
473 (2019).

51. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments
at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368
(2021).

52. Needleman, S. B. & Wunsch, C. D. A general method applicable
to the search for similarities in the amino acid sequence of two
proteins. J. Mol. Biol. 48, 443–453 (1970).

53. Andreeva, A., Kulesha, E., Gough, J. & Murzin, A. G. The SCOP
database in 2020: expanded classification of representative
family and superfamily domains of known protein structures.
Nucleic Acids Res. 48, D376–D382 (2019).

54. Orengo, C. A. et al. CATH – a hierarchic classification of protein
domain structures. Structure 5, 1093–1109 (1997).

55. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A.
Critical assessment of methods of protein structure prediction
(CASP)-Round XII. Proteins 86, 7–15 (2018).

56. Durbin, R., Eddy, S. R., Krogh, A. & Mitchison, G. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids (Cambridge Univ. Press, 1998).

57. Chothia, C., Novotn, J., Bruccoleri, R. & Karplus, M. Domain
association in immunoglobulin molecules. J. Mol. Biol. 186,
651–663 (1985).

58. Morton, J. T., Freed, S. D., Lee, S. W. & Friedberg, I. A large scale
prediction of bacteriocin gene blocks suggests a wide functional
spectrum for bacteriocins. BMC Bioinformatics 16, 381 (2015).

59. Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial
diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

60. Wang, S., McCormick, T. H. & Leek, J. T. Methods for correcting
inference based on outcomes predicted by machine learning.
Proc. Natl Acad. Sci. USA 117, 30266–30275 (2020).

61. Hamid, M.-N. & Friedberg, I. Identifying antimicrobial peptides
using word embedding with deep recurrent neural networks.
Bioinformatics 35, 2009–2016 (2018).

62. Baugh, E. H. et al. Robust classification of protein variation
using structural modelling and large-scale data integration.
Nucleic Acids Res. 44, 2501–2513 (2016).

63. Dallago, C. et al. FLIP: benchmark tasks in fitness landscape
inference for proteins. In Proc. of the Neural Information
Processing Systems Track on Datasets and Benchmarks https://
datasets-benchmarks-proceedings.neurips.cc/paper_files/
paper/2021 (NeurIPS, 2021).

64. Hopf, T. A. et al. Mutation effects predicted from sequence
co-variation. Nat. Biotechnol. 35, 128–135 (2017).

65. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative
models of genetic variation capture the effects of mutations.
Nat. Methods 15, 816–822 (2018).

66. Frazer, J. et al. Disease variant prediction with deep generative
models of evolutionary data. Nature 599, 91–95 (2021).

67. Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local
superposition-free score for comparing protein structures
and models using distance difference tests. Bioinformatics 29,
2722–2728 (2013).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturebiotechnology
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

Methods
We used our model, which can produce structure-aware embeddings
of protein sequences, to build large, searchable databases of protein
representations that can be queried to find proteins with similar
structures using only their sequence information. The last piece
of our pipeline produces protein structure alignments using sequences
alone for the proteins that are predicted to have the most similar
structures.

TM-Vec search
TM-Vec embedding model. The TM-Vec model is trained on pairs
of protein sequences and their TM-scores (the measure of protein
structure similarity we use), and leverages the latest advances in
deep protein language models. When protein sequences are fed into
the pipeline, a pretrained deep protein language model ProtTrans
(ProtT5-XL-UniRef50) is used to produce embeddings for every resi-
due in the protein35. These residue embeddings are then fed into a
twin neural network that we train, called ϕ. Supplementary Fig. 1
shows the function ϕ which takes residue embeddings and produces
a flattened vector representation of dimension 512 for each protein.
ϕ is composed of several transformer encoder layers (see the TM-Vec
training section for transformer details), followed by average pooling,
dropout and fully connected layers. Finally, we calculate the cosine
distance between the reduced representations of each protein in the
pair, and our training objective is to minimize the L1 distance between
the cosine similarity of the reduced representations of the pairs
and their TM-score. Therefore, for any pair of protein sequences, a
forward pass of our model can predict the TM-score of the pairs, and
can also be used to produce structure-aware embeddings for each
protein sequence.

TM-Vec database creation. To build a large database of structure-aware
protein embeddings, we started with large databases of protein
sequences, including SWISS-Prot68, CATH37 and UniRef50 (ref. 16). After
encoding each protein sequence, we built an indexed vector-searchable
database of protein embeddings using the Faiss package41. When this
database was queried with a new sequence, we first embedded the
protein using a forward pass of the TM-Vec embedding model and
then returned the nearest neighbors of the query according to cosine
similarity (the proteins in our database with the highest predicted
structural similarity or TM-score). Although one of our goals was to
return the nearest neighbors in structure space for any query proteins,
another goal was to include the structural alignments for the nearest
neighbors with the query protein, using sequences alone. Thus, the pre-
dicted most similar proteins (structurally), their predicted TM-scores
and their predicted structural alignments can all be returned by the
TM-Vec + DeepBLAST pipeline, and the number of proteins for which
to retrieve this information is a user-defined parameter (the pipeline
will return the user-defined top n).

DeepBLAST alignment module. The DeepBLAST module uses a
differentiable Needleman–Wunsch algorithm (Supplementary Fig. 2).
Proteins X and Y are fed into the pretrained protein language model
ProtTrans35 to obtain embeddings HX and HY. These residue-level
embeddings are then propagated through the match embeddings
(M) and gap embeddings (G) to obtain the match scores μ and the
gap scores g. The match and gap scores are used to evaluate the
differen tiable dynamic programming algorithm and generate a
predicted alignment traceback. These alignments can then be fine-
tuned using a training dataset of ground truth alignments.

Protein language modeling for alignment. To obtain an alignment
from dynamic programming, scoring parameters for matches and gaps
must be obtained. Here, we use a number of pretrained protein lan-
guage models to estimate these scoring parameters. These pretrained

models ultimately construct a function, mapping a sequence of resi-
dues represented as one-hot encodings to a set of residue vectors,
providing an alternative representation of these proteins. Often, these
models will learn the representations by being trained to predict ran-
domly masked residues within a protein sequence. Multiple studies
have shown the merits of these models when performing protein struc-
ture prediction, remote homology and protein design31–36,69. Here, we
use the pretrained ProtTrans language model35 to represent two pro-
teins X and Y by embeddings HX ∈ ℝp×d and HY ∈ ℝq×d , where p and q
represent the lengths of proteins X and Y, and d is the embedding
dimension of the language model. Given these representations, we can
construct mappings M and G to obtain match scores and gap scores for
the differentiable dynamic programming as follows

μ = σμ (M(HX)M(HY)
T) ∈ ℝp×q, g = σg (G(HX)G(HY)

T) ∈ ℝp×q

The functions M ∶ ℝt×d → ℝt×d and G ∶ ℝt×d → ℝt×d are intermediate
functions that take as input a set of t residue vectors. These functions
are parameterized by convolutional neural networks, which can be
fine-tuned through the backpropagation enabled by the differentiable
dynamic programming. Activation functions σμ and σg are softplus and
log-sigmoid functions to ensure that the match scores μ are strictly
positive and the gap scores g are strictly negative. These constraints
are used to penalize gaps and reward matches. This also helps enforce
identifiability of the model, which we have found to improve the
accuracy of the model in practice.

Differentiable dynamic programming. Our proposed differential
dynamic programming framework does not learn any parameters; it
is designed purely to enable backpropagation to fine-tune the scoring
functions M and G. Differentiable dynamic programming has been
extensively explored in the context of dynamic time warping70,71. Koide
et al.72 and Ofitserov et al.73 suggested that a differentiable Needleman–
Wunsch alignment algorithm could be derived, but the implementation
has remained elusive. Here, we provide a GPU-accelerated implementa-
tion of the differentiable Needleman–Wunsch algorithm.

Previous work71 has shown that backpropagation can be performed
on dynamic programming algorithms by introducing smoothed maxi-
mum and argmax functions. Doing so will enable the computation
of derivatives while providing a tight approximation to the optimal
dynamic programming solution. The traditional Needleman–Wunsch
algorithm can be defined with the following recursion

vi, j = μi, j +max
⎧⎪
⎨⎪
⎩

vi−1, j−1 (Match)

gi, j + vi−1, j (Insert)

gi, j + vi, j−1 (Delete)

(1)

where the alignment score vi, j is evaluated on position i in the first
sequence X and on position j in the second sequence Y. Sequences X and
Y are of lengths n and m, respectively. μi, j represents the log-odds score
of residues Xi and Yj being aligned and gij represents the log-odds score
of an insertion or a deletion at positions i and j. Owing to the structure of
dynamic programming problems, vn,m is guaranteed to be the optimal
alignment score between the two sequences. Furthermore, the optimal
alignment can be obtained by tracing the highest-scoring path through
the alignment matrix via argmax operations.

As neither the max nor the argmax operations are differentiable,
the alignment scores and the traceback cannot be differentiated in the
traditional formulation of the traceback operations needed to gener-
ate alignments. Accordingly, Mensch et al.71 introduced smoothed
differentiable operators

̃max = log (∑
i
exp(xi)) , argmaxΩ(x) =

exp(xxx)
∑i exp(xi)

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

where the smooth max operator ̃max is given by the log sum exp func-
tion and the smoothed argmaxΩ(x) is given by the softmax function.
As the softmax function can be derived from the derivative of maxΩ,
the traceback matrix can also obtained by differentiating the resulting
alignment matrix. The resulting traceback matrix will yield the
expected alignment between the two proteins.

As the loss function is defined as the difference between the
predicted traceback matrix and the ground truth traceback matrix,
the derivatives of the traceback matrix also need to be defined. This
requires both the computations of the directional derivatives and the
local Hessians of the alignment matrix (Algorithm 2).

In practice, dynamic programming can be a major computational
bottleneck owing to GPU data transfer and the quadratic runtime of
the Needleman–Wunsch algorithm. To address this, we implemented
a GPU-accelerated differentiable Needleman–Wunsch algorithm
inspired by Manavski et al.74. As can be seen from the benchmarks
shown in Supplementary Fig. 7d, this algorithm is an order of magni-
tude faster than the naive CPU-bound Needleman–Wunsch implemen-
tation. Furthermore, this algorithm enables batching, allowing multiple
alignments to be processed in parallel. As shown in Supplementary
Fig. 7d, larger batch sizes can further improve the scaling compared
with CPU-bound alignments.

Algorithm 1. Compute DeepBLASTΩ(θ)and ∇ DeepBLASTΩ(θ)
Require:θ = [μ, g] ∈ ℝ2×p×q
 Forward pass
 vM0,0 = 1; v

∗
0,. = 0; v

∗
.,0 = 0

 for i ∈ {1…p}, j ∈ {1…q} do
 vi, j = maxΩ (μi, j + (vi−1, j−1, gi, j + vi−1, j, gi, j + vi, j−1))
 ωi, j = ∇argmaxΩ (μi, j + (vi−1, j−1, gi, j + vi−1, j, gi, j + vi, j−1)) ∈ ℝ3
 end for

 Backward pass
 ep,q+1 = 0; ep+1,q = 0; ep+1,q+1 = 1
 for i ∈ {p…1}, j ∈ {q…1} do
 ei, j = ωm

i+1, j+1ei+1, j+1 + ωx
i+1, jei+1, j + ωy

i, j+1ei, j+1
 end for

 W = (ω)p+1,q+1i, j,k=1 ; E = (e)p+1,q+1i, j=1 7D2; intermediate computations to
be used in Algorithm 2

 return DeepBLASTΩ(θ) = vp,q,∇DeepBLASTΩ(θ) = (e)p,qi, j=1

Algorithm 2. Compute 〈 ∇ DeepBLASTΩ(θ), Z〉 and ∇2DeepBLASTΩ(θ)Z
Require θ = [μ, g] ∈ ℝ2×p×q,Z = [zμ, zg] ∈ ℝ2×p×q
 Forward pass
 v0,0 = 1; v0,. = 0; v.,0 = 0
 for i ∈ {1…p}, j ∈ {1…q} do
 ̇vi, j = zμi, j + ωm

i, j(vi−1, j−1) + ωx
i, j(zgi, j + vi−1, j) + ωy

i, j(zgi, j + vi, j−1)
 ω̇i, j=−JΩ(ωi, j) (ωm

i, j(̇vi−1, j−1), ωx
i, j(zgi, j+ ̇vi−1, j),ωy

i, j(zgi, j+ ̇vi, j−1)) ∈ ℝ3
 end for

 Backward pass
 ep,q+1 = 0; ep+1,q = 0; ep+1,q+1 = 1
 for i ∈ {p…1}, j ∈ {q…1} do
 ̇ei, j = ω̇m

i+1, j+1ei+1, j+1 + ωm
i+1, j+1 ̇ei+1, j+1

 + ω̇x
i+1, jei+1, j + ωx

i+1, j ̇ei+1, j
 + ω̇ y

i, j+1ei, j+1 + ωy
i, j+1 ̇ei, j+1

 end for
 return ⟨∇DeepBLASTΩ(θ),Z⟩ = ̇vp,q,∇2DeepBLASTΩ(θ)Z = (̇e)p,qi, j=1

Alignment loss function. By defining a loss function between the pre-
dicted alignment and the structural alignment from TM-align, we can
evaluate the accuracy of DeepBLAST and fine-tune the functions M and
G. Mensch et al.71 proposed using the Euclidean distance between the
predicted and ground truth alignments as a loss function. However, we

found that a cross-entropy loss provided more reasonable alignment
results. This loss is given by

L(e∗, e) = ∑
i, j

e∗i, j log(ei, j) + (1 − e∗i, j) log(1 − ei, j) (2)

where e* is the ground truth alignment and e is the predicted alignment.
As shown by Mensch et al.71, the predicted traceback matrix represents
the expectation across all possible predicted alignments, which is
represented as a matrix of probabilities. As a result, the resulting align-
ment problem can be interpreted as a classification task to identify
whether two residues between a pair of proteins are alignable. This pro-
vides additional motivation for using cross-entropy as a loss function.

Datasets
TM-Vec search. TM-Vec was trained on pairs of protein–domain
sequences, along with data about the structural alignment for the pair.
For every pair of proteins in our training dataset, we ran the method
TM-align, which is an algorithm for protein structure comparison that
is independent of protein sequences. TM-align produces a TM-score
between 0 and 1, where a score below 0.2 represents a pair of unrelated
proteins; a score above 0.5 implies that proteins are in the same fold;
and 1 is a perfect match, indicating the same protein structure. Part of
our pipeline involved validating whether our model could predict the
TM-scores of pairs of proteins.

Protein-chain-pairs dataset. The model that we ultimately used
to encode protein sequences was trained on pairs of protein chains.
We sampled pairs of chains from SWISS-MODEL, which contains more
than 500,000 chains. We made two different protein-chain-pair data-
sets, one with protein chains up to 300 residues long, and another
with protein chains up to 1,000 residues long. For example, when we
filtered out protein chains that were longer than 300 residues, we
were left with 277,000 chains. With these chains in hand, we made
pairs of chains, ensuring that we oversampled pairs of proteins with
similar folds, using information from Gene3D75 about the predicted
domains within protein chains. For all our pairs of protein chains, we
ran TM-align using their SWISS-MODEL structures. We pulled out the
TM-scores and sequence identity for every pair of chains. Last, we split
our dataset into training, validation and test sets. For the chain-pairs
dataset with chains up to 300 residues long, our train/validation split
(randomly split during training) had 141 million pairs, and our held-out
test dataset had 1 million pairs. Our chain-pairs dataset with chains
up to 1,000 residues long had 320 million pairs.

Domain-pairs dataset. To determine whether our model could
approxi mate TM-scores for domains and remote homologs, we built
a dataset of pairs from the heavily curated CATH domains dataset. We
started with the CATH nonredundant dataset of protein domains with
no more than 40% sequence similarity. This dataset comprised 31,000
protein domains. We then filtered out domains that were longer than
300 residues, leaving 30,000 domains. All pairwise combinations of
these 30,000 domains would lead to 450 million pairs; however, we
aimed to build a balanced dataset, and dissimilar protein structures
represented the vast majority of pairs (that is, domains with very dif-
ferent folds). Therefore, we undersampled pairs of CATH domains
that came from different folds. The CATH dataset that we used for our
experiments included 23 million pairs of domains.

We further split this dataset into training/validation and testing
splits, and we evaluated performance on CATHS40 on left-out domain
pairs (where the domain pair was not in the training/validation data-
set), left-out domains (either one or both domains not in the training/
validation dataset) and left-out folds (either one or both domains
from folds that were not in the training/validation dataset). Here, the
fold family was from the topology classification in the CATH hierarchy.

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

Our training/validation dataset contained 19 million pairs, our left-out
pairs dataset contained 100,000 pairs, our left-out domains dataset
contained 100,000 pairs, and our left-out folds dataset contained
500,000 pairs.

Malidup and Malisam datasets. Some of our sequence alignment
benchmarks were performed on the curated Malisam44 and Malidup43
protein structural alignment benchmarking datasets. All the structural
alignments analyzed were provided from the original benchmark43,44.
We also used Malidup to benchmark TM-Vec and DeepBLAST. Malidup
consists of 241 pairwise structure alignments for homologous domains
within the same chain. These pairs are structurally similar remote
homologs. Malisam consists of 130 pairs of analogous motifs.

Structure alignment dataset. We trained DeepBLAST on 1.5 million
alignments from the PDB47 obtained using TM-align15. These proteins
were obtained from a curated collection of 40,000 protein structures76.
Details of the model specification and training can be found in ref. 77.

Bacteriocins dataset. The bacteriocin sequences and metadata we
used were from the bacteriocin database BAGEL45, and the putative
unannotated bacteriocins were from Morton et al.58.

MIP novel fold dataset. In this project, there were protein structure
predictions for 200,000 diverse microbial protein sequences, repre-
senting 148 putative novel folds, and the authors calculated TM-scores
for pairs of proteins with novel folds48. We evaluated our TM-score
predictions on 184,000 pairs of MIP proteins for which at least one
protein in the pair had a novel fold.

ProtTucker benchmark dataset. ProtTucker was built to embed
protein domains in a structure-aware way and uses CATH domains for
its contrastive learning approach29. For this benchmark, we followed
the ProtTucker training–lookup–test splits for the purpose of direct
comparison with their method. Their training and lookup datasets
consisted of 66,000 and 69,000 CATH domains, respectively. The test
dataset did not include any domains with an HSSP-value > 0 with any
of the lookup domains78 and consisted of 219 domains. We created a
domain-pairs dataset from their set of 66,000 training domains in
the same manner as our other CATH domain-pairs dataset by sampling
pairs of domains and then running TM-align to produce TM-scores
for the pairs. Our final training dataset included 35 million
domain pairs.

DIAMOND benchmark dataset. The DIAMOND benchmark51 consisted
of a large query dataset and a large lookup dataset of single and multi-
domain proteins. The lookup dataset was from the 14 September 2019
release of UniRef50 (ref. 16), which contained 37.5 million sequences;
the authors then reduced this to a representative dataset of 7.74 million
protein sequences with protein family annotations (SCOP)53. The query
dataset was from the 25 October 2019 release of the NCBI nr database
and also used the SCOP family annotations for proteins; the authors
reduced this dataset to include at most 1,000 protein sequences for
each SCOP superfamily, resulting in a dataset of 1.71 million queries.
Finally, the authors locally shuffled both the query and the lookup
sequences in this benchmark in 40-letter windows outside their anno-
tation ranges.

Embedding methods data. For this evaluation we used the CATH
NR-S40 dataset (NR-S40) (ref. 37), a collection of approximately 30,000
proteins of maximally 40% sequence identity, representing a diverse
sampling of each tier in the CATH hierarchy. The dataset was parti-
tioned into training, validation and test sets. All the benchmarks were
conducted on the test set, and all trainable methods in the comparison
study were trained using the training and validation sets.

TM-Vec training
The TM-Vec models trained on CATHS40 and SWISS-MODEL chains up
to 300 residues long both had 17.3 million trainable parameters and
were 199MB in size. These models contained two transformer encoder
layers. The TM-Vec models trained on CATHS100 domains (ProtTucker
training domains) and SWISS-MODEL chains (up to 1,000 residues long)
both had 34.1 million trainable parameters and were 391 MB in size.
These models contained four transformer encoder layers.

The pretrained deep protein language model that we used,
ProtTrans (ProtT5-XL-UniRef50), had no trainable parameters in our
pipeline (the model parameters were frozen), as we used the model
exclusively for extracting residue embeddings with a dimension of
1,024. Our transformer encoder layers had four multihead attention
heads and a dimension of 2,048 in their feedforward network model.
We used the Adam optimizer to train the weights, with an initial learning
rate of 1 × 10−4. A batch size of 32 was used. In terms of training require-
ments, for the TM-Vec model trained on SWISS-MODEL chains up to
300 residues long, we trained TM-Vec on eight Nvidia V100 GPUs for 5
days. This represented five epochs of training.

DeepBLAST training
The final DeepBLAST model consisted of eight convolutional layers of
dimension 1,024 to parameterize the match embeddings M and gap
embeddings G. We used the same ProTrans model to estimate residue
vectors. The resulting model had more than 1.2 billion parameters. We
used the Adam optimizer to train the weights, with an initial learning
rate of 5 × 10−4, and the pretrained model weights were frozen. A batch
size of 360 alignments was used for training. DeepBLAST was trained
for 20 epochs on 24 Nvidia A100 GPUs for 6 days. The DeepBLAST
model was trained on a dataset of 5 million alignments obtained from
TM-align. Alignments containing more than 10 consecutive gaps or
with TM-score less than 0.6 were excluded from the training dataset.

DeepBLAST alignment accuracy assessment
Alignment accuracy was assessed on a held-out test dataset of 1 million
structural alignments. Validation loss was recorded during training,
and we stopped training once the validation loss stopped decreasing
(Supplementary Fig. 9). To determine how well DeepBLAST general-
izes, a subset comprising more than 120,000 alignments that were
in the held-out TM-align alignments used to train DeepBLAST were
analyzed. To evaluate the accuracy of the alignments, precision and
recall were computed from the number of correctly identified match-
ing residues. As each alignment can be represented as a bipartite graph
where the edges represents matching residues between two proteins,
precision and recall can be extracted by comparing the edge sets of the
predicted alignment and the known alignments. Supplementary Fig. 9
shows the distribution of correctly identified alignment edges, with a
median recall and precision of 87%, suggesting that these models can
generalize well beyond the training dataset.

DIAMOND benchmark
The metric that we used to evaluate the performance of our method
on the DIAMOND benchmark was sensitivity, which we defined as the
percentage of the time the family annotations of the query protein were
among the family annotations of the returned top n nearest neighbor
proteins. For example, for the top 10 nearest neighbors, this quantifies
the percentage of the time that the family annotations of the query
protein are included in the family annotations of the returned top 10
nearest neighbor proteins.

Bacteriocin benchmark
We compared TM-Vec with three structure prediction methods for
this benchmark: AlphaFold2, ESMFold and OmegaFold. ColabFold11
was used to run AlphaFold2 (ref. 10) using default parameters and
the MMseqs2 pipeline. ESMFold v.1 was used for ESMFold structure

http://www.nature.com/naturebiotechnology

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

predictions, and OmegaFold model 1 was used for OmegaFold struc-
ture predictions.

Embedding methods benchmarks
As shown in Fig. 2b, we compared TM-Vec with six other representa-
tions: one sequence-based method, ProtTrans35; and five different
structure-based methods: cliques, GRAFENE79, ORCA80, CNN (influ-
enced by DeepFRI81) and GCN (influenced by the Kipf and Welling
graph autoencoder (GAE))82. Each structure-based method in some
manner consumes a thresholded distance matrix, or contact map, and
is used to output a fixed-sized feature vector that is meant to encode
structural information.

The structure-based methods cliques, GRAFENE and ORCA output
so-called manually engineered features; in particular, these feature
vectors are histograms over known nonredundant graph substruc-
tures called graphlets. We introduce cliques as a simple baseline that
consists of counting the ratio of nonoverlapping cliques up to size 7
inside a given contact map. ORCA and GRAFENE count more advanced
graphlet substructures including graphlet orbits (which consider
the relative node identity within the graphlet).

We also evaluated against two other methods that admit learned
structure-based representations: DeepFRI and the Kipf and Welling
GAE. Each method consists of training an autoencoder on contact
maps and extracting average-pooled representations from one of the
hidden layers in the inference mode. DeepFRI is a CNN autoencoder,
whereas the GAE is a graph autoencoder. Both models are trained to
minimize the binary cross-entropy of the original contact map and its
reconstruction.

Of the five selected structure-based methods, four were per-
mutation invariant; the exception was DeepFRI, which considers the
canonical sequence ordering and treats the input matrix as an image.
In addition, the manual crafted feature vectors do not scale well with
graph density and hence cannot be evaluated for larger angstrom
thresholds.

Evaluation metrics shown in Fig. 2b include cluster-adjusted
mutual information and triplet-scoring AUPR. Each benchmark was
applied to the top five most represented categories of each of the four
CATH tiers separately. For cluster-adjusted mutual information, we
applied spectral clustering using five clusters to the input feature vec-
tors and calculated the adjusted mutual information between the clus-
ter assignments and the actual label assignments. For triplet-scoring
AUPR, we chose triplets in which two of the three shared the same label
assignment, whereas the third was drawn from a different category.
We constructed a balanced classification problem by considering the
same-label pairs as the positive class and the same number of differ-
ently labeled pairs as the negative class. We used the cosine similarity
among the selected positive and negative pairs as a classification pre-
diction and calculated the AUPR.

Supplementary Tables 3 and 4 show the results of our comparison
of TM-Vec with several methods on the CATHS20 benchmark and Prot-
Tucker benchmarks. The commands used to run FoldSeek, HHBlits,
MMseqs2 and Diamond are included in the TM-Vec software repository.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the protein sequences and structures used in this study for train-
ing and evaluation are publicly available. CATH domain sequences
and structures are publicly available at http://www.cathdb.info/ (ref.
37). SWISS-MODEL sequences and structures are available at https://
swissmodel.expasy.org/ (ref. 38). Our evaluation included several dif-
ferent datasets. Malidup can be found at http://prodata.swmed.edu/
malidup/ (ref. 43); Malisam at http://prodata.swmed.edu/malisam/

(ref. 44); the MIP at https://zenodo.org/record/6611431 (ref. 48); and
the Bagel dataset at http://bagel.molgenrug.nl (ref. 45). DeepBLAST
and TM-Vec are trained on protein sequences as well as TM-align out-
puts. Training and test datasets used for DeepBLAST can be found in
the following repository: https://zenodo.org/record/7731163 (ref. 83);
and training datasets for the different TM-Vec models can be found at
https://zenodo.org/record/8038377 (ref. 84). Source code and data
for all of the TM-Vec data visualizations are provided on Zenodo at
https://zenodo.org/record/8021495 (ref. 85). Source code for all of the
DeepBLAST data visualizations are provided at https://doi.org/10.5281/
zenodo.7731163 (ref. 86).

Code availability
TM-Vec can be found on GitHub at https://github.com/tymor22/
tm-vec and on Zenodo at https://doi.org/10.5281/zenodo.8021495
(ref. 85). DeepBLAST can be found on GitHub at https://github.com/
flatironinstitute/deepblast and on Zenodo at https://doi.org/10.5281/
zenodo.8021480 (ref. 86). The structure visualizations presented in
Figs. 1 and 3 were created using PyMOL v.2.4.0 (ref. 87). Our TM-Vec data
visualizations were created using RStudio (v.2022.12.0+353) (ref. 88)
and tidyverse (v.1.3.2) (ref. 89). Detailed installation instructions for
installing both packages together or separately can be found at https://
github.com/flatironinstitute/deepblast/wiki/Installation (ref. 86).

References
68. Boeckmann, B. et al. The SWISS-PROT protein knowledgebase

and its supplement TrEMBL in 2003. Nucleic Acids Res. 31,
365–370 (2003).

69. Shin, J. E. et al. Protein design and variant prediction using
autoregressive generative models. Nat. Commun. 12, 2403
(2021).

70. Cuturi, M. & Blondel, M. Soft-dtw: a differentiable loss function
for time-series. In International Conference on Machine Learning
894–903 (PMLR, 2017).

71. Mensch, A. & Blondel, M. Differentiable dynamic programming for
structured prediction and attention. 35th International Conference
on Machine Learning 8, 5540–5562 (PMLR, 2018).

72. Koide, S., Kawano, K. & Kutsuna, T. Neural edit operations for
biological sequences. In 31st Conference on Neural Information
Processing Systems (eds Bengio, S. et al.) 4960–4970 (Curran
Associates, 2018).

73. Ofitserov, E., Tsvetkov, V. & Nazarov, V. Soft edit distance for
differentiable comparison of symbolic sequences. Preprint at
arXiv https://doi.org/10.48550/arXiv.1904.12562 (2019).

74. Manavski, S. A. & Valle, G. CUDA compatible GPU cards as
efficient hardware accelerators for Smith-Waterman sequence
alignment. BMC Bioinformatics 9, S10 (2008).

75. Lewis, T. E. et al. Gene3D: extensive prediction of globular
domains in proteins. Nucleic Acids Res. 46, D435–D439 (2017).

76. Prlić, A. et al. Pre-calculated protein structure alignments at the
RCSB PDB website. Bioinformatics 26, 2983–2985 (2010).

77. Morton, J. T. et al. Protein structural alignments from sequence.
Preprint at bioRxiv https://doi.org/10.1101/2020.11.03.365932v1
(2020).

78. Rost, B. Twilight zone of protein sequence alignments. Protein Eng.
12, 85–94 (1999).

79. Faisal, F. E. et al. GRAFENE: graphlet-based alignment-free
network approach integrates 3D structural and sequence (residue
order) data to improve protein structural comparison. Sci. Rep. 7,
14890 (2017).

80. Hočevar, T. & Demšar, J. A combinatorial approach to graphlet
counting. Bioinformatics 30, 559–565 (2014).

81. Zhu, J. et al. Improving protein fold recognition by extracting
fold-specific features from predicted residue-residue contacts.
Bioinformatics 33, 3749–3757 (2017).

http://www.nature.com/naturebiotechnology
http://www.cathdb.info/
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
http://prodata.swmed.edu/malidup/
http://prodata.swmed.edu/malidup/
http://prodata.swmed.edu/malisam/
https://zenodo.org/record/6611431
http://bagel.molgenrug.nl
https://zenodo.org/record/7731163
https://zenodo.org/record/8038377
https://zenodo.org/record/8021495
https://doi.org/10.5281/zenodo.7731163
https://doi.org/10.5281/zenodo.7731163
https://github.com/tymor22/tm-vec
https://github.com/tymor22/tm-vec
https://doi.org/10.5281/zenodo.8021495
https://github.com/flatironinstitute/deepblast
https://github.com/flatironinstitute/deepblast
https://doi.org/10.5281/zenodo.8021480
https://doi.org/10.5281/zenodo.8021480
https://github.com/flatironinstitute/deepblast/wiki/Installation
https://github.com/flatironinstitute/deepblast/wiki/Installation
https://doi.org/10.48550/arXiv.1904.12562
https://doi.org/10.1101/2020.11.03.365932v1

Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01917-2

82. Kipf, T. N. & Welling, M. Semi-supervised classification with
graph convolutional networks. Preprint at arXiv https://doi.org/
10.48550/arXiv.1609.02907 (2016).

83. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. In 33rd Conference on Neural Information
Processing Systems (eds Wallach, H. et al.) 8026–8037 (Curran
Associates, 2019).

84. Falcon, W. Pytorch lightning. GitHub. https://github.com/
PyTorchLightning/pytorch-lightning (2019).

85. Cock, P. J. et al. Biopython: freely available Python tools
for computational molecular biology and bioinformatics.
Bioinformatics 25, 1422–1423 (2009).

86. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020).

87. Harris, C. R. et al. Array programming with NumPy. Preprint at
arXiv https://doi.org/10.1038/s41586-020-2649-2 (2020).

88. The PyMOL Molecular Graphics System v.2.4.0 (Schrödinger, LLC,
2020).

89. Morton, J. & Hamamsy, T. Fast remote homology detection and
structural alignment using deep learning. Zenodo https://doi.org/
10.5281/zenodo.7731163 (2023).

90. Hamamsy, T. Tm-vec training data. Zenodo https://doi.org/
10.5281/zenodo.8038377 (2023).

91. Hamamsy, T. Tm-vec repository. GitHub https://doi.org/10.5281/
zenodo.8021495 (2023).

92. Morton, J. Deepblast repository. GitHub https://doi.org/10.5281/
zenodo.8021480 (2023).

93. Posit team. RStudio: Integrated Development Environment for R.
Posit Software http://www.posit.co/ (2022).

94. Wickham, H. et al. Welcome to the tidyverse. J. Open Source
Softw. 4, 1686 (2019).

Acknowledgements
This research was supported by NIH R01DK103358, the Simons
Foundation, NSF IOS-1546218, R35GM122515, NSF CBET-1728858
and NIH R01AI130945 to T.H.; the intramural research program of the
Eunice Kennedy Shriver National Institute of Child Health and Human
Development to J.T.M.; the Flatiron Institute as part of the Simons
Foundation to R.B., J.K.L. and N.C.; Los Alamos National Lab to C.S.;
and the Samsung Advanced Institute of Technology (Next Generation
Deep Learning: from pattern recognition to AI), Samsung Research
(Improving Deep Learning using Latent Structure) and NSF Award

1922658 to K.C. We thank the Flatiron Institute, and particularly I.
Fisk, N. Carriero and D. Simon, for providing the computer support
required to train these models; S. Ra for helpful discussions; and the
NIH, NSF and Simons foundation for providing funding. We also thank
V. Mulligan and D. Renfrew from the Flatiron Institute; M. Heinzinger,
A. Elnaggar, C. Dallago and K. Weibenow from TU Munich; P. Srinivas
and E. Webber from AWS; and R. Knight and Igor Sfiligor from UCSD
for discussions. Last, we acknowledge PyTorch90, PyTorch-Lightning91,
Biopython92, SciPy93, NumPy94 and PyMOL87 for providing software
supporting scientific computing and visualization.

Author contributions
T.H. led the TM-Vec work and J.M. led the DeepBLAST work. T.H. and
J.M. wrote the code, made the figures and wrote the manuscript.
R.B. and N.C. made scientific computing and DeepBLAST
scaling contributions. D.B. assisted with the TM-Vec structural
benchmarking. C.S. contributed to the DeepBLAST structural
alignment benchmarking. J.K.L. contributed to the figures and MIP
benchmarking. K.C. and R.B. supervised the research. All authors
contributed to the writing of the manuscript.

Competing interests
V.G. is currently a Senior Director at Genentech. K.C. is currently a
Senior Director of Frontier Research at Genentech. R.B. is currently
VP of Machine Learning for Drug Discovery at Genentech gCS. V.G.,
D.B., K.C. and R.B. are currently employed by Prescient Design. The
remaining authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41587-023-01917-2.

Correspondence and requests for materials should be addressed to
Kyunghyun Cho or Richard Bonneau.

Peer review information Nature Biotechnology thanks Martin
Steinegger and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturebiotechnology
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.7731163
https://doi.org/10.5281/zenodo.7731163
https://doi.org/10.5281/zenodo.8038377
https://doi.org/10.5281/zenodo.8038377
https://doi.org/10.5281/zenodo.8021495
https://doi.org/10.5281/zenodo.8021495
https://doi.org/10.5281/zenodo.8021480
https://doi.org/10.5281/zenodo.8021480
http://www.posit.co/
https://doi.org/10.1038/s41587-023-01917-2
http://www.nature.com/reprints

Corresponding author(s): Richard Bonneau
Last updated by author(s): July 16th 2023

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.
Please do not complete any field with "not applicable" or n/a. Refer to the help text for what text to use if an item is not relevant to your study. For
final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give
P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

TM-align v.20190822 (https://zhanggroup.org//TM-align/) was used for computing TM-scores, sequence identities, and structure alignments for pairs of proteins and domains. This data was
used for training both TM-Vec and DeepBLAST.

TM-Vec can be found at https://github.com/tymor22/tm-vec. DeepBLAST can be found at https://github.com/flatironinstitute/deepblast. The versions of imports used by TM-Vec and
DeepBLAST are included in their respective software repositories. For TM-Vec: https://github.com/tymor22/tm-vec/blob/master/setup.py, and for DeepBLAST:
https://github.com/flatironinstitute/deepblast/blob/master/setup.py.

Detailed installation instructions for installing both packages together or separately can be found here: https://github.com/flatironinstitute/deepblast/wiki/Installation.Structure visualizations
were created in Pymol v.2.4.0 (https://github.com/schrodinger/pymol-open-source). For our TM-Vec data visualizations, we used R version 4.2.2 (2022-10-31), with RStudio Version
2022.12.0+353, tidyverse 1.3.2.

All of the structural alignments analyzed were provided from the original benchmarks: MALIDUP:https://pubmed.ncbi.nlm.nih.gov/17932926/, MALISAM: https://pubmed.ncbi.nlm.nih.gov/17855399/).
Structural encoding comparison was done using this repository: https://github.com/djberenberg/structure-encoding.

The commands used to run FoldSeek, HHBlits, MMseqs2, and Diamond are included in the TM-Vec software repository. We also compared TM-Vec with 3 structure predictions methods for this
benchmark, including AlphaFold2, ESMFold, and OmegaFold. The versions used were DIAMOND v2.0.14, MMseqs2 Release 14-7e284, Foldseek 3-915ef7d, HH-suite3 (3.3.0), ProtTucker
(release date of DBs: 16.11.2021), ESMFold: ESM-2 Public Release v1.0.3, OmegaFold: OmegaFold v1.1.0, and AlphaFold2: AlphaFold v2.3.1.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

 Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

 studies with

 race, ethnicity and racism

Reporting on race, ethnicity, or
other socially relevant

Population characteristics

Recruitment

NA

NA

NA

NA

NA

Training and test datasets used for DeepBLAST can be found in the following repository: https://zenodo.org/record/4117030; and training datasets for the different TM-Vec models can be found
 here: https://zenodo.org/record/8038377.

All of the protein sequences and structures used in this study for training and evaluation are publicly available. CATH domain sequences and structures are publicly available here:
 http://www.cathdb.info/. SWISS-MODEL sequences and structures are available here: https://swissmodel.expasy.org/.

Our evaluation included several different datasets. Malidup can be found here: http://prodata.swmed.edu/malidup/; Malisam can be found here: http://prodata.swmed.edu/malisam/; the
Microbiome Immunity Project data can be found here: https://zenodo.org/record/6611431; and the Bagel dataset can be found here: http://bagel.molgenrug.nl.

Source code and data for all of the TM-Vec data visualizations are provided on Zenodo at https://zenodo.org/record/8021495. Source code for all of the DeepBLAST data visualizations are
provided here: https://zenodo.org/record/4117030.

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

No sample size calculation was performed; we trained and tested on all of our available data, including millions of protein pairs and thousands of proteins. Information on p p ; , g p p p
 sample sizes for different training experiments and tests are provided in the Online Methods, Results and Supplement.

Information on data exclusions is provided in the Online Methods. All of our data exclusions are pre-established and have to do with training and testing models that handle p p
proteins of different lengths. We did not train or test on proteins longer than 1000 residues long.

All of our code and training data are publicly available to replicate our findings.

We used randomization during the training/validation/testing of our models. Information on randomization is provided in the Online Methods and the Supplement.

 Used during testing/evaluation - information on blinding is provided in the Online Methods and the Supplement.

Research sample

Research sample

Field work, collection and transport

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Eukaryotic cell lines

Palaeontology and Archaeology

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Dual use research of concern

Authentication

Mycoplasma contamination

Specimen deposition

Dating methods

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all
submissions.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information
presented in the manuscript, pose a threat to:
Public health
National security
Crops and/or livestock
Ecosystems Any other

significant area

Experiments of concern
Does the work involve any of these experiments of concern:

Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities
Enable the weaponization of a biological agent or toxin
Any other potentially harmful combination of experiments and agents

Flow Cytometry
Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical
markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

 Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Seed stocks

Novel plant genotypes

Authentication

Data deposition

e.g.

Peak calling parameters

Cell population abundance

Magnetic resonance imaging

Experimental design

Preprocessing

Models & analysis
Involved in the study
Functional and/or effective connectivity
Graph analysis
Multivariate modeling or predictive analysis

Behavioral performance measures

Field strength

Sequence & imaging parameters

Preprocessing software

Normalization template

Noise and artifact removal

Statistic type for inference

This checklist template is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/

	Protein remote homology detection and structural alignment using deep learning
	Results
	Scalable structural alignment search using neural networks
	Capturing structural information in the latent space
	Extracting structural alignments from sequence
	Remote homology detection and alignment
	Full repository-level scaling and runtime
	Case study: bacteriocins

	Discussion
	Online content
	Fig. 1 Schematic method overview.
	Fig. 2 TM-Vec structural similarity prediction.
	Fig. 3 Annotating and aligning proteins in the Malidup benchmark.
	Fig. 4 Annotating and aligning unclassified putative bacteriocins using TM-Vec.
	Table 1 Inputs and outputs of methods used for benchmarking.
	Table 2 Malisam and Malidup benchmarks.

