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Natural evolution must explore a vast landscape of possible sequences

for desirable yet rare mutations, suggesting that learning from natural
evolutionary strategies could guide artificial evolution. Here we report that
general protein language models can efficiently evolve human antibodies by
suggesting mutations that are evolutionarily plausible, despite providing
the model with no information about the target antigen, binding specificity
or protein structure. We performed language-model-guided affinity
maturation of seven antibodies, screening 20 or fewer variants of each
antibody across only two rounds of laboratory evolution, and improved

the binding affinities of four clinically relevant, highly mature antibodies

up to sevenfold and three unmatured antibodies up to 160-fold, with

many designs also demonstrating favorable thermostability and viral
neutralization activity against Ebola and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) pseudoviruses. The same models thatimprove
antibody binding also guide efficient evolution across diverse protein
families and selection pressures, including antibiotic resistance and enzyme
activity, suggesting that these results generalize to many settings.

Evolutionsearches across animmense space of possible sequences for
rare mutations thatimprove fitness*. In nature, this search is based on
simple processes of random mutation and recombination’, but using
the same approach for directed evolution of proteins in the labora-
tory’imposes aconsiderable experimental burden. Artificial evolution
based onrandom guessing or brute force search typically devotes sub-
stantial effort tointerrogate weakly active or non-functional proteins,
requiring high experimental throughput to identify variants with
improved fitness*’.

Although evolutionary fitness is determined, in part, by specific
selection pressures, there are also properties that apply more gener-
ally across a protein family or are prerequisites for fitness and func-
tion across most proteins; for example, some mutations maintain
or improve stability or evolvability®’, whereas others are structur-
ally destabilizing” or induce incompetent, misfolded states®. One

approach to improving the efficiency of evolution is to ensure that
mutations adhere to these general properties, which we refer to as
evolutionary plausibility. Identifying plausible mutations could
help guide evolution away from invalid regimes’, thereby indirectly
improving evolutionary efficiency without requiring any explicit
knowledge of the function of interest. However, this strategy is also
challenging because, first, protein sequences are governed by com-
plex rules, and, second, even if we restrict search to evolutionarily
plausible mutations, those that also improve a specific definition
of fitness might still be rare beyond practical utility (Fig. 1a). More
broadly, a major open question'® is whether general evolutionary
information (for example, learning patterns from sequence variation
across past evolution) is sufficient to enable efficient evolution under
specific selection pressures (for example, higher binding affinity toa
specificantigen).
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Fig.1| Guiding evolution with protein language models. a,b, Two possible
models for relating the space of mutations with high evolutionary plausibility
(for example, mutations seen in antibodies) to the space with high fitness under
specific selection pressures (for example, mutations that result in high binding
affinity to a specific antigen). Both models assume that mutations with high
fitness make up a rare subset of the full mutational space and that, in general,
high-fitness mutations are also evolutionarily plausible. Under the first model
(a), mutations with high fitness are rare within the subset of mutations that are
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evolutionarily plausible. Under the second model (b), when restricted to the
regime of plausible mutations, improvements to fitness become much more
common. ¢, Protein language models, trained on millions of natural protein
sequences learn amino acid patterns that are likely to be seenin nature. We
hypothesized that most mutations with high language model likelihood would
also be evolutionarily plausible. Assuming that this is true, and if the second
model (b) better describes nature, then alanguage model with no information
about specific selection pressures can still efficiently guide evolution.

Here we show that evolutionary information alone can lead to
improved fitness under specific selection pressures with high efficiency
(Fig. 1b). For our main experimental test case, we focused on affinity
maturation of human antibodies in which our specific selection pres-
sure is defined as stronger binding affinity to a particular antigen. In
nature, a process known as somatic hypermutation evolves or ‘matures’
anantibody lineage to have higher affinity for an antigen viarepeated
mutagenesis” . Inthe laboratory, affinity maturation is a major appli-
cationof directed evolution dueto the therapeutic potential of antibod-
ies with high affinity for disease targets™.

To select evolutionarily plausible mutations, we used algorithms
known as language models (Fig. 1c) to learn patterns that are likely to
occurinnatural proteins” 2, Because we used general language mod-
els”?, trained on non-redundant sequence datasets that are meant
to represent variation across all natural proteins®, these models can
only learn more general evolutionary rules than could amodel trained
specifically onantibody sequences** or amodel directly supervised
with binding affinity*®. Given a single starting sequence, we used these
language models to recommend plausible amino acid substitutions
that we then experimentally screened for improved fitness. To the
end user, the algorithm requires only a single wild-type sequence,
without any initial binding affinity data, knowledge of the antigen,
task-specific supervision, evolutionary homologs or protein structure
information.

We evolved seven humanimmunoglobulin G (IgG) antibodies that
bind to antigens from coronavirus, ebolavirus and influenza A virus. We
focused onviral antigens given theimportance of antibody therapeu-
tics for viral diseases? 2. We improved the affinity of all antibodies after
measuring only 20 or fewer new variants of each antibody across just
two rounds of evolution, which, to our knowledge, represents unprec-
edented efficiency for machine-learning-guided evolution®?*, We
alsodemonstrate that the same general protein language models that
we used to affinity mature antibodies can also enrich for high-fitness
substitutions to diverse proteins beyond antibodies.

Results

Efficient affinity maturation with protein language models
Recent work has demonstrated that language models can predict
natural evolution despite having no knowledge of specific selection

pressures'®. However, this prior work only predicted the direction of
evolutionretrospectively whengiven fullknowledge of the evolutionary
trajectory. We hypothesized that the predictive capabilities of protein
language models might enable a researcher to provide only a single,
wild-type antibody sequence to the algorithm and receive a small,
manageable set (-10") of high-likelihood variants to experimentally
measure for desirable properties. Thisis a very general setting that does
not assume knowledge of protein structure or task-specific training
data. A major question, however, is if higher evolutionary likelihood
would efficiently translate to higher fitness.

We tested our hypothesis by conducting evolutionary cam-
paigns, guided by language model likelihood, to affinity mature seven
antibodies representing diverse antigens and degrees of maturity
(Supplementary Table1):

- MEDI8852: a broadly neutralizing antibody (bnAb) that binds
influenza A hemagglutinin (HA) across variants of both major
phylogenetic groups (group 1and group 2) and that reached phase
2 clinical trials; this antibody is highly matured, with its parent
being isolated from a human, followed by substantial artificial
evolution”

* MEDI8852 unmutated common ancestor (UCA): the unmatured,
inferred germline sequence of MEDI8852, which only neutralizes
viruses with group 1 HAs*

« mADbll4: a patient-derived antibody that neutralizes ebolavirus
by binding to its glycoprotein (GP)** and has been approved for
clinical use by the US Food and Drug Administration (FDA)

« mAbl14 UCA: the unmatured, inferred germline sequence of
mAb114 with weak binding to ebolavirus GP*°

« S309: a patient-derived antibody that cross-neutralizes the sar-
becoviruses severe acute respiratory syndrome coronavirus 1
(SARS-CoV-1) and severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) by binding to the spike glycoprotein (Spike)* and is
the parent antibody of sotrovimab®, which had an FDA emergency
use authorization (EUA) for treatment of Coronavirus Disease 2019
(COVID-19) caused by earlier variants of SARS-CoV-2 (refs. 36,37)

« REGNI10987:a patient-derived antibody that binds early variants
of SARS-CoV-2 Spike®” and that had an FDA EUA for use against
these variants
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« Cl43: an unmatured, patient-derived antibody that binds the
SARS-CoV-2 Wuhan-Hu-1Spike but was isolated before extensive
in vivo somatic hypermutation®*’

We performed evolution with the ESM-1b language model and
the ESM-1v ensemble of five language models (six language modelsin
total)*?°. ESM-1b and ESM-1v were trained on UniRef50 and UniRef90,
respectively, which are protein sequence datasets that represent vari-
ationacross millions of observed natural proteins (UniRef90 contains
~98 million total sequences) and that include only a few thousand
antibody-related sequences®. These datasets are also constructed
such that no two sequences have more than 50% (UniRef50) or 90%
(UniRef90) sequence similarity with each other to avoid biological
redundancy. Additionally, both datasets precede the discovery of
the SARS-CoV-2 antibodies considered in the study as well as the
evolution of all SARS-CoV-2 variants of concern. Therefore, to evolve
these antibodies, the language models cannot use disease-specific
biases in the training data and must, instead, learn more general
evolutionary patterns.

We used these language models to compute likelihoods of all
single-residue substitutions to the antibody variable regions of either
the heavy chain (VH) or the light chain (VL). We selected substitutions
with higher evolutionary likelihood than wild-type across a consen-
sus of six language models (Methods and Extended Data Fig. 1). In
the first round of evolution, we measured the antigen interaction
strength by biolayer interferometry (BLI) of variants that contain only
asingle-residue substitution from wild-type. In the second round, we
measured variants containing combinations of substitutions, where
we selected substitutions that corresponded to preserved orimproved
binding based on the results of the first round. We performed these two
rounds for all seven antibodies, measuring 8-14 variants per antibody
in round one and 1-11 variants per antibody in round two (Fig. 2 and
Supplementary Table 1). Variants of the clinically relevant antibod-
ies, which have very low or undetectable dissociation as IgGs, were
screened by measuring the dissociation constant (K;) of the monova-
lent fragment antigen-binding (Fab) region; variants of the unmatured
antibodies were screened by measuring the apparent K, of the bivalent
IgG followed by also measuring the K, values of the Fab fragments of
the highest-avidity variants (Methods).

We could successfully express allbut one of 122 variants across our
seven evolutionary trajectories. Across all seven antibodies, we found
that 71-100% of the first-round Fab variants (containing asingle-residue
substitution) retained sub-micromolar binding to the antigen, and
14-71% percent of first-round variants led to improved binding affin-
ity (defined as a 1.1-fold or higher improvement in K, compared to
wild-type) (Supplementary Table 1). Most of the second-round vari-
ants (containing a combination of substitutions) also have improved
binding (Supplementary Tables 1-9). For all antibodies except for
REGN10987, we also obtained variants with at least a two-fold improve-
ment in Ky. Thirty-six out of all 76 language-model-recommended,
single-residue substitutions (and 18 out of 32 substitutions that lead
to improved affinity) occur in framework regions (Supplementary
Tables 2-9), which are generally less mutated during conventional
affinity maturation compared to the complementarity-determining
regions (CDRs)"™.

We were able to improve the binding affinities for all clinically
relevantantibodiestested, despitethese antibodies beingalready highly
evolved (starting at low nanomolar or picomolar affinity). MEDI8852 is
apotentbinder with a sub-picomolar Fab K;across many HAs and pico-
molar or nanomolar binding to HAs from subtypes H4 and H7. Although
we explicitly screened variants using an HA H4 antigen, the best design
also improves binding across a broad set of HAs (Supplementary
Tables 2 and 3), including a sevenfold improvement (from 0.21 nM
to 0.03 nM) for HA H7 HK17 (A/Hong Kong/125/2017(H7N9)). The
best variant of mAb114, a clinically approved drug, achieves a 3.4-fold
improvementin Fab K, for ebolavirus GP (Supplementary Table 5). For
REGN10987, the highest-affinity variant has a 1.3-fold improvement
against Beta-variant Spike with six stabilizing proline substitutions
(S-6P)** (the antigen used in screening), and another of our designs
has a 5.1-fold improvement for the Omicron BA.1receptor-binding
domain (RBD) (Supplementary Table 8). For S309, we compared our
designs towild-type and to a variant with the N55Q substitutioninthe
VH introduced after a small-scale, rational evolutionary screen’®; the
$309 Fab with the VHN55Q substitution forms the Fab of the therapeu-
tic antibody sotrovimab. Our best variant of S309 has higher affinity
thansotrovimab, including a1.3-fold improvement in Fab K, compared
to wild-type S309 (versus 1.1-fold for sotrovimab) for SARS-CoV-2
Wuhan-Hu-1S-6P (the antigen used in screening); a 1.7-fold improve-
ment (versus 1.3-fold for sotrovimab) for Beta S-6P; and a 0.93-fold
change (versus 0.82-fold for sotrovimab) for Omicron RBD (Supple-
mentary Table 7).

We were also able to improve affinities for all three unmatured
antibodies, often involving much higher fold changes than when
evolving the matured antibodies, indicating easier evolvability with
respect to affinity. For MEDI8852 UCA, the best Fab design achieves
a 2.6-fold improvement in K against HA H1 Solomon (A/Solomon
Islands/3/2006(HIN1)), the antigen used in screening. Our best designs
alsoacquirebreadth of binding to some group 2HAs, including a 23-fold
improvement for HA H4 Hubei (A/swine/Hubei/06/2009(H4N1)) and
a5.4-fold improvement for HA H7 HK17 (Supplementary Table 4). For
mADb114 UCA, our best Fab design achieves a160-fold improvementinKj
forebolavirus GP (Supplementary Table 6). Although the algorithmrec-
ommends amino acid substitutions to both of these UCA antibodies that
arealsoobserved inthe matured antibody, other affinity-enhancing sub-
stitutions to the UCA antibodies are not found in the matured versions:
excluding any substitutions or modified sites found in the matured
antibody, our UCA variants achieve up to asevenfold improvement for
HA H4 Hubei (variant VH P75R/VL G95P; Supplementary Table 4) and
a 33-fold improvement for ebolavirus GP (variant VH G88E/VL V43A;
Supplementary Table 6), demonstrating that our algorithm successfully
explores alternative evolutionary routes. For C143, a patient-derived
antibody isolated before extensive affinity maturation®®*’, our best
design achieves a 13-fold improvement for Beta S-6P and a 3.8-fold
improvement for Omicron RBD (Supplementary Table 9). Results from
our directed evolution campaigns are further summarized in Fig. 2,
Supplementary Tables 2-9 and Supplementary Datal.

Additional characterization of evolved antibodies
Although we explicitly selected for improved binders, we also tested
these variants for improved stability (Methods). We found that Fabs

Fig.2|Language-model-guided affinity maturation of seven human
antibodies. a, Strip plots visualizing the two rounds of directed evolution
conducted for each antibody. Each point represents an IgG or Fab variant plotted
according to the fold change in K, from wild-type on the y axis and jitter on the
xaxis; agray, dashed lineis drawn at a fold change of 1, and the wild-type point is
colored gray. MEDI8852 variants were screened against HA H4 Hubei; MEDI8852
UCA variants against HA H1 Solomon; mAb114 and mAb114 UCA variants against
ebolavirus GP; S309 variants against Wuhan-Hu-1S-6P; and REGN10987 and C143
variants against Beta S-6P. b, Phylogenetic trees illustrating the evolutionary

trajectories from wild-type to the highest-affinity variant(s) of each antibody.
Nodes are annotated with the K, values for different antigens and the T;, of the
Fab; all K, values are for the monovalent Fab versions except those of C143, which
are apparent K values for the bivalent IgGs. B, Beta; H1 Solo., H1 Solomon;

ML variant, machine-learning-guided variant; O, Omicron; W1, Wuhan-Hu-1.

¢, We obtained avidity and affinity measurements via BLI of IgGs and Fabs at the
indicated concentrations binding to the indicated antigen. Selected BLI traces
of the highest-affinity variants for the respective antigens are plotted alongside
those of the wild-type variants.
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for 21 out of the 311anguage-model-recommended, affinity-enhancing ~ Whenevolving S309 to have higher affinity, our best design hasa T, of
variants that we tested had a higher melting temperature (7;,) than  72.8 °C compared to 72.5 °C for wild-type, whereas the VH N55Q sub-
wild-type, and all variants maintained thermostability (7, >70°C). stitutionintroducedinsotrovimab decreasesthe T,,t0 69.6 °C (Fig. 2).
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Fig. 3| Specificity and improved neutralization potency of affinity-matured
variants. a, Polyspecificity of antibody wild-types and variants was quantified
using an assay*’ that measures non-specific binding to soluble membrane
proteins via flow cytometry, where higher MFI values correspond to more
non-specific binding (Methods). Control antibodies*? are elotuzumab (a clinical
antibody with low polyspecificity), ixekizumab (a clinical antibody with high
polyspecificity) and 4E10 (a research antibody with high polyspecificity beyond a
therapeutically viable level)*>. Bar height indicates the mean across n = 3 replicate
wells; black dots indicate independent measurements. b, Variants of the antibody
C143, obtained from our language-model-guided affinity maturation campaign,

demonstrate improved neutralization activity in a pseudovirus assay. For Beta
pseudovirus, out of the three higher-affinity variants that we also screened for
neutralization activity, the bestimprovement is the 32-fold improvement of VL
G53V; for D614G pseudovirus, the bestimprovement is the 19-fold improvement
of VL T33N-G53V (Supplementary Table 9). Also see Extended Data Fig. 2. Points
indicate the mean; error bars indicate the s.d.; n =4 independent experiments.

¢, Fold change in K correlates well with fold change inICs, (Spearman r=0.82,
n=15antibody variants) across all designs tested, consistent with higher binding
affinity contributing toimproved viral neutralization activity. WT, wild-type.

Our evolved variants for mAbl114, mAb114 UCA, REGN10987 and C143
also preserve or improve T,,; the highest change that we observed
was an increase from 74.5 °C to 82.5 °C when evolving mAb114 UCA.
Improved thermostability does not completely explain our affinity
maturationresults, however, as we observed somewhat decreased 7;,
for our affinity-matured variants of MEDI8852 and its UCA, although
these Fabs are still thermostable (Fig. 2).

Additionally, we tested our affinity-matured designs for poly-
specific binding, because binding unintended targets could lead to
undesirable side effects in therapeutic settings. For each of the seven
antibodies, we tested the wild-type alongside three affinity-matured
variants using a polyspecificity assay that assesses non-specific bind-
ing to soluble membrane proteins (Methods)*"*2. We observed no
substantial changes in polyspecificity for any variants of all seven
antibodies, and all tested antibodies have polyspecificity values within
atherapeutically viable range (Fig. 3a and Supplementary Data 2).

Another therapeutic considerationisimmunogenicity. Although
computational prediction of immunogenicity remains a challenge,
especially involving recognition of discontinuous epitopes, the

immunogenicity of linear peptides is better understood*’. We observed
that our affinity-matured variants have no significant increase
(one-sided binomial P> 0.05) in the number of computationally pre-
dicted peptide binders to both human leukocyte antigen (HLA) class |
and class Il (exact Pvalues and sample sizes for these experiments are
provided in Supplementary Data 2), which underlies T-cell-mediated
immunogenicity.

We also wanted to determine if our affinity-matured variants
have better viral neutralization activity. We tested affinity-enhancing
variants of four antibodies using pseudovirus neutralization assays
(Methods) and, in all cases, observed variants with half-maximal
inhibitory concentration (ICs,) values that are significantly improved
(Bonferroni-corrected, one-sided ¢-test P< 0.05, n =4 independent
experiments), including a 1.5-fold improvement for the best mAb114
variant against Ebola pseudovirus; a twofold improvement for the
best REGN10987 variant against SARS-CoV-2 Beta pseudovirus; and a
32-foldimprovement for the best C143 variant against Beta pseudovirus
(Fig. 3b, Extended Data Fig. 2 and Supplementary Tables 5, 8 and 9).
Additionally, the affinity-matured variants of mAb114 UCA demonstrate
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detectable neutralization at a >100-fold lower concentration compared
to wild-type (Extended Data Fig. 2a). In general, change in binding
affinity corelates well with change in neutralization (Spearmanr=0.82,
two-sided t-distribution P=1.9 x 10, n =15 antibody variants) (Fig. 3¢
and Extended DataFig. 2b).

Originality of affinity-enhancing substitutions

Although the ability to find any improvement in affinity is itself use-
ful for engineering applications, we were also interested in whether
some of the changes recommended by our algorithm demonstrate
‘originality’. We quantified originality by computing the frequency
that agiven residue is observed in nature (Methods). Although many
affinity-enhancing substitutions are indeed observed at high fre-
quency bothinthe model’s training data”* and in a database of antibody
sequences**, other substitutions demonstrate greater originality. For
example, in the MEDI8852 UCA trajectory, the VL G95P framework
substitution (Fig. 2 and Supplementary Table 4) involves changing
aglycine observed in 99% of natural antibody sequences to a proline
observed in less than 1% of natural sequences. Overall, five out of 32
affinity-enhancing substitutions (-16%) involve changing the wild-type
residue to arare oruncommon residue (Supplementary Table10) and
that are also rare when considering only natural variation of antibod-
ies derived from the same germline genes (Supplementary Table 11).
These results indicate that the language models learn both the ‘easy’
evolutionary rules involving high-frequency residues and more com-
plex rules that are not captured by a multiple sequence alignment or
conventional antibody evolution. Conceptually, these low-frequency,
affinity-enhancing substitutions are analogous to examples in other
disciplines where an artificial intelligence program occasionally
makes unusual but advantageous choices (for example, unintuitive
game-playing decisions®) and likewise may be worth further study.

Comparison to other sequence-based methods

We also sought to compare general language models to other meth-
odsfor selecting plausible mutations based on sequence information
alone. To assess the contribution of epistatic information learned by
the language model, we considered two site-independent models of
mutational frequencies: (1) abYsis sequence annotation, which uses
extensively curated antibody sequence alignments, and (2) frequen-
cies based on sequence alignments to the UniRef90 dataset, which was
used to train ESM-1v (Methods). To assess the impact of using language
models not trained on antibody-specific sequence variation, we also
compared to two antibody language models: (1) AbLang?, trained on
~10” sampled sequences from immune repertoire sequencing data
in the Observed Antibody Space (OAS) database*¢, and (2) Sapiens®,
trained on ~10% human antibody sequences from the OAS datasbase.

We benchmarked these models based on their ability to suggest
single-residue substitutions thatimprove the avidity of the three unma-
tured IgG antibodies for their respective antigens (MEDI8852 UCA
and HA H1 Solomon, mAb114 UCA and GP and C143 and Beta S-6P).
For each of the four benchmarked models, we ranked substitutions by
their mutant-to-wild-type likelihood ratios and experimentally tested
the same number of substitutions considered in the first round of our
evolutionary campaigns (Methods).

Notably, our approach based ongeneral protein language models
consistently outperformed all baseline methods (Supplementary Table
12). In particular, the abYsis and UniRef90 comparisons indicate that
epistatic information was critical for consistent performance across
antibodies. For example, the site-independent models did not recom-
mend high-fitness substitutions such as VL G95P in MEDI8852 UCA
or VL T33N/G53V in C143, resulting in no avidity-enhancing substitu-
tions to C143 (Supplementary Table 12 and Supplementary Data 3).
We also observed that language models recommend a significantly
higher number of avidity-enhancing substitutions (simulation-based
P=0.0085; Extended Data Fig. 3a) compared to the next-best baseline,

UniRef90, and that is robust to differences in sequence alignment
depth (Extended Data Fig. 3b, Supplementary Data 3 and Methods).
Despite having access to antibody-specific sequence variation, both
the AbLang and Sapiens models also consistently underperformed
the general protein language models and even underperformed
the site-independent models when recommending substitutions to
mAb114 UCA (Supplementary Table 12 and Supplementary Data 3).
Our results indicate that general protein language models go beyond
site-independent reasoning to make beneficial predictions while
also learning sufficient information even from unspecialized protein
sequence corpuses.

Computational efficiency of our approach

Our computational pipeline is highly efficient at making predictions,
taking lessthan1sperantibody (includingboth VHand VL sequences)
onwidely available, GPU-accelerated hardware (Methods). To demon-
strate efficiency, we made predictions over 742 therapeutically rel-
evantantibodies from the Thera-SAbDab database*” (Supplementary
Data4) in -3 min, and our approach scales linearly with the number
of antibodies.

Generality across diverse protein families

Giventhe success of general protein language models at guiding anti-
body evolution, we also tested how well the same models could acquire
high-fitness variants across diverse protein families. Previous work
has demonstrated that the likelihoods from general protein language
models have good correlation with experimental phenotypes from
high-throughput assays over -10°to 10* variants'**°, Previous computa-
tional simulations have also indicated that these models can help bias
multi-round evolution away from large regions of a sequence landscape
with zero or very low fitness’.

Here, we observed that the same models can also guide efficient
evolution when measuring only a small number (-10") of variants
according todiverse definitions of fitness, including antibiotic resist-
ance, cancer drug resistance, enzyme activity or viral replication fit-
ness*’. We used the same algorithm and language models in our affinity
maturation experiments to suggest a small number (-10") of changes
towild-type sequences from human, bacterial or viral organisms rep-
resenting eight diverse protein families. We then used experimental
measurements from high-throughput scanning mutagenesis experi-
ments®*® to validate the language-model-recommended predictions
(notably, these measurements were not provided to the model). Asin
the antibody evolution campaigns, we are interested in enriching for
as many high-fitness variants as possible among the small number of
language model recommendations (rather than predicting fitness
across the entire mutational space, as previously done®).

Language-model-recommended variants were nominally enriched
(one-sided hypergeometric P< 0.05; exact P values and sample sizes
are provided in Supplementary Table 13) for high-fitness values in
six out of nine of the measured datasets, and high-fitness variants
made up a much larger portion of language-model-recommended
variants compared to random guessing in all but one case (Fig. 4a,
Extended Data Figs. 4-6 and Supplementary Table 13). For exam-
ple, whereas high ampicillin resistance is observed for just 7% of all
single-residue substitutions to 3-lactamase, it is observed for 40% of
language-model-recommended substitutions, and the same set of
language models canalso help prioritize single-residue substitutions to
HAthatresultin high viralinfectivity (from 7% to 31%) and substitutions
to PafA that improve enzyme kinetics (from 3% to 20%). Additionally,
across all proteins, even the first round of a small-scale evolutionary
campaign guided by language models would yield variants that are
above or near the 99th percentile of fitness values (Extended Data
Fig.4). Compared to47 alternative variant effect predictors, including
supervised and structure-based models, our strategy ranks higher, on
average, than all other methods based on the ability to recommend
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Fig. 4| Guiding evolution without explicitly modeling fitness. a, The same
strategy and language models that we use to affinity mature antibodies can also
recommend high-fitness changes across a diversity of selection pressures and
protein families, as identified experimentally using high-throughput scanning
mutagenesis assays®*® (described in Supplementary Table 13). ‘Fraction positive’
indicates the percentage of high-fitness amino acid substitutions within either
the set of substitutions recommended by the language model (LM guided)

or the set of all single-residue substitutions (Background). A large portion of
language-model-guided substitutions have high fitness, which, in many cases,

is significantly enriched compared to the background percentage; also see
Extended Data Figs. 4-6, and see Supplementary Table 13 for the exact one-sided
hypergeometric Pvalues and sample sizes. ADRB2, adrenoreceptor beta2; B-la.,

B-lactamase; Env, envelope glycoprotein; infA, translation initiation factor

1; MAPK1, mitogen-activated protein kinase 1; PafA, phosphate-irrepressible
alkaline phosphatase. b, Conceptually, the prior information encoded by
evolutionary plausibility is represented in this cartoon by the rainbow road,
where ascending corresponds to improving fitness and descending corresponds
to lowering fitness. Movingin any direction (for example, viarandom or brute
force mutagenesis) would most likely decrease fitness or have a high chance

of being a detrimental change (represented by the green ball). However, if
evolutionary plausibility is an efficient prior (Fig. 1b), then movement that is
constrained to the plausible regime (for example, when guided by alanguage
model) substantially increases the chance of improving fitness (represented by
thered ball).

high-fitness variants (Extended Data Fig. 4, Supplementary Data 5
and Methods).

Discussion

We show that general protein language models can guide highly effi-
cient affinity maturation based on the wild-type antibody sequence
alone. Although our affinity improvements are lower than those typi-
cally observedin successfulinvivo evolutionary trajectories, somatic
hypermutation explores a mutational space that is larger by multiple
orders of magnitude (Extended Data Fig. 7). Moreover, our affinity
improvements on unmatured antibodies are within the 2.3-fold to
580-fold range previously achieved by a state-of-the-art, in vitro evolu-
tionary system applied tounmatured, anti-RBD nanobodies (in which
the computational portion of our approach, which takes seconds, is
replaced with rounds of cell culture and sorting, which take weeks)"
(Extended Data Fig. 7). In vitro, cell surface display methods also
encounter physical limits that make it challenging to distinguish bet-
terbinders whenthe wildtype binder already has high affinity (<1 nM)®,
whichis notalimitation of our approach.

More broadly, a critical finding of our study is that evolutionary
information alone provides sufficient prior information when selecting
small numbers of substitutions to test for improved fitness (Figs. 1b
and 4b). Thisleads to the result that amodel without any task-specific
training data or knowledge of the antigen can guide antibody evolu-
tion toward higher binding affinity, with competitive performance
compared to protein-specific or task-specific methods (Supplemen-
tary Table 12 and Extended Data Fig. 5). We hypothesize that, in many
settings, when mutations are constrained to follow a set of general
evolutionary rules, a substantial portion (greater than 10%) is bound
toimprove fitness (Fig. 4b), which hasimmediate and broader implica-
tions for evolutionin the laboratory and in nature.

Practical implications and extensions

We anticipate that language models willbecome akey part of the anti-
body engineer’s toolkit, particularly within preclinical development
as arapid way to identify improved variants. In addition to speed,
by focusing on ~10 single-site substitutions, a higher-throughput
experimental budget that would have been allocated to brute force
search could, instead, be allocated to exploring combinations of
mutations*>*° or to exploring variants of more wild-type antibodies.
Language-model-guided evolution could also complement or replace
random mutagenesis strategies based on, for example, an error-prone
polymerase.

To the end user, guiding evolution via pre-trained, unsupervised
modelsisless resource intensive than collecting enough task-specific
datato trainasupervised model*®. Language models should also serve
as a baseline for future machine learning methods using supervision
or other task-specific training data. Our techniques can also be used
in conjunctionwithsupervised approaches”******3"5 and supervising
amodel over multiple experimental rounds might ultimately lead to
higher fitness. However, in many practical settings (for example, the
rapid development of sotrovimab in response to the COVID-19 pan-
demic®), the efficiency of an unsupervised, single-round approachis
preferable toaprotracted, multi-round directed evolution campaign.

A general approach not biased by traditional structural hypoth-
eses can also be valuable because many beneficial mutations are
structurally remote to functionally important sites”. About half of
the language-model-recommended substitutions (and about half of
the affinity-enhancing substitutions) fallin framework regions, which
are typically not proximal to the binding interface and are, therefore,
sometimes excluded from directed evolution®®°, Although some of
these framework changes may improve affinity via protein stabiliza-
tion, others do notappear toincrease thermostability (for example, VL
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G95Pin MEDI8852 UCA) and may, instead, be causing affinity improve-
ments via structural reorientation®*. Nature often takes advantage
of framework mutations toimprove affinity, which represent ~20-30%
of changes in natural affinity maturation®. In one well-known case,
none of the nine residues accounting for a30,000-fold increase in
affinity is in contact with the antigen*’, and, in another case, framework
mutations make important contributions to affinity maturation and
increased breadthin an HIV-1antibody®.

Generality of fitnessimprovements

By leveraging general evolutionary rules, language models recom-
mend more ‘universal’ changes that seem to generalize better when
the definition of fitness changes (Fig. 4). We also observed that gen-
erallanguage models outperform antibody-specificlanguage models
(Supplementary Table 12), which is consistent with independent in
silico benchmarking®. When transferring to a new, specific notion
of fitness, more general evolutionary information may outweigh the
particular biases encoded in antibody repertoire datasets, although
further development of antibody language models could improve
performance.

Our general approachis designed toimprove an existing baseline
function (forexample, improving the affinity of aweak binder) rather
than endowing any protein with an arbitrary function (for example,
converting a generic protein into a specific binder). We also note that
taking advantage of this strategy for guiding evolution may be more
difficult when the selection pressure is unnatural or if the wild-type
sequenceisalready at afitness peak. However, in many practical design
tasks, natural sequences and selection pressures are already prefer-
rable; for example, therapeutic development often prefers human
antibodies due to considerations ofimmunogenicity.

Beyond protein engineering, the success of our approachmay also
provide insight into natural evolution. The efficiency of evolutionary
information alone may reflect natural mechanisms for biasing muta-
tionrates toward higher fitness: for example, somatic hypermutation
favors specific parts of anantibody gene via epigenomic and enzymatic
sequence biases®*!, If epigenomic or other mechanisms predispose
mutations to have high fitness, then nature could be accelerating
evolutioninamanner similar to our approach.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Acquiring amino acid substitutions via language model con-
sensus

We select amino acid substitutions recommended by a consensus
of language models. We take as input a single wild-type sequence
x=(x,...xy)e XV, where x is the set of amino acids, and N is the
sequence length. We also require a set of masked language models,
which are pre-trained to produce conditional likelihoods p(x[f|x). To
guide evolution based on a certain language model, we first compute
the set of substitutions with higher language model likelihood than
the wild-type—thatis, we compute the set

p; (x/1X)
P; (x;|x)

M(p;)=4ie[N],x; X : >at,

where p;denotes the language model, x;denotes the wild-typeresidue
and a = 1. To further filter substitutions to only those with the highest
likelihood, we choose substitutions based on a consensus scheme,
where, for anew amino acid x;, we compute

f(x)) =j€%\:4] 1(i,x))isin e (py)}

where 1{-} denotes the indicator function, and there are M language
models. We then acquire the set of substitutions with higher likelihood
than wild-type across multiple language models—that is, we acquire

A={ie[N.,x; €X :f(x]) >k}

where k is a user-supplied cutoff that controls the number of corre-
sponding variants to measure. Although we focus on values of k that
result in small values of |4] (around 10) that can be screened via
low-throughput assays, the number of substitutions canbeincreased
by reducing the value of k or by lowering the cutoff stringency a. Our
strategy based on computing ‘wild-type marginal’ likelihoods based
ontheentiresequence, p (x/|x),instead of the ‘masked marginal’ likeli-
hoodsinwhich thesite of interestis masked, p (x;|x;x),alsoincreases
the cutoff stringency (Extended Data Fig.1).

We use six large-scale masked language models—namely, the
ESM-1b model” and the five models that are ensembled together to
form ESM-1v?°—both obtained from https://github.com/facebookre-
search/esm. ESM-1b was trained on the 2018-03 release of UniRef50
(ref. 23) consisting of ~27 million sequences, and the five models in
ESM-1vwere each trained on the 2020-03 release of UniRef90 (ref. 23)
consisting of ~98 million sequences.

Antibody sequence analysis and evolution

For antibodies, we performed the above steps for the VH and VL
sequences separately, obtaining respective sets .4y, and Ay, . For round
lofevolution, we set a =1and chose values of ksuch that |4y, U Ay, | is
approximately 10, which is meant to be a reasonable number of anti-
body variants for one person to express and purify in parallel. We used
k=2for MEDI8852VHand VL, k =2for MEDI8852UCAVHand VL, k=4
formAbl14 VH and VL, k = 2 for mAb114 UCA VH and VL, k=2 for S309
VH, k=1forS309 VL, k=2for REGN10987 VH and VLand k=2 for C143
VH and VL. We further reduced the size of |4y, U Ay, | by requiring the
substitution to have the highest likelihood at its respective site for at
least one language model. Variants were first measured for binding
affinity to agiven antigen via BLI (more details below), and those that
enhanced affinity were recombined such that the second-round vari-
ants have two or more substitutions fromwild-type, which were tested
during round 2 of evolution. Given the small number of
affinity-enhancing substitutions found during round 1 of evolution for
$309 and REGN10987, we also expanded the set of substitutions con-
sidered in round 2 to include those that preserved affinity. For
MEDI8852 and MEDI8852 UCA, we tested all possible combinationsin

round 2; for the other antibodies, where the number of possible com-
binations far exceeds ~10 variants, we manually selected a set of com-
binations meant to prioritize inclusion of substitutions that resulted
inthe largestimprovements in affinity during the first round.

We used the wild-type sequences provided by the original study
authors describing the respective antibodies®***, Wild-type VH
and VL sequences are provided in the Supplementary Information.
We used the Kabat region definition provided by the abYsis webtool
version 3.4.1(http://www.abysis.org/abysis/index.html)** to annotate
the framework regions and CDRs within the VH and VL sequences.

Antibody avidity benchmarking experiments

We also compared the substitutions recommended by the above
strategy (based on language model consensus) to the substitu-
tions recommended by four alternative sequence-based methods.
First, we acquired substitutions to a VH or VL sequence based on
site-independent mutational frequencies, where we used either the
frequencies computed by the abYsis Annotation webtool** or the
frequencies obtained using all sequences in UniRef90 (the training
dataset of ESM-1v)*. To compute the UniRef90 frequencies, we first per-
formed an exhaustive searchto obtainthe 10,000 closest sequences by
Levenshteindistance, where10,000is chosentoreflect the number of
immunoglobulin-like sequencesin UniRef90. We computed sequence
similarity using the partial_ratio function from the FuzzyWuzzy Python
package version 0.18.0; we then constructed a multiple sequence
alignment of these 10,000 sequences using MAFFT version 7.475
(ref. 63) using the VH or VL sequence as the reference; finally, using
the alignment, we computed mutational frequencies for each site in
the sequence. We selected the top-ranking substitutions by likelihood
ratio (the mutant frequency divided by the corresponding wild-type
frequency) across the VHand VL sequences, where, for each antibody,
we selected the same number of substitutions considered in the first
round of our evolutionary campaigns.

We also acquired substitutions based on language models
trained specifically on antibody sequences. We used the AbLang
heavy chain and light chain language models (https://github.com/
TobiasHeOl/AbLang)** and the Sapiens heavy chain and light chain
language models (https://github.com/Merck/Sapiens)® to compute
the mutant-to-wild-type likelihood ratios for all single-residue substitu-
tions to the VH or VL sequence (using the language model trained on
sequences fromthe corresponding chain). We selected the top-ranking
substitutions by likelihood ratio across the VH and VL sequences and,
following our use of the general protein language models, also required
the substitution to have the highest likelihood atits site. For each anti-
body, we selected the same number of substitutions consideredin the
first round of our evolutionary campaigns.

We used these four methods (abYsis, UniRef90, AbLang and
Sapiens) to select substitutions to our three unmatured antibodies
(MEDI8852 UCA, mAb114 UCA and C143) and used BLI to measure IgG
avidity to their respective antigens (HA H1Solomon, GP and Beta S-6P).
To purify thelarger number of variantsinvolved in these benchmarking
studies, we used a medium-throughput system using a robotic liquid
handler, described inmore detail below. With this system, we expressed
and purified antibody variants containing single-residue substitutions
fromwild-type recommended by the consensus of ESM language mod-
els as well as by the four baseline methods, observing similar purities
and affinities when the same variants were also expressed and purified
via the low-throughput system (described below) used in our evolu-
tionary campaigns. Antibodies with a final concentration of less than
0.1 mg ml™?in 200 pl after the medium-throughput purification were
re-expressed and purified using the low-throughput methodology.

UniRef90 robustness and statistical significance analysis
For the UniRef90 benchmark, we additionally assessed robustness to
differences in multiple sequence alignment (MSA) construction by
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computing the number of known affinity-enhancing substitutions
while varying the sequence alignment depth from 1,000 to 9,000
sequences atincrements of 1,000 (for a total of nine alignment depth
cutoffs). At each cutoff, we re-ran the procedure described above to
select substitutions (constructing MSAs and calculating mutational
likelihood ratios). We performed this for all three experimentally
benchmarked antibodies, representing atotal of 27 MSAs. Among the
top-ranked substitutions for each cutoff and benchmarked antibody,
we counted the number of known affinity-enhancing substitutions and
provide theresultsin Extended DataFig. 3 and Supplementary Data 3.

We also used the UniRef90 benchmark to assess the statisti-
cal significance of the number of avidity-enhancing substitutions
recommended by the language models. In particular, we calculated
the probability of acquiring 12 or more avidity-enhancing substitu-
tions (Supplementary Table 12) by simulating different outcomes of a
site-independent model based on UniRef90 alignments. To construct
the null distribution, we first simulated variation in UniRef90 align-
ments using the nine MSAs of varying alignment depth and their cor-
responding recommended substitutions, described in the previous
paragraph. We then simulated experimental measurement of these
mutations for avidity enhancement across the three benchmarked
antibodies: for eachtop-ranked substitution withanunknown effect on
avidity, we assigned asuccess probability based on the observed proba-
bilities from our experimental benchmark (2/8=25% for MEDI8852 UCA;
5/9=56%for mAbl14 UCA; and 1/14 =7% for C143); for each top-ranked
substitution with a known effect on avidity, we fixed its value to its
experimentally determined status. We ran 500,000 simulations for
each of the nine MSA cutoffs (a total of 4.5 million simulations), where
each simulationreturns a total number of avidity-enhancing substitu-
tionsacross the three antibodies. We report the Pvalue as the number
of simulations resulting in 12 or more avidity-enhancing substitutions
divided by the total number of simulations.

Antibody cloning

We cloned the antibody sequences into the CMV/R plasmid backbone
for expression under a CMV promoter. The heavy chain or light chain
sequence was cloned betweenthe CMV promoter and the bGH poly(A)
signal sequence of the CMV/R plasmid to facilitate improved protein
expression. Variable regions were cloned into the human IgGl1 back-
bone; REGN10987 and C143 variants were cloned with alambda light
chain, whereas variants of all other antibodies were cloned with akappa
light chain. The vector for both heavy and light chain sequences also
contained the HYM06_Mouse (UniProt: P01750) Ig heavy chain Vregion
102 signal peptide (MGWSCIILFLVATATGVHS) to allow for protein
secretion and purification from the supernatant. VHand VL segments
were ordered as gene blocks from Integrated DNA Technologies and
were cloned into linearized CMV/R backbones with 5x In-Fusion HD
Enzyme Premix (TakaraBio); alist of oligonucleotides and gene blocks
used inthe study is provided as Supplementary Data 6.

Antigen cloning

HA, GP, Spike and RBD sequences were cloned into a pADD2 vector
between the rBeta-globin intron and 3-globin poly(A). HA constructs
contain a Foldon trimerization domain. GP and Spike constructs
contain a GCN4 trimerization domain. All HAs, GP, Wuhan-Hu-1S-6P
and Omicron BA.1 RBD constructs contain an AviTag. All constructs
contain a C-terminal 6xHis tag. We used HA sequences from the fol-
lowing strains: A/New Caledonia/20/1999(HIN1) (H1 Caledonia),
A/Solomon Islands/3/2006(H1IN1) (H1 Solomon), A/Japan/305/1957
(H2N2) (H2 Japan), A/Panama/2007/1999(H3N2) (H3 Panama),
A/Victoria/3/1975(H3N2) (H3 Victoria), A/swine/Hubei/06/2009(H4N1)
(H4 Hubei), A/Vietnam/1203/2004(H5N1) (H5 Vietnam), A/Hong
Kong/61/2016(H7N9) (H7 HK16) and A/Hong Kong/125/2017(H7N9)
(H7HK17). We used Ebola GP ectodomain (Mayinga, Zaire, 1976, GenBank:
AAG40168.1) with the mucin-like domain deleted (A309-489). Spike

or RBD sequences were based off wild-type Wuhan-Hu-1 (GenBank:
BCN86353.1), Beta (GenBank: QUT64557.1) or Omicron BA.1(GenBank:
UF069279.1).

DNA preparation

Plasmids were transformed into Stellar competent cells (Takara Bio),
andtransformed cells were plated and grown at 37 °C overnight. Colo-
nies were mini-prepped per the manufacturer’s recommendations
(GeneJET, KO502, Thermo Fisher Scientific) and sequence confirmed
(Sequetech) and then maxi-prepped per the manufacturer’s recom-
mendations (NucleoBond Xtra Maxi, Macherey-Nagel). Plasmids were
sterile filtered using a 0.22-pm syringe filter and stored at 4 °C.

Protein expression

All proteins were expressed in Expi293F cells (Thermo Fisher Scientific,
A14527). Proteins containing a biotinylation tag (AviTag) were also
expressed inthe presence of a BirA enzyme, resulting in spontaneous
biotinylation during protein expression. Expi293F cells were cultured
in media containing 66% FreeStyle/33% Expi media (Thermo Fisher
Scientific) and grown in TriForest polycarbonate shaking flasks at
37 °Cin 8% carbon dioxide. The day before transfection, cells were
spun down and resuspended to a density of 3 x 10° cells per milliliter
in fresh media. The next day, cells were diluted and transfected at a
density of approximately 3—-4 x 10° cells per milliliter. Transfection mix-
tures were made by adding the following components: maxi-prepped
DNA, culture media and FectoPRO (Polyplus) would be added to cells
to aratio of 0.5 pug: 100 pl: 1.3 pl: 900 pl. For example, for a100-ml
transfection, 50 pg of DNA would be added to 10 ml of culture media,
followed by the addition of 130 pl of FectoPRO. For antibodies, we
divided the transfection DNA equally among heavy and light chains;
in the previous example, 25 pg of heavy chain DNA and 25 pg of light
chain DNA would be added to 10 ml of culture media. After mixing and
alO-minincubation, the example transfection cocktail would be added
to 90 mlof cells. The cells were harvested 3-5 days after transfection by
spinningthe cultures at >7,000g for 15 min. Supernatants were filtered
using a 0.45-pum filter.

Antibody purification (low throughput)

We purified antibodies using a 5-ml MabSelect Sure PRISM column on
the AKTA pure fast protein liquid chromatography (FPLC) instrument
(Cytiva). The AKTA system was equilibrated with line A1in 1x PBS, line
A2in100 mMglycine pH 2.8, line B1in 0.5 M sodium hydroxide, Buffer
linein1x PBS and Samplelinesin water. The protocol washes the column
with Al, followed by loading of the sample in the Sample line until air is
detectedinthe air sensor of the sample pumps, followed by five column
volume washes with Al, elution of the sample by flowing of 20 ml of A2
directlyintoa50-ml conical containing 2 ml of 1 M tris(hydroxymethyl)
aminomethane (Tris) pH 8.0, followed by five column volumes of A1, B1
and Al. We concentrated the eluted samples using 50-kDa or 100-kDa
cutoff centrifugal concentrators, followed by buffer exchange using a
PD-10 column (Sephadex) that had been pre-equilibrated into 1x PBS.
Purified antibodies were stored at —20 °C.

Antibody purification (medium throughput)

For our benchmarking experiments, we purified antibody variants
with a medium-throughput system using an Agilent Bravo robotic
liquid handling platform and VWorks software version13.1.0.1366 with
custom programming routines. For each antibody wild-type or variant,
a2.5-ml culture of Expi293F cells was transfected with corresponding
antibody heavy and light chain plasmids as previously described.
Cultures were harvested 3-5 days after transfection by centrifuga-
tion at 4,200g for 10 min, followed by collecting 2 ml of supernatant.
ProPlus PhyTip column tips (Biotage, PTV-92-20-07) were loaded on
the Bravo 96 LT head and equilibrated by aspirating and dispensing
75 ul of PBS, repeating four times. Sample binding to the tip resin was
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performed by aspirating and dispensing 98 pl of harvested superna-
tant, followed by washing via aspirating and dispensing 100 pl of PBS,
repeating the binding and washing steps nine times (in total processing
882 ul of harvest for each run). Elution was performed by aspirating
100 pl of 100 mM glycine pH 2.8, followed by dispensing into a well
with 10 pl of 1M Tris pH 8.

Antigen purification

All antigens were His-tagged and purified using HisPur Ni-NTA
resin (Thermo Fisher Scientific, 88222). Cell supernatants were
diluted with 1/3 volume of wash buffer (20 mM imidazole, 20 mM
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.4,
150 mM sodium chloride (NaCl) or 20 mMimidazole, 1x PBS), and the
Ni-NTA resin was added to diluted cell supernatants. For all antigens
except SARS-CoV-2 Spike, the samples were thenincubated at 4 °C while
stirring overnight. SARS-CoV-2 Spike antigens were incubated at room
temperature while stirring overnight. Resin/supernatant mixtures
were added to chromatography columns for gravity flow purification.
The resin in the column was washed with wash buffer (20 mM imida-
zole,20 mMHEPES pH 7.4,150 mM NaCl or 20 mMimidazole, 1x PBS),
and the proteins were eluted with 250 mM imidazole, 20 mM HEPES
pH 7.4,150 mM NaCl or 20 mM imidazole, 1x PBS. Column elutions
were concentrated using centrifugal concentrators at 10-kDa, 50-kDa
or 100-kDa cutoffs, followed by size-exclusion chromatography on
an AKTA pure system (Cytiva). AKTA pure FPLC with a Superdex 6
Increase (S6) or Superdex 200 Increase (S200) gel filtration column
was used for purification. Then,1 ml of sample wasinjected using a2-ml
loop and run over the S6 or S200, which had been pre-equilibrated in
degassed 20 mM HEPES, 150 mM NaCl or 1x PBS before use and stored
at-20°C.

Fab production and purification

Next, 1/10 volume of 1 M Tris pH 8 was added to IgGs at -2 mg ml™in
1x PBS. Then, 2 pl of a1 mg ml™ stock of Lys-C (stock stored at —20 °C)
was added for each milligram of human IgG1 and digested for 1 h at
37 °Cwith moderate rotation. Digested Fabs were purified using a 5-ml
HiTrap SP HP cation exchange chromatography column on an AKTA
system using 50 mM sodium acetate (NaOAc) pH 5.0 with gradient
NaClelution (using 50 mM NaOAc+1MNaCl pH5.0). Fab fractions were
pooled and dialyzed against 1x PBS and concentrated using 30-kDa
concentrators. Purified Fabs were stored at —20 °C.

BLIbinding experiments

All reactions were run on an Octet RED96 at 30 °C, and samples were
runin1x PBSwith 0.1% BSA and 0.05% Tween 20 (Octet buffer).IgGs and
Fabs were assessed for binding to biotinylated antigens using strepta-
vidinbiosensors (Sartorius/ForteBio) or to unbiotinylated, His-tagged
antigens using Anti-Penta-HIS biosensors (Sartorius/ForteBio). Antigen
was loaded to a threshold of 1-nm shift. Tips were then washed and
baselined in wells containing only Octet buffer. Samples were then
associated in wells containing IgG or Fab at 100 nM concentration
unless otherwise stated (other concentrations are givenin Supplemen-
tary Datal). A control well with loaded antigen but that was associated
inawell containing only 200 pl of Octet buffer was used as a baseline
subtraction for data analysis. Association and dissociation binding
curves were fitin Octet System Data Analysis Software version 9.0.0.15
using a 1:2 bivalent model for IgGs to determine apparent K;and a 1:1
model for Fabs to determine K. Averages of fitted K, values from at least
twoindependent experiments are reported to two significant figures.
Wild-type and the highest-affinity variants were also tested at multiple
concentrations, and K, values were averaged across all replicates and
concentrations (Supplementary Data 1). To estimate measurement
error, we computed the coefficient of variation (CV; the ratio of the s.d.
tothemeanacrossreplicates) for each antibody-antigen K, pair,and we
reportthemean CVfor eachantigenin Supplementary Tables 2and 4-9.

Thermal melts

We measured thermal melting profiles of proteins by differential scan-
ning fluorimetry onaPrometheus NT.48 instrument. Protein samples
(0.1 mg mI™) were loaded into glass capillaries and then subjected to
atemperature gradient from20 °Cto 95 °Cat a heating rate of 1°C per
minute. Intrinsic fluorescence (350 nm and 330 nm) was recorded as
afunction of temperature using PR.ThermControl version 2.3.1 soft-
ware. Thermal melting curves were plotted using the first derivative
of the ratio (350 nm/330 nm). Melting temperatures were calculated
automatically by the instrument and represented peaks in the thermal
melting curves.

PolySpecificity Particle assay

Polyspecificity reagent (PSR) was obtained as described by
Xu et al.”. Soluble membrane proteins were isolated from homog-
enized and sonicated Expi 293F cells followed by biotinylation with
Sulfo-NHC-SS-Biotin (Thermo Fisher Scientific, 21331) and stored in
PBS at-80 °C. The PolySpecificity Particle (PSP) assay was performed
following Makowski et al.*>. Protein A magnetic beads (Invitrogen,
10001D) were washed three times in PBSB (PBS with 1 mg mI™ BSA) and
diluted to 54 pug mI™in PBSB. Then, 30 pl of the solution containing the
beads was incubated with 85 pl of antibodies at 15 ug ml” overnight at
4 °Cwithrocking. The coated beads were then washed twice with PBSB
using a magnetic plate stand (Invitrogen, 12027) and resuspended in
PBSB. We thenincubated 50 plof 0.1 mg mI™ PSR with the washed beads
at4 °Cwithrocking for 20 min. Beads were then washed with PBSB and
incubated with 0.001x streptavidin-APC (BioLegend, 405207) and
0.001x goat anti-human Fab fragment FITC (Jackson ImmunoResearch,
109-097-003) at 4 °C with rocking for 15 min. Beads were then washed
and resuspended with PBSB. Beads were profiled via flow cytometry
usingaBD AccuriC6 flow cytometer. Data analysis was performed with
BD CSampler Plus software version 1.0.34.1to obtain median fluores-
cence intensity (MFI) values, which are reported for each antibody
across three or more replicate wells. Elotuzumab (purified using the
low-throughput FPLC methodology described above), ixekizumab
(FPLC purified as described above) and 4E10 (HIV Reagent Program,
ARP-10091) are also included in each assay as controls.

Lentivirus production

We produced SARS-CoV-2 Spike (D614G and Beta variants) pseu-
dotyped lentiviral particles. Viral transfections were done in
HEK293T cells (American Type Culture Collection, CRL-3216) using
BioT (BioLand) transfection reagent. Six million cells were seeded in
D10 media (DMEM +additives:10% FBS, L-glutamate, penicillin, strep-
tomycin and 10 mM HEPES) in 10-cm plates 1 day before transfection.
A five-plasmid system was used for viral production, as described in
Crawford et al.**. The Spike vector contained the 21-amino-acid trun-
cated form of the SARS-CoV-2 Spike sequence from the Wuhan-Hu-1
strain of SARS-CoV-2 (GenBank: BCN86353.1) or the Beta variant of
concern (GenBank: QUT64557.1). The other viral plasmids, used as
previously described®, are pHAGE-Luc2-IRS-ZsGreen (NR-52516),
HDM-Hgpm2 (NR-52517), pRC-CMV-Revlb (NR-52519) and HDM-tat1lb
(NR-52518). These plasmids were added to D10 medium in the follow-
ing ratios: 10 pg pHAGE-Luc2-IRS-ZsGreen, 3.4 ug FL Spike, 2.2 pg
HDM-Hgpm?2, 2.2 pg HDM-Tat1b and 2.2 pg pRC-CMV-Rev1b in a final
volume of 1,000 pl.

Ebola GP-pseudotyped lentiviruses were produced using the
same packaging (pHAGE-Luc2-IRS-ZsGreen) and helper plasmids
(HDM-Hgpm2, HDM-Tatlb and pRC-CMV-Rev1b) but with the plasmid
encoding full-length Ebola GP (GenBank: AAG40168.1).

After adding plasmids to medium, we added 30 pl of BioT to form
transfection complexes. Transfection reactions were incubated for
10 min at room temperature, and then 9 ml of medium was added
slowly. The resultant 10 ml was added to plated HEK cells from which
the medium had been removed. Culture medium was removed 24 h
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after transfection and replaced with fresh D10 medium. Viral super-
natants were harvested 72 h after transfection by spinning at 300g for
5 min, followed by filtering through a 0.45-um filter. Viral stocks were
aliquoted and stored at —80 °C until further use.

Pseudovirus neutralization

The target cells used for infection in SARS-CoV-2 pseudovirus neu-
tralization assays are from a HeLa cell line stably overexpressing
human angiotensin-converting enzyme 2 (ACE2) as well as the pro-
tease known to process SARS-CoV-2: transmembrane serine protease
2 (TMPRSS2). Production of this cell line is described in detail by
Rogers et al.® with the addition of stable TMPRSS2 incorporation.
ACE2/TMPRSS2/Hela cells were plated 1 day before infection at
8,000 cells per well. For Ebola pseudovirus neutralization assays,
HEK293T cells were seeded in 96-well plates 1 day before infection
at 20,000 cells per well. Ninety-six-well, white-walled, white-bottom
plates were used for neutralization assays (Thermo Fisher Scientific).

Ontheday ofthe assay, purified IgGs in1x PBS were sterile filtered
using a 0.22-pm filter. Dilutions of this filtered stock were made into
sterile 1x Dulbecco’s PBS (DPBS) (Thermo Fisher Scientific), which was
5% by volume D10 medium. A virus mixture was made containing the
virus of interest (for example, SARS-CoV-2) and D10 media (DMEM +
additives: 10% FBS, L-glutamate, penicillin, streptomycin and 10 mM
HEPES). Virus dilutions into media were selected such that a suitable
signal would be obtained in the virus-only wells. A suitable signal was
selected such that the virus-only wells would achieve a luminescence
of at least >5,000,000 relative light units (RLU). Then, 60 pl of this
virus mixture was added to each of the antibody dilutions to make a
final volume of 120 plin each well. Virus-only wells were made, which
contained 60 pl of 1x DPBS and 60 pl of virus mixture. Cells-only wells
were made, which contained 120 pl of D10 media.

The antibody/virus mixture was left to incubate for 1 h at 37 °C.
Afterincubation, the medium was removed fromthe cellson the plates
made1 day prior. Thiswas replaced with 100 pl of antibody/virus dilu-
tions and incubated at 37 °C for approximately 24 h. Infectivity readout
was performed by measuring luciferase levels. SARS-CoV-2 and Ebola
pseudovirus neutralization assays were read out 48 h and 72 h after
infection, respectively. Medium was removed from all wells, and cells
werelysed by the addition of 100 pl of BriteLite assay readout solution
(PerkinElmer) into each well. Luminescence values were measured
using an Infinite 200 PRO Microplate Reader (Tecan) using i-control
version 2.0 software (Tecan). Each plate was normalized by averaging
the cells-only (0% infection) and virus-only (100% infection) wells. We
used the neutcurve Python package version 0.5.7 to fit the normalized
datapoints and to compute the IC, values, which we report to two
significant digits. To estimate measurement error, we computed the
CV for each antibody-virus IC, pair, and we report the mean CV for
eachvirusinSupplementary Tables 5,8 and 9.

HLA binding prediction

As a proxy for predicting T-cell-mediated immunogenicity, we used
NetMHCPan version4.1and NetMHCIIPan version 4.1 (ref. 43) to predict
peptidebinderstoclassland classIIHLA, respectively, across anumber
of alleles. For the class I analysis, we applied NetMHCPan with default
parameters to the VH and VL sequences of the wild-type sequences as
wellasthe VHand VL variant sequences listed in Fig. 3a. We considered
all9-mer peptides and predicted binding to HLA-A01:01, HLA-A02:01,
HLA-A03:01, HLA-A24:02, HLA-A26:01, HLA-B07:02, HLA-B08:01,
HLA-B27:05, HLA-B39:01, HLA-B40:01, HLA-B58:01 and HLA-B15:01.
Foreach VHor VLsequence, we counted the number of peptides deter-
mined as ‘strong binders’ or ‘weak binders’ according to NetMHC-
Pan. We then tested for a significant change in the number of binders
between the evolved variant sequence andits corresponding wild-type
using the binom_test function inscipy.stats. For the class Ilanalysis, we
similarly applied NetMHCIIPan with default parameters to the same

set of VH and VL sequences. We considered all 15-mer peptides and
predicted binding to DRB1_.0101, DRB3_0101, DRB4_0101, DRB5_0101,
HLA-DPA10103-DPB10101 and HLA-DQA10101-DQB10201. For each
VH or VL sequence, we counted the number of peptides determined
as ‘strong binders’ or ‘weak binders’ according to NetMHCIIPan. We
thentested forasignificant change in the number of binders between
the evolved variant sequence and its corresponding wild-type using
the binom_test function in scipy.stats.

Computing frequency of changes to antibody protein
sequences

We computed the frequency of residues involved in affinity-enhancing
substitutions by aligning the wild-type VH and VL sequences of our
antibodies to databases of protein sequences. The first database that
we considered is UniRef90, where we used the same database release
used totrain ESM-1v. For each antibody protein sequence, we obtained
the set 0f 10,000 sequences in UniRef90 that are closest to the anti-
body by sequence similarity based on Levenshtein distance (with the
farthest sequences having between 18% and 47% sequence similar-
ity). We computed sequence similarity using the FuzzyWuzzy Python
package version 0.18.0. We then used MAFFT version 7.475 to perform
multiple sequence alignment among the set of sequences. We used
the alignment to compute amino acid frequencies at each site in the
VHor VL sequence.

The second database that we considered is provided by the abYsis
webtool, which also computes the frequency of amino acids at each
positionbased onamultiple sequence alignment. We aligned VHand VL
proteinsequences using the default settings provided in the ‘Annotate’
tool, using the database of ‘All’ sequences as of 1March 2022.

We also considered the frequency of affinity-enhancing substitu-
tions conditioned on the corresponding V or ] gene. We obtained all
sequences and corresponding gene annotations from IMGT/LIGM-DB
(theinternational ImMunoGeneTics information system, Laboratoire
d’ImmunoGénétique Moléculaire database) (https://www.imgt.org/
ligmdb/)®® as of 13 July 2022. For MEDI8852, MEDI8852 UCA, mAb114
and mAb114 UCA, we used the V and ) gene annotations from the origi-
nal publications®*°. For $309, REGN10987 and C143, we used the Vand
Jgeneannotationsin CoV-AbDab (http://opig.stats.ox.ac.uk/webapps/
covabdab/)® . Foragivensubstitution, we obtained all corresponding
V or] protein sequences, performed a multiple sequence alignment
with MAFFT version 7.475 and used the resulting alignment to compute
amino acid frequencies.

Therapeutic antibody database evaluation and runtime
benchmark

We downloaded 742 therapeutically relevant antibodies from the
Thera-SAbDab database as of 26 February 2022 (http://opig.stats.
ox.ac.uk/webapps/newsabdab/therasabdab/)*. For each antibody
VHand VL sequence, we used the same procedure described above for
computing consensus substitutions that have higher language model
likelihood than wild-type. We measured the computational runtime
using the time module in Python 3.8. Experiments were performed
with an Advanced Micro Devices EPYC Rome 7502P 2.5-GHz CPU and
anNvidia Ampere A40 48GB GPU.

Natural protein evaluation and benchmarking based on
scanning mutagenesis data

We evaluated the ability for the language models and algorithms used
inour study to guide efficient evolutionin other settings beyond anti-
bodies. We used deep mutational scanning (DMS) datasets to validate
that our approach would enable a researcher to acquire high-fitness
variants. We used all DMS datasets from the benchmarking study by
Livesey and Marsh*® with 90% or higher coverage of all single-residue
substitutions; variants that were not measured were excluded from
the analysis. We also used a scanning mutagenesis dataset generated
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by Markin et al.® that measured Michaelis—-Menten kinetics of all
single-site glycine or valine substitutions to the bacterial enzyme PafA;
forthis dataset, any language-model-recommended substitutions that
did notinvolve glycine or valine substitutions were excluded from the
analysis. We applied a cutoff for each dataset to binarize sequences as
high-fitness or low-fitness variants (cutoffs are provided in Supple-
mentary Table13); we then compared enrichment of high-fitness vari-
ants among the language-model-recommended variants to the
background frequency of high-fitness variants amongall single-residue
substitutions. For these proteins, as with our antibody experiments,
we chose values of k that result in a small number (-10") of acquired
substitutions: we used a =1and k = 2 for all proteins except those where
thisresultedin|4|<5,inwhich case we set k =1 (and additionallya = 0.5
forinfA).

To quantify the statistical significance of an enrichment, we
assumed that the null distribution of the number of high-fitness,
language-model-recommended variants was given by a hypergeomet-
ric distribution parameterized by the number of language-
model-recommended variants 4|, the number of high-fitness variants
among the all single-residue substitutions and the total number of
single-residue substitutions considered, which we used to compute a
one-sided P value. We used the hypergeometric calculator at https://
stattrek.com/online-calculator/hypergeometric.aspx.

To test the relationship between likelihood stringency and the
fraction of high-fitness substitutions, we also performed a small-scale
parameter sweep varying the cutoff values a and k and computing (1)
the percentage fraction of high-fitness substitutionsin .4; (2) the maxi-
mum fitness value of a variant in 4 divided by the maximum fitness
value of avariantacross the full mutational scan; and (3) the maximum
fitness value of a variant in .4 divided by the 99th percentile of the fit-
ness values across the full mutational scan; before this normalization,
the raw fitness values are also linearly scaled to take values between
0 and 1, inclusive. Normalized values, the number of acquired
variants |4|and the parameter combinations are plotted in Extended
DataFig. 4.

We also tested how well alternative methods for ranking substitu-
tionswould be able to suggest high-fitness variants. To enable a direct
comparison to the language model consensus strategy described
above, we selected the same number of substitutions and kept all other
parameters fixed while only varying the method used to rank substitu-
tions. We used the benchmarking results obtained by Livesey and
Marsh*® enabling us to test 46 different methods for ranking substitu-
tions, which use evolutionary information, biophysical properties of
amino acids or protein structure information; these methods are
described in greater detail in Table EV1 of ref. 48. We also tested how
well using the summed log-likelihood ratios across all ESM language
models (that is, computing 3, (log p; (x;Ix) — log p; (x/[x)) at eachsite i
and substitution x;) would compare to the consensus strategy. For each
DMS dataset, we computed the number of high-fitness mutations that
were acquired by each of these 47 benchmark methods (Extended Data
Fig.5); webroke any tiesin variant effect predictor scores by randomly
selecting substitutions and computing the average number of
high-fitness variants over 100 random seeds. We aggregated results
across DMS datasets by ranking methods within each DMS (averaging
theranks that would have been assigned to tied values) and computed
the meanrankacross the eight DMS datasets (Extended DataFig.5and
Supplementary Data5).

Reporting Summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw data for this study have been deposited to Zenodo at https://doi.
org/10.5281/zenodo0.6968342. K, ICs, and T,, values across replicate

experiments are available as Supplementary Data 1. Median fluores-
cenceintensity values for the polyspecificity experiments are available
asSupplementary Data 2. Experimental values for our benchmarking
of sequence-based methods and results from our UniRef90 parameter
sweeps are available as Supplementary Data 3. High-likelihood amino
acid substitutions for 742 therapeutic antibodies are available as Sup-
plementary Data4. Meanrank values for our deep mutational scanning
benchmark experiments are available as Supplementary Data 5. A list
of oligonucleotides used in the study is provided as Supplementary
Data 6. We also make use of the following publicly available databases
and datasets:

«UniProt: https://www.uniprot.org/

« UniRef50 2018_03 (ref. 23): https://ftp.uniprot.org/pub/databases/
uniprot/previous_releases/release-2018_03/uniref/
*UniRef902020_03 (ref. 23): https://ftp.uniprot.org/pub/databases/
uniprot/previous_releases/release-2020_03/uniref/

«abYsis**: http://www.abysis.org/abysis/

« IMGT/LIGM-DB®: https://www.imgt.org/IMGTindex/LIGM-DB.php
« Thera-SAbDab*’: https://opig.stats.ox.ac.uk/webapps/newsabdab/
therasabdab/search/

«Livesey and Marsh benchmarking dataset*%7,

Code availability

We provide open-source code that enables a user to easily and quickly
evaluate the language models on asequence of interest. Weimplement
this as a simple call to a Python script with the wild-type sequence as
the main argument, whichis available at https://github.com/brianhie/
efficient-evolution. Code and scripts used in this study are available as
Supplementary Code and have been deposited to Zenodo at https://
doi.org/10.5281/zenod0.6977562.
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Extended Data Fig. 1| ESM masked versus wildtype marginals.

(a) Representative scatter plots showing all possible single-site substitutions

to an antibody sequence plotted according to their log-likelihood ratios to
wildtype, where likelihoods are computed based on either masked marginals
(y-axis) or wildtype marginals (x-axis). A red dashed line is plotted where masked

and wildtype marginal values are equal. The wildtype marginal log-likelihoods
are consistently lower overall, effectively serving to make the a parameter more
stringent, while (b) the rank-based correlation between masked marginals and
wildtype marginalsis close tolinall cases.
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Extended Data Fig. 2| Pseudovirus neutralization of affinity-matured
variants. (a) Neutralization curves for wildtype antibodies (gray) and variants
obtained by our language-model-guided affinity maturation campaigns. Also
see Supplementary Tables 5, 8, and 9 for corresponding ICs, values. Points
indicate the mean; error bars indicate the standard deviation; n = 4 independent
assays. (b) Fold-improvement in k,,, has low correlation with fold-change in ICs,

(Spearman r = 0.12), while fold-improvement in k. has high correlation with fold-
changeinICy, (Spearmanr=0.79); compare to Fig. 3c. Correlations involve n =15
antibody variants. We define a higher k., and a lower kas improved, so we divide
the mutant value by the wildtype value to calculate fold-improvement in k,, and
vice-versato calculate fold-improvement in k..
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Extended Data Fig. 3| UniRef90 significance and robustness analysis. (a) depths, where our benchmark analyses are performed using an alignment
Ahistogram of the null distribution generated by simulating how many avidity- depth of10,000. The red line indicates the number of avidity-enhancing
enhancing substitutions would be recommended from asite-independent substitutions found by the language models. The combined number of known
model based on UniRef90 alignments. Results are for n = 4.5 million simulations avidity-enhancing substitutions is provided in the stacked bar plot on the left
asdescribed in Methods. Based on this null distribution and given that the and are separated by the antibody in the three right panels. The substitutions
language models recommended 12 avidity-enhancing substitutions, we corresponding to each alignment depth and antibody are provided in
estimate P=0.0085. (b) The number of known avidity-enhancing substitutions Supplementary Data 3.

recommended by a UniRef90 site-independent model at varying alignment
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Extended Data Fig. 4 | Relationship between likelihood stringency and
fitness efficiency. To obtain the set .A of language-model-recommended
variants, we varied two parameters controlling the stringency of acquired
variants (where more stringent corresponds to fewer variants): a is a cutoff
controlling the likelihood ratio of the mutant probability to the wildtype
probability, and k is a cutoff controlling the number of consensus language
models (Methods). (a) At varying cutoffs, we computed the percentage fraction
of variants in A that correspond to high-fitness variants, using scanning
mutagenesis data for validation. When a = 0 and k=1, this value is equivalent to
the percentage of high-fitness variants in the full scanning mutagenesis dataset
(ablack dashed lineis also drawn at this value for each protein). In all cases except
for P53, we observe thatincreasing the likelihood stringency generally improves
the efficiency at which high-fitness variants are acquired. In Fig. 4, we report
values for a =1, k=2, except for when these cutoffs resultin |4|<5 (infA, MAPKI,

and PafA), inwhich case we reporta =1, k=1. (b, ¢) Given aset of acquired variants
A atvarying cutoffs, we also computed how much the maximum fitness
represented in A compares either to the maximum possible fitness value
obtained across the full mutational scan (b) or to the 99" percentile of fitness
values across the full mutational scan (c). To compare across proteins, we plotted
the maximum acquired fitness value normalized by the maximum possible
fitness (b) or by the 99" percentile with a threshold at 1(c). At even at the most
stringent cutoffs, the best acquired variant of most proteins has at least 50% of
the fitness value of the maximum fitness peak. Additionally, at the most stringent
cutoffs, the best acquired variant of all proteins is above or close to the 99
percentile of fitness values. (d) We plotted the number of acquired variants |.4|,
whichis the denominator of the values plotted in (a). A gray horizontal dashed
lineis also plotted at100.
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Extended Data Fig. 5| Benchmarking enrichment of high-fitness variants.
(a, b) Variant effect prediction methods were ranked by the number of high-
fitness variants acquired, controlling for the sample size N of total acquired
variants used in Fig. 4, and ordered by the mean rank across eight proteins
(Methods). Our consensus voting strategy (‘ESM vote’) ranks higher on average
than all other methods based oniits ability to acquire high-fitness variants.
Methods profiled by Livesey and Marsh*® are in black text; ESM-based strategies
profiled in this study are in red text. The full list of mean ranks is provided
asSupplementary Data 5. ESM vote: the consensus strategy for acquiring
substitutions used to select variants for experimental measurement in our
antibody experiments. ESM summed: acquiring substitutions based on summed

Protein (number of acquired samples N)

language model likelihood across the six language models used in this study.

(b) Strip plotillustrating the number of high-fitness variants (vertical axis)
among the top-Nacquired substitutions to each protein (horizontal axis),

where each point represents a different method for acquiring substitutions.
These values are used to calculate the mean rankin (a). The expected number of
variants that would be acquired via random guessing is plotted as a horizontal
dashed line for each protein. (c, d) A similar analysis as in (a, b) but comparing the
consensus voting strategy to each component of the ESM ensemble individually.
Ensembling the recommendations across language models more consistently
acquires high-fitness variants than when only using a single language model.
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Extended Data Fig. 6 | Scatter plots of DMS fitness data and ESM-ranked
variants. Variants of each protein (with a single-site substitution from wildtype)
are plotted as blue circles according to the experimentally-determined fitness
value on the y-axis and the summed log-likelihood across the six ESM models

considered in our analysis. The variants acquired by the ESM consensus voting
scheme are plotted as red circles. The cutoff above which we define a high-fitness
variantis plotted as agray dashed line. The marginal distribution of experimental
fitness values is also plotted as a histogram along the y-axis.
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Extended Data Fig. 7| Comparison of affinity fold improvements versus
experimental scale. Points indicate the results of affinity maturation beginning
withanunmatured starting point (indicated by circles) or with amatured starting
point (indicated by plus signs). The horizontal axis indicates the experimental
scaleinterms of variants tested or the experimental library size. The vertical
axisindicates the fold improvement obtained by affinity maturation. Results
from this study are plotted in black. While there is substantial uncertainty about
the size of the mutational space explored by in-vivo somatic hypermutation (to
include the unproductive B cell clones), we estimate a scale between 10° to 10°
based on the number of B cells contained within a germinal center (about 10° to
10*7%”7, the mutation rate of somatic hypermutation (about 1 mutation per kb

per division)”, the doubling time of B cells (about 10 hours)™, and a timescale

of afew weeks". The results of natural affinity maturation of the unmatured
antibodies in this study?*****, are plotted as blue dots (Supplementary Data1). We
also plot the results of recent studies reporting advances in antibody engineering
technologies, including Mason et al.”® who achieve a 3-fold improvement in the
binding of trastuzumab to human epidermal growth factor receptor 2 (HER2)
using alibrary of -39 K variants and Wellner et al."* who achieve between a 2.3-and
580-fold improvement in the binding of unmatured nanobodies to SARS-CoV-2
RBD (picked out of a naive library) using a continuously evolving yeast system
involving 10°to 107 sorted cells over four or more rounds of selection.
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biolayer interferometry data acquisition, PR.ThermControl version 2.3.1 for thermal melt data acquisition, BD CSampler Plus software version
1.0.34.1 for polyspecificity assay flow cytometry, and Tecan i-control version 2.0 for neutralization luminescence data acquisition. We used
VWorks software version 13.1.0.1366 to control the Agilent Bravo robotic liquid handling platform.

Data analysis Custom code for data analysis is available as Supplementary Code, at Zenodo at DOI:10.5281/zenodo.6977562, and at https://github.com/
brianhie/efficient-evolution. We use the ESM-1b and ESM-1v language models from https://github.com/facebookresearch/esm. We used the
Kabat region definition provided by the abYsis webtool version 3.4.1 (http://www.abysis.org/abysis/index.html) to annotate the framework
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to class | and class Il HLA. We perform data analysis with Python version 3.8; we also list individual package version information below. We
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Raw data for this study has been deposited to Zenodo at DOI:10.5281/zenodo.6968342. Kd, IC50, and Tm values across replicate experiments are available as
Supplementary Data 1. Median fluorescence intensity values for the polyspecificity experiments are available as Supplementary Data 2. Experimental values for our
benchmarking of sequence-based methods and results from our UniRef90 parameter sweeps are available as Supplementary Data 3. High-likelihood amino acid
substitutions for 742 therapeutic antibodies are available as Supplementary Data 4. Mean rank values for our DMS benchmark experiments are available as
Supplementary Data 5. We also make use of the following publicly available databases and datasets:

e UniProt: https://www.uniprot.org/

e UniRef50 2018_03 [ref. 23]: https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2018_03/uniref/

* UniRef90 2020_03 [ref. 23]: https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2020_03/uniref/

e abYsis [ref. 45]: http://www.abysis.org/abysis/

* IMGT/LIGM-DB [ref. 70]: https://www.imgt.org/IMGTindex/LIGM-DB.php

» Thera-SAbDab [ref. 48]: https://opig.stats.ox.ac.uk/webapps/newsabdab/therasabdab/search/

e Livesey and Marsh benchmarking dataset [ref. 49]
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Sample size To determine the number of antibody variants to screen, we use six language models to exhaustively search the complete space of single-
residue substitutions to the antibody VH and VL sequences. Based on this exhaustive search, we chose an experimental sample size of ~10 for
each round based on mutations with higher language model likelihood than wildtype across a consensus of two or more language models. A
sample size of ~10 is a reasonable number of antibody variants for one person to express and purify in parallel using commonly used low-
throughput antibody production techniques. Additional details are provided in Methods.

The number of variants measured in the scanning mutagenesis datasets were predetermined by previous studies, as described in references 8
and 72-79. All of these studies aimed to maximize mutational coverage of the positions in the protein sequence within the constraints of the

respective high throughput technologies.

Data exclusions  No data were excluded from the analyses.

Replication All attempts to replicate the data were successful. Biolayer interferometry data were obtained in duplicate or triplicate across multiple days
and sample preparations, with the wildtype and highest-affinity samples also screened at multiple concentrations. Thermal melts were
obtained across triplicate sample preparations. Polyspecificity data were obtained across three independent measurements. Neutralization
data were obtained using duplicate wells replicated across two or more independent assays.

Randomization  Samples were allocated into groups independent of the experimental condition.

Blinding Investigators were not blinded to experimental conditions. The language models recommended substitutions with no initial binding affinity
data, knowledge of the antigen, task-specific supervision, evolutionary homologs, or protein structure information.
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Materials & experimental systems Methods
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Antibodies |Z |:| ChiIP-seq
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|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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|:| Clinical data
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Antibodies

Antibodies used Antibody wildtype sequences for the variable regions are provided in the Supplementary Information and new substitutions are listed
in Supplementary Tables 2-9. Plasmid sequences are deposited at Zenodo at 10.5281/zenodo.6968342. Control antibody 4E10 was
obtained from the HIV Reagent Program (ARP-10091). Control antibodies elotuzumab and ixekizumab were expressed and purified
using the low-throughput methodology described in the paper. 0.001X goat anti-human Fab fragment FITC (Jackson
ImmunoResearch, 109-097-003) was used to stain the polyspecificity assay.
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Validation All viral antibody plasmids were sequence confirmed across the full variable region. Antibodies were tested for protein expression via
MabSelect purification, binding via biolayer interferometry, thermostability via thermal melting, and neutralization activity against
infection with pseudotyped lentivirus; additional details are described in Methods. For polyspecificity assays, the values of the control
antibodies were compared with known polyspecificity scores described in previous publications.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Expi293F cells were obtained from ThermoFisher (catalog number A14527). HEK-293T cells were obtained from ATCC
(catalog number CRL-3216). HelLa-ACE2-TMPRSS2 cells were obtained from the Jesse Bloom Laboratory (Fred Hutch).

Authentication None of the cell lines were authenticated.

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines  None
(See ICLAC register)
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