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Dictionary learning for integrative, 
multimodal and scalable single-cell analysis

Yuhan Hao1,2, Tim Stuart    1,2, Madeline H. Kowalski2,3, Saket Choudhary    1,2, 
Paul Hoffman    1, Austin Hartman1, Avi Srivastava1,2, Gesmira Molla2, 
Shaista Madad1,2, Carlos Fernandez-Granda4,5 & Rahul Satija    1,2 

Mapping single-cell sequencing profiles to comprehensive reference 
datasets provides a powerful alternative to unsupervised analysis. However, 
most reference datasets are constructed from single-cell RNA-sequencing 
data and cannot be used to annotate datasets that do not measure gene 
expression. Here we introduce ‘bridge integration’, a method to integrate 
single-cell datasets across modalities using a multiomic dataset as a 
molecular bridge. Each cell in the multiomic dataset constitutes an element 
in a ‘dictionary’, which is used to reconstruct unimodal datasets and 
transform them into a shared space. Our procedure accurately integrates 
transcriptomic data with independent single-cell measurements of 
chromatin accessibility, histone modifications, DNA methylation and 
protein levels. Moreover, we demonstrate how dictionary learning can be 
combined with sketching techniques to improve computational scalability 
and harmonize 8.6 million human immune cell profiles from sequencing 
and mass cytometry experiments. Our approach, implemented in version 5 
of our Seurat toolkit (http://www.satijalab.org/seurat), broadens the utility 
of single-cell reference datasets and facilitates comparisons across diverse 
molecular modalities.

In the same way that read-mapping tools have transformed genome 
sequence analysis1–3, the ability to map new datasets to established 
references represents an exciting opportunity for the field of single-cell 
genomics. As an alternative to fully unsupervised clustering, supervised 
mapping approaches leverage large and well-curated references to 
interpret and annotate query profiles. This strategy is enabled by the 
curation and public release of reference datasets as well as the devel-
opment of new computational tools, including statistical learning4–7 
and deep learning-based approaches8,9, that have been successfully 
applied toward this goal.

A current limitation of existing approaches is the primary focus 
on single-cell RNA-sequencing (scRNA-seq) data. Single-cell transcrip-
tomics is well suited for the assembly and annotation of reference 
datasets, particularly as differentially expressed (DE) gene markers 

can typically be interpreted to help annotate cell clusters. This has 
led to the development of high-quality, carefully curated and expertly 
annotated references, particularly from consortia including the Human 
Cell Atlas10, the Human Biomolecular Atlas Project (HuBMAP11) and the 
Chan Zuckerberg Biohub12. Mapping to these references facilitates 
data harmonization, standardization of cell ontologies and naming 
schemes and comparison of scRNA-seq datasets across experimental 
conditions and disease states.

A crucial challenge is to extend reference mapping to additional 
molecular modalities, including single-cell measurements of chromatin 
accessibility (for example, single-cell assay for transposase-accessible 
chromatin with sequencing (scATAC-seq13,14)), DNA methylation 
(single-cell bisulfite sequencing15), histone modifications (single-cell 
cleavage under targets and tagmentation (scCUT&Tag16,17)) and protein 
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between modalities, as these are learned automatically from the multi-
omic dataset. Second, the key advance we present here is a transforma-
tion to project datasets profiling different modalities to be represented 
by a shared set of atoms. Once transformed, the final alignment step is 
compatible with a wide diversity of single-cell integration techniques, 
including Harmony38, mnnCorrect39, Seurat19, Scanorama40 or scVI41. In 
this manuscript, we perform this step with an implementation of the 
mnnCorrect algorithm39.

Third, we found that when working with sizable bridge datasets, 
the large number of atoms (single cells in the bridge dataset) created 
a substantial computational burden. Motivated by a similar problem 
addressed by Laplacian Eigenmaps42, we compute an eigen decompo-
sition of the graph Laplacian for the multiomic dataset to reduce the 
dimensionality from the number of atoms to the number of selected 
eigenvectors (Supplementary Methods). We then use these eigenvec-
tors to transform the learned dictionary representations into the same 
lower-dimensional space, substantially increasing the efficiency of our 
bridge integration procedure.

Mapping scATAC-seq data onto scRNA-seq references
We first demonstrate our bridge integration strategy by performing 
cross-modality mapping on scATAC-seq and scRNA-seq samples of 
human bone marrow mononuclear cells (BMMCs). These samples 
consist of cells representing the full spectrum of hematopoietic dif-
ferentiation, including hematopoietic stem cells (HSCs), multipo-
tent and oligopotent progenitors and fully differentiated cells. As 
part of HuBMAP, we have leveraged public datasets to construct a 
comprehensive scRNA-seq reference (‘Azimuth reference’; 297,627 
cells) of human BMMCs, carefully annotating 10 progenitor and 
25 differentiated cell states (Fig. 2a). We aimed to map scATAC-seq 
‘query’ datasets of human BMMCs43 (16,266 whole bone marrow pro-
files and 9,893 CD34+-enriched profiles) to this reference (Fig. 2b). 
We used a 10x multiome dataset44 (32,368 cells paired single-nucleus 
RNA-seq + scATAC-seq) that was publicly released as part of NeurIPS 
2021 as a bridge.

Our bridge procedure successfully mapped the scATAC-seq 
dataset on our Azimuth reference, enabling joint visualization of 
scATAC-seq and scRNA-seq data (Fig. 2c) and automated annotation 
of scATAC-seq profiles with accompanying prediction scores. Reference 
mapping also aligned shared cell populations across multiple samples, 
mitigating sample-specific batch effects. Query samples representing 
CD34+ BMMC fractions mapped exclusively to the HSC and progenitor 
components in the reference dataset, demonstrating that bridge inte-
gration can robustly handle cases where the query dataset represents 
a subset of the reference, while whole fractions mapped to all 35 cell 
states (Supplementary Fig. 1a).

Our reference-derived annotations were concordant with the 
annotations accompanying the query dataset produced by the original 
authors (Supplementary Fig. 1b), but we found that bridge integration 
annotated additional rare and high-resolution subpopulations. For 
example, our annotations separated monocytes into CD14+ and CD16+ 
fractions, natural killer cells into CD56bright and CD56dim subgroups and 
cytotoxic T cells into CD8+ and mucosal-associated invariant T (MAIT) 
cell subpopulations. While these subdivisions were not identified in the 
unsupervised scATAC-seq analysis, we confirmed these predictions by 
observing differential accessibility at canonical loci after grouping by 
reference-derived annotations (Fig. 2d,e and Supplementary Fig. 1c). 

levels (cytometry by time of flight (CyTOF18)), each of which measures a 
different set of features than scRNA-seq. The lack of transcriptome-wide 
measurements creates challenges for unsupervised annotation. Ideally, 
datasets from different modalities could be mapped onto scRNA-seq 
references, ensuring that established cell labels and ontologies would 
be preserved. We and others have proposed methods to map data-
sets across modalities19–21, for example, taking the gene body sum of 
ATAC-seq signal (or the inverse of the DNA methylation levels) as a proxy 
for transcriptional output. These make strict biological assumptions 
(for example, that accessible chromatin is associated with active tran-
scription) that may not always hold true, particularly when analyzing 
cellular transitions or developmental trajectories22.

Here, we introduce ‘bridge integration’, which integrates 
single-cell datasets measuring different modalities by leveraging a 
separate dataset where both modalities are simultaneously meas-
ured as a molecular ‘bridge’. The multiomic bridge dataset, which can 
be generated by a diverse set of technologies23–32, helps to translate 
information between disparate measurements, resulting in robust 
integration without requiring any limiting biological assumptions. 
We illustrate the broad applicability of our approach, demonstrating 
its performance across five different molecular modalities (Fig. 1a). 
Moreover, we introduce ‘atomic sketch integration’, which combines 
dictionary learning and dataset sketching to improve the computa-
tional efficiency of large-scale single-cell analysis and enables rapid 
integration of dozens of datasets spanning millions of cells.

Results
Using multiomic dictionaries for bridge integration
We aimed to develop a flexible and robust integration strategy to inte-
grate data from single-cell sequencing experiments where different 
modalities are measured (‘single-modality datasets’). The fundamental 
challenge is that different single-modality datasets measure different 
sets of features. We reasoned that an approach would be to leverage 
a multiomic dataset as a bridge that can help to translate between 
disparate modalities. To perform this translation, we were inspired 
by the field of dictionary learning, a form of representation learning 
that is commonly used in image analysis and genomics33–37. The goal 
of dictionary learning is to represent input data in terms of individual 
elements that are called atoms and together comprise a dictionary. 
Reconstructing input data as a weighted linear combination of these 
atoms is an effective tool for denoising and represents a transformation 
of the input data into a dictionary-defined space.

We find that dictionary learning enables cross-modality bridge 
integration at single-cell resolution. Our key insight is to treat a multi-
omic dataset as a dictionary, with each individual cell’s multiomic pro-
file representing an atom. We learn a ‘dictionary representation’ of each 
unimodal dataset based on these atoms. For clarity, we emphasize that 
in contrast to the original applications of dictionary learning where the 
atoms represent a set of features33,37, we use individual instances (cells) 
as dictionary elements. This transformation takes datasets in which 
completely different sets of features were measured and represents 
them each in a space where the defining features represent the same 
set of atoms (Fig. 1b). Once different modalities can be represented 
using the same set of features, they can be readily aligned in a final step.

Our bridge integration is illustrated in Fig. 1b and is described fully 
in the Supplementary Methods, and we note a few key points below. 
First, our procedure makes no assumptions about the relationships 

Fig. 1 | Integrating across modalities with molecular bridges. a, Broad 
schematic of the bridge integration workflow. Two datasets where different 
modalities are measured (for example, scRNA-seq and scATAC-seq) can be 
harmonized via a third dataset where both modalities are simultaneously 
measured (for example, 10x multiome). We demonstrate bridge integration 
using a variety of multiomic technologies that can be used as bridges, including 
10x multiome, Paired-Tag, snmC2T and CITE-seq, each of which facilitates 

integration with a different molecular modality. The middle box lists alternative 
multiomic technologies that can be used to generate bridge datasets.  
b, Mathematical schematic of each of the steps in the bridge integration 
procedure. A full description is provided in the Supplementary Methods. For 
clarity, the matrix names illustrated in this schematic are the same as the matrix 
names defined in the Supplementary Methods.
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We validated these chromatin patterns using independent multiome 
datasets, where cell identity was assigned based on concurrent RNA 
measurements (Supplementary Fig. 1d,e). Similarly, bridge integration 

identified extremely rare groups of innate lymphoid cells (ILCs; 0.15%) 
and recently discovered AXL+SIGLEC6+ dendritic cells (ASDCs45,46; 
0.10%; Fig. 2f and Supplementary Fig. 1c). To our knowledge, these 
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cell populations have not been previously identified in scATAC-seq 
data. Again, we found that differentially accessible sites, such as an 
ASDC-specific peak in the SIGLEC6 gene (Fig. 2f), fully supported the 
accuracy of our mapping procedure.

By projecting datasets from multiple modalities into a common 
space, our reference-mapping procedure not only enables the transfer 
of discrete annotations but also allows us to explore how variation in 
one corresponds to variation in another. For example, after integration, 
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Fig. 2 | Mapping scATAC-seq data onto scRNA-seq references. a, Uniform 
manifold approximation and projection (UMAP) visualization scRNA-seq 
reference dataset of human bone marrow, representing 297,627 annotated 
scRNA-seq profiles; mDC, myeloid DC; EMP, erythro–myeloid progenitor; 
BaEoMa, basophil, eosinophil, mast progenitor; cDC1, conventional type 1 
DC; cDC2, conventional type 2 DC; NK, natural killer; Prog Mk, progenitor 
megakaryocyte. b, UMAP visualization of an scATAC-seq query dataset from 
Granja et al.43, representing 26,159 profiles spanning five batches, three of which 
are enriched for CD34-expressing cells. c, After bridge integration, query cells are 
annotated based on the scRNA-seq-defined cell ontology and can be visualized 
on the same embedding. d–f, Coverage plots showing chromatin accessibility at 
selected loci after grouping query cells by their predicted annotations. In each 
case, the predicted cell labels agree with the expected accessibility patterns; 

bp, base pairs; kb, kilobases. g, We constructed a differentiation trajectory 
and pseudotime ordering of cells undergoing myeloid differentiation. The 
pseudotime ordering in diffusion map coordinates (DC) encompasses both 
scRNA-seq and scATAC-seq cells. h, Example locus where we observe a ‘lag’ 
between the gene expression dynamics for MPO and the accessibility dynamics 
for an upstream regulatory region (denoted by a yellow box in i). i, chromatin 
accessibility at the MPO regulatory locus. The highlighted region becomes 
accessible at the multipotent LMPP stage. j, MPO becomes highly expressed at 
the RNA level at the myeloid-committed GMP stage. k, KEGG pathway enrichment 
for 236 genes where we identified a lag between accessibility and transcriptional 
dynamics. P value is calculated by a Fisher’s exact test. l, Smoothed chromatin 
accessibility levels (red) and lagging expression of associated genes (blue) as a 
function of pseudotime for six cell cycle-associated genes.
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we applied diffusion maps to the harmonized measurements to con-
struct a joint differentiation trajectory spanning multiple progenitor 
states during myeloid differentiation (Fig. 2g). Because this trajec-
tory represents both reference and query cells, we can explore how 
pseudotemporal variation in chromatin accessibility correlates with 
gene expression, even though the two modalities were measured in 
separate experiments.

Consistent with previous findings, we identified cases where gene 
expression changes ‘lagged’ behind variation in chromatin accessibil-
ity. For example, while myeloperoxidase (encoded by MPO) is expressed 
in granulocyte–macrophage progenitors (GMPs) and is associated 
with myeloid fate commitment47,48, the regulatory region immediately 
upstream acquired accessibility in lymphoid-primed multipotent 
progenitors (LMPPs; Fig. 2h–j). We used a cross-correlation-based 
metric to systematically identify 236 ‘lagging’ loci (Supplementary 
Methods) across this trajectory. KEGG pathway enrichment analysis 
revealed a strong enrichment for genes involved in the cell cycle and 

DNA replication (Fig. 2k). These loci were characterized by accessible 
chromatin at the earliest stages of differentiation (HSCs), but there is 
a delay before the associated genes become transcriptionally active 
(Fig. 2l). The accessible state of these loci in the earliest progenitors 
may represent a form of priming to enable rapid cell cycle entry once 
the decision to differentiate has been made and may represent the 
type of discovery that can be enabled through integrative analysis 
across modalities.

Robustness and benchmarking analysis
As our strategy relies on the ability for the dictionary to represent and 
reconstruct individual datasets, we explored how the size and composi-
tion of the multiomic dataset affected the accuracy of integration. We 
sequentially downsampled the multiomic dataset, repeated bridge inte-
gration and compared the results to our original findings. Downsam-
pling the bridge generally returned results that were concordant with 
the full analysis but, as expected, could affect annotation concordance 
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Fig. 3 | Robustness and benchmarking analysis for bridge integration.  
a, Per cell-type prediction concordance of bridge integration based on the number 
of cells representing each cell type in the multiomic dataset. Concordance results 
were obtained by serially downsampling the multiomic dataset, repeating bridge 
integration and comparing resulting query annotations with those derived from 
the full dataset. Box plots represent the observed range of values across 21 cell 
types. Box plots exhibit the median at the center, with the 25% quantile and 75% 
quantile represented by the lower and upper edges of the boxes, respectively. 
The whiskers extend from the edge to 1.5× the interquartile range. b, Coverage 
plots for the SIGLEC6 locus after performing cross-modality annotation with 
bridge integration, multiVI and Cobolt. Only cells classified as ASDCs by bridge 
integration exhibit cell-type-specific accessibility at this locus. Additional loci are 
shown in Supplementary Fig. 2e,f. c, Ground truth benchmarking analysis. RNA 
and ATAC profiles from a 10x multiome dataset were unpaired and integrated. 
Bar plots show the average Jaccard similarity value ± s.d. between each scATAC-
seq cell and its matched scRNA-seq cell (n = 30,253 cell pairs). Results are split 
by individual cell types in Supplementary Fig. 3. Results are also shown for 
Paired-Tag datasets for three histone modification profiles: H3K27ac (n = 10,906 
cells), H3K27me3 (n = 6,280 cells) and H3K4me1 (n = 12,638 cells). In each case, 

bridge integration achieves the highest Jaccard similarity. d, scRNA-seq reference 
of the human motor cortex; Astro, astrocyte; Endo, endothelial cell; L2/3 IT, 
layer 2-3 glutamatergic neuron, intratelencephalon-projecting; L5 ET, layer 5 
glutamatergic neuron, extratelencephalon-projecting; L5 IT, layer 5 glutamatergic 
neuron, intratelencephalon-projecting; L5/6 NP, layer 5-6 glutamatergic neuron, 
near-projecting; L6 CT, layer 6 glutamatergic neuron, corticothalamic-projecting; 
L6 IT, layer 6 glutamatergic neuron, intratelencephalon-projecting; L6 IT Car3, 
layer 6 Car3+ glutamatergic neuron, intratelencephalon-projecting; L6b, layer 6b 
glutamatergic neuron; Lamp5, Lamp5+ GABAergic neuron; Micro-PVM, microglia 
/ perivascular macrophage; Oligo, oligodendrocyte; OPC, oligodendrocyte 
precursor cell; Pvalb, Pvalb+ GABAergic neuron; Sncg, Sncg+ GABAergic neuron; 
Sst, Sst+ GABAergic neuron; Sst Chodl, Sst+ Chodl+ GABAergic neuron; Vip, 
Vip+ GABAergic neuron; VLMC, vascular lepotomeningeal cell. e,f, Mapping of 
single-cell DNA methylation profiles of human cortical cells onto the reference 
using an snmC2T-seq multiomic dataset as a bridge. Cells are colored by the 
methylation-derived annotations from the original study (e) or the scRNA-seq-
derived labels from bridge integration (f); near projecting; L6b, deep neocortical 
laminar 6b. Reference-derived labels at higher levels of granularity are shown in 
Supplementary Fig. 3.
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for rare cell types, which are most sensitive to downsampling (Fig. 3a). 
We found that if a bridge dataset contained at least 50 cells (‘atoms’) 
representing a given cell type, this was sufficient for robust integration. 
We note that this threshold is not a strict requirement; we found that 
integration can be successful for rare cell types, such as ASDCs, even 
when fewer than ten cells are present in the bridge, but we also observed 
failure modes in this regimen. We note that generating bridge datasets 
consisting of more than 50 cells per subpopulation is quite feasible for 
many multiomic technologies and that our findings represent guide-
lines to assist in experimental design when performing multiomic 
experiments. Notably, we found that substantially altering the relative 
composition of cell types in the bridge dataset (while maintaining the 
minimum threshold) did not negatively affect performance, demon-
strating that bridge integration can be successful even in cases where 
there are substantial compositional differences in the sample used to 
generate the multiomic bridge (Supplementary Fig. 2a,b).

We next compared the performance of bridge integration against 
two recently proposed methods for integrated analysis of multimodal 
and single-modality datasets. Both multiVI49 and Cobolt50 use vari-
ational autoencoders for integration, and while they do not explicitly 
treat multiomic datasets as a bridge, they aim to integrate datasets 
across technologies and modalities into a shared space. When applied 
to the previously described datasets, both methods were broadly 
successful in integrating scRNA-seq and scATAC-seq data but did not 
identify matches at the same level of resolution (for example, neither 
method successfully matched ASDCs in scATAC-seq data to the ASDCs 
in the Azimuth reference; Fig. 3b and Supplementary Fig. 2d–f). We 
also found that the latent space and neighbor relationships learned 
by bridge integration were most consistent with the labels originally 
assigned in the ATAC-seq analysis (Supplementary Fig. 2c). When 
comparing computational efficiency, bridge integration (0.8 h, not 
including 1.2 h of preprocessing time) and Cobolt (3.3 h) were the 
most efficient methods, while multiVI required more computational 
resources (15.7 h).

We next performed quantitative benchmarking of multiomic 
integration methods (bridge integration, Cobolt and multiVI) and 
also evaluated ‘bridge-free’ methods (Canonical Correlation-based 
Integration and LIGER), which perform integration on the basis of 
gene activity scores (Supplementary Methods). We found that our 
bridge integration most consistently and effectively matched cells in 
the same biological state across modalities (Fig. 3c and Supplementary  
Fig. 3a). Consistent with our previous results, we found that the strong-
est improvements were observed when mapping rare cell types, includ-
ing plasma cells and DCs (Supplementary Fig. 3b). As our procedure 
is compatible with multiple integration techniques, we compared the 
performance of bridge integration when using either mnnCorrect39 or 
Seurat v3 (ref. 19) for the final alignment step and observed very similar 
results (Supplementary Fig. 3a,b). We also computed additional metrics 
based on the cluster labels originally assigned based on the scRNA-seq 
measurements44 (Supplementary Table 1). In all cases, we consistently 
found that bridge integration exhibited superior performance.

As a second quantitative benchmark with ground truth data, 
we pursued a similar strategy using a recently published Paired-Tag 
dataset26, where individual histone modification binding profiles via 

scCUT&Tag were simultaneously measured with RNA transcriptomes. 
We performed cross-modality integration between scRNA-seq and 
scCUT&Tag for active histone marks (H3K27ac), repressive histone 
marks (H3K27me3) and enhancer histone marks (H3K4me1). In each 
case, bridge integration successfully integrated cells across modalities 
and returned the highest Jaccard similarity and classification metrics 
between matched scRNA-seq and scCUT&Tag profiles (Fig. 3c, Sup-
plementary Fig. 3d,e and Supplementary Table 1).

To further demonstrate the flexibility of our approach, we used 
bridge integration to map and annotate an snmC-seq dataset, which 
measures DNA methylation profiles in single cells from the human cor-
tex51. As a reference, we used a dataset from the Allen Brain Atlas, which 
defines an expertly curated and multilevel cell ontology52 in the human 
cortex. Using an snmC2T-seq dataset, which simultaneously measures 
methylation and gene expression as a bridge28, we were able to annotate 
the snmC-seq profiles with high confidence (Supplementary Fig. 3f). 
Even when our reference-derived annotations did not augment the 
resolution to unsupervised clustering of snmC-seq data, they did add 
substantial interpretability (Fig. 3d–f). For example, unsupervised 
clustering identified multiple populations of layer 6 (L6) neurons 
(labeled as L6-1, L6-2 and L6-3), but RNA-assisted annotation clearly 
labeled these clusters as either ‘near projecting’ or deep neocortical 
laminar 6b excitatory neurons (Fig. 3f).

Last, we aimed to characterize the performance of our method 
specifically in cases where the bridge dataset was missing specific cell 
populations or exhibited low data quality. Using the BMMC multiome 
benchmark dataset, we removed all plasmacytoid DCs (pDCs) from 
the multiomic dataset and repeated bridge integration. We found that 
this modification did not alter the annotations or confidence scores 
of non-pDCs in the query but that pDC query cells did exhibit a drop 
in annotation performance (94.4% annotated as pDCs using the full 
bridge and 83.5% annotated as pDCs using the depleted bridge data-
set). However, we found that these query cells also exhibited a specific 
and sharp drop in prediction confidence (average prediction scores 
of 0.907 using the full bridge and 0.514 using the depleted bridge), 
demonstrating that our procedure correctly reduced the confidence 
of prediction when the underlying assumptions were not met. We 
repeated this analysis after separately depleting three additional cell 
populations (B cells, CD8+ T cells and CD14+ monocytes) and observed 
similar results (Supplementary Fig. 4a). Moreover, we found that sub-
stantially reducing bridge data quality by discarding unique molecular 
identifiers (UMIs; 86% downsampling to 750 RNA UMIs per cell or 70% 
downsampling to 2,500 ATAC fragments per cell) did not adversely 
affect integration, although we did observe performance reductions 
after further downsampling (Supplementary Fig. 4b,c).

Taken together, these results demonstrate the accuracy, robust-
ness and flexibility of our bridge integration procedure. We demon-
strate applications on multiple modalities and data types as well as 
best-in-class performance via quantitative and ground truth bench-
mark comparisons.

Using dictionary learning for massively scalable integration
The recent increase in publicly available single-cell datasets poses 
a challenge for integrative analysis. For example, multiple tissues 

Fig. 4 | Using dictionary learning for massively scalable integration.  
a, Schematic of the atomic sketch integration procedure. After selecting a 
representative set of cells from each dataset, these cells are integrated and used 
to reconstruct harmonized profiles for all cells. Matrix notation is consistent with 
the full mathematical description in the Supplementary Methods. b,c, UMAP 
visualization of 1,525,710 scRNA-seq profiles spanning 19 studies from the lung 
and upper airways, which were harmonized using atomic sketch integration in 
55 min. Cells are colored by their study of origin (b) or annotated cell type after 
integration (c); AT1, alveolar type 1; AT2, alveolar type 2. d, Expression of FOXI1,  
a transcriptional marker of pulmonary ionocytes, in the integrated dataset.  

e, Heat map showing the top transcriptional markers of pulmonary ionocytes 
that are consistent across multiple studies. Pulmonary neuroendocrine cells 
(PNECs), the most transcriptionally similar cell type, are shown for contrast. 
Each column represents a pseudobulk average of all cells from a single cell 
type and single study. Top transcriptional markers for all cell types are shown 
in Supplementary Fig. 3. f, Gene ontology (GO) enrichment terms for ionocyte 
markers. P values were calculated by Fisher’s exact test and were adjusted by the 
Benjamini–Hochberg test. g, Expression distributions of top transcriptional 
markers recovered from single-cell differential expression analysis (red) or 
pseudobulk analysis (blue).
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have now been profiled across dozens of studies, representing hun-
dreds of individuals and millions of cells. We refer to the challenge 
of harmonizing a broad swath (or the entirety) of publicly available 
single-cell datasets from a single organ as ‘community-wide’ inte-
gration. While a rich diversity of analytical methods can harmonize 
datasets of hundreds of thousands of cells, performing unsupervised 

‘community-wide’ integration remains challenging, even when ana-
lyzing a single modality.

We were inspired by previous work on ‘geometric sketching’, which 
first selects a representative subset of cells (a ‘sketch’) across all data-
sets, integrates them and then propagates the integrated result back 
to the full dataset53. This pioneering approach substantially improves 
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the scalability of integration, as the heaviest computational steps are 
focused on subsets of the data. However, this approach is dependent 
on the results of principal-component analysis (PCA) that must first be 
performed on the full dataset. As datasets continue to grow in scale, 
performing dimensional reduction can become a limiting step. We 
aimed to devise a strategy that could integrate large compendiums of 
datasets, without ever needing to simultaneously analyze or perform 
intensive computation on the full set of cells.

We reasoned that dictionary learning could also enable efficient 
and large-scale integrative analysis. We first selected a representative 
sketch of cells (that is, 5,000 cells) from each dataset and treated these 
cells as atoms in a dictionary (Fig. 4a and Supplementary Methods). We 
next learned a dictionary representation, a weighted linear combination 
of atoms that can reconstruct the full dataset. These steps can occur for 
each dataset independently, allowing for efficient parallel processing. 
We then performed integration on the atoms from each dataset. This is 
the only step that simultaneously analyzes cells from multiple datasets, 
but because only the atoms are considered, this does not impose scal-
ability challenges. Finally, we applied our previously learned dictionary 
representations to the harmonized atoms from each dataset individu-
ally and reconstructed harmonized profiles for the full dataset. We refer 
to this procedure as ‘atomic sketch integration’. We highlight that for 
this application, the ‘atoms’ used to reconstruct a dataset represent a 
subset of cells from the dataset itself. By contrast, in bridge integration, 
the atoms refer to cells from a different (multiomic) dataset.

The success of atomic sketch integration rests on identifying a 
representative subset of cells for each dataset. Sketching techniques 
for single-cell analyses aim to find subsamples that preserve the over-
all geometry of these datasets53–55. These methods do not require a 
preclustering of the data but aim to ensure that the sketched dataset 
represents both rare and abundant cell states even after downsampling. 
Here, we perform sketching using a leverage score sampling-based 
strategy that has been proposed for large-scale information retrieval 
problems56 and can be rapidly and efficiently computed on sparse 
datasets. Leverage score-based sampling does not require perform-
ing PCA but maintains the ability to efficiently identify cells from rare 
subpopulations compared to geometric sketching techniques53 (Sup-
plementary Fig. 5a,b). We emphasize that atomic sketch integration 
represents a general strategy for improving scalability that can be 
broadly coupled with existing methods. For example, a wide variety of 
integration techniques, including Harmony38, Scanorama40, mnnCor-
rect39, scVI41 and Seurat19, can be used to integrate the atom elements 
in each dictionary, with our procedure then enabling these results to 
be extended to full datasets.

Community-scale integration for human lung scRNA-seq
To demonstrate the potential of atomic sketch integration to perform 
‘community-wide’ analysis, we first considered scRNA-seq datasets 
of the human lung. During the coronavirus disease 2019 (COVID-19) 
pandemic, there has been widespread scRNA-seq data collection from 
respiratory tissues, particularly by the Human Cell Atlas Lung Biologi-
cal Network57. Leveraging a recently published ‘database’ of scRNA-seq 
studies58 and a collection of openly released lung and upper airway 
datasets from the Human Cell Atlas (https://www.covid19cellatlas.

org/index.healthy.html), we assembled a group of 19 datasets span-
ning a total of 1,525,710 individual cells. We created an atomic diction-
ary consisting of 5,000 cells from each dataset (95,000 total atoms), 
integrated these cells and reconstructed the full datasets. Our atomic 
sketch integration procedure performed all these steps (including 
preprocessing) in 55 min using a single computational core. We found 
that the integrated latent space preserved the neighbor relationships 
between cell types independently assigned in each dataset but also 
mixed cells across datasets (Supplementary Fig. 5c–e).

Our results exhibit the advantages of community-scale integration 
compared to individual analysis. First, by matching biological states 
across datasets and technologies, the integrated reference can help 
to standardize cell ontologies and naming schemes (Fig. 4b,c). When 
observing previously assigned annotations derived from each study, 
we found that matched cell populations were often assigned slightly 
different names (Supplementary Fig. 5f). We also identified cases where 
integrated annotations exhibited increased resolution compared to the 
original labels and verified that our higher-resolution annotations were 
supported by the expression patterns of reproducible gene expression 
markers (Supplementary Fig. 5g).

As a second benefit, we found that community-scale integration 
enabled consistent identification of ultra-rare populations and, in 
particular, a population of Foxi1-expressing ‘pulmonary ionocytes’ 
that were recently discovered in both human and mouse lungs59  
(Fig. 4d). While these cells were only independently annotated in 6 of 
19 studies, our integrated analysis discovered at least one pulmonary 
ionocyte in 17 of 19 studies. The identified ionocytes were extremely 
rare (0.047%) but exhibited clear expression of canonical markers  
(Fig. 4c), highlighting the potential value for pooling multiple datasets 
to characterize these cells. We note that selection of dictionary atoms 
by sketching or leverage score sampling is essential for optimal perfor-
mance (Supplementary Fig. 5h,i); repeating the analysis using a set of 
atoms determined by random downsampling successfully integrated 
abundant cell types but failed to integrate ionocytes, as they were not 
sufficiently represented in the dictionary.

Finally, we found that community-scale integration can substan-
tially improve the identification of DE cell-type markers. The use of 
19 study replicates specifically enables us to identify genes that show 
consistent patterns across laboratories and technologies, representing 
robust and reproducible markers. We grouped cells by both sample 
replicate and cell-type identity and performed differential expres-
sion on the resulting pseudobulk profiles (Fig. 4e and Supplementary  
Fig. 6). For example, we identified 116 positive markers for pulmonary 
ionocytes, representing one of the deepest transcriptional characteri-
zations of this cell type. These markers included canonical markers, 
such as the transcription factor FOXI1, but also revealed clear ontology 
enrichments for ATPases (for example, ATP6V1G3 and ATP6V0A4) and 
chloride channels (for example, CLCNKA, CLCNKB and CFTR), support-
ing the role of these cells in regulating chemical concentrations in the 
lung (Fig. 4f). One advantage of working with pseudobulk values is 
increased quantification accuracy for genes expressed at low levels. 
Indeed, we repeatedly found that the top DE markers found using this 
strategy tended to capture more genes at a lower range of average 
expression values (Fig. 4g).

Fig. 5 | ‘Community-scale’ integration of sequencing and cytometry immune 
datasets. a, UMAP visualization of 3,461,171 human PBMC scRNA-seq profiles 
spanning 14 studies and 639 individuals after performing atomic sketch 
integration; HSPC, hematopoietic stem and progenitor cell; Treg cell, regulatory 
T; TCM, central memory T; TEM, effector memory T cell. b, Expression of a 
COVID-19 response module in CD14+ monocytes. Each column represents a 
pseudobulk average of CD14+ monocytes from 1 of 506 individuals. Expression 
of the module is correlated with disease severity within the individual, which is 
indicated by the color scale above the heat map. Responses for additional cell 
states are shown in Supplementary Fig. 5b. c, Mapping of 5,170,249 additional 

CyTOF profiles spanning 119 individuals using a published CITE-seq dataset 
(Hao et al.4) as a multiomic bridge. Each CyTOF profile is annotated with one 
of the scRNA-seq-defined cell types. d, Cross-modality integration enables the 
exploration of cell surface and intracellular protein markers on cell landscapes 
defined by scRNA-seq. As an example, intracellular FOXP3 levels are highly 
enriched in annotated regulatory T cells, validating the accuracy of our mapping. 
Two hundred thousand cells are shown in each visualization to alleviate 
overplotting. e, Heat map showing the expression of 34 protein markers in the 
CyTOF dataset. Each column represents a pseudobulk average after grouping 
cells by individual and reference-derived annotation.
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Community-scale integration of scRNA-seq and CyTOF
As a final demonstration, we considered a similar problem of 
community-wide integration for circulating human peripheral blood 
cells, which is one of the most widely profiled systems with diverse 
single-cell technologies. Exploring publicly available studies of either 
COVID-19 samples or healthy controls, we accumulated a collection 

of 14 studies with scRNA-seq measurements, representing a total 
of 3.46 million cells from 639 individuals. Data from 11 of the stud-
ies were obtained from a recently published collection of standard-
ized single-cell sequencing datasets60. We performed unsupervised 
atomic sketch integration, yielding a harmonized collection in which 
we annotated 30 cell states (Fig. 5a). We identified specific populations 
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of activated granulocytes and B cells that were specific to COVID-19 
samples (Supplementary Fig. 7a). Consistent with previous reports, 
monocytes in COVID-19 samples sharply upregulated the expression 
of interferon response genes61,62 but were correctly harmonized with 
healthy monocytes (Fig. 5b and Supplementary Fig. 7b). By matching 
shared cell types across disease states (while still allowing for the pos-
sibility of disease-specific subpopulations), this collection represents 
a valuable resource for identifying cell-type-specific transcriptional 
changes that reproduce across multiple studies. We characterized 
cell-type-specific responses for eight additional cell types, each of 
which exhibited a conserved interferon-driven response alongside the 
activation of cell-type-specific response genes (Supplementary Fig. 8).

While single-cell sequencing technologies are capable of meas-
uring RNA transcripts and surface proteins in thousands of single 
cells, cytometry-based techniques can measure both extracellular and 
intracellular proteins in millions of cells. As our bridge integration pro-
cedure should enable the mapping of CyTOF profiles onto scRNA-seq 
datasets, we obtained a collection of CyTOF datasets spanning 119 
individuals and a total of 5,170,249 cells63. We used our previously col-
lected CITE-seq dataset of 161,764 peripheral blood mononuclear cells 
(PBMCs) from healthy donors as a multiomic bridge4. The CyTOF and 
CITE-seq dataset both shared 30 cell surface protein features, while 
the CyTOF dataset also measured 17 unique proteins, which included 
intracellular targets that cannot be measured via CITE-seq.

Bridge integration annotated each CyTOF dataset with cluster 
labels derived from our scRNA-seq collection of 3.46 million cells 
and allowed us to infer intracellular protein levels for each of these 
clusters (Fig. 5c). Predicted regulatory CD4+ T cells expressed high 
levels of the transcription factor FOXP3 (ref. 64), and effector T cells 
exhibited enriched KLRG1 levels65 (Fig. 5d). We also found that among 
cytotoxic lymphocyte populations, MAIT cells were uniquely depleted 
for expression of the cytotoxic protease granzyme B, consistent with 
previous reports66. Each of these patterns supports the accuracy of our 
cross-modality mapping. Finally, we successfully annotated a rare pop-
ulation of ILCs (0.024%), which were not independently identified in 
the CyTOF dataset but correctly exhibited a CD25+CD127+CD161+CD56− 
immunophenotype4,67 (Fig. 5d,e). Taken together, we conclude that 
dictionary learning enhances the scalability of integration and the 
ability to integrate and compare diverse molecular modalities.

Discussion
To map datasets measuring a diverse set of modalities to scRNA-seq 
reference datasets, we developed bridge integration, an approach 
for cross-modality alignment that leverages a multiomic dataset as a 
bridge. We characterize specific requirements for the bridge dataset 
and demonstrate the broad applicability of our method to a wide variety 
of technologies and modalities. Finally, we demonstrate how to use 
atomic sketch integration to extend the scalability of our approach to 
harmonize dozens of datasets spanning millions of cells.

We anticipate that our methods will be valuable to individual labs 
but also larger consortia that have already invested in constructing and 
annotating comprehensive scRNA-seq references. For example, the 
Human Cell Atlas, Human Biomolecular Atlas Project, Tabula Sapiens68 
and Human Cell Landscape69 have all released scRNA-seq references 
spanning hundreds of thousands of cells for multiple human tissues. 
Similar efforts are present in model organisms as well, including the 
Fly Cell Atlas70 and Plant Cell Atlas projects71. In each case, these efforts 
involve careful, collaborative and expert-driven cell annotation along-
side the curation of reference cell ontologies. While repeating this man-
ual effort for each modality is not feasible, bridge integration enables 
the mapping of new modalities without having to modify the reference. 
As additional multiomic datasets become available, we expect that tools 
such as Azimuth will also begin to map additional modalities.

We note that bridge integration is particularly well suited for 
experimental designs where multiomic technologies can be applied 

to a subset of, rather than all, experimental samples due to its increased 
cost, lower throughput and reduced data quality. In particular, combi-
natorial indexing approaches can be readily applied to profile a single 
modality in hundreds of thousands of cells72,73 but not for multiomic 
technologies. We propose that the collection of large single-modality 
datasets, harmonized via a smaller but representative multiomic 
bridge, may represent an efficient and robust strategy to explore 
cross-modality relationships across millions of cells.

We note that future extensions of our work can further broaden 
the applicability of bridge integration or demonstrate its potential in 
new contexts. For example, performing bridge integration on spatially 
resolved unimodal datasets (for example, CODEX74) could help to 
better characterize the spatial localization of scRNA-seq-defined cell 
types in large tissue sections. New multiomic technologies that couple 
high-resolution mass spectrometry imaging to single-cell or spatial 
transcriptomics could serve as a bridge to harmonize lipidomic and 
metabolic profiles75,76 with sequencing-based references. In addition, 
future computational improvements will further lower the require-
ments of the bridge dataset, enabling robust integration with an even 
smaller number of multiomic cells.

We emphasize the ability for bridge and atomic sketch integration 
to identify and characterize rare cell populations, including ASDCs and 
pulmonary ionocytes. Single-cell transcriptome profiling played an 
essential role in the initial discovery of these cell types, but a deeper 
understanding of their biological role and function will benefit from 
multimodal characterization. The goal of moving beyond an initial taxo-
nomic classification of cell types toward a complete multimodal refer-
ence will not be accomplished with a single experiment or technology. 
We envision that computational tools for cross-modality integration 
will have key contributions to the construction of this map.
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Methods
Bridge integration procedure
Our bridge integration procedure is designed to perform integration 
of single-cell datasets profiling different modalities by leveraging 
a separate multiomic dataset as a molecular bridge. The individual 
multiomic profiles each represent individual atoms, which together 
comprise a multiomic dictionary (that is, each cell in the bridge dataset 
represents an atom, and the entire bridge dataset represents a diction-
ary). This dictionary is used to transform both unimodal datasets 
into a shared space defined by the same set of features, facilitating 
cross-modality integration. Our approach consists of the following 
four broad steps described in detail below: (1) within-modality har-
monization of unimodal and bridge datasets, (2) construction of a 
dictionary representation for each unimodal dataset, (3) dimensional 
reduction via Laplacian eigen decomposition and (4) alignment of 
dictionary representations across datasets. We illustrate each step 
of the method in Fig. 1b using the same mathematical notations that 
we introduce below.

All methods are implemented in our open-source R package Seurat 
(www.satijalab.org/seurat and www.github.com/satijalab/seurat).

Within-modality harmonization of unimodal and bridge data-
sets. The first step in our procedure is to harmonize the unimodal 
and bridge datasets based on shared modalities. For example, when 
performing bridge integration to map an scATAC-seq dataset onto an 
scRNA-seq reference (via a 10x multiome bridge), we first harmonize 
the gene expression measurements from the scRNA-seq and multiome 
experiments and the chromatin accessibility measurements from 
the scATAC-seq and multiome experiments. Specifically, we define 
the following:

X ∈ ℝnscRNA−seq×dgenes is the scRNA-seq expression counts matrix,
Y ∈ ℝnscATAC−seq×dpeaks is the scATAC-seq accessibility counts matrix,
M = [MXMY]  is the multiomic expression + accessibility counts 

matrix, where
MX ∈ ℝnmultiomic×dgenes is the scRNA-seq subset of the multiomic matrix 

and
MY ∈ ℝnmultiomic×dpeaks is the scATAC-seq subset of the multiomic matrix.
Our goal is to harmonize X and MX and Y and MY. This can be per-

formed with a wide variety of existing tools for the harmonization of 
single-cell datasets. For example, Seurat, Harmony, LIGER, scVI, Scano-
rama, fastMNN, scVI and scArches all learn a shared low-dimensional 
space that jointly represents the datasets and aligns cells in a matched 
biological state. Our goal is therefore to learn

X∗ ∈ ℝnscRNA−seq×dRNA, harmonized space for scRNA-seq data,
Y∗ ∈ ℝnscATAC−seq×dATAC, harmonized space for scATAC-seq data, and

M∗ = [M∗
XM

∗
Y],

where
M∗
X ∈ ℝnmultiomic×dRNA is the harmonized space for the scRNA-seq subset 

of the multiomic dataset and
M∗
Y ∈ ℝnmultiomic×dATAC  is the harmonized space for the scATAC-seq 

subset of the multiomic dataset.
In this work, we treat the scRNA-seq dataset X as a reference and 

map the multiomic gene expression profiles (MX) onto this reference 
using the FindTransferAnchors and MapQuery functions in Seurat to 
obtain X* and M∗

X. An example workflow is provided at https://satijalab.
org/seurat/articles/integration_mapping.html (‘Mapping and Annotat-
ing Query Datasets’).

The same functionality has been implemented in the Signac 
package for the mapping and harmonization of scATAC-seq datasets 
(https://satijalab.org/signac/articles/integrate_atac.html). However, 
we emphasize that our approach is compatible with a wide variety of 
preexisting approaches for within-modality harmonization, including 
all the methods listed above.

We also note that when finding anchors between the bridge and 
query datasets, we can leverage the multimodal nature of the bridge 
dataset to perform ‘supervised’ dimensional reduction, which uses 
both modalities when calculating a low-dimensional representation 
during harmonization. For example, we have previously described 
the use of ‘supervised PCA’ to learn optimized transformations from 
CITE-seq data4,77. When working with bridge datasets that measure 
ATAC-seq or CUT&Tag chromatin features (for example, Paired-Tag 
and 10x multiome), we use an analogous procedure for supervising 
the latent semantic indexing reduction.

Construction of a dictionary representation for each unimodal 
dataset. The goal of dictionary learning is to reconstruct individual 
data points as a weighted linear combination of atoms in a dictionary. 
We treat M* as a dictionary, with each row of this matrix representing an 
atom. We aim to learn reconstructions of X* and Y* based on the atoms of 
M* while minimizing the error between the original and reconstructed 
values. Specifically, we aim to identify the matrices DX and DY, where

DX ∈ ℝnscRNA−seq×nmultiomic  is the dictionary representation of the 
scRNA-seq dataset, and

DY ∈ ℝnscATACseq×nmultiomic  is the dictionary representation of the 
scATAC-seq dataset, such that

argmin
DX

(||DX(M∗
X) − X

∗||2F + ||DX||2F)

and

argmin
DY

(||DY(M∗
Y) − Y

∗||2F + ||DY||2F) .

As described in refs. 56,78, this optimization problem is analogous 
to matrix regression and has a closed-form solution for calculating 
DX and DY,

DX = X∗(M∗
X)
†

DY = Y∗(M∗∗
Y )

†,

where † represents the pseudoinverse of the matrix.
We note that DX and DY represent transformations of the original 

scRNA-seq and scATAC-seq datasets. While the two experiments origi-
nally measured different sets of features, after the transformation, they 
now are represented by the same set of features, namely, the atoms of 
the multiomic experiment.

Dimensional reduction via Laplacian eigen decomposition. After 
the datasets have been transformed in the previous step, it is pos-
sible to integrate them directly. The dimensionality of the datasets 
is based on the number of cells in the multiomic dataset. Unlike the 
original measurements, the dictionary representations are not sparse. 
As multiomic datasets often consist of thousands of cells, working 
with high-dimensional and non-sparse dictionary representations is 
computationally inefficient. We therefore aimed to reduce the dimen-
sionality of the dictionary representation. Motivated by a similar prob-
lem addressed by Laplacian eigenmaps42, a non-linear dimensionality 
reduction technique, we perform dimensionality reduction by com-
puting an eigen decomposition of the graph Laplacian matrix. Unlike a 
PCA, which aims to identify low-dimensional representations that pre-
serve data variance, Laplacian eigenmaps represent a low-dimensional 
reduction that optimally preserves the graph-defined local neighbor 
relationships42.

We first compute a graph representation of the multiomic dataset 
M*. We use a ‘shared nearest neighbor’ graph representation, as pro-
posed by Levine et al.79 for clustering single-cell datasets. We note that 
the matrix representation of this graph is symmetric, which is a 
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requirement for downstream eigen decomposition. Our approach is 
compatible with any user-defined distance metric when constructing 
this graph, although we recommend using either the Euclidean distance 
based on harmonized gene expression measurements (that is, M∗

X) or, 
alternately, a weighted combination of modalities using the ‘weighted 
nearest neighbor’ distance metric that we have previously introduced4. 
We define

G ∈ ℝnmultiomic×nmultiomic as the symmetric graph representation of the 
multiomic dataset and

L = I − D−
1
2 GD−

1
2 as the graph Laplacian matrix.

We next perform an eigen decomposition of the graph Laplacian 
matrix:

L = UΛUT

0 = λ1 ≤ λ2 ≤ … ≤ λn.

Here, UL is the leftmost nLaplacian eigenvectors of U, where n specifies 
the reduced dimensionality of the dataset. We select nLaplacian = 50 for 
all examples in this work.

We now multiply the learned dictionary representations for the 
scRNA-seq and scATAC-seq datasets by this truncated set of eigen-
vectors. Doing so transforms these representations into the same 
lower-dimensional space (nLaplacian). We define

LX ∈ ℝnscRNA−seq×nLaplacian as the reduced dictionary representation for 
the scRNA-seq data,

LY ∈ ℝnscATAC−seq×nLaplacian as the reduced dictionary representation for 
the scATAC-seq data and

LM ∈ ℝnmultiomic×nLaplacian as the reduced dictionary representation for 
the multiomic datasetand calculate the following matrices:

LX = DXUL = X∗ ((M∗
X)
†UL) ,

LY = DYUL = Y∗ ((M∗
Y)
†UL)

and

LM = UL.

Alignment of dictionary representations across datasets. Both 
the scRNA-seq and scATAC-seq datasets have now been transformed 
into a low-dimensional space defined by the same set of features. They 
can now be directly harmonized using existing methods. As in step 1, 
multiple published methods can accomplish this goal. In this work, 
we use our internal implementation of the mnnCorrect integration 
technique to perform this harmonization39. We choose mnnCorrect, as 
we find that after performing the steps described above, any remaining 
sample-specific differences are minor and are typically far less than the 
differences we observe when aligning scRNA-seq datasets across dif-
ferent technologies. To demonstrate the compatibility of our approach 
with alternative methods, we also repeat our quantitative benchmarking 
experiments using our previously developed integration workflow in 
Seurat v3 (ref. 19) and observe very similar results (Supplementary Fig. 3).

Specifically, the final output of our procedure represents
L∗X ∈ ℝnscRNA−seq×nLaplacian as the harmonized reduced dictionary repre-

sentation for the scRNA-seq data,
L∗Y ∈ ℝnscATAC−seq×nLaplacian as the harmonized reduced dictionary repre-

sentation for the scATAC-seq data and
L∗M ∈ ℝnmultiomic×nLaplacian as the harmonized reduced dictionary repre-

sentation for the multiomic dataset.
These representations can be used as input for common down-

stream analytical tasks, including t-distributed stochastic neighbor 
embedding (t-SNE) or UMAP visualization, graph-based clustering and 
the identification of developmental trajectories.

Atomic sketch integration
Our approach consists of four steps: (1) for each dataset, sample a rep-
resentative subset of cells (atoms) that span both rare and abundant 
populations; (2) for each dataset, learn a dictionary representation 
to reconstruct each cell based on the atoms; (3) integrate the atoms 
from each dataset and (4) for each dataset, reconstruct each cell from 
the integrated atoms. Each step is described in detail below. We note 
that steps 1, 2 and 4 are performed on each dataset individually, and 
step 3 only requires performing joint computation on the downsam-
pled set of atoms. Therefore, our procedure never requires loading or 
processing the entirety of the datasets at one time. Our approaches 
should therefore successfully extend to and beyond the analysis of 
100,000,000 cells, which is now an achievable scale for combinatorial 
barcoding technologies.

All methods are implemented in our open-source R package Seurat 
(www.satijalab.org/seurat, www.github.com/satijalab/seurat).

Sample a representative subset of cells (‘atoms’) from each dataset. 
Our first step is to selectively downsample the cells in each dataset, 
aiming to identify a reduced set of cells that are representative of 
the full dataset. In particular, we aim to ensure that rare populations 
continue to be represented even after downsampling. We also aim 
to identify cell subsets in a computationally efficient manner and to 
minimize any computation that must be performed on the full dataset 
before downsampling. We aim to select a subset of k cells from each 
dataset, each of which is referred to as an atom. In this manuscript, we 
use k = 5,000, unless otherwise noted.

We define
X ∈ ℝnscRNA−seq×dgenes as the count matrix for scRNA-seq and
S ∈ ℝk×nscRNA−seq as the sampling matrix for the dataset; each row is 

one-hot row vector matrix indicating which cells are selected (that is, 
si,j = 1 if cell i is the jth cell to be selected; i = 1, 2,… ,ncells and j = 1, 2,… , k).

SX ∈ ℝk×dgenes is the scRNA-seq matrix after downsampling to the  
k cells selected. We also call this matrix A, as it represents the ‘atoms’ 
selected from the original dataset.

We can use a variety of techniques to define the sketching matrix S. 
These include geometric sketching techniques, such as geosketch53 or 
Hopper54, or fast clustering procedures, such as mini-batch k-means55 
followed by cluster-informed downsampling.

In this work, we select cells based on their statistical leverage 
scores, a method for selecting influential data points in a dataset. 
In the context of linear regression, statistical leverage represents 
the influence of an individual data point in determining the best 
least-squares fit. In this context, cells with high leverage scores 
will tend to make the largest contribution to the gene covariance 
matrix and, therefore, reflect the importance of the cell’s profile. 
The exact statistical leverage score for a cell can be computed 
via an eigen decomposition of the X matrix, but this is computa-
tionally inefficient. As an alternative, Clarkson and Woodruff56 
propose a randomized algorithm that efficiently computes a fast 
approximation of statistical leverage56. This algorithm is attractive 
for single-cell sequencing analysis as it is highly scalable and runs 
efficiently on sparse datasets. Briefly, the algorithm amounts to 
constructing a ‘randomized’ sketch of the input matrix based on 
the Johnson–Lindenstrauss lemma and computing the Euclidean 
norms of the rows of that sketch. The algorithm is fully described 
in Clarkson and Woodruff56, but we note the key mathematical 
steps below.

For the randomized sketching matrix, we use the sparse random 
CountSketch matrix C, which consists of 0, 1 and –1 elements and is 
defined in ref. 80.

C ∈ ℝc×nscRNA−seq is the sparse randomized CountSketch matrix.
We then perform a QR decomposition

CX = [Q,R].

http://www.nature.com/naturebiotechnology
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We then apply a fast Johnson–Lindenstrauss transformation using 
a very sparse random projection matrix ∏81. We calculate this matrix 
using the RandPro package82 in R (‘li’ projection function),

Z = X × (R−1 × Π).

We can now calculate the leverage score for each cell, which are 
the Euclidean norms of the rows of the Z matrix. We can also calculate 
a sampling probability for selecting each cell i as an atom based on the 
leverage scores.

li = ||Z [i, ]||22 is the leverage score for cell i, and
pi =

li
∑n

j=1 lj
 is the probability of selecting cell i as an atom.

Finally, we sample k cells as atoms based on these probabilities. 
As described above, this procedure results in a downsampled dataset 
in which only the atoms remain, which we name A.

Learn a dictionary representation to reconstruct each cell based on 
the atoms. We aim to learn reconstructions of X based on the atoms of 
A while minimizing the error between the original and reconstructed 
values. Specifically, we aim to identify the matrix D, where

D ∈ ℝnscRNA−seq×k  is the dictionary representation of the scRNA-seq 
dataset

such that

argmin
D
(||DA − X||2F + ||D||2F).

As described previously, this optimization problem is analogous 
to matrix regression and has a closed-form solution for calculating D

D = XA†,

where † represents the pseudoinverse of the matrix.

Integrate the atoms from each dataset. Let i = 1, 2,… ,ndataset represent 
the datasets to be integrated, and let Ai represent the matrix of atoms 
that result from downsampling dataset i. Our goal is to harmonize the 
set of matrices [A1,A2,… ,Andataset ].

This can be performed with a wide variety of existing tools for the 
harmonization of single-cell datasets. For example, Seurat, Harmony, 
LIGER, scVI, Scanorama, fastMNN, scVI and scArches all learn a shared 
low-dimensional space that jointly represents the datasets and aligns 
cells in a matched biological state together. Our goal is therefore to learn

[A∗1 ,A
∗
2 ,… ,A∗ndataset ],

where A∗i ∈ ℝnscRNA−seq×dRNA  is the harmonized space for scRNA-seq  
dataset i.

In this manuscript, we use our previously developed 
anchor-based workflow to integrate the datasets using recipro-
cal PCA, which is optimized for integration tasks with large num-
bers of samples and cells (‘fast integration using reciprocal PCA’ at  
https://satijalab.org/seurat/articles/integration_rpca.html). The 
integration procedure returns a low-dimensional space that jointly 
represents atoms from all datasets.

Reconstruct each cell from the integrated atoms. The last step is 
performed individually for each dataset. Let i = 1, 2,… ,ndataset represent 
the datasets to be integrated, and let Xi represent the full scRNA-seq 
count matrix representing dataset i.

We reconstruct integrated values for each cell in dataset i using 
the previously computed dictionary representation for the data-
set along with the harmonized space A∗i ,

X∗i = DiA
∗
i = Xi(A

†
i A

∗
i ).

The collection of matrices [X∗1 ,X
∗
2 ,… ,X∗ndataset ]  now represents a 

low-dimensional space that jointly represents all cells from all datasets. 
Because these matrices are low dimensional, each of them can be 
simultaneously loaded into memory. These representations can be 
used as input for common downstream analytical tasks, including t-SNE 
or UMAP visualization, graph-based clustering and the identification 
of developmental trajectories.

Preprocessing details for each dataset
Adult mouse frontal cortex and hippocampus Paired-Tag dataset. 
The datasets from Zhu et al.26 were generated with Paired-Tag, which 
performs simultaneous profiling of histone modifications and cellular 
transcriptomes and contains a total of 64,849 nuclei. We extracted 
three datasets for the histone modifications H3K27ac, H3K4me1 and 
H3K27me3. We used the gene expression matrices as quantified in the 
original experiment. For each epigenetic modification, the original 
manuscript quantified read densities in 5,000 bins. These were aggre-
gated into larger peaks using the CombineTiles function in Signac, 
and aggregated peaks less than 1 megabase in size were retained. We 
retained cells with total RNA counts between 500 and 10,000. We 
applied SCTransform to normalize the gene expression data and TF-IDF 
to normalize the histone modification data. We used PCA (dimensions 
1:30) and TF-IDF (dimensions 2:30, excluding the first dimension, as this 
is typically correlated with technical metrics in ATAC-seq or scCUT&Tag 
data) to reduce the dimensionality of the RNA and histone modification 
modalities and construct the weighted nearest neighbor (WNN) graph.

Data acquisition source: Gene Expression Omnibus (GEO), acces-
sion number GSE152020.

Human frontal cortex snmC-seq data. This human frontal cortex 
dataset is an snmC-seq dataset from Luo et al.51 and contains 2,784 
nuclei. We used the non-CG methylation 100,000-kb bin count matrices 
as quantified in the original experiment. We applied SCTransform83 to 
normalize the gene expression data and log normalization to normalize 
the methylation data. Because this dataset was used as a query dataset 
in this manuscript, we did not perform unsupervised dimensionality 
reduction on the methylation data.

Data acquisition source: GEO, accession number GSE97179 
(https://brainome.ucsd.edu/annoj/brain_single_nuclei/).

Human frontal cortex snmC2T-seq data. This human frontal cortex 
dataset is an snmC2T-seq dataset from Luo et al.28 and contains 4,357 
nuclei. We used the non-CG methylation 100,000-kb bin count matrices 
as quantified in the original experiment. We applied SCTransform to 
normalize the gene expression data and log normalization to normalize 
the methylation data. We used PCA to reduce the dimensionality to 30 
for both datasets and construct the WNN graph.

Data acquisition source: GEO, accession number GSE140493.

BMMC multiome. We collected a total of ten 10x multiome datasets 
from the NeurIPS Multimodal Single-Cell Data Integration challenge 
website, representing 32,368 paired single-nucleus profiles of tran-
scriptome and chromatin accessibility. We retained cells with total 
RNA counts between 1,000 and 10,000 and with total ATAC peak counts 
between 2,000 and 30,000. We applied SCTransform to normalize the 
gene expression data and TF-IDF to normalize ATAC peak counts. We 
used PCA (dimensions 1:40) and TF-IDF (dimensions 2:40) to reduce 
the dimensionality of each modality and construct the WNN graph.

Data acquisition source: https://openproblems.bio/competitions/
neurips_2021/.

Human BMMC ATAC-seq. This human bone marrow dataset is an 
snATAC-seq dataset from Granja et al.43. As the reads were originally 
mapped to hg19, we used cellranger-atac v2 to remap fastq files to hg38. 
In each cell, we quantified the same set of peaks that were detected in 
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the BMMC multiome dataset. After removing low-quality cells, 26,159 
cells were retained, with total ATAC peaks of <50,000 and >2,000. We 
applied TF-IDF to normalize the ATAC-seq data. As this dataset was used 
as a query dataset in this manuscript, we did not perform unsupervised 
dimensionality reduction on the ATAC-seq data.

Data acquisition source: GEO, accession number GSE139369.

Human PBMC scRNA. This human PBMC scRNA dataset was obtained 
from the 10x Genomics website (https://www.10xgenomics.com/
resources/datasets/) and consists of 33,015 cells. We retained cells 
with total RNA counts between 400 and 10,000. We applied log nor-
malization for the gene expression matrix. We annotated these cells 
by mapping them to the Azimuth PBMC reference with the Seurat4 
reference-mapping framework and refined the annotations by de novo 
clustering. These data were used for sketching benchmark analysis 
(Supplementary Fig. 5).

Data acquisition source: https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.1.0/pbmc33k.

Human PBMC mulitome. This human PBMC multiome (RNA + ATAC) 
dataset was obtained from the 10x Genomics website (https://
www.10xgenomics.com/resources/datasets/) and consists of 10,970 
cells. We retained cells with total RNA counts between 500 and 10,000 
and total ATAC peak counts between 2,000 and 100,000. We applied 
SCTransform to normalize the gene expression data and TF-IDF to 
normalize ATAC peak counts. We annotated these cells by mapping 
the RNA profile to the Azimuth PBMC RNA reference with the Seurat4 
reference-mapping framework. We then used these annotations to 
create ATAC-seq tracks, shown in Supplementary Fig. 2d.

Data acquisition source: https://www.10xgenomics.com/ 
resources/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium- 
x-1-standard-2-0-0.

Human CD34+ bone marrow multiome. This human CD34+ bone marrow 
multiome (RNA + ATAC) dataset was obtained from Persad et al.84 and con-
sists of 13,398 cells from two replicates. We retained cells with total RNA 
counts between 500 and 30,000 and total ATAC peak counts between 
1,000 and 100,000. We used the same normalization method used 
for the human PBMC multiome. We annotated these cells by mapping 
the RNA profile to the Azimuth RNA BMMC reference with the Seurat4 
reference-mapping framework. When using the human PBMC multiome 
dataset, we did not observe sufficient numbers of ASDCs to create a 
chromatin track for this dataset. However, we identified 12 cells anno-
tated as ASDCs in these CD34+ bone marrow data. We used these cells to 
generate a chromatin track for the SIGLEC6 locus (Supplementary Fig. 2e),  
which validates our predicted ASDC identified via bridge integration.

Data acquisition source: https://zenodo.org/record/6383269.

Human PBMC CyTOF dataset. This human PBMC CyTOF dataset was 
generated by the COVID-19 Multi-omics Blood Atlas COMBAT consor-
tium and consists of 7.11 million cells with a panel of 47 antibodies. We 
removed cells from individuals with sepsis, yielding a remainder of 5.17 
million cells. We used the normalized expression matrices as quanti-
fied in the original study. As this dataset was used as a query dataset 
in this manuscript, we did not perform unsupervised dimensionality 
reduction on the protein data.

Data acquisition source: https://zenodo.org/record/5139561.

Azimuth reference. Azimuth scRNA-seq references for human bone 
marrow (297,627 cells) and the human motor cortex (159,738 cells) were 
downloaded from the HuBMAP portal. The portal includes descriptions 
of each public data source used when compiling the reference dataset 
and a link to a GitHub repository and Docker Hub to reproduce the 
construction of the reference.

Data acquisition source: https://azimuth.hubmapconsortium.org.

Lung scRNA-seq dataset atlas. Nineteen datasets profiling human 
lung samples using scRNA-seq were downloaded from publicly avail-
able sources (links for each source dataset are provided in Supple-
mentary Table 2). Low-quality cells were filtered using uniform quality 
control thresholds; cells with RNA counts between 300 and 100,000 
and with mitochondrial read percentages below 20% were retained. 
Normalization was performed using log normalization implemented 
in Seurat. We used PCA (dimensions 1:40) to reduce the dimensionality 
of each dataset.

Data acquisition source: Supplementary Table 2 and lung scRNA 
datasets68,69,85–101.

PBMC COVID scRNA-seq dataset atlas. Fourteen datasets profil-
ing human PBMC samples using scRNA-seq were downloaded from 
publicly available sources (links for each source dataset are provided 
in Supplementary Table 2). Eleven of these datasets had been previ-
ously organized in Tian et al.60. Low-quality cells were filtered using 
uniform quality control thresholds; cells with RNA counts between 
150 and 150,000 and with mitochondrial read percentages below 15% 
were retained. Normalization was performed using log normalization 
implemented in Seurat. We used PCA (dimensions 1:40) to reduce the 
dimensionality of each dataset.

Data acquisition source: Supplementary Table 2 and PBMC scRNA 
datasets4,62,63,102–112.

Differentiation trajectory and pseudotime analysis
In Fig. 2, we identify a myeloid differentiation trajectory and pseudo-
time ordering of cells that describes both reference (scRNA-seq) and 
query (scATAC-seq) cells. We extracted reference cells belonging to 
HSC, LMPP, GMP and CD14+ monocyte populations and query cells 
that mapped to any of these subsets after bridge integration. We next 
constructed a k-nearest neighbor (KNN) graph representing cells from 
both modalities using the latent space learned during the bridge inte-
gration procedure. This graph was used as input to the destiny package, 
which reduces the dimensionality of the data using diffusion maps113. 
We note that as we manually selected cell populations that are known 
to encompass monocytic differentiation, we did not expect or observe 
branching events. We used the first two diffusion map coordinates as 
input to monocle3 (ref. 114) to infer a pseudotemporal ordering.

We next aimed to identify cases where dynamic gene expression 
patterns ‘lag’ behind the accessibility dynamics of nearby regulatory 
regions. We can perform this analysis because our pseudotemporal 
ordering encompasses both scATAC-seq and scRNA-seq cells. We first 
associated each scATAC-seq peak with a gene using the ClosestFeature 
function in Signac. For each gene, we next smoothed the expression 
profile along the learned trajectory using the ksmooth function (‘stats’ 
package in R115) using 1,000 intervals and a bandwidth of 0.01. We 
repeated the same process for the accessibility of each peak linked to 
this gene (bandwidth of 0.05). We next calculated the cross-correlation 
of the smoothed expression and accessibility values, which measures 
the similarity for the two time series and calculates the optimal dis-
placement of one relative to the other. We used the ccf function (‘stats’ 
package in R115) and identified a total of 574 gene–peak pairs with a 
cross-correlation of >0.6. Of these, we identified 236 cases exhibiting 
an optimal displacement of >0.01 (we illustrate 6 such cases in Fig. 2l).

Bridge cell downsampling analysis
To explore how the size and composition of the multiomic dataset 
affected the robustness of bridge integration, we performed 25 serial 
downsamplings of the entire BMMC multiomic dataset (200, 300, 
400, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 
6,000, 7,000, 8,000, 9,000, 10,000, 11,000, 12,000, 13,000, 14,000, 
15,000, 20,000 and 30,000). We used one batch of the scATAC dataset 
(12,256 cells) as a query, repeated bridge integration and compared 
the resulting predictions with our original findings. As expected, we 
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found that the degree of agreement after downsampling was cell-type 
dependent, as cells from abundant cell types were more robust to 
downsampling. We therefore expressed our results as a function of 
the number of cell types present in the bridge dataset for each cell 
type. For example, the 7,000-cell downsampled dataset contained 144 
CD16+ monocytes (prediction concordance of 1.00) and 22 pro-B cells 
(prediction concordance of 0.66). The 2,000-cell downsampled data-
set contained 41 CD16+ monocytes (prediction concordance of 0.94) 
and 6 pro-B cells (prediction concordance of 0.55). We aggregated all 
these results across downsamples and displayed the results in Fig. 2a. 
For visual clarity, we only showed an x axis range of 10 to 500 in Fig. 2a.

Bridge cell-type composition resampling analysis
To assess the robustness of our bridge integration procedure to the 
relative proportion of cell types in the bridge dataset, we scrambled the 
proportions and then repeated the bridge integration procedure. To 
accomplish this, we sampled 10,000 cells from the original bridge dataset 
without replacement. We set each cell’s sampling probability inversely 
to the proportion of cell types in the original dataset, ensuring that we 
would substantially alter cell-type composition. We then repeated bridge 
integration with the resampled dataset, mapping the same query dataset, 
and then compared the results in Supplementary Fig. 2.

Benchmark analysis with multiVI and Cobolt
To assess the performance of our bridge integration method alongside 
other recently proposed integration tools, we compared our results 
with multiVI49 from scvi-tools v 0.14.5 and Cobolt50 (v1.0.0). As both 
Cobolt and multiVI use variational autoencoders, both methods are 
run on a server with a discrete NVIDIA A100GPU with 40 gigabytes of 
memory and pyTorch-lightning v.1.3.8 installed. Seurat analyses are 
run on an Intel Xeon Platinum 8280L server and use a single compu-
tational core.

For multiVI, we used the scRNA-seq, scATAC-seq and multiomic 
RNA–ATAC paired counts matrices as input. We used the multiome_
anndatas function to generate one anndata object for integration. 
We set batch information in categorical_covariate_keys, using the 
setup_anndata function. We then integrated the datasets by running 
the multiVI function, as outlined in the multiVI tutorial (https://docs.
scvi-tools.org/en/stable/tutorials/notebooks/MultiVI_tutorial.html). 
We used 500 epochs for model training, as suggested in the multiVI 
tutorial. All other parameters were set to default settings. multiVI learns 
a latent space, which jointly represents cells across the scRNA-seq and 
scATAC-seq datasets. We extracted this space and performed nearest 
neighbor calculations and UMAP visualization in Seurat.

For Cobolt, we used the scRNA-seq, scATAC-seq and multiomic 
RNA–ATAC paired counts matrices as input. We used the SingleData 
function from cobolt_utils to generate three Cobolt objects and trained 
the model using 20 latent variables, a 0.001 learning rate and 100 itera-
tions, as recommended in the Cobolt tutorial (https://github.com/epur-
dom/cobolt/blob/master/docs/tutorial.ipynb). All other parameters 
were set to default or were the recommended settings in the tutorial. 
Cobolt learns a latent space that jointly represents cells across the 
scRNA-seq and scATAC-seq datasets. We extracted this space and per-
formed nearest neighbor calculations and UMAP visualization in Seurat.

We performed comparative benchmarking in three contexts. First, 
we ran all three approaches on the datasets from Fig. 2, aiming to map 
an scATAC-seq query dataset onto an scRNA-seq-defined reference. We 
did not have ground truth information for this dataset, so we did not 
calculate quantitative benchmarks, although we visualized the perfor-
mance of all methods in Fig. 3b and Supplementary Fig. 2. As multiVI 
and Cobolt do not provide methods to explicitly label query scATAC-seq 
cells using scRNA-seq references, we used a commonly used heuristic 
for label transfer; for each scATAC-seq cell, we identified the closest five 
neighbors in scRNA-seq cells and transferred the most common cell 
annotation among the neighbors. In Fig. 3b, we visualized chromatin 

accessibility at the SIGLEC6 locus for cells predicted as ASDCs by all 
methods, and additional loci are shown in Supplementary Fig. 2.

Second, we performed quantitative benchmarking in a context 
where we had a ground truth dataset to establish the accuracy of 
scATAC-seq/scRNA-seq integration. We split the BMMC multiomic 
dataset into two groups. The first group consists of a randomly sampled 
subset of 2,115 cells representing at most 100 cells per author-defined 
cell type. This group of cells was used as the multiomic bridge dataset 
for benchmarking. The remaining cells were placed in the second group 
and were split into separate scRNA-seq and scATAC-seq profiles (that 
is, the multiomic pairing information was temporarily discarded). 
We then integrated the datasets using bridge integration (using both 
Seurat v3 and mnnCorrect for the final alignment step), multiVI or 
Cobolt. After integration, all methods return a latent space that jointly 
represents cells from both the scATAC-seq and scRNA-seq datasets. 
For each scATAC-seq cell, we know its matched scRNA-seq profile, as 
they were originally measured simultaneously. Successful integration 
techniques will place matched profiles close together in this latent 
space. For each scATAC-seq cell, we therefore calculated the Jaccard 
similarity metric to its matched scRNA-seq profile (we note that this 
similarity metric is symmetric). We report these results in Fig. 3c and 
Supplementary Fig. 3, either averaged together across all cells or aver-
aged within author-defined cell types.

Third, we repeated the ground truth benchmarking analysis on 
a second multiomic technology. Paired-Tag enables simultaneous 
CUT&Tag and transcriptomic profiling in single cells. We used data 
for three histone modifications: H3K27ac, H3K27me3 and H3K4me1. 
As each dataset consists of multiple replicates, we used replicate 1 as 
the multiomic dataset and split the CUT&Tag and RNA modalities from 
the second replicate for benchmarking. We ran multiVI, Cobolt and 
bridge integration (using both Seurat v3 and mnnCorrect for the final 
alignment step) as before, substituting the CUT&Tag counts matrix for 
the scATAC-seq matrix, as previously described.

Bridge-free benchmark analysis with Seurat-CCA and Liger
To benchmark bridge-free integration methods for the cross-modality 
integration of scATAC and scRNA data, we initially transformed ATAC 
peaks into gene activity scores using the function GeneActivity in the 
Signac package. This generates a gene activity score matrix by summing 
peak counts per cell in the gene body and promoter region. scRNA gene 
expression and scATAC gene activity score count matrices were used as 
input for integration. We performed integration by following the pro-
cedure from publicly available vignettes, https://satijalab.org/seurat/
articles/atacseq_integration_vignette.html and http://htmlpreview.
github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/
Integrating_scRNA_and_scATAC_data.html.

Classification metrics for benchmark analysis
In addition to Jaccard similarity, we also calculated additional quantita-
tive benchmarking metrics (discussed below) that leverage predefined 
cellular annotations.

Multiclass classification area under the receiver operating charac-
teristic (ROC) curve (AUC). We performed a one versus rest multiclass 
ROC analysis because cell-type annotations include multiple classes. 
We assessed multiclass predictions by iteratively contrasting each 
class with all the others. For each iteration, we designated one class as 
the ‘positive’ class and the remaining classes as the ‘negative’ classes. 
Combining the prediction score for the ‘positive’ class, we calculated 
the AUC for each. We report the average AUC value across all cell types.

Query annotation KNN purity. This metric quantifies the consistency 
between cell-type labels and neighbor relationships in the latent space. 
For each query cell, it measures the fraction of neighbors that receive 
the same annotation as the query cell itself. Using the mapped query 
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dataset, we calculated a KNN graph in the integrated space to find k = 30 
nearest neighbors for each query cell and calculated the fraction of 
cells receiving the same annotation.

Multiclass binary cross entropy. Multiclass binary cross entropy is a 
commonly used metric in classification and machine learning tasks116 
and considers both the accuracy of prediction and the associated 
prediction score,

L( y, ŷ) = −
K
∑
i
y(i) log ŷ(i),

where K is the number of potential classes (cell types), y(i) is an indicator 
variable that denotes a correct (1) or incorrect (0) prediction, and ŷ(i) 
is the prediction score (probability associated with predicting class i).

Bridge cell-type remove analysis. We removed certain cell types 
from the bridge and reperformed bridge integration to characterize 
the performance of our method in situations where cell populations 
were missing from the bridge dataset. We separately deleted the CD8+ 
T cell, pDC, CD14+ monocyte and B cell subpopulations from the BMMC 
multiome benchmark dataset, respectively. We then repeated the 
bridge integration procedure using the modified bridge dataset. We 
then compared the predicted labels (and prediction scores) assigned 
to query cells based on the full and modified bridge datasets.

Bridge cell-type RNA and ATAC UMI downsample analysis. To simu-
late reduced data quality for RNA or ATAC modalities in the multiome 
dataset, we downsampled RNA or ATAC UMI counts in the multiome 
dataset by 1, 5, 10, 20, 30, 40, 50, 60, 70, 80 and 90 using downsample-
Matrix from the scuttle package117. We renormalized RNA or ATAC data 
after downsampling and repeated the bridge integration procedure. We 
assessed the prediction results using a number of evaluation methods, 
including classification AUC, query KNN purity, multiclass binary cross 
entropy and Jaccard similarity.

Sketching benchmark analysis and evaluation metrics
We applied the three assessment metrics listed below to evaluate the 
performance of sketching algorithms. These metrics assess the abil-
ity of sketching algorithms to identify a compact subset of cells that is 
maximally representative of the full dataset and, in particular, to retain 
cells from rare subpopulations in the dataset sketch. We computed 
metrics on two datasets: a 33,000-cell dataset of human PBMCs pub-
licly available from 10x Genomics (https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.1.0/pbmc33k) and a 66,000-cell 
lung scRNA-seq dataset98. Using two sketching algorithms (leverage 
score-based sketching and geosketch53), we sketched 100, 300, 500, 
1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000, 6,000, 
7,000, 8,000, 9,000 and 10,000 cells from the entire dataset individu-
ally. We also performed a uniform downsampling method as a negative 
control. To measure computing time, we altered the size of the original 
dataset and fixed the number of sampled cells to 5,000.

Change of gene covariance matrix. Optimal cell sketches should 
modify cellular density but preserve information in the dataset gene–
gene covariance matrix. We therefore calculated the magnitude of the 
difference between the gene covariance matrix calculated on the full 
dataset and the gene covariance matrix calculated on the sketched data-
set. Before calculating the covariance matrix, we first performed a PCA 
on the dataset and reconstructed a gene expression matrix using the 
top 50 principal components. We then calculated the Frobenius norm 
of changes in the gene covariance matrix using the following equation:

Xr = Ur∑
r
VTr

XS = SXr

‖
‖
‖
XTr Xr − XTs Xs

n − 1
‖
‖
‖

2

F
,

where Xr ∈ ℝn×d  is the PCA denoised full gene expression matrix, S is 
the sampling matrix for the dataset to sample k cells from the full 
matrix, and XS ∈ ℝk×d  is the denoised gene expression matrix for the k 
sampled cells.

Cell-type entropy. We assessed the evenness of cell types in the sketched 
data based on the original annotations from the dataset. Cell-type 
entropy will increase when the sketched data effectively represent rare 
cell types. Cell-type entropy will decrease when abundant cell types 
dominate the sketched data and rare cell types are not represented.

Hausdorff distance. We also evaluated the performance of sketching 
using Hausdorff distance, a metric fully described in the geosketch 
manuscript53. The Hausdorff distance measures the largest closest 
distance between the full and sketched datasets. A low Hausdorff 
distance indicates that all cells in the full dataset are represented by 
the sketched cells.

Community-wide integration analyses
To facilitate the harmonization and subsequent meta-analysis of a 
diversity of publicly available scRNA-seq datasets, we applied our 
atomic sketch integration approach to 1,525,710 scRNA-seq profiles 
spanning 19 publicly available human lung scRNA-seq datasets. As 
described above, we calculated a leverage score for each cell in each 
dataset and used this to sample 5,000 cells as atoms. We found that 
these 5,000 cells retain rare cell types, despite downsampling (Sup-
plementary Fig. 5). We learned a dictionary representation that recon-
structs cells from each dataset based on the selected atoms using the 
methods described above. We used our previously developed recipro-
cal PCA-based integration workflow (https://satijalab.org/seurat/arti-
cles/integration_rpca.html) to integrate the 95,000 atoms originating 
from these 19 datasets. Finally, the learned dictionary representations 
can be used to reconstruct harmonized profiles (in low-dimensional 
space) for all 1,525,710 scRNA-seq profiles. This space was used as input 
for UMAP to generate the visualization in Fig. 4b,c.

The harmonized space for all 1,525,710 scRNA-seq profiles can 
also be used as input to graph-based clustering approaches. However, 
because annotation is an iterative and manual process, we chose to 
first perform clustering on the harmonized dataset of 95,000 atoms. 
We constructed a shared nearest neighbor graph and partitioned this 
into clusters using the graph-based smart local moving algorithm118. 
We initially clustered cells at a high resolution (resolution = 5) and 
performed differential expression analysis on all pairs of clusters for 
RNA markers. We merged clusters that did not exhibit clear evidence 
of separation. We removed clusters that showed clear evidence of 
expressing markers for two different cell types as likely doublets.  
To assign names to individual clusters, we used the recently published 
anatomical structures, cell types and biomarker tables119, except for 
five clusters (adventitial fibroblast, alveolar fibroblast, myofibroblast 
and proliferating NK/T, squamous), where our desired annotation was 
not present in the most recently available version of the table (v1)120.  
For each cell in the full dataset, we found its ten nearest neighbors 
among the annotated atoms and transferred the most commonly 
observed annotation.

Lung integration evaluation. We computed two evaluation metrics 
to assess the performance of the integration of 19 lung datasets. Local 
inverse Simpson index (LISI) is used to evaluate for batch effect cor-
rection, and KNN purity is used to evaluate preservation of the original 
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labels in the integrated space. We merged the raw RNA expression from 
19 lung datasets, normalized them and performed a PCA as a control 
for the integration result.

To compare the batch effects, we first computed the LISI score 
using the top 50 dimensions of cell embeddings in the RNA PCA and 
integrated latent space individually. We used the same integrated latent 
space to determine KNN purity.

In Fig. 5, we performed ‘community-wide’ integration on 3.46 
million cells spanning 639 individuals and 14 studies. As these studies 
varied widely in the number of cells present in each dataset, we selected 
at least 5,000 and at most 10% of the cells in each dataset as atoms 
based on their leverage score. This enabled the larger and more com-
prehensive datasets to contribute additional weight to the integrated 
reference. We performed integration, reconstruction and annotation 
using the same steps as described for the lung.

Identifying DE genes across cell types and conditions
In the lung and PBMC community-wide integration, we identified DE 
genes on the ‘pseudobulk’ expression values calculated from each 
individual study. We performed a logistic regression-based method 
to identify DE genes. For space considerations, we typically reported 
only the top 10 markers in each heat map and sorted genes first by 
adjusted P value and next by log (fold change) to determine the top 
markers. To compare the results of single-cell and bulk analyses, we 
used the wilcoxauc method from presto121 to identify DE genes using 
either the single-cell or pseudobulk profiles as input and sorted by 
the AUC statistic. In Fig. 4g, we compared the distribution of average 
expression values (within a cell type) for the top 100 markers identified 
by either single-cell or pseudobulk analysis.

To identify COVID-19 response signatures that are consistent 
across multiple individuals, we first calculated a pseudobulk average for 
CD14+ monocytes for each of the 506 donors who were either healthy 
or whose metadata indicated mild, moderate or severe COVID-19  
(ref. 60). We performed DE analysis at the pseudobulk level to iden-
tify markers of CD14+ monocytes expressed in severe COVID samples 
compared to healthy samples. In Fig. 5b, we ordered each pseudobulk 
profile by the expression levels of these genes, which are enriched for 
interferon response genes, for visualization. We repeated this process 
for eight additional cell states in Supplementary Fig. 7b.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
We used publicly available datasets in this work. Download locations 
for each dataset are listed in the Supplementary Methods and Sup-
plementary Tables. Azimuth references are available for download at 
http://azimuth.hubmapconsortium.org.

Code availability
Bridge integration and atomic sketch integration are implemented as 
part of the Seurat R package. In this work, we also make use of the Signac 
and Azimuth packages. All are freely available as open-source software 
at the following websites: https://github.com/satijalab/seurat, https://
github.com/timoast/signac and https://github.com/satijalab/azimuth.
We include two vignettes describing the ‘bridge integration’ and 
‘atomic sketch integration’ procedures as Supplementary Notes with 
this manuscript.
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