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De novo detection of somatic mutations  
in high-throughput single-cell profiling  
data sets

Francesc Muyas1, Carolin M. Sauer    1, Jose Espejo Valle-Inclán    1, Ruoyan Li2, 
Raheleh Rahbari2, Thomas J. Mitchell    2,3,4, Sahand Hormoz5,6,7 & 
Isidro Cortés-Ciriano    1 

Characterization of somatic mutations at single-cell resolution is 
essential to study cancer evolution, clonal mosaicism and cell plasticity. 
Here, we describe SComatic, an algorithm designed for the detection of 
somatic mutations in single-cell transcriptomic and ATAC-seq (assay for 
transposase-accessible chromatin sequence) data sets directly without 
requiring matched bulk or single-cell DNA sequencing data. SComatic 
distinguishes somatic mutations from polymorphisms, RNA-editing 
events and artefacts using filters and statistical tests parameterized on 
non-neoplastic samples. Using >2.6 million single cells from 688 single-cell 
RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) data sets 
spanning cancer and non-neoplastic samples, we show that SComatic 
detects mutations in single cells accurately, even in differentiated cells 
from polyclonal tissues that are not amenable to mutation detection using 
existing methods. Validated against matched genome sequencing and 
scRNA-seq data, SComatic achieves F1 scores between 0.6 and 0.7 across 
diverse data sets, in comparison to 0.2–0.4 for the second-best performing 
method. In summary, SComatic permits de novo mutational signature 
analysis, and the study of clonal heterogeneity and mutational burdens at 
single-cell resolution.

Characterization of somatic mutations at single-cell resolution is essen-
tial to study genetic heterogeneity and cell plasticity in cancer1, clonal 
mosaicism in non-neoplastic tissues2 and to identify the mutational 
processes operative in both malignant and phenotypically normal 
cells3,4. Single-cell genome sequencing provides the most direct way to 
study mutations in single cells. However, single-cell genomics methods 
are not easily scalable and suffer from high rates of genomic drop-outs 
and artefacts introduced during whole-genome amplification5.  

To circumvent these issues, other approaches rely on bulk sequenc-
ing of single-cell-derived colonies grown in vitro or clonal popula-
tions directly isolated from tissues6–8. However, in vitro growth of 
single-cell-derived colonies is laborious and limited to cell types amena-
ble to cell culture5,7,9, and isolation of clonal units is not technically feasi-
ble for some tissues. More recently, the development of ultra-sensitive 
sequencing methods using strand-specific barcoding has permitted the 
detection of mutations at single-molecule resolution10,11. Yet, cell type 
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the genome across cell types from the same individual using cell type 
annotations established through, for example, marker gene expres-
sion (Fig. 1 and Methods). Somatic mutations are distinguished from 
germline polymorphisms and artefacts using a set of hard filters and 
statistical tests (Fig. 1). Specifically, candidate somatic SNVs are dis-
tinguished from background sequencing errors and artefacts using 
a beta-binomial test parameterized using non-neoplastic samples  
(Methods). Next, mutations detected in multiple cell types are con-
sidered to be germline polymorphisms or artefacts and therefore 
discounted as somatic. The key idea is that germline variants should 
be present in all cell types, whereas somatic mutations should be 
detected only in cell types from the same differentiation hierarchy 
unless mutations were acquired in a progenitor or stem cell before 
clonal diversification or during early development8,23,24. Candidate 
mutations overlapping known RNA-editing sites or single-nucleotide 
polymorphisms (SNPs) with population frequencies greater than 1% 
in the gnomAD25 database are also filtered out. In addition, SComatic 
uses a panel of normals (PON) generated using a large collection of 
non-neoplastic samples to discount recurrent sequencing and mapping 
artefacts. For example, in 10× Genomics Chromium scRNA-seq data, 
recurrent errors are enriched in LINE and SINE elements, such as Alu 
elements (Supplementary Fig. 1), which are therefore not considered 
for mutation calling. Finally, to make a mutation call, SComatic requires 
a sequencing depth of at least five reads in the cell type in which the 
mutation is detected, and that the mutation is detected in at least three 
sequencing reads from at least two different cells of the same type 
(Supplementary Fig. 2 and Methods).

Validation of SComatic using single-cell RNA-seq data
To compare the patterns of mutations detected by SComatic against 
DNA sequencing data, we analyzed scRNA-seq data generated using 
the 10× Genomics Chromium technology and matched whole-exome 
sequencing (WES) data from eight cutaneous squamous cell carcino-
mas (cSCCs) and matched adjacent normal skin samples26. First, we 
compared the mutations detected by SComatic in epithelial cells with 
those detected by WES (Methods). For this analysis, we focused on 
the 9,788,377 positions in the genome across the eight samples with 
sufficient coverage in both the scRNA-seq and WES data (Fig. 2d and  
Methods). In these regions, we detected 266 of the 10,477 (2.4%) muta-
tions found in the WES data, which we considered true positive muta-
tions. Using SComatic, we detected 179 mutations in the scRNA-seq data 
(Fig. 2d), 80 (45%) of which were also detected in the WES data (Methods 
and Supplementary Tables 2 and 3). For 42 of the 179 mutations (23%), 

information is lost unless cell sorting is performed before sequencing. 
Due to these technical limitations, our understanding of the patterns 
of somatic mutations across cell types, and their impact on cell fates 
and phenotypes, remains limited.

An alternative strategy to single-cell genome sequencing con-
sists of detecting somatic mutations in sequencing reads from 
high-throughput single-cell assays directly, such as scRNA-seq and 
scATAC-seq. The main advantage of this approach is the possibility to 
harness the high throughput of single-cell assays to map the lineage of 
cells to transcriptional or regulatory programs12,13 without the need for 
complex experimental protocols for joint profiling of the DNA and RNA 
from the same cell3,8,14–16. Nevertheless, the detection of mutations is 
strongly limited owing to the variability in gene expression across cell 
types, allelic drop-out events, RNA editing, limited depth of coverage 
and sequencing artefacts17–19. Therefore, existing algorithms rely on 
detecting mutations, such as single-nucleotide variants (SNVs) or 
indels, previously identified using matched bulk or single-cell DNA 
sequencing data18,20–22. These approaches are limited because matched 
DNA sequencing data are rarely available for existing high-throughput 
single-cell data sets, and sampling biases or genetic heterogeneity 
between the samples undergoing DNA sequencing and single-cell 
profiling can affect sensitivity for mutation detection. Therefore, 
algorithms designed to detect somatic mutations in single-cell data sets 
de novo without requiring matched DNA sequencing data are needed.

To address this need, we developed SComatic, an algorithm for 
de novo detection of somatic SNVs in single-cell profiling data sets 
without requiring matched bulk or single-cell DNA sequencing data. 
Using published scRNAs-seq data from 622 samples and scATAC-seq 
data from 66 samples, totaling 2,655,775 non-neoplastic and cancer 
cells (Supplementary Table 1), we show that SComatic has consistently 
higher precision compared to existing algorithms for somatic SNVs call-
ing across diverse cancer data sets. In addition, we show that SComatic 
permits the detection of mutational burdens and de novo discovery of 
mutational signatures at cell-type resolution, even for differentiated 
cells and cells from polyclonal tissues showing high levels of genetic 
heterogeneity. SComatic is implemented in Python 3 and is available 
at https://github.com/cortes-ciriano-lab/SComatic.

Results
Overview of SComatic
We developed SComatic to detect somatic mutations using single-cell 
sequencing data without requiring a matched reference sample  
(Fig. 1). In brief, SComatic computes base counts for every position of 
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we found at least 1 read in the WES data supporting the mutated allele; 
however, this was insufficient evidence to call a mutation by our WES 
analysis pipeline (Methods). Finally, 55 of the 179 mutations (31%) were 
detected only in the scRNA-seq data. Of these 55 mutations, 38 (69%) 
were detected in sample P7. Of the 87 WES-specific mutations, 61 (70%) 
were also detected only in P7. Mutational signature analysis revealed 
that 45 (82%) of the mutations detected only in the scRNA-seq data and 
71 (82%) of the WES-specific mutations were attributed to single-base 
substitution (SBS) mutational signatures linked with mutagenesis 
caused by exposure to ultraviolet radiation (SBS7a, SBS7b and SBS7d), 
which is consistent with the expected predominant signature for true 
mutations in these samples26 (Fig. 2e). The variant allele fractions of 
the mutations detected in WES and scRNA-seq data were not correlated 
for P7, unlike for other samples (Supplementary Fig. 3). Therefore, 
these results suggest that for sample P7, the lack of sequencing reads 

in the WES data supporting those mutations detected by SComatic in 
the scRNA-seq data (and vice versa) is probably due to high genetic 
heterogeneity.

Next, we applied SComatic to detect somatic mutations across 
all genomic positions with sufficient coverage in the scRNA-seq data 
(Methods). We detected 810 and 186 SNVs in the tumor and matched 
normal samples, respectively (Supplementary Table 1), which mapped 
to 3′ untranslated regions (40%), intronic (27%) and exonic regions 
(24%) (Supplementary Fig. 4). After normalizing by breadth of cover-
age (Methods), we estimated an average mutation rate per haploid 
genome for epithelial cells from the cSCC and normal skin samples 
of 12.8 and 3.7 mutations per Mb, respectively (note that we report 
mutational burdens for single cells as mutations per haploid genome 
because only one allele is generally detected per cell and genomic 
position; Supplementary Fig. 5). These rates are significantly higher 
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Fig. 2 | Validation of SComatic using matched scRNA-seq and exome 
sequencing data. a, Mutational burdens for epithelial cells using the somatic 
SNVs detected by SComatic in cSCC and matched normal skin scRNA-seq data 
sets. The number of mutations is normalized to account for the variable number 
of callable sites in each sample. b, Fraction of somatic SNVs detected in epithelial 
cells attributed to COSMIC signatures. SBS signatures associated with ultraviolet 
radiation (SBS7a, SBS7b, SBS7c and SBS7d) and clock-like mutational processes 
(SBS5 and SBS40) are collapsed for visualization purposes. c, Mutational spectra 
computed for the mutations detected using SComatic in epithelial cells from 
cSCC and matched normal skin scRNA-seq data. The cosine similarities between 
the observed and reconstructed mutational spectra are shown. d, Venn diagram 

showing the overlap of the somatic SNVs detected by SComatic in epithelial 
cells using scRNA-seq data and WES data from the cSCC samples. ‘WES-specific 
beta-binomial’ refers to mutations detected in WES with at least one alternative 
read count in scRNA-seq that are not significant for the beta-binomial test. 
e, Decomposition of the mutations detected in scRNA-seq data only (scRNA-
seq-specific mutations) into COSMIC signatures. f, Correlation between the 
mutational burdens estimated using the mutations detected in WES and the 
mutations detected by SComatic in the scRNA-seq data. The correlation was 
assessed using a linear regression model. Only genomic regions with sufficient 
sequencing depth in both the WES and scRNA-seq data were considered for this 
analysis. Mb, megabase.
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than non-epithelial cells in the data set, which had a median of 0.33 
and 0.40 mutations per Mb in tumor and matched normal samples, 
respectively (P < 0.001, Mann–Whitney U-test; Supplementary Fig. 6). 
Mutational signature analysis attributed 71% and 84% of the mutations 
detected in epithelial cells from tumor and matched normal skin sam-
ples, respectively, to signatures associated with exposure to ultraviolet 
radiation (SBS7a–d; Fig. 2b,c and Methods), consistent with previous 
DNA sequencing studies of somatic mutations in sun-exposed skin7,27. 
The remaining mutations were mostly attributed to SBS5 and SBS40 
signatures (19.6% and 13.4% for the tumor and matched normal samples, 
respectively), which have been previously identified in non-neoplastic 
skin samples7. The mutation rates computed using the mutations 
detected in scRNA-seq data from epithelial cells were highly correlated 
with the rates estimated using the WES data (R2 = 0.97, P = 0.0024;  
Fig. 2f and Methods), indicating that SComatic permits the calculation 
of mutation burdens at cell-type resolution.

Together, these results show a high concordance between the 
mutations detected in scRNA-seq by SComatic and WES, and high-
light that methods for calling mutations in single-cell data based on 
genotyping mutations previously identified in genome sequencing 
data are likely to have low sensitivity for samples showing high levels 
of genetic heterogeneity.

SComatic outperforms existing mutation detection 
algorithms
Next, we compared the performance of SComatic against 
top-performing pipelines developed for detecting somatic muta-
tions in scRNA-seq data22 using popular variant calling algorithms 
(VarScan2 (ref. 28), SAMtools29 and Strelka2 (ref. 30)) and methods 
specifically designed for calling mutations in single-cell data (Mono-
var31 and SCReadCounts32). To this end, we used the matched genome 
sequencing and scRNA-seq data from epithelial cells from seven out 
of the eight cSCC tumors described above26, and from nine kidney and 
fourteen ovarian tumors33,34. In total, we considered 416 mutations 
detected in WES or whole-genome sequencing (WGS) data from 30 
tumors with sufficient coverage in scRNA-seq data for benchmarking. 
We excluded patient P7 from the cSCC data set for this analysis owing to 
the high level of genetic heterogeneity observed between the matched 
scRNA-seq and WES data (Supplementary Fig. 3). To test whether the 
performance of SComatic is driven by filtering out common SNPs, we 
removed common polymorphisms from the mutation call sets gener-
ated by all algorithms used (Methods). SComatic achieved a sensitivity 
of 0.33–0.56 across the three data sets, which was higher than that 
achieved by SAMtools for two data sets and uniformly higher than that 
achieved by Monovar (Fig. 3a–c and Supplementary Table 4). Strelka2, 
VarScan2 and SCReadCounts showed a significantly higher sensitivity 
than SComatic (Fig. 3a–c). However, SComatic outperformed by a 
large margin all other methods in terms of precision across the three 
data sets: 0.67–0.87 for SComatic versus 0.06–0.24 for Strelka2, the 
algorithm with the next-best performance (P < 10−15, two-sided Stu-
dent’s t-test; Fig. 3a–c and Supplementary Figs. 7 and 8). SComatic 
also achieved significantly higher F1 score values than other methods 
(Fig. 3a–c). Notably, we obtained similar differences in performance 
between methods when also including sample P7 from the cSCC data 
set in the benchmarking set (Supplementary Fig. 9).

To further compare the performance of these algorithms, we per-
formed mutational signature analysis by fitting COSMIC signatures to 
the observed mutational spectra (Methods and Fig. 3d–g). We found 
that 77% of the mutations detected by SComatic in the cSCC data set 
were attributed to signatures SBS7a–d (R = 0.98 and P < 10−15; Fig. 3d 
and Supplementary Figs. 9 and 10), and the mutational spectrum was 
highly consistent with the WES data (cosine similarity = 0.98; Fig. 3g). 
By contrast, the mutations detected by the other algorithms were 
attributed to signatures SBS1 and SBS5 and were different from the 
patterns of mutations detected in WES (Fig. 3d). Similarly, the muta-
tional signatures detected in the ovarian cancer data set using the 
mutations called in scRNA-seq by SComatic were highly concordant 
with the WGS data, in stark contrast to the results obtained with the 
other algorithms (Fig. 3e and Supplementary Figs. 9 and 10). Moreover, 
we found an enrichment of mutations attributable to mutational sig-
nature 3 (SBS3) in ovarian tumors with homologous repair deficiency 
(n = 22) compared to tumors with homologous repair proficiency 
(n = 13), which is consistent with previous studies of homologous repair 
deficient tumors33,35,36, highlighting the power of SComatic to detect 
clinically relevant mutational processes in scRNA-seq data (Fig. 3f and 
Supplementary Fig. 10).

Collectively, these results indicate that existing methods for 
detecting somatic mutations in scRNA-seq data have high false-positive 
rates, whereas SComatic enables the detection of somatic mutations 
at single-cell resolution at high precision. Moreover, these results 
illustrate that the higher performance of SComatic is not only driven 
by filtering out common SNPs but by the accurate modeling of the 
background error rate, which helps to distinguish artefacts from true 
mutations with high accuracy.

Detection of somatic mutations in hypermutated samples
We next assessed the performance of SComatic to detect somatic 
mutations in samples characterized by a high mutational bur-
den. To this end, we applied SComatic to scRNA-seq data from 70 
treatment-naive primary colorectal tumors, including 37 mismatch 
repair (MMR)-deficient tumors showing microsatellite instability 
(MSI), and 40 matched normal adjacent colon samples37,38. Using SCo-
matic, we called 8,997 somatic SNVs across all samples: 7,531 and 1,127 
SNVs in MSI and microsatellite stable (MSS) tumors, respectively, and 
339 in the matched normal samples (Supplementary Table 1). Most 
mutations mapped to non-coding elements, primarily untranslated 
regions (37%) and introns (27%) (Supplementary Fig. 4). Consistent 
with previous colorectal cancer genome studies39,40, our analysis 
revealed that epithelial cells in MSI tumors show a significantly higher 
mutational burden than epithelial cells from MSS tumors (24.7 vs 8.3 
SNVs per Mb, P < 1.11 × 10−12; two-sided Mann–Whitney U-test) and 
normal adjacent colon samples (0.51 SNVs per Mb, P < 1.77 × 10−15). 
By contrast, the mutational burden for non-epithelial cells was low 
and comparable between MSI and MSS tumors (0.41 vs 0.52, P = 0.06; 
two-sided Mann–Whitney U-test), as expected for non-malignant cell 
types (Fig. 4a and Supplementary Fig. 6b). Moreover, the mutational 
burden estimated by SComatic using scRNA-seq data from epithelial 
cells in MSI tumors was comparable with that of MMR-deficient tumors 
estimated using WES data from The Cancer Genome Atlas39,40 (P > 0.05, 
Student’s t-test; Fig. 4b).

Fig. 3 | Comparison of the performance of SComatic against other mutation 
detection methods. a–c, Performance of Strelka2, SAMtools, VarScan2, 
Monovar, SCReadCounts and SComatic for the detection of somatic mutations  
in the scRNA-seq data from cSCC (a), ovarian cancer (b) and kidney tumor 
samples (c). The bars represent the mean value, and the error bars are the 95% 
bootstrap confidence interval for each statistic computed using 50 bootstrap 
resamples. Significance with respect to SComatic in a–c was assessed using 
the two-sided Student’s t-test (***P < 0.0001). d, Decomposition into COSMIC 
signatures of the mutations detected in cSCC scRNA-seq data and in matched 

WES data. e, Decomposition into COSMIC signatures of the mutations  
detected in scRNA-seq and matched WGS data from ovarian cancer samples.  
f, Decomposition into COSMIC signatures of the mutations detected by 
SComatic in scRNA-seq from homologous recombination deficient (HRD) 
and homologous recombination proficient (HRP) ovarian cancer samples. 
g, Comparison between the mutational spectra of the mutations detected in 
cSCC samples using WES and scRNA-seq data for the algorithms benchmarked. 
The cosine similarities between the mutational spectra computed using the 
mutations detected in the scRNA-seq and the WES data are shown.
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Mutational signature analysis attributed the mutations detected 
by SComatic in MSI tumors to SBS signatures associated with MMR 
deficiency (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), SBS5 
and SBS40 (Fig. 4c,d and Methods). In one sample (C172), 82.9% of 
mutations were attributed to signatures SBS10a, SBS10b and SBS28  

(Fig. 4a,c,d), suggesting that hypermutation in this sample is driven by 
DNA polymerase epsilon (POLE) deficiency41,42. In MSS tumors, most 
mutations were attributed to signatures SBS5 and SBS40, consistent 
with published compendia of mutational signatures extracted from 
large cancer genome sequencing studies42.
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We next compared the mutational burdens estimated by SComatic 
against VarScan2, SAMtools and Strelka2 using the colorectal cancer 
scRNA-seq data. As opposed to SComatic, the mutational burdens 
computed using the mutations detected by the other algorithms were 
not different between MSI or POLE-deficient and MSS or normal adja-
cent samples, consistent with the low specificity of existing methods 
for mutation calling using scRNA-seq data (Supplementary Fig. 11).

Together, these results indicate that SComatic permits the iden-
tification of the mutational processes operative in hypermutated 
samples at single-cell resolution without requiring matched genomic 
sequencing data.

Detection of mutations in samples with a low mutation burden
We further tested the ability of SComatic to detect mutations in sam-
ples with low mutational burdens. To this end, we applied SComatic to 
scRNA-seq data from CD34+-enriched cells from five individuals with 

myeloproliferative neoplasms (MPNs), a type of blood cancer caused 
by the clonal expansion of a single hematopoietic stem cell (HSC)8. We 
detected an average of 0.12 mutations per Mb per haploid genome, 
which primarily mapped to intronic regions (62%; Supplementary  
Fig. 4). Mutational signature analysis revealed that 96% of the mutations 
detected by SComatic were attributed to signatures SBS5 and SBS40 
(Fig. 5a,b), consistent with single-cell WGS studies of HSCs from healthy 
donors6,43 and MPN patients8,44. In addition, we found a positive cor-
relation between the average mutation rate of HSCs estimated by SCo-
matic and the patient’s age at the time of sampling (Pearson’s r = 0.79, 
P = 0.09; Fig. 5c), in agreement with previous studies8. Together, these 
results show that SComatic accurately detects mutational burdens and 
signatures in samples with low mutational burdens.

To further test whether SComatic can be used for the analysis 
of somatic mutations in non-neoplastic samples with high levels 
of genetic heterogeneity (for example, polyclonal tissues) and in 

Epithelial cells

MSI CRC MSS CRC POLEd CRC Mutational
signatures

0

20

40

60

80

100

120

140

CRC (MSI)
scRNA-seq
SComatic

(n = 35)

CRC (MSI)
TCGA
WES

(n = 55)

N
o.

 o
f m

ut
at

io
ns

 p
er

 M
b P = 0.86 

a

b c

C>A C>G C>T T>A T>C T>G

0

0.05

0.10

0

0.05

0.10

Re
la

tiv
e 

co
nt

rib
ut

io
n

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

0

0.20

0.40

M
SI C

RC
M

SS C
RC

PO
LEd C

RC

Cosine (reconstructed) = 0.97

Cosine (reconstructed) = 0.90

Cosine (reconstructed) = 0.99

d

CRC tumor samples Matched normal colon samples
C

17
2_

T
C

13
9_

T
C

14
6_

T
C

11
9_

T
C

13
0_

TA
C

15
2_

T
C

16
5_

T
C

16
9_

T
C

14
7_

T
C

16
4_

T
C

13
8_

T
C

12
2_

T
C

14
2_

T
C

16
8_

T
KU

L0
1−

T
C

11
1_

T
C

16
3_

T
C

13
2_

T
C

14
3_

T
C

13
0_

TB
C

13
7_

T
C

11
0_

T
C

11
8_

T
C

17
3_

T
C

15
8_

T
C

15
6_

T
C

11
4_

T
C

14
4_

T
C

12
3_

T
C

17
0_

T
C

10
6_

T
C

10
3_

T
C

11
5_

T
C

16
7_

T
C

11
6_

T
C

15
4_

T
C

16
0_

T
C

12
6_

T
C

15
0_

T
C

12
9_

T
C

10
7_

T
C

10
4_

T
C

16
6_

T
C

11
3_

T
C

13
4_

T
C

10
5_

T
C

16
1_

T
C

13
5_

T
C

16
2_

T
C

13
3_

T
C

11
2_

T
C

15
7_

T
C

13
6_

T
C

12
5_

T
C

17
1_

TB
C

12
4_

T
C

10
9_

T
C

15
9_

T
KU

L2
1−

T
C

15
5_

T
KU

L1
9−

T
KU

L2
8−

T
C

14
5_

T
KU

L3
0−

T
C

17
1_

TA
C

14
9_

T
C

14
0_

T
C

15
3_

T
C

13
8_

N
C

13
3_

N
C

11
5_

N
C

12
3_

N
C

12
9_

N
C

13
5_

N
C

12
6_

N
C

12
4_

N
C

13
4_

N
C

13
0_

N
C

12
2_

N
C

12
5_

N
C

11
6_

N
C

10
7_

N
C

14
2_

N
KU

L0
1−

N
C

11
4_

N
C

10
9_

N
KU

L3
0−

N
C

11
2_

N
C

13
9_

N
C

10
6_

N
C

11
0_

N
C

11
1_

N
C

13
2_

N
C

13
7_

N
C

14
3_

N
C

15
1_

N
C

15
2_

N
C

16
5_

N
C

17
0_

N
C

11
3_

N
C

13
6_

N
C

14
0_

N
C

15
5_

N
C

15
7_

N
C

16
2_

N
KU

L1
9−

N

0

10

20

30

40

> 50

N
o.

 o
f m

ut
at

io
ns

 p
er

 M
b

MSI MSS

SBS5 and SBS40
SBS-MMRd
SBS-POLEd
SBS17a

SBS37

SBS1

SBS18

Fig. 4 | Detection of somatic mutations in scRNA-seq data from colorectal 
cancer samples. a, Mutational burden of epithelial cells computed using 
SComatic. The number of mutations is normalized to the number of callable 
sites per sample. b, Distribution of the mutational burden of epithelial cells from 
MSI tumors detected using SComatic and the mutational burden of MSI tumors 
from TCGA computed using WES data. The red horizontal line shows the mean 
for each group, and n indicates the number of samples per group. Statistical 
significance was assessed using the two-sided Student’s t-test. c, Decomposition 

of the mutational spectra computed using SComatic into COSMIC signatures. 
Mutational signatures associated with MMR deficiency (MMRd) (SBS6, SBS14, 
SBS15, SBS21, SBS26 and SBS44), POLE deficiency (POLEd) (SBS10a, SBS10b and 
SBS28) and clock-like mutational processes (SBS5 and SBS40) are collapsed for 
visualization purposes. d, Trinucleotide context of somatic mutations detected 
by SComatic using the scRNA-seq data from colorectal cancer samples. CRC, 
colorectal cancer; TCGA, The Cancer Genome Atlas.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01863-z

differentiated cells, we next analyzed 10× scRNA-seq data from 78 sam-
ples obtained from six heart regions across 14 donors45. We detected 
a total of 2,132 somatic SNVs (Supplementary Table 1), 78% of which 
mapped to intronic regions (Supplementary Fig. 4). By extrapolating 
to the entire genome, we estimated an average mutation rate per hap-
loid genome of 302 mutations for cardiomyocytes (range, 92–1,284;  

Fig. 5d), which was significantly lower than the mutation rates esti-
mated for adipocytes (1,179 SNVs per cell and haploid genome) and 
smooth muscle cells (581; Supplementary Fig. 12a). Mutational signa-
ture analysis revealed that 46.7% of the mutations detected in cardio-
myocytes were attributed to SBS5 and SBS40 (Fig. 5e,f), whereas 35.4% 
were attributed to SBS44, consistent with a recent study of somatic 
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Fig. 5 | Detection of somatic mutations in samples with a low tumor 
mutational burden. a, Trinucleotide context of somatic mutations detected 
in HSCs from patients with MPNs. b, Decomposition of the somatic mutations 
detected in HSCs from patients with MPNs into COSMIC signatures.  
c, Correlation between the mutational burden of HSCs estimated using SComatic 
and the age of patients at the time of sampling (Pearson’s correlation test).  
d, Average number of mutations detected per cell and genome in cardiomyocytes 
from the heart cell atlas across donors. e, Decomposition of the mutations 

detected in cardiomyocytes into COSMIC signatures. f, Trinucleotide context 
of mutations detected in cardiomyocytes from the heart cell atlas. g, Average 
mutational burden of individual cells across the tissues included in the GTEx 
scRNA-seq data set. h, Decomposition of the mutations detected across all cells 
from the GTEx data set into COSMIC signatures. i, Trinucleotide context of 
mutations detected across all single cells from the GTEx data set. The numbers on 
top of the bars in d and g indicate the number of cells per cell type analyzed, and 
the horizontal red dashed line corresponds to 1,000 mutations per cell.
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mutagenesis in human cardiomyocytes using single-cell genome 
sequencing46. The mutational burdens in cardiomyocytes estimated 
by SComatic were comparable to those estimated using single-cell WGS 
data46 (P = 0.08, two-sided Wilcoxon’s rank test; Supplementary Fig. 13).

Next, we applied SComatic to 24 scRNA-seq data sets from eight 
non-neoplastic tissues across 15 human donors generated by the 
GTEx consortium47. We found a total of 524 SNVs and estimated an 
average mutation load of 598 mutations per cell and haploid genome  
(Fig. 5g, Supplementary Fig. 12b and Methods). As observed in 
the heart cell atlas, adipocytes had the highest mutation burdens  
(1,430 mutations per cell and haploid genome), whereas muscle cells 
showed the lowest burdens (251; Supplementary Fig. 12b). As observed 
in other polyclonal tissues7, mutational signature analysis revealed 
that most of these mutations were attributed to the mutational signa-
tures SBS5 and SBS40 (92.1%; Fig. 5h,i). Together, these results suggest 
that SComatic permits the study of the patterns and rates of mutations 
in polyclonal tissues.

Performance of SComatic on single-cell ATAC-seq data sets
Next, we applied SComatic to detect somatic mutations using single-cell 
combinatorial indexing ATAC-seq (sciATAC-seq) data generated for 
459,056 cells from 66 samples spanning 24 non-neoplastic tissues48. 
SComatic detected a total of 389 somatic SNVs (Supplementary  
Table 1). The distribution of mutations was different from those of 
scRNA-seq data sets, as most mutations mapped to intergenic (32%), 
promoter (19%) and intronic regions (18%) (Supplementary Fig. 4). 
We found low single-cell mutational burdens with an average load of 
300 mutations per cell and haploid genome, with ductal cells showing 
the highest rates (933 per haploid genome), and skeletal myocytes  
(9 mutations) and follicular cells (0 mutations) having the lowest 
burdens (Supplementary Fig. 14a–c). As observed in other polyclonal 
tissues, 99% of the SNVs were attributed to SBS5 and SBS40 (Supple-
mentary Fig. 14b,c). The genome-wide mutation rates were compara-
ble to cell types represented in scRNA-seq and sciATAC-seq data sets, 
indicating that SComatic permits the estimation of mutation rates 
across different single-cell profiling assays (Supplementary Fig. 15).

Patterns of clonality at cell-type resolution
Motivated by the importance of clonal mosaicism to somatic evolution 
and disease2,49, we next assessed whether the single-cell resolution pro-
vided by SComatic permits analysis of the patterns of clonality across 
cell types. To this end, we first computed the fraction of mutant cells 
per cell type across the single-cell data sets analyzed (Supplementary 
Table 1, Supplementary Fig. 13 and Methods). We detected clonal muta-
tions in epithelial cells from the cSCC samples but not in epithelial cells 
from non-neoplastic skin samples, consistent with the high level of 
polyclonality in normal skin (Supplementary Fig. 16a,b). The clonality 
of mutations in epithelial cells in both MSI and MSS colorectal samples 
spanned a dynamic range of values, as expected for tumors harboring 
both clonal and subclonal mutations (Supplementary Fig. 16c,d). The 
mutations detected in non-neoplastic cell types from both cancer and 
non-neoplastic samples showed overall low (<0.2) mutant cell fractions, 
in agreement with genome sequencing studies of non-neoplastic tis-
sues7 (Supplementary Fig. 16d–f). Together, these results show that 
SComatic permits the study of the clonality of mutations in both cancer 
and non-neoplastic samples.

Analysis of intra-tumor heterogeneity using SComatic
Next, we sought to evaluate whether mutations detected by SComatic 
in scRNA-seq data permit the reconstruction of the clonal heterogene-
ity in tumors. To this end, we analyzed multi-region scRNA-seq data 
from ovarian cancers (Methods). We used clones identified using 
copy number profiles inferred from scRNA-seq data using Numbat50 
as a baseline for comparison (Methods). For example, for patient 
SPECTRUM-OV-003, we detected four mutations that were enriched 
in a subset of cells collected from the upper quadrant region (Fig. 6a 
and Supplementary Fig. 17). Unsupervised clustering using somatic 
mutations of the cells collected from this region revealed two clones. 
Clone 1 (marked in yellow in Fig. 6b) was defined by mutations detected 
by SComatic in a subset of cancer cells from the peritoneum and from 
other tumor regions. This is consistent with the fact that some of the 
SComatic mutations that define clone 1 were detected in the WGS 
data from the peritoneum. However, the mutations that define clone 
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Fig. 6 | Analysis of intra-tumor heterogeneity using somatic mutations 
detected by SComatic in the scRNA-seq data from a patient with ovarian 
cancer (SPECTRUM-OV-003). a, Hierarchical clustering of single cells from all 
tumor regions (columns) by somatic mutations (rows; mutations are labeled 
arbitrarily). Mutations detected in the scRNA-seq data are shown in red. White 
denotes the absence of mutations in the scRNA-seq data in cases when the site 
was sufficiently covered (at least one sequencing read), and gray indicates that 
there was no coverage at the position to make a call. b, Hierarchical clustering 

of single cells collected from the upper right quadrant region from patient 
SPECTRUM-OV-003. Only the mutations shown in a that were detected in at 
least 20 cells are shown. The two clones defined by somatic mutations detected 
in scRNA-seq data are marked on the y axis. Single cells and mutations in a and 
b are ordered by hierarchical clustering (top and left-hand side dendrograms, 
respectively). The color bar indicates the cancer cell fraction (CCF) of the 
mutations in the WGS data. NA, no coverage in scRNA-seq.
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2 (mutations 18–21; Fig. 6b) were detected only in scRNA-seq data 
in a subset of the cells from the upper right quadrant region. Clonal 
assignments based on somatic mutations and somatic copy number 
data were highly concordant (Fig. 6b and Supplementary Fig. 17). 
Together, these results show that SComatic permits, within the limits 
imposed by the breadth of coverage of current scRNA-seq methods, 
the reconstruction of the clonal heterogeneity of tumor samples and 
analysis of mutual exclusivity and co-occurrence of mutations at the 
single-cell level. Finally, SComatic also identified subclonal deleteri-
ous mutations in cancer driver genes frequently mutated in the cancer 
types analyzed, such as MLH1, TGFBR2 and KRAS in colorectal tumors  
(Supplementary Fig. 18), indicating that SComatic can discover sub-
clonal driver mutations.

De novo mutational signature analysis
Clustering of samples based on the cosine similarity of their muta-
tional spectra revealed groups consistent with the relative activity of 
known mutational processes in these samples (Supplementary Fig. 19). 
Therefore, we sought to determine whether the mutations detected 
by SComatic permit the identification of mutational processes using 
de novo mutational signature extraction. Decomposition of the muta-
tions identified in epithelial cells from hypermutated colorectal cancer 
samples using COSMIC signatures revealed a strong contribution of 
signatures associated with POLE and MMR deficiency. By contrast, 
the signatures extracted from epithelial cells in MSS tumors showed 
strong contributions of SBS5 and SBS40, consistent with the mutational 
processes expected for these tumors (cosine similarities > 0.96; Sup-
plementary Fig. 20). We identified two signatures in cSCC samples, one 
of which showed a cosine similarity of >0.98 when decomposed into the 
COSMIC signatures attributed to ultraviolet-light mutagenesis (SBS7a, 
SBS7b and SBS7c), and the other was decomposed into a combination 
of signatures SBS5 and SBS40, in agreement with the WES data (cosine 
similarity = 0.7; Supplementary Fig. 20). Despite the limited number of 
mutations and samples available for analysis (Supplementary Fig. 21), 
the signatures extracted from the mutations detected in non-neoplastic 
samples from the GTEx project and the heart cell atlas were decom-
posed into SBS5 and SBS40 (cosine similarity > 0.36; Supplementary 
Fig. 20), which is consistent with the mutational signatures identified 
in WGS studies of non-neoplastic samples7. The signatures detected 
in cardiomyocytes showed a strong contribution of SBS44, which is 
related to MMR deficiency and was reported in a recent single-cell WGS 
study of human cardiomyocytes46. Together, these results indicate 
that SComatic permits de novo mutational signature analysis using 
mutations detected in single-cell data.

Discussion
Here, we show that SComatic permits de novo detection of somatic 
SNVs at single-cell resolution in single-cell data sets without requiring 
a matched reference sample. This is particularly relevant to the study 
of somatic mutagenesis in cell types and samples that cannot be reli-
ably analyzed using existing single-cell genomics methods, such as 
differentiated cells and polyclonal tissues showing high levels of genetic 
heterogeneity5,7. Critically, we show that SComatic outperforms exist-
ing pipelines for the detection of somatic SNVs in single-cell data sets, 
which allows the identification of mutational processes in both cancer 
and non-neoplastic cells.

Despite its higher performance, SComatic is limited by the spar-
sity and low sequencing depth of current single-cell sequencing 
assays. As single-cell methods improve, SComatic will enable further 
insights to be derived from single-cell data sets, such as phylogenetic 
analysis and identification of mutations under positive selection 
driving clonal expansions in normal tissues and in cancer. Although 
somatic mutations can be detected in off-target regions, such as 
introns51, only a small fraction of the genome has sufficient sequenc-
ing coverage for detecting mutations reliably. Therefore, other  

methodologies are required to call mutations in regions missed by 
current scRNA-seq and ATAC-seq technologies or overlapping known 
RNA-editing sites.

The performance of SComatic is contingent on reliable cell type 
annotations, which can be challenging to obtain if clonally unrelated 
cells cannot be easily distinguished based on gene expression data 
alone8,51. In addition, the granularity of the cell type annotations used 
determines which types of mutations can be detected. Using very 
granular cell type annotations that consider, for example, two cell 
types from the same differentiation hierarchy as different cell types 
only permits the detection of somatic mutations acquired after clonal 
diversification, as mutations acquired in common progenitor or stem 
cells and during early development would be present in multiple cell 
types and therefore considered to be germline polymorphisms. By 
contrast, using broader cell type annotations encompassing, for exam-
ple, multiple cell types from the same lineage permits the detection of 
mutations accumulated over longer periods of time, such as mutations 
acquired in the common lineage ancestors for the cell types grouped 
under a broad cell type category. Determining the granularity of the 
cell type annotations to be used depends on the biological question 
of interest. SComatic can easily be run using cell type annotations of 
variable granularity, thereby maximizing its applicability to the study 
of mutagenesis across development and disease evolution.

Overall, SComatic opens the possibility to study somatic mutagen-
esis in humans using single-cell data sets generated under the auspices 
of large-scale initiatives, such as the Human Cell Atlas or the Human 
Tumor Atlas Network52,53, as well as in other organisms.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-023-01863-z.
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Methods
Processing of single-cell data sets
The scRNA-seq data from cancer and non-neoplastic samples were 
downloaded in fastq format and processed uniformly. Specifi-
cally, raw sequencing reads were aligned to the GRCh38 build of the 
human reference genome using Cell Ranger54 v.6.0.1 and default 
parameter values to generate alignment files in binary alignment 
map (BAM) format and count matrices. Cell type annotations were 
downloaded from the original publications from which the data 
were downloaded (Supplementary Tables 1 and 5). Cell type anno-
tations were used to assign sequencing reads to individual cells, 
and single cells without cell type annotations were discarded. Raw 
sciATAC-seq reads were mapped to the GRCh38 build of the human 
reference genome using BWA-MEM v.0.7.17-r1188 (ref. 55). In the case 
of sciATAC-seq data, aligned sequencing reads in BAM format were 
then processed following the Genome Analysis Toolkit (GATK) v.4.1.8.0 
Best Practices workflow to remove duplicates and recalibrate base  
quality scores56.

Detection of somatic mutations in single-cell data sets using 
SComatic
Processing of alignment files. In the first step of SComatic, the BAM 
file containing the sequencing reads for all cell types in a sample is split 
into cell-type-specific BAM files using precomputed cell type annota-
tions (Supplementary Table 5). For this purpose, sequencing reads 
are assigned to individual cells using molecular barcodes (tag ‘CB’ in 
BAM files processed using Cell Ranger). Before identifying candidate 
mutation sites, reads with a mapping quality of lower than 255 (or 30 
for sciATAC-seq data) or with more than five mismatches are filtered 
out. In addition, to ignore sequencing artefacts enriched in terminal 
ends of the reads or adapter sequences that were not properly trimmed, 
the base quality for the first five bases at the 3′ and 5′ ends of each read 
is set to 0 (ref. 57).

Collecting base count information. Next, the count of each base in 
each cell type for every position in the genome is recorded in a base 
count matrix indexed by cell types and genomic coordinates using 
the pileup functionality from the pysam version 0.21.0 module58. For 
this analysis, a minimum base quality of 30 is required, and only sites 
with a sequencing depth of five reads across at least two cell types 
are considered. Genomic positions overlapping RNA-editing sites 
are removed59,60. In addition, sites mapping to polymorphisms in the 
gnomAD25 database v.2.0.1 with a population frequency of greater 
than 1% are removed.

Detecting potential somatic SNVs. To distinguish technical arte-
facts, such as recurrent sequencing or mapping errors, from true 
somatic mutations, SComatic models the background error rate 
using a beta-binomial distribution. Specifically, non-reference allele 
counts at homozygous reference sites are modeled using a binomial 
distribution with parameter P (error rate), which is a random variable 
that follows a beta distribution with parameters α and β57. To infer the 
parameter values, SComatic uses base count information for one mil-
lion sites in the genome, randomly selected from a panel of unrelated 
non-neoplastic samples generated using the same sequencing technol-
ogy. Next, for each site in the genome and cell type, the beta-binomial 
distribution is used to test whether the non-reference allele counts 
are significantly higher than expected given the background error 
rate. Candidate somatic mutations are required to be present only in 
cells from the candidate cell type. To test this, SComatic requires that 
the beta-binomial test is not significant when applied to all other cell 
types independently and when applied to the base counts aggregated 
across all other cell types. The threshold for statistical significance for 
the beta-binomial is set to 0.001.

Filtering out recurrent artefacts. Owing to the enrichment of artefacts 
in repetitive regions (Supplementary Fig. 1) and the high error rate of 
Illumina sequencers at homopolymer tracts61, mutations mapping to or 
within 4 bp of mononucleotide tracts are removed. Finally, mutations 
mapping less than 5 bp apart from each other are filtered out. In this 
study, we applied this filter except for doublet base substitutions (DBSs) 
previously reported to be generated by specific mutational processes, 
such as CC > TT mutations associated with ultraviolet-light-induced 
mutagenesis in skin (COSMIC signature DBS1) and the characteristic 
DBS peaks observed in colorectal cancers (COSMIC signatures DBS2, 
3, 4, 6, 7, 8, 10 and 11) (ref. 42).

In addition, SComatic generates a PON to discount positions 
affected by recurrent artefacts (sites with non-reference allele counts 
significantly higher than the background error rate modeled with the 
beta-binomial distribution). For this, SComatic uses a large collection 
of non-neoplastic data sets to assess the frequency of non-reference 
allele counts at each genomic site in the genome. This analysis serves to 
filter out candidate mutations mapping to regions of the genome prone 
to sequencing or mapping artefacts, germline variants missed by other 
filters and candidate mutations found in at least two unrelated sam-
ples, which are considered to be germline polymorphisms. The PONs 
generated in this study to call mutations in scRNA-seq and sciATAC-seq 
data are available at https://github.com/cortes-ciriano-lab/SComatic/
tree/main/PoNs.

Calling somatic mutations. Finally, to make a mutation call, SComatic 
requires mutations to be supported by at least three reads from at least 
two cells from the same cell type. To tune this parameter, we performed 
mutational signature analysis on subsets of mutations defined based 
on the number of cells harboring each mutation. For this analysis, we 
focused on the somatic mutations detected by SComatic in epithelial 
cells from MSI tumors to guarantee sufficient statistical power for 
mutational signature analysis. We found that the mutational spectra 
and mutational signature contributions were consistent across sub-
sets of mutations present in two or more cells (Supplementary Fig. 2), 
indicating that requiring mutations to be present in at least two cells 
to make a call is adequate to detect true somatic mutations.

Estimation of mutational burdens
To compute the mutational burden at the cell-type level, we divided 
the total number of somatic mutations detected in each cell type by 
the total number of callable sites across all cells of the same type (Sup-
plementary Fig. 21). Cell types with less than 500,000 callable sites 
were not included in this analysis. To estimate single-cell mutational 
burdens, we divided the number of mutations detected in each unique 
cell by the number of sites with a sequencing depth of at least one read 
and within the set of callable sites across all cells of the same type. We 
only considered the autosomes for computing mutational burdens. 
The sensitivity of single-cell assays to detect both alleles is low due 
to limited sequencing depth and allele-specific expression17. That is, 
we detect only one read per cell for most genomic positions in the 
genome. Therefore, our estimated mutational burdens for single cells 
mostly reflect the mutational burdens per haploid genome. For these 
reasons, we decided to report mutational burdens per haploid genome 
instead of correcting for ploidy because ploidy information for single 
cells was not available for the data sets analyzed. We note that not all 
cells analyzed might be diploid, as the data sets analyzed contained 
cell types that often undergo polyploidization, such as cancer cells 
and cardiomyocytes.

Mutational signature analysis
Mutational signature analysis was performed using the R package 
MutationalPatterns62 and the COSMIC Mutational Signatures cata-
log v.3 (ref. 42). We used the function fit_to_signatures with default 
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parameter values to estimate the contribution of selected mutational 
processes to the mutational spectrum observed in each sample. To 
account for differences in the frequency of each of the 96 trinucleo-
tide contexts in which mutations can be detected between the whole 
genome and the regions profiled using scRNA-seq or sciATAC-seq, we 
normalized the frequency of mutations detected at each trinucleotide 
context. To do so, we first computed the frequency of each trinucleo-
tide context in the human genome using the function get_trinuc_norm 
from the R package SigMA (https://github.com/parklab/SigMA). 
Next, for each single-cell data set, we estimated the frequency of 
each trinucleotide context across callable regions using a custom 
Python script, TrinucleotideContextBackground.py, which is provided 
as part of SComatic. To normalize the mutational spectra detected 
in each single-cell data set to the frequency of each trinucleotide in 
the whole genome, we divided the fraction of mutations detected 
at each trinucleotide context by the frequency of such context in 
the whole genome relative to its frequency in the single-cell data set 
being analyzed.

For fitting of COSMIC signatures, we used only the mutational 
processes known to be operative in each sample type analyzed7,42: 
(1) SBS1, SBS5, SBS6, SBS10a, SBS10b, SBS14, SBS15, SBS17a, SBS17b, 
SBS18, SBS21, SBS26, SBS28, SBS37, SBS40 and SBS44 for colorectal 
cancer samples; (2) SBS1, SBS2, SBS5, SBS7a, SBS7b, SBS7c, SBS7d, 
SBS13, SBS32 and SBS40 for cSCC samples; (3) SBS1, SBS2, SBS3, SBS5, 
SBS8, SBS9, SBS13, SBS18, SBS26, SBS40 and SBS44 for ovarian cancer 
samples33; and (4) SBS1, SBS2, SBS4, SBS5, SBS7a, SBS7b, SBS13, SBS16, 
SBS17b, SBS18, SBS22, SBS23, SBS32, SBS40, SBS41 and SBS88 for MPNs 
and non-neoplastic samples. We also included SBS6, SBS8, SBS19, 
SBS32, SBS35, SBS39 and SBS44 when analyzing heart samples46. The 
goodness of fit was determined by computing the cosine similarity 
between the observed and reconstructed mutational spectra using 
the estimated mutational signature contributions.

De novo mutational signature extraction was performed using 
non-negative matrix factorization as implemented in the R package 
MutationalPatterns using somatic SNVs detected in each of the fol-
lowing sample groups: epithelial cells from MSI and POLE-deficient 
colorectal cancer samples, epithelial cells from MSS colorectal cancer 
samples, epithelial cells from cSCC and matched normal skin samples, 
cardiomyocytes from the heart cell atlas and all cell types from the GTEx 
data set. The extracted signatures were decomposed into COSMIC v.3 
signatures using the fit_to_signatures function after normalizing them 
to the trinucleotide frequencies of the whole genome. The goodness 
of fit of the decomposition of de novo signatures was estimated by 
computing the cosine similarity between the extracted mutational 
signature and the mutational spectrum reconstructed based on the 
estimated signature contributions.

Whole-exome sequencing and whole-genome sequencing 
data analysis
Raw sequencing reads were mapped to the GRCh38 build of the 
human reference genome using BWA-MEM29 (v.0.7.17-r1188). 
Aligned sequencing reads in BAM format were processed to remove 
duplicates and recalibrate base quality scores following the GATK 
(v.4.1.8.0) Best Practices workflow63. Somatic SNVs in WES data from 
cSCC samples were detected using Strelka2 (ref. 30) (v.2.9.10) and 
MuSE64 (v.1.0rc) using default parameter values and the matched 
normal samples as germline controls. For benchmarking purposes, 
we considered only those somatic mutations detected by both algo-
rithms. In the case of WGS data, somatic SNVs were detected using 
SAGE (v.2.8), and purity, ploidy and somatic copy number aberrations 
were estimated using PURPLE (v.2.54). Both SAGE and PURPLE are 
available at https://github.com/hartwigmedical/hmftools. Cancer 
cell fractions were computed as previously described65. Somatic 
SNVs detected in the kidney tumors used for benchmarking were 
downloaded from ref. 34.

Comparison of mutations detected in scRNA-seq and genome 
sequencing data
To compare the mutations detected using matched genome sequenc-
ing (WES–WGS) and scRNA-seq data, we computed the base counts for 
all positions in the genome using the WES–WGS data. For this analysis, 
we focused only on regions with a coverage of at least 50× in the WES–
WGS data from the cancer sample and 10× in the matched normal 
sample. In the case of the scRNA-seq data, we considered only regions 
with a sequencing depth of at least ten reads in cell types labeled as 
malignant, and with a depth of five reads in at least two additional cell 
types. Only regions that passed these filtering criteria for both the 
scRNA-seq and WES–WGS data were considered for benchmarking 
purposes. For the kidney and ovarian cancer data sets, only tumor 
regions with matched WES–WGS and scRNA-seq data were included in 
the benchmarking analysis. In the case of the ovarian cancer data set, 
WGS and scRNA-seq data sets were matched by spectrum_sample_id, 
and only scRNA-seq data sets with at least 100 ovarian cancer cells 
were considered. For benchmarking purposes, we considered only 
the 416 somatic mutations called in WES–WGS by mutation detection 
algorithms and with evidence of the mutation in the scRNAs-seq data: 
at least one read supporting the mutation in scRNA-seq reads from 
malignant cells with a base quality of ≥30 (Supplementary Table 3).

As we treated the WES–WGS data as the baseline for comparison, 
we categorized the mutations as: (1) true positives (mutations called in 
the scRNA-seq data by the algorithms benchmarked and in WES–WGS); 
(2) true positives with low support in WES–WGS (mutations called in 
the scRNA-seq data but not called by the WES–WGS mutation detection 
pipeline that nevertheless have at least one read supporting the mutant 
allele in WES–WGS with a base quality ≥ 30 and no reads supporting any 
other alternative allele); (3) false negatives (mutations called in WES–
WGS that are not called in scRNA-seq); and (4) false positives (mutations 
called in the scRNA-seq data with no reads supporting the mutant 
allele in the WES–WGS data, and mutations called in scRNA-seq that 
nevertheless have read support for the mutant allele in the matched 
normal WES–WGS data, thus suggesting germline contamination).

To compute performance metrics, we estimated the sensitivity, 
precision and F1 score values for each algorithm using 50 bootstrap 
resamples generated by sampling with replacement from the set of 
mutations used for benchmarking. We then compared the performance 
between callers using the Student’s t-test, correcting for multiple 
hypothesis testing using the false discovery rate method. The calcu-
lation of the precision, sensitivity and F1 score values was performed 
as follows:

Precision =
TPprec

TPprec + FP

where TPprec corresponds to the number of true positives and true 
positives with low support in WES–WGS, and FP is the number of false 
positives;

Sensitivity = TPsens
TPsens + FN

where TPsens corresponds to the number of true positives and FN is the 
number of false negatives; and

F1 =
2 × TPprec

2 × TPprec + FP + FN

Detection of somatic mutations using existing algorithms
We compared the performance of SComatic against five different 
algorithms: Strelka2 (ref. 30), SAMtools (ref. 66), VarScan2 (ref. 67), 
Monovar31 and SCReadCounts32. Strelka2, SAMtools and VarScan2 
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were run using default parameter values22, and SCReadReadCounts 
was run using the discovery mode (varLoci) and requiring at least 3 
supporting reads to make a call (min_var_read_count = 3), which is 
the minimum number of reads required by SComatic to make a call. 
All other parameters were set to default values. Strelka2, SAMtools, 
VarScan2 and SCReadReadCounts were run on cell-type-specific BAM 
files containing only the sequencing reads from the malignant cells: 
epithelial cells (cSCC data set), ovarian cancer cells (ovarian cancer data 
set) and renal cancer cells (kidney cancer data set). Cell-type-specific 
BAM files were generated using the Python script SplitBamCellTypes.py, 
which is available at https://github.com/cortes-ciriano-lab/SComatic/
blob/main/scripts/SplitBam/SplitBamCellTypes.py. Monovar was 
run in multi-cell-type calling mode, which allows joint processing of 
multiple cell types from the same individual, and using default param-
eter values except for the mapping quality filter, which was set to 255 
because this threshold corresponds to the standard mapping quality 
filter for scRNA-seq data. To detect mutations in only the malignant 
cell types of interest, we set the parameter -c to zero. Finally, the result-
ing mutation call sets generated using the five algorithms compared 
against SComatic were processed to filter out common SNPs reported 
in gnomAD (v.2.0.1)25 or ExAC (v.0.3)68 with a population frequency >1%, 
or present in a PON generated using WGS data from the 1000 Genomes 
Project (https://gatk.broadinstitute.org/hc/en-us/articles/36003589
0631-Panel-of-Normals-PON-).

Analysis of the clonal architecture of tumors using  
somatic SNVs
To reconstruct the clonal structure of ovarian cancers using mutations 
detected in scRNA-seq data, we first ran SComatic on the scRNA-seq 
data from each tumor region. We did not run SComatic using all 
scRNA-seq data given that region-specific mutations present in a subset 
of cancer cells would not pass the threshold used in the beta-binomial 
test to distinguish true mutations from background errors. Next, all 
single cells from all regions were genotyped for the somatic mutations 
detected with SComatic in any of the regions analyzed. Specifically, 
cells were considered to be mutated if at least one read supporting a 
mutation detected by SComatic in the same or other region was pre-
sent. This step was performed using a custom Python script (https://
github.com/cortes-ciriano-lab/SComatic/blob/main/scripts/Single-
CellGenotype/SingleCellGenotype.py). Finally, we recorded the pres-
ence or absence of each mutation in all single cells in a binary matrix, 
on which we performed unsupervised hierarchical clustering. For this 
analysis, we only considered cases in which we could detect mutations 
present in at least 20 cells and that could be genotyped in at least 10% 
of the cells across all tumor regions.

Analysis of the clonal structure of tumors using Numbat
We used Numbat version 1.2.2 (ref. 50) to detect cancer cell clones 
based on copy number profiles inferred from the scRNA-seq data. SNP 
pileup data were generated using cellsnp-lite version 1.2.3 (ref. 69) 
and phased using Eagle2 (ref. 70) and the high polymorphic regions 
detected using WGS data from the 1000 Genomes Project mapped to 
the GRCh38 build of the human reference genome, as described in the 
Numbat documentation (https://github.com/kharchenkolab/numbat). 
Next, we ran Numbat using default parameter values and the processed 
allele count data together with the scRNA-seq expression data as the 
input. Samples for which sufficient somatic copy number events were 
detected for phylogeny construction and clonality inference were used 
for downstream analysis.

Discovering clinically relevant driver mutations
Driver mutations were defined as those SNVs detected in tier-1 driver 
genes from The Cancer Gene Census catalog (version from July 2022)71 
and predicted to be deleterious by MetaLR or MetaSVM, as imple-
mented in Annovar (v.2018Apr16)72.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw WES and scRNA-seq data from the cSCC and matched normal 
samples are available in the Gene Expression Omnibus (GEO) data-
base under accession number GSE144240. The raw scRNA-seq data 
from patients with MPN and colorectal cancer are available through 
controlled access application via dbGaP under dbGaP study accession 
numbers phs002308.v1.p1 and phs002407.v1.p1, respectively. The cell 
type annotations for the colorectal cancer data set37 are available in the 
GEO database under accession number GSE178341. Raw sequencing 
data and cell type annotations for six additional patients with colo-
rectal cancer38 included in this study are available in the GEO database 
under accession number GSE144735. The cell type annotations for the 
MPN data set were obtained from our previous study8. Raw WES and 
scRNA-seq data from the kidney cancer samples are available at the 
European Genome-Phenome Archive (EGA) under accession num-
bers EGAD00001008029 and EGAD00001008030, respectively. Cell 
type annotations can be accessed at https://data.mendeley.com/data-
sets/g67bkbnhhg/1. Instructions to access the WGS data, scRNA-seq 
data and somatic copy number calls from the ovarian cancer data set 
are available at https://www.synapse.org/#!Synapse:syn25569736/
wiki/612269. The raw scRNA-seq data and cell type annotations for the 
human heart cell atlas45 were downloaded from the Human Cell Atlas 
Data Coordination Platform with accession number ERP123138 (https://
www.ebi.ac.uk/ena/browser/view/ERP123138). Cell type annotations 
were downloaded from the Human Cell Atlas Data Portal (https://data.
humancellatlas.org/explore/projects/ad98d3cd-26fb-4ee3-99c9-
8a2ab085e737). The raw scATAC-seq data and cell type annotations 
used in this study are available in the GEO database under accession 
number GSE184462. The raw sequencing data from GTEx samples 
are available at the Analysis Visualization and Informatics Lab-space 
(AnVIL; https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_
GTEx_V9_hg38) and can be downloaded through controlled data access 
application via dbGaP under study accession number phs000424. The 
gnomAD database (v.2.0.1) and the ExAC data set (v.0.3) were down-
loaded from https://gnomad.broadinstitute.org. The COSMIC muta-
tional signatures (v.3) were downloaded from https://cancer.sanger.
ac.uk/signatures. The Cancer Gene Census (GCG) catalog (version from 
July 2022) was downloaded from https://cancer.sanger.ac.uk/census. 
The GATK PON generated using WGS data from the 1000 Genomes Pro-
ject was downloaded from https://gatk.broadinstitute.org/hc/en-us/art
icles/360035890631-Panel-of-Normals-PON-. The DARNED database 
was downloaded from https://darned.ucc.ie. The REDIportal Database 
was downloaded from http://srv00.recas.ba.infn.it/atlas/download.
html. Exome sequencing data from The Cancer Genome Atlas are 
available through controlled data access via dbGaP with accession 
number phs000178.v11.p8 and were downloaded from the Genomic 
Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov). The 
reference genome used in this study (GRCh38) was downloaded from 
https://hgdownload.soe.ucsc.edu/downloads.html. Source data are 
provided with this paper.

Code availability
SComatic is available at https://github.com/cortes-ciriano-lab/
SComatic.
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