
Nature Biotechnology | Volume 42 | February 2024 | 275–283 275

nature biotechnology

https://doi.org/10.1038/s41587-023-01763-2Article

Efficient evolution of human antibodies from 
general protein language models

Brian L. Hie    1,2 , Varun R. Shanker    2,3, Duo Xu    1,2, Theodora U. J. Bruun    1,2,3, 
Payton A. Weidenbacher    2,4, Shaogeng Tang    1,2, Wesley Wu    5, John E. Pak5 & 
Peter S. Kim    1,2,5 

Natural evolution must explore a vast landscape of possible sequences 
for desirable yet rare mutations, suggesting that learning from natural 
evolutionary strategies could guide artificial evolution. Here we report that 
general protein language models can efficiently evolve human antibodies by 
suggesting mutations that are evolutionarily plausible, despite providing 
the model with no information about the target antigen, binding specificity 
or protein structure. We performed language-model-guided affinity 
maturation of seven antibodies, screening 20 or fewer variants of each 
antibody across only two rounds of laboratory evolution, and improved 
the binding affinities of four clinically relevant, highly mature antibodies 
up to sevenfold and three unmatured antibodies up to 160-fold, with 
many designs also demonstrating favorable thermostability and viral 
neutralization activity against Ebola and severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) pseudoviruses. The same models that improve 
antibody binding also guide efficient evolution across diverse protein 
families and selection pressures, including antibiotic resistance and enzyme 
activity, suggesting that these results generalize to many settings.

Evolution searches across an immense space of possible sequences for 
rare mutations that improve fitness1,2. In nature, this search is based on 
simple processes of random mutation and recombination1, but using 
the same approach for directed evolution of proteins in the labora-
tory3 imposes a considerable experimental burden. Artificial evolution 
based on random guessing or brute force search typically devotes sub-
stantial effort to interrogate weakly active or non-functional proteins,  
requiring high experimental throughput to identify variants with 
improved fitness4,5.

Although evolutionary fitness is determined, in part, by specific 
selection pressures, there are also properties that apply more gener-
ally across a protein family or are prerequisites for fitness and func-
tion across most proteins; for example, some mutations maintain 
or improve stability or evolvability6,7, whereas others are structur-
ally destabilizing7 or induce incompetent, misfolded states8. One 

approach to improving the efficiency of evolution is to ensure that 
mutations adhere to these general properties, which we refer to as 
evolutionary plausibility. Identifying plausible mutations could 
help guide evolution away from invalid regimes9, thereby indirectly 
improving evolutionary efficiency without requiring any explicit 
knowledge of the function of interest. However, this strategy is also 
challenging because, first, protein sequences are governed by com-
plex rules, and, second, even if we restrict search to evolutionarily 
plausible mutations, those that also improve a specific definition 
of fitness might still be rare beyond practical utility (Fig. 1a). More 
broadly, a major open question10 is whether general evolutionary 
information (for example, learning patterns from sequence variation 
across past evolution) is sufficient to enable efficient evolution under 
specific selection pressures (for example, higher binding affinity to a  
specific antigen).
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pressures10. However, this prior work only predicted the direction of 
evolution retrospectively when given full knowledge of the evolutionary 
trajectory. We hypothesized that the predictive capabilities of protein 
language models might enable a researcher to provide only a single, 
wild-type antibody sequence to the algorithm and receive a small, 
manageable set (~101) of high-likelihood variants to experimentally 
measure for desirable properties. This is a very general setting that does 
not assume knowledge of protein structure or task-specific training 
data. A major question, however, is if higher evolutionary likelihood 
would efficiently translate to higher fitness.

We tested our hypothesis by conducting evolutionary cam-
paigns, guided by language model likelihood, to affinity mature seven 
antibodies representing diverse antigens and degrees of maturity  
(Supplementary Table 1):

•	 MEDI8852: a broadly neutralizing antibody (bnAb) that binds 
influenza A hemagglutinin (HA) across variants of both major 
phylogenetic groups (group 1 and group 2) and that reached phase 
2 clinical trials; this antibody is highly matured, with its parent 
being isolated from a human, followed by substantial artificial 
evolution29

•	 MEDI8852 unmutated common ancestor (UCA): the unmatured, 
inferred germline sequence of MEDI8852, which only neutralizes 
viruses with group 1 HAs29

•	 mAb114: a patient-derived antibody that neutralizes ebolavirus 
by binding to its glycoprotein (GP)30 and has been approved for 
clinical use by the US Food and Drug Administration (FDA)

•	 mAb114 UCA: the unmatured, inferred germline sequence of 
mAb114 with weak binding to ebolavirus GP30

•	 S309: a patient-derived antibody that cross-neutralizes the sar-
becoviruses severe acute respiratory syndrome coronavirus 1 
(SARS-CoV-1) and severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) by binding to the spike glycoprotein (Spike)31 and is 
the parent antibody of sotrovimab35, which had an FDA emergency 
use authorization (EUA) for treatment of Coronavirus Disease 2019 
(COVID-19) caused by earlier variants of SARS-CoV-2 (refs. 36,37)

•	 REGN10987: a patient-derived antibody that binds early variants 
of SARS-CoV-2 Spike32 and that had an FDA EUA for use against 
these variants

Here we show that evolutionary information alone can lead to 
improved fitness under specific selection pressures with high efficiency 
(Fig. 1b). For our main experimental test case, we focused on affinity 
maturation of human antibodies in which our specific selection pres-
sure is defined as stronger binding affinity to a particular antigen. In 
nature, a process known as somatic hypermutation evolves or ‘matures’ 
an antibody lineage to have higher affinity for an antigen via repeated 
mutagenesis11–13. In the laboratory, affinity maturation is a major appli-
cation of directed evolution due to the therapeutic potential of antibod-
ies with high affinity for disease targets14.

To select evolutionarily plausible mutations, we used algorithms 
known as language models (Fig. 1c) to learn patterns that are likely to 
occur in natural proteins15–22. Because we used general language mod-
els19,20, trained on non-redundant sequence datasets that are meant 
to represent variation across all natural proteins23, these models can 
only learn more general evolutionary rules than could a model trained 
specifically on antibody sequences24–27 or a model directly supervised 
with binding affinity28. Given a single starting sequence, we used these 
language models to recommend plausible amino acid substitutions 
that we then experimentally screened for improved fitness. To the 
end user, the algorithm requires only a single wild-type sequence, 
without any initial binding affinity data, knowledge of the antigen,  
task-specific supervision, evolutionary homologs or protein structure 
information.

We evolved seven human immunoglobulin G (IgG) antibodies that 
bind to antigens from coronavirus, ebolavirus and influenza A virus. We 
focused on viral antigens given the importance of antibody therapeu-
tics for viral diseases29–32. We improved the affinity of all antibodies after 
measuring only 20 or fewer new variants of each antibody across just 
two rounds of evolution, which, to our knowledge, represents unprec-
edented efficiency for machine-learning-guided evolution33,34. We 
also demonstrate that the same general protein language models that 
we used to affinity mature antibodies can also enrich for high-fitness 
substitutions to diverse proteins beyond antibodies.

Results
Efficient affinity maturation with protein language models
Recent work has demonstrated that language models can predict 
natural evolution despite having no knowledge of specific selection 
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Fig. 1 | Guiding evolution with protein language models. a,b, Two possible 
models for relating the space of mutations with high evolutionary plausibility 
(for example, mutations seen in antibodies) to the space with high fitness under 
specific selection pressures (for example, mutations that result in high binding 
affinity to a specific antigen). Both models assume that mutations with high 
fitness make up a rare subset of the full mutational space and that, in general, 
high-fitness mutations are also evolutionarily plausible. Under the first model 
(a), mutations with high fitness are rare within the subset of mutations that are 

evolutionarily plausible. Under the second model (b), when restricted to the 
regime of plausible mutations, improvements to fitness become much more 
common. c, Protein language models, trained on millions of natural protein 
sequences learn amino acid patterns that are likely to be seen in nature. We 
hypothesized that most mutations with high language model likelihood would 
also be evolutionarily plausible. Assuming that this is true, and if the second 
model (b) better describes nature, then a language model with no information 
about specific selection pressures can still efficiently guide evolution.
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•	 C143: an unmatured, patient-derived antibody that binds the 
SARS-CoV-2 Wuhan-Hu-1 Spike but was isolated before extensive 
in vivo somatic hypermutation38,39

We performed evolution with the ESM-1b language model and 
the ESM-1v ensemble of five language models (six language models in 
total)19,20. ESM-1b and ESM-1v were trained on UniRef50 and UniRef90, 
respectively, which are protein sequence datasets that represent vari-
ation across millions of observed natural proteins (UniRef90 contains 
~98 million total sequences) and that include only a few thousand 
antibody-related sequences23. These datasets are also constructed 
such that no two sequences have more than 50% (UniRef50) or 90% 
(UniRef90) sequence similarity with each other to avoid biological 
redundancy. Additionally, both datasets precede the discovery of 
the SARS-CoV-2 antibodies considered in the study as well as the  
evolution of all SARS-CoV-2 variants of concern. Therefore, to evolve 
these antibodies, the language models cannot use disease-specific 
biases in the training data and must, instead, learn more general  
evolutionary patterns.

We used these language models to compute likelihoods of all 
single-residue substitutions to the antibody variable regions of either 
the heavy chain (VH) or the light chain (VL). We selected substitutions 
with higher evolutionary likelihood than wild-type across a consen-
sus of six language models (Methods and Extended Data Fig. 1). In 
the first round of evolution, we measured the antigen interaction 
strength by biolayer interferometry (BLI) of variants that contain only 
a single-residue substitution from wild-type. In the second round, we 
measured variants containing combinations of substitutions, where 
we selected substitutions that corresponded to preserved or improved 
binding based on the results of the first round. We performed these two 
rounds for all seven antibodies, measuring 8–14 variants per antibody 
in round one and 1–11 variants per antibody in round two (Fig. 2 and 
Supplementary Table 1). Variants of the clinically relevant antibod-
ies, which have very low or undetectable dissociation as IgGs, were 
screened by measuring the dissociation constant (Kd) of the monova-
lent fragment antigen-binding (Fab) region; variants of the unmatured 
antibodies were screened by measuring the apparent Kd of the bivalent 
IgG followed by also measuring the Kd values of the Fab fragments of 
the highest-avidity variants (Methods).

We could successfully express all but one of 122 variants across our 
seven evolutionary trajectories. Across all seven antibodies, we found 
that 71–100% of the first-round Fab variants (containing a single-residue 
substitution) retained sub-micromolar binding to the antigen, and 
14–71% percent of first-round variants led to improved binding affin-
ity (defined as a 1.1-fold or higher improvement in Kd compared to 
wild-type) (Supplementary Table 1). Most of the second-round vari-
ants (containing a combination of substitutions) also have improved 
binding (Supplementary Tables 1–9). For all antibodies except for 
REGN10987, we also obtained variants with at least a two-fold improve-
ment in Kd. Thirty-six out of all 76 language-model-recommended, 
single-residue substitutions (and 18 out of 32 substitutions that lead 
to improved affinity) occur in framework regions (Supplementary 
Tables 2–9), which are generally less mutated during conventional 
affinity maturation compared to the complementarity-determining 
regions (CDRs)12.

We were able to improve the binding affinities for all clinically  
relevant antibodies tested, despite these antibodies being already highly 
evolved (starting at low nanomolar or picomolar affinity). MEDI8852 is 
a potent binder with a sub-picomolar Fab Kd across many HAs and pico-
molar or nanomolar binding to HAs from subtypes H4 and H7. Although 
we explicitly screened variants using an HA H4 antigen, the best design 
also improves binding across a broad set of HAs (Supplementary  
Tables 2 and 3), including a sevenfold improvement (from 0.21 nM 
to 0.03 nM) for HA H7 HK17 (A/Hong Kong/125/2017(H7N9)). The 
best variant of mAb114, a clinically approved drug, achieves a 3.4-fold 
improvement in Fab Kd for ebolavirus GP (Supplementary Table 5). For 
REGN10987, the highest-affinity variant has a 1.3-fold improvement 
against Beta-variant Spike with six stabilizing proline substitutions 
(S-6P)40 (the antigen used in screening), and another of our designs 
has a 5.1-fold improvement for the Omicron BA.1 receptor-binding 
domain (RBD) (Supplementary Table 8). For S309, we compared our 
designs to wild-type and to a variant with the N55Q substitution in the 
VH introduced after a small-scale, rational evolutionary screen35; the 
S309 Fab with the VH N55Q substitution forms the Fab of the therapeu-
tic antibody sotrovimab. Our best variant of S309 has higher affinity 
than sotrovimab, including a 1.3-fold improvement in Fab Kd compared 
to wild-type S309 (versus 1.1-fold for sotrovimab) for SARS-CoV-2 
Wuhan-Hu-1 S-6P (the antigen used in screening); a 1.7-fold improve-
ment (versus 1.3-fold for sotrovimab) for Beta S-6P; and a 0.93-fold 
change (versus 0.82-fold for sotrovimab) for Omicron RBD (Supple-
mentary Table 7).

We were also able to improve affinities for all three unmatured 
antibodies, often involving much higher fold changes than when 
evolving the matured antibodies, indicating easier evolvability with 
respect to affinity. For MEDI8852 UCA, the best Fab design achieves 
a 2.6-fold improvement in Kd against HA H1 Solomon (A/Solomon 
Islands/3/2006(H1N1)), the antigen used in screening. Our best designs 
also acquire breadth of binding to some group 2 HAs, including a 23-fold 
improvement for HA H4 Hubei (A/swine/Hubei/06/2009(H4N1)) and 
a 5.4-fold improvement for HA H7 HK17 (Supplementary Table 4). For 
mAb114 UCA, our best Fab design achieves a 160-fold improvement in Kd 
for ebolavirus GP (Supplementary Table 6). Although the algorithm rec-
ommends amino acid substitutions to both of these UCA antibodies that 
are also observed in the matured antibody, other affinity-enhancing sub-
stitutions to the UCA antibodies are not found in the matured versions: 
excluding any substitutions or modified sites found in the matured 
antibody, our UCA variants achieve up to a sevenfold improvement for 
HA H4 Hubei (variant VH P75R/VL G95P; Supplementary Table 4) and 
a 33-fold improvement for ebolavirus GP (variant VH G88E/VL V43A; 
Supplementary Table 6), demonstrating that our algorithm successfully 
explores alternative evolutionary routes. For C143, a patient-derived 
antibody isolated before extensive affinity maturation38,39, our best 
design achieves a 13-fold improvement for Beta S-6P and a 3.8-fold 
improvement for Omicron RBD (Supplementary Table 9). Results from 
our directed evolution campaigns are further summarized in Fig. 2, 
Supplementary Tables 2–9 and Supplementary Data 1.

Additional characterization of evolved antibodies
Although we explicitly selected for improved binders, we also tested 
these variants for improved stability (Methods). We found that Fabs 

Fig. 2 | Language-model-guided affinity maturation of seven human 
antibodies. a, Strip plots visualizing the two rounds of directed evolution 
conducted for each antibody. Each point represents an IgG or Fab variant plotted 
according to the fold change in Kd from wild-type on the y axis and jitter on the  
x axis; a gray, dashed line is drawn at a fold change of 1, and the wild-type point is 
colored gray. MEDI8852 variants were screened against HA H4 Hubei; MEDI8852 
UCA variants against HA H1 Solomon; mAb114 and mAb114 UCA variants against 
ebolavirus GP; S309 variants against Wuhan-Hu-1 S-6P; and REGN10987 and C143 
variants against Beta S-6P. b, Phylogenetic trees illustrating the evolutionary 

trajectories from wild-type to the highest-affinity variant(s) of each antibody. 
Nodes are annotated with the Kd values for different antigens and the Tm of the 
Fab; all Kd values are for the monovalent Fab versions except those of C143, which 
are apparent Kd values for the bivalent IgGs. B, Beta; H1 Solo., H1 Solomon;  
ML variant, machine-learning-guided variant; O, Omicron; W1, Wuhan-Hu-1.  
c, We obtained avidity and affinity measurements via BLI of IgGs and Fabs at the 
indicated concentrations binding to the indicated antigen. Selected BLI traces 
of the highest-affinity variants for the respective antigens are plotted alongside 
those of the wild-type variants.
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for 21 out of the 31 language-model-recommended, affinity-enhancing 
variants that we tested had a higher melting temperature (Tm) than 
wild-type, and all variants maintained thermostability (Tm > 70 °C). 

When evolving S309 to have higher affinity, our best design has a Tm of 
72.8 °C compared to 72.5 °C for wild-type, whereas the VH N55Q sub-
stitution introduced in sotrovimab decreases the Tm to 69.6 °C (Fig. 2).  
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Our evolved variants for mAb114, mAb114 UCA, REGN10987 and C143 
also preserve or improve Tm; the highest change that we observed 
was an increase from 74.5 °C to 82.5 °C when evolving mAb114 UCA. 
Improved thermostability does not completely explain our affinity 
maturation results, however, as we observed somewhat decreased Tm 
for our affinity-matured variants of MEDI8852 and its UCA, although 
these Fabs are still thermostable (Fig. 2).

Additionally, we tested our affinity-matured designs for poly-
specific binding, because binding unintended targets could lead to 
undesirable side effects in therapeutic settings. For each of the seven 
antibodies, we tested the wild-type alongside three affinity-matured 
variants using a polyspecificity assay that assesses non-specific bind-
ing to soluble membrane proteins (Methods)41,42. We observed no 
substantial changes in polyspecificity for any variants of all seven 
antibodies, and all tested antibodies have polyspecificity values within 
a therapeutically viable range (Fig. 3a and Supplementary Data 2).

Another therapeutic consideration is immunogenicity. Although 
computational prediction of immunogenicity remains a challenge, 
especially involving recognition of discontinuous epitopes, the 

immunogenicity of linear peptides is better understood43. We observed 
that our affinity-matured variants have no significant increase 
(one-sided binomial P > 0.05) in the number of computationally pre-
dicted peptide binders to both human leukocyte antigen (HLA) class I 
and class II (exact P values and sample sizes for these experiments are 
provided in Supplementary Data 2), which underlies T-cell-mediated 
immunogenicity.

We also wanted to determine if our affinity-matured variants 
have better viral neutralization activity. We tested affinity-enhancing 
variants of four antibodies using pseudovirus neutralization assays 
(Methods) and, in all cases, observed variants with half-maximal 
inhibitory concentration (IC50) values that are significantly improved 
(Bonferroni-corrected, one-sided t-test P < 0.05, n = 4 independent 
experiments), including a 1.5-fold improvement for the best mAb114 
variant against Ebola pseudovirus; a twofold improvement for the 
best REGN10987 variant against SARS-CoV-2 Beta pseudovirus; and a  
32-fold improvement for the best C143 variant against Beta pseudovirus 
(Fig. 3b, Extended Data Fig. 2 and Supplementary Tables 5, 8 and 9). 
Additionally, the affinity-matured variants of mAb114 UCA demonstrate 
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Fig. 3 | Specificity and improved neutralization potency of affinity-matured 
variants. a, Polyspecificity of antibody wild-types and variants was quantified 
using an assay42 that measures non-specific binding to soluble membrane 
proteins via flow cytometry, where higher MFI values correspond to more 
non-specific binding (Methods). Control antibodies42 are elotuzumab (a clinical 
antibody with low polyspecificity), ixekizumab (a clinical antibody with high 
polyspecificity) and 4E10 (a research antibody with high polyspecificity beyond a 
therapeutically viable level)62. Bar height indicates the mean across n = 3 replicate 
wells; black dots indicate independent measurements. b, Variants of the antibody 
C143, obtained from our language-model-guided affinity maturation campaign, 

demonstrate improved neutralization activity in a pseudovirus assay. For Beta 
pseudovirus, out of the three higher-affinity variants that we also screened for 
neutralization activity, the best improvement is the 32-fold improvement of VL 
G53V; for D614G pseudovirus, the best improvement is the 19-fold improvement 
of VL T33N-G53V (Supplementary Table 9). Also see Extended Data Fig. 2. Points 
indicate the mean; error bars indicate the s.d.; n = 4 independent experiments. 
c, Fold change in Kd correlates well with fold change in IC50 (Spearman r = 0.82, 
n = 15 antibody variants) across all designs tested, consistent with higher binding 
affinity contributing to improved viral neutralization activity. WT, wild-type.
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detectable neutralization at a >100-fold lower concentration compared 
to wild-type (Extended Data Fig. 2a). In general, change in binding 
affinity corelates well with change in neutralization (Spearman r = 0.82, 
two-sided t-distribution P = 1.9 × 10−4, n = 15 antibody variants) (Fig. 3c 
and Extended Data Fig. 2b).

Originality of affinity-enhancing substitutions
Although the ability to find any improvement in affinity is itself use-
ful for engineering applications, we were also interested in whether 
some of the changes recommended by our algorithm demonstrate 
‘originality’. We quantified originality by computing the frequency 
that a given residue is observed in nature (Methods). Although many 
affinity-enhancing substitutions are indeed observed at high fre-
quency both in the model’s training data23 and in a database of antibody 
sequences44, other substitutions demonstrate greater originality. For 
example, in the MEDI8852 UCA trajectory, the VL G95P framework 
substitution (Fig. 2 and Supplementary Table 4) involves changing 
a glycine observed in 99% of natural antibody sequences to a proline 
observed in less than 1% of natural sequences. Overall, five out of 32 
affinity-enhancing substitutions (~16%) involve changing the wild-type 
residue to a rare or uncommon residue (Supplementary Table 10) and 
that are also rare when considering only natural variation of antibod-
ies derived from the same germline genes (Supplementary Table 11). 
These results indicate that the language models learn both the ‘easy’ 
evolutionary rules involving high-frequency residues and more com-
plex rules that are not captured by a multiple sequence alignment or 
conventional antibody evolution. Conceptually, these low-frequency, 
affinity-enhancing substitutions are analogous to examples in other 
disciplines where an artificial intelligence program occasionally 
makes unusual but advantageous choices (for example, unintuitive 
game-playing decisions45) and likewise may be worth further study.

Comparison to other sequence-based methods
We also sought to compare general language models to other meth-
ods for selecting plausible mutations based on sequence information 
alone. To assess the contribution of epistatic information learned by 
the language model, we considered two site-independent models of 
mutational frequencies: (1) abYsis sequence annotation, which uses 
extensively curated antibody sequence alignments, and (2) frequen-
cies based on sequence alignments to the UniRef90 dataset, which was 
used to train ESM-1v (Methods). To assess the impact of using language 
models not trained on antibody-specific sequence variation, we also 
compared to two antibody language models: (1) AbLang24, trained on 
~107 sampled sequences from immune repertoire sequencing data 
in the Observed Antibody Space (OAS) database46, and (2) Sapiens25, 
trained on ~108 human antibody sequences from the OAS datasbase.

We benchmarked these models based on their ability to suggest 
single-residue substitutions that improve the avidity of the three unma-
tured IgG antibodies for their respective antigens (MEDI8852 UCA 
and HA H1 Solomon, mAb114 UCA and GP and C143 and Beta S-6P). 
For each of the four benchmarked models, we ranked substitutions by 
their mutant-to-wild-type likelihood ratios and experimentally tested 
the same number of substitutions considered in the first round of our 
evolutionary campaigns (Methods).

Notably, our approach based on general protein language models 
consistently outperformed all baseline methods (Supplementary Table 
12). In particular, the abYsis and UniRef90 comparisons indicate that 
epistatic information was critical for consistent performance across 
antibodies. For example, the site-independent models did not recom-
mend high-fitness substitutions such as VL G95P in MEDI8852 UCA 
or VL T33N/G53V in C143, resulting in no avidity-enhancing substitu-
tions to C143 (Supplementary Table 12 and Supplementary Data 3). 
We also observed that language models recommend a significantly 
higher number of avidity-enhancing substitutions (simulation-based 
P = 0.0085; Extended Data Fig. 3a) compared to the next-best baseline, 

UniRef90, and that is robust to differences in sequence alignment 
depth (Extended Data Fig. 3b, Supplementary Data 3 and Methods). 
Despite having access to antibody-specific sequence variation, both 
the AbLang and Sapiens models also consistently underperformed 
the general protein language models and even underperformed 
the site-independent models when recommending substitutions to 
mAb114 UCA (Supplementary Table 12 and Supplementary Data 3). 
Our results indicate that general protein language models go beyond 
site-independent reasoning to make beneficial predictions while 
also learning sufficient information even from unspecialized protein 
sequence corpuses.

Computational efficiency of our approach
Our computational pipeline is highly efficient at making predictions, 
taking less than 1 s per antibody (including both VH and VL sequences) 
on widely available, GPU-accelerated hardware (Methods). To demon-
strate efficiency, we made predictions over 742 therapeutically rel-
evant antibodies from the Thera-SAbDab database47 (Supplementary 
Data 4) in ~3 min, and our approach scales linearly with the number 
of antibodies.

Generality across diverse protein families
Given the success of general protein language models at guiding anti-
body evolution, we also tested how well the same models could acquire 
high-fitness variants across diverse protein families. Previous work 
has demonstrated that the likelihoods from general protein language 
models have good correlation with experimental phenotypes from 
high-throughput assays over ~103 to 104 variants10,20. Previous computa-
tional simulations have also indicated that these models can help bias 
multi-round evolution away from large regions of a sequence landscape 
with zero or very low fitness9.

Here, we observed that the same models can also guide efficient 
evolution when measuring only a small number (~101) of variants 
according to diverse definitions of fitness, including antibiotic resist-
ance, cancer drug resistance, enzyme activity or viral replication fit-
ness48. We used the same algorithm and language models in our affinity 
maturation experiments to suggest a small number (~101) of changes 
to wild-type sequences from human, bacterial or viral organisms rep-
resenting eight diverse protein families. We then used experimental 
measurements from high-throughput scanning mutagenesis experi-
ments8,48 to validate the language-model-recommended predictions 
(notably, these measurements were not provided to the model). As in 
the antibody evolution campaigns, we are interested in enriching for 
as many high-fitness variants as possible among the small number of 
language model recommendations (rather than predicting fitness 
across the entire mutational space, as previously done20).

Language-model-recommended variants were nominally enriched 
(one-sided hypergeometric P < 0.05; exact P values and sample sizes 
are provided in Supplementary Table 13) for high-fitness values in 
six out of nine of the measured datasets, and high-fitness variants 
made up a much larger portion of language-model-recommended 
variants compared to random guessing in all but one case (Fig. 4a, 
Extended Data Figs. 4–6 and Supplementary Table 13). For exam-
ple, whereas high ampicillin resistance is observed for just 7% of all 
single-residue substitutions to β-lactamase, it is observed for 40% of 
language-model-recommended substitutions, and the same set of 
language models can also help prioritize single-residue substitutions to 
HA that result in high viral infectivity (from 7% to 31%) and substitutions 
to PafA that improve enzyme kinetics (from 3% to 20%). Additionally, 
across all proteins, even the first round of a small-scale evolutionary 
campaign guided by language models would yield variants that are 
above or near the 99th percentile of fitness values (Extended Data 
Fig. 4). Compared to 47 alternative variant effect predictors, including 
supervised and structure-based models, our strategy ranks higher, on 
average, than all other methods based on the ability to recommend 
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high-fitness variants (Extended Data Fig. 4, Supplementary Data 5 
and Methods).

Discussion
We show that general protein language models can guide highly effi-
cient affinity maturation based on the wild-type antibody sequence 
alone. Although our affinity improvements are lower than those typi-
cally observed in successful in vivo evolutionary trajectories, somatic 
hypermutation explores a mutational space that is larger by multiple 
orders of magnitude (Extended Data Fig. 7). Moreover, our affinity 
improvements on unmatured antibodies are within the 2.3-fold to 
580-fold range previously achieved by a state-of-the-art, in vitro evolu-
tionary system applied to unmatured, anti-RBD nanobodies (in which 
the computational portion of our approach, which takes seconds, is 
replaced with rounds of cell culture and sorting, which take weeks)14 
(Extended Data Fig. 7). In vitro, cell surface display methods also 
encounter physical limits that make it challenging to distinguish bet-
ter binders when the wildtype binder already has high affinity (<1 nM)5, 
which is not a limitation of our approach.

More broadly, a critical finding of our study is that evolutionary 
information alone provides sufficient prior information when selecting 
small numbers of substitutions to test for improved fitness (Figs. 1b 
and 4b). This leads to the result that a model without any task-specific 
training data or knowledge of the antigen can guide antibody evolu-
tion toward higher binding affinity, with competitive performance 
compared to protein-specific or task-specific methods (Supplemen-
tary Table 12 and Extended Data Fig. 5). We hypothesize that, in many 
settings, when mutations are constrained to follow a set of general 
evolutionary rules, a substantial portion (greater than 10%) is bound 
to improve fitness (Fig. 4b), which has immediate and broader implica-
tions for evolution in the laboratory and in nature.

Practical implications and extensions
We anticipate that language models will become a key part of the anti-
body engineer’s toolkit, particularly within preclinical development 
as a rapid way to identify improved variants. In addition to speed, 
by focusing on ~10 single-site substitutions, a higher-throughput 
experimental budget that would have been allocated to brute force 
search could, instead, be allocated to exploring combinations of 
mutations49,50 or to exploring variants of more wild-type antibodies. 
Language-model-guided evolution could also complement or replace 
random mutagenesis strategies based on, for example, an error-prone 
polymerase.

To the end user, guiding evolution via pre-trained, unsupervised 
models is less resource intensive than collecting enough task-specific 
data to train a supervised model28. Language models should also serve 
as a baseline for future machine learning methods using supervision 
or other task-specific training data. Our techniques can also be used 
in conjunction with supervised approaches9,28,33,34,51–54, and supervising 
a model over multiple experimental rounds might ultimately lead to 
higher fitness. However, in many practical settings (for example, the 
rapid development of sotrovimab in response to the COVID-19 pan-
demic35), the efficiency of an unsupervised, single-round approach is 
preferable to a protracted, multi-round directed evolution campaign.

A general approach not biased by traditional structural hypoth-
eses can also be valuable because many beneficial mutations are 
structurally remote to functionally important sites55. About half of 
the language-model-recommended substitutions (and about half of 
the affinity-enhancing substitutions) fall in framework regions, which 
are typically not proximal to the binding interface and are, therefore, 
sometimes excluded from directed evolution28,56. Although some of 
these framework changes may improve affinity via protein stabiliza-
tion, others do not appear to increase thermostability (for example, VL 
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Fig. 4 | Guiding evolution without explicitly modeling fitness. a, The same 
strategy and language models that we use to affinity mature antibodies can also 
recommend high-fitness changes across a diversity of selection pressures and 
protein families, as identified experimentally using high-throughput scanning 
mutagenesis assays8,48 (described in Supplementary Table 13). ‘Fraction positive’ 
indicates the percentage of high-fitness amino acid substitutions within either 
the set of substitutions recommended by the language model (LM guided) 
or the set of all single-residue substitutions (Background). A large portion of 
language-model-guided substitutions have high fitness, which, in many cases, 
is significantly enriched compared to the background percentage; also see 
Extended Data Figs. 4–6, and see Supplementary Table 13 for the exact one-sided 
hypergeometric P values and sample sizes. ADRB2, adrenoreceptor beta 2; β-la., 

β-lactamase; Env, envelope glycoprotein; infA, translation initiation factor 
1; MAPK1, mitogen-activated protein kinase 1; PafA, phosphate-irrepressible 
alkaline phosphatase. b, Conceptually, the prior information encoded by 
evolutionary plausibility is represented in this cartoon by the rainbow road, 
where ascending corresponds to improving fitness and descending corresponds 
to lowering fitness. Moving in any direction (for example, via random or brute 
force mutagenesis) would most likely decrease fitness or have a high chance 
of being a detrimental change (represented by the green ball). However, if 
evolutionary plausibility is an efficient prior (Fig. 1b), then movement that is 
constrained to the plausible regime (for example, when guided by a language 
model) substantially increases the chance of improving fitness (represented by 
the red ball).
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G95P in MEDI8852 UCA) and may, instead, be causing affinity improve-
ments via structural reorientation57–59. Nature often takes advantage 
of framework mutations to improve affinity, which represent ~20–30% 
of changes in natural affinity maturation60. In one well-known case, 
none of the nine residues accounting for a 30,000-fold increase in 
affinity is in contact with the antigen59, and, in another case, framework 
mutations make important contributions to affinity maturation and 
increased breadth in an HIV-1 antibody58.

Generality of fitness improvements
By leveraging general evolutionary rules, language models recom-
mend more ‘universal’ changes that seem to generalize better when 
the definition of fitness changes (Fig. 4). We also observed that gen-
eral language models outperform antibody-specific language models 
(Supplementary Table 12), which is consistent with independent in 
silico benchmarking22. When transferring to a new, specific notion 
of fitness, more general evolutionary information may outweigh the 
particular biases encoded in antibody repertoire datasets, although 
further development of antibody language models could improve  
performance.

Our general approach is designed to improve an existing baseline 
function (for example, improving the affinity of a weak binder) rather 
than endowing any protein with an arbitrary function (for example, 
converting a generic protein into a specific binder). We also note that 
taking advantage of this strategy for guiding evolution may be more 
difficult when the selection pressure is unnatural or if the wild-type 
sequence is already at a fitness peak. However, in many practical design 
tasks, natural sequences and selection pressures are already prefer-
rable; for example, therapeutic development often prefers human 
antibodies due to considerations of immunogenicity.

Beyond protein engineering, the success of our approach may also 
provide insight into natural evolution. The efficiency of evolutionary 
information alone may reflect natural mechanisms for biasing muta-
tion rates toward higher fitness: for example, somatic hypermutation 
favors specific parts of an antibody gene via epigenomic and enzymatic 
sequence biases60,61. If epigenomic or other mechanisms predispose 
mutations to have high fitness, then nature could be accelerating 
evolution in a manner similar to our approach.
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Methods
Acquiring amino acid substitutions via language model con-
sensus
We select amino acid substitutions recommended by a consensus  
of language models. We take as input a single wild-type sequence 
x = (x1,…,xN)∈ 𝒳𝒳N, where 𝒳𝒳  is the set of amino acids, and N is the 
sequence length. We also require a set of masked language models, 
which are pre-trained to produce conditional likelihoods p (x′i |x) . To 
guide evolution based on a certain language model, we first compute 
the set of substitutions with higher language model likelihood than 
the wild-type—that is, we compute the set

ℳ(pj) = {i ∈ [N] , x′i ∈ 𝒳𝒳 𝒳
pj (x′i |x)
pj (xi|x)

> α} ,

where pj denotes the language model, xi denotes the wild-type residue 
and α = 1. To further filter substitutions to only those with the highest 
likelihood, we choose substitutions based on a consensus scheme, 
where, for a new amino acid x′i , we compute

f (x′i ) = ∑
j∈[M]

1 {(i, x′i ) is inℳ(pj)}

where 1{·} denotes the indicator function, and there are M language 
models. We then acquire the set of substitutions with higher likelihood 
than wild-type across multiple language models—that is, we acquire

𝒜𝒜 = {i ∈ [N] , x′i ∈ 𝒳𝒳 𝒳 f (x′i ) ≥ k}

where k is a user-supplied cutoff that controls the number of corre-
sponding variants to measure. Although we focus on values of k that 
result in small values of |𝒜𝒜| (around 10) that can be screened via 
low-throughput assays, the number of substitutions can be increased 
by reducing the value of k or by lowering the cutoff stringency α. Our 
strategy based on computing ‘wild-type marginal’ likelihoods based 
on the entire sequence, p (x′i |x), instead of the ‘masked marginal’ likeli-
hoods in which the site of interest is masked,  p (x′i |x[N]\{i}) , also increases 
the cutoff stringency (Extended Data Fig. 1).

We use six large-scale masked language models—namely, the 
ESM-1b model19 and the five models that are ensembled together to 
form ESM-1v20—both obtained from https://github.com/facebookre-
search/esm. ESM-1b was trained on the 2018-03 release of UniRef50 
(ref. 23) consisting of ~27 million sequences, and the five models in 
ESM-1v were each trained on the 2020-03 release of UniRef90 (ref. 23) 
consisting of ~98 million sequences.

Antibody sequence analysis and evolution
For antibodies, we performed the above steps for the VH and VL 
sequences separately, obtaining respective sets 𝒜𝒜VH  and 𝒜𝒜VL . For round 
1 of evolution, we set α = 1 and chose values of k such that |𝒜𝒜VH ∪ 𝒜𝒜VL|  is 
approximately 10, which is meant to be a reasonable number of anti-
body variants for one person to express and purify in parallel. We used 
k = 2 for MEDI8852 VH and VL, k = 2 for MEDI8852 UCA VH and VL, k = 4 
for mAb114 VH and VL, k = 2 for mAb114 UCA VH and VL, k = 2 for S309 
VH, k = 1 for S309 VL, k = 2 for REGN10987 VH and VL and k = 2 for C143 
VH and VL. We further reduced the size of |𝒜𝒜VH ∪ 𝒜𝒜VL| by requiring the 
substitution to have the highest likelihood at its respective site for at 
least one language model. Variants were first measured for binding 
affinity to a given antigen via BLI (more details below), and those that 
enhanced affinity were recombined such that the second-round vari-
ants have two or more substitutions from wild-type, which were tested 
during round 2 of evolution. Given the small number of 
affinity-enhancing substitutions found during round 1 of evolution for 
S309 and REGN10987, we also expanded the set of substitutions con-
sidered in round 2 to include those that preserved affinity. For 
MEDI8852 and MEDI8852 UCA, we tested all possible combinations in 

round 2; for the other antibodies, where the number of possible com-
binations far exceeds ~10 variants, we manually selected a set of com-
binations meant to prioritize inclusion of substitutions that resulted 
in the largest improvements in affinity during the first round.

We used the wild-type sequences provided by the original study 
authors describing the respective antibodies29–32,38. Wild-type VH 
and VL sequences are provided in the Supplementary Information. 
We used the Kabat region definition provided by the abYsis webtool  
version 3.4.1 (http://www.abysis.org/abysis/index.html)44 to annotate 
the framework regions and CDRs within the VH and VL sequences.

Antibody avidity benchmarking experiments
We also compared the substitutions recommended by the above 
strategy (based on language model consensus) to the substitu-
tions recommended by four alternative sequence-based methods. 
First, we acquired substitutions to a VH or VL sequence based on 
site-independent mutational frequencies, where we used either the 
frequencies computed by the abYsis Annotation webtool44 or the 
frequencies obtained using all sequences in UniRef90 (the training 
dataset of ESM-1v)23. To compute the UniRef90 frequencies, we first per-
formed an exhaustive search to obtain the 10,000 closest sequences by  
Levenshtein distance, where 10,000 is chosen to reflect the number of 
immunoglobulin-like sequences in UniRef90. We computed sequence 
similarity using the partial_ratio function from the FuzzyWuzzy Python 
package version 0.18.0; we then constructed a multiple sequence 
alignment of these 10,000 sequences using MAFFT version 7.475  
(ref. 63) using the VH or VL sequence as the reference; finally, using 
the alignment, we computed mutational frequencies for each site in 
the sequence. We selected the top-ranking substitutions by likelihood 
ratio (the mutant frequency divided by the corresponding wild-type 
frequency) across the VH and VL sequences, where, for each antibody, 
we selected the same number of substitutions considered in the first 
round of our evolutionary campaigns.

We also acquired substitutions based on language models 
trained specifically on antibody sequences. We used the AbLang 
heavy chain and light chain language models (https://github.com/
TobiasHeOl/AbLang)24 and the Sapiens heavy chain and light chain 
language models (https://github.com/Merck/Sapiens)25 to compute 
the mutant-to-wild-type likelihood ratios for all single-residue substitu-
tions to the VH or VL sequence (using the language model trained on 
sequences from the corresponding chain). We selected the top-ranking 
substitutions by likelihood ratio across the VH and VL sequences and, 
following our use of the general protein language models, also required 
the substitution to have the highest likelihood at its site. For each anti-
body, we selected the same number of substitutions considered in the 
first round of our evolutionary campaigns.

We used these four methods (abYsis, UniRef90, AbLang and 
Sapiens) to select substitutions to our three unmatured antibodies 
(MEDI8852 UCA, mAb114 UCA and C143) and used BLI to measure IgG 
avidity to their respective antigens (HA H1 Solomon, GP and Beta S-6P). 
To purify the larger number of variants involved in these benchmarking 
studies, we used a medium-throughput system using a robotic liquid 
handler, described in more detail below. With this system, we expressed 
and purified antibody variants containing single-residue substitutions 
from wild-type recommended by the consensus of ESM language mod-
els as well as by the four baseline methods, observing similar purities 
and affinities when the same variants were also expressed and purified 
via the low-throughput system (described below) used in our evolu-
tionary campaigns. Antibodies with a final concentration of less than 
0.1 mg ml−1 in 200 μl after the medium-throughput purification were 
re-expressed and purified using the low-throughput methodology.

UniRef90 robustness and statistical significance analysis
For the UniRef90 benchmark, we additionally assessed robustness to 
differences in multiple sequence alignment (MSA) construction by 
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computing the number of known affinity-enhancing substitutions 
while varying the sequence alignment depth from 1,000 to 9,000 
sequences at increments of 1,000 (for a total of nine alignment depth 
cutoffs). At each cutoff, we re-ran the procedure described above to 
select substitutions (constructing MSAs and calculating mutational 
likelihood ratios). We performed this for all three experimentally 
benchmarked antibodies, representing a total of 27 MSAs. Among the 
top-ranked substitutions for each cutoff and benchmarked antibody, 
we counted the number of known affinity-enhancing substitutions and 
provide the results in Extended Data Fig. 3 and Supplementary Data 3.

We also used the UniRef90 benchmark to assess the statisti-
cal significance of the number of avidity-enhancing substitutions 
recommended by the language models. In particular, we calculated 
the probability of acquiring 12 or more avidity-enhancing substitu-
tions (Supplementary Table 12) by simulating different outcomes of a 
site-independent model based on UniRef90 alignments. To construct 
the null distribution, we first simulated variation in UniRef90 align-
ments using the nine MSAs of varying alignment depth and their cor-
responding recommended substitutions, described in the previous 
paragraph. We then simulated experimental measurement of these 
mutations for avidity enhancement across the three benchmarked 
antibodies: for each top-ranked substitution with an unknown effect on 
avidity, we assigned a success probability based on the observed proba-
bilities from our experimental benchmark (2/8 = 25% for MEDI8852 UCA;  
5/9 = 56% for mAb114 UCA; and 1/14 = 7% for C143); for each top-ranked 
substitution with a known effect on avidity, we fixed its value to its 
experimentally determined status. We ran 500,000 simulations for 
each of the nine MSA cutoffs (a total of 4.5 million simulations), where 
each simulation returns a total number of avidity-enhancing substitu-
tions across the three antibodies. We report the P value as the number 
of simulations resulting in 12 or more avidity-enhancing substitutions 
divided by the total number of simulations.

Antibody cloning
We cloned the antibody sequences into the CMV/R plasmid backbone 
for expression under a CMV promoter. The heavy chain or light chain 
sequence was cloned between the CMV promoter and the bGH poly(A) 
signal sequence of the CMV/R plasmid to facilitate improved protein 
expression. Variable regions were cloned into the human IgG1 back-
bone; REGN10987 and C143 variants were cloned with a lambda light 
chain, whereas variants of all other antibodies were cloned with a kappa 
light chain. The vector for both heavy and light chain sequences also 
contained the HVM06_Mouse (UniProt: P01750) Ig heavy chain V region 
102 signal peptide (MGWSCIILFLVATATGVHS) to allow for protein 
secretion and purification from the supernatant. VH and VL segments 
were ordered as gene blocks from Integrated DNA Technologies and  
were cloned into linearized CMV/R backbones with 5× In-Fusion HD 
Enzyme Premix (Takara Bio); a list of oligonucleotides and gene blocks 
used in the study is provided as Supplementary Data 6.

Antigen cloning
HA, GP, Spike and RBD sequences were cloned into a pADD2 vector 
between the rBeta-globin intron and β-globin poly(A). HA constructs 
contain a Foldon trimerization domain. GP and Spike constructs 
contain a GCN4 trimerization domain. All HAs, GP, Wuhan-Hu-1 S-6P 
and Omicron BA.1 RBD constructs contain an AviTag. All constructs 
contain a C-terminal 6×His tag. We used HA sequences from the fol-
lowing strains: A/New Caledonia/20/1999(H1N1) (H1 Caledonia),  
A/Solomon Islands/3/2006(H1N1) (H1 Solomon), A/Japan/305/1957 
(H2N2) (H2 Japan), A/Panama/2007/1999(H3N2) (H3 Panama),  
A/Victoria/3/1975(H3N2) (H3 Victoria), A/swine/Hubei/06/2009(H4N1) 
(H4 Hubei), A/Vietnam/1203/2004(H5N1) (H5 Vietnam), A/Hong 
Kong/61/2016(H7N9) (H7 HK16) and A/Hong Kong/125/2017(H7N9)  
(H7 HK17). We used Ebola GP ectodomain (Mayinga, Zaire, 1976, GenBank:  
AAG40168.1) with the mucin-like domain deleted (Δ309–489). Spike 

or RBD sequences were based off wild-type Wuhan-Hu-1 (GenBank: 
BCN86353.1), Beta (GenBank: QUT64557.1) or Omicron BA.1 (GenBank: 
UFO69279.1).

DNA preparation
Plasmids were transformed into Stellar competent cells (Takara Bio), 
and transformed cells were plated and grown at 37 °C overnight. Colo-
nies were mini-prepped per the manufacturer’s recommendations 
(GeneJET, K0502, Thermo Fisher Scientific) and sequence confirmed 
(Sequetech) and then maxi-prepped per the manufacturer’s recom-
mendations (NucleoBond Xtra Maxi, Macherey-Nagel). Plasmids were 
sterile filtered using a 0.22-μm syringe filter and stored at 4 °C.

Protein expression
All proteins were expressed in Expi293F cells (Thermo Fisher Scientific, 
A14527). Proteins containing a biotinylation tag (AviTag) were also 
expressed in the presence of a BirA enzyme, resulting in spontaneous 
biotinylation during protein expression. Expi293F cells were cultured 
in media containing 66% FreeStyle/33% Expi media (Thermo Fisher 
Scientific) and grown in TriForest polycarbonate shaking flasks at 
37 °C in 8% carbon dioxide. The day before transfection, cells were 
spun down and resuspended to a density of 3 × 106 cells per milliliter 
in fresh media. The next day, cells were diluted and transfected at a 
density of approximately 3–4 × 106 cells per milliliter. Transfection mix-
tures were made by adding the following components: maxi-prepped 
DNA, culture media and FectoPRO (Polyplus) would be added to cells 
to a ratio of 0.5 μg: 100 μl: 1.3 μl: 900 μl. For example, for a 100-ml 
transfection, 50 μg of DNA would be added to 10 ml of culture media, 
followed by the addition of 130 μl of FectoPRO. For antibodies, we 
divided the transfection DNA equally among heavy and light chains; 
in the previous example, 25 μg of heavy chain DNA and 25 μg of light 
chain DNA would be added to 10 ml of culture media. After mixing and 
a 10-min incubation, the example transfection cocktail would be added 
to 90 ml of cells. The cells were harvested 3–5 days after transfection by 
spinning the cultures at >7,000g for 15 min. Supernatants were filtered 
using a 0.45-μm filter.

Antibody purification (low throughput)
We purified antibodies using a 5-ml MabSelect Sure PRISM column on 
the ÄKTA pure fast protein liquid chromatography (FPLC) instrument 
(Cytiva). The ÄKTA system was equilibrated with line A1 in 1× PBS, line 
A2 in 100 mM glycine pH 2.8, line B1 in 0.5 M sodium hydroxide, Buffer 
line in 1× PBS and Sample lines in water. The protocol washes the column 
with A1, followed by loading of the sample in the Sample line until air is 
detected in the air sensor of the sample pumps, followed by five column 
volume washes with A1, elution of the sample by flowing of 20 ml of A2 
directly into a 50-ml conical containing 2 ml of 1 M tris(hydroxymethyl)
aminomethane (Tris) pH 8.0, followed by five column volumes of A1, B1 
and A1. We concentrated the eluted samples using 50-kDa or 100-kDa 
cutoff centrifugal concentrators, followed by buffer exchange using a 
PD-10 column (Sephadex) that had been pre-equilibrated into 1× PBS. 
Purified antibodies were stored at −20 °C.

Antibody purification (medium throughput)
For our benchmarking experiments, we purified antibody variants 
with a medium-throughput system using an Agilent Bravo robotic 
liquid handling platform and VWorks software version 13.1.0.1366 with 
custom programming routines. For each antibody wild-type or variant, 
a 2.5-ml culture of Expi293F cells was transfected with corresponding 
antibody heavy and light chain plasmids as previously described.  
Cultures were harvested 3–5 days after transfection by centrifuga-
tion at 4,200g for 10 min, followed by collecting 2 ml of supernatant. 
ProPlus PhyTip column tips (Biotage, PTV-92-20-07) were loaded on 
the Bravo 96 LT head and equilibrated by aspirating and dispensing 
75 μl of PBS, repeating four times. Sample binding to the tip resin was 
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performed by aspirating and dispensing 98 μl of harvested superna-
tant, followed by washing via aspirating and dispensing 100 μl of PBS, 
repeating the binding and washing steps nine times (in total processing 
882 μl of harvest for each run). Elution was performed by aspirating 
100 μl of 100 mM glycine pH 2.8, followed by dispensing into a well 
with 10 μl of 1 M Tris pH 8.

Antigen purification
All antigens were His-tagged and purified using HisPur Ni-NTA 
resin (Thermo Fisher Scientific, 88222). Cell supernatants were 
diluted with 1/3 volume of wash buffer (20 mM imidazole, 20 mM 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.4, 
150 mM sodium chloride (NaCl) or 20 mM imidazole, 1× PBS), and the 
Ni-NTA resin was added to diluted cell supernatants. For all antigens 
except SARS-CoV-2 Spike, the samples were then incubated at 4 °C while 
stirring overnight. SARS-CoV-2 Spike antigens were incubated at room 
temperature while stirring overnight. Resin/supernatant mixtures 
were added to chromatography columns for gravity flow purification. 
The resin in the column was washed with wash buffer (20 mM imida-
zole, 20 mM HEPES pH 7.4, 150 mM NaCl or 20 mM imidazole, 1× PBS), 
and the proteins were eluted with 250 mM imidazole, 20 mM HEPES 
pH 7.4, 150 mM NaCl or 20 mM imidazole, 1× PBS. Column elutions 
were concentrated using centrifugal concentrators at 10-kDa, 50-kDa 
or 100-kDa cutoffs, followed by size-exclusion chromatography on 
an ÄKTA pure system (Cytiva). ÄKTA pure FPLC with a Superdex 6 
Increase (S6) or Superdex 200 Increase (S200) gel filtration column 
was used for purification. Then, 1 ml of sample was injected using a 2-ml 
loop and run over the S6 or S200, which had been pre-equilibrated in 
degassed 20 mM HEPES, 150 mM NaCl or 1× PBS before use and stored  
at −20 °C.

Fab production and purification
Next, 1/10 volume of 1 M Tris pH 8 was added to IgGs at ~2 mg ml−1 in 
1× PBS. Then, 2 μl of a 1 mg ml−1 stock of Lys-C (stock stored at −20 °C) 
was added for each milligram of human IgG1 and digested for 1 h at 
37 °C with moderate rotation. Digested Fabs were purified using a 5-ml 
HiTrap SP HP cation exchange chromatography column on an ÄKTA 
system using 50 mM sodium acetate (NaOAc) pH 5.0 with gradient 
NaCl elution (using 50 mM NaOAc + 1 M NaCl pH 5.0). Fab fractions were 
pooled and dialyzed against 1× PBS and concentrated using 30-kDa 
concentrators. Purified Fabs were stored at −20 °C.

BLI binding experiments
All reactions were run on an Octet RED96 at 30 °C, and samples were 
run in 1× PBS with 0.1% BSA and 0.05% Tween 20 (Octet buffer). IgGs and 
Fabs were assessed for binding to biotinylated antigens using strepta-
vidin biosensors (Sartorius/ForteBio) or to unbiotinylated, His-tagged 
antigens using Anti-Penta-HIS biosensors (Sartorius/ForteBio). Antigen 
was loaded to a threshold of 1-nm shift. Tips were then washed and 
baselined in wells containing only Octet buffer. Samples were then 
associated in wells containing IgG or Fab at 100 nM concentration 
unless otherwise stated (other concentrations are given in Supplemen-
tary Data 1). A control well with loaded antigen but that was associated 
in a well containing only 200 μl of Octet buffer was used as a baseline 
subtraction for data analysis. Association and dissociation binding 
curves were fit in Octet System Data Analysis Software version 9.0.0.15 
using a 1:2 bivalent model for IgGs to determine apparent Kd and a 1:1 
model for Fabs to determine Kd. Averages of fitted Kd values from at least 
two independent experiments are reported to two significant figures. 
Wild-type and the highest-affinity variants were also tested at multiple 
concentrations, and Kd values were averaged across all replicates and 
concentrations (Supplementary Data 1). To estimate measurement 
error, we computed the coefficient of variation (CV; the ratio of the s.d. 
to the mean across replicates) for each antibody−antigen Kd pair, and we 
report the mean CV for each antigen in Supplementary Tables 2 and 4–9.

Thermal melts
We measured thermal melting profiles of proteins by differential scan-
ning fluorimetry on a Prometheus NT.48 instrument. Protein samples 
(0.1 mg ml−1) were loaded into glass capillaries and then subjected to 
a temperature gradient from 20 °C to 95 °C at a heating rate of 1 °C per 
minute. Intrinsic fluorescence (350 nm and 330 nm) was recorded as 
a function of temperature using PR.ThermControl version 2.3.1 soft-
ware. Thermal melting curves were plotted using the first derivative 
of the ratio (350 nm/330 nm). Melting temperatures were calculated 
automatically by the instrument and represented peaks in the thermal 
melting curves.

PolySpecificity Particle assay
Polyspecificity reagent (PSR) was obtained as described by  
Xu et al.41. Soluble membrane proteins were isolated from homog-
enized and sonicated Expi 293F cells followed by biotinylation with 
Sulfo-NHC-SS-Biotin (Thermo Fisher Scientific, 21331) and stored in 
PBS at −80 °C. The PolySpecificity Particle (PSP) assay was performed 
following Makowski et al.42. Protein A magnetic beads (Invitrogen, 
10001D) were washed three times in PBSB (PBS with 1 mg ml−1 BSA) and 
diluted to 54 μg ml−1 in PBSB. Then, 30 μl of the solution containing the 
beads was incubated with 85 μl of antibodies at 15 μg ml−1 overnight at 
4 °C with rocking. The coated beads were then washed twice with PBSB 
using a magnetic plate stand (Invitrogen, 12027) and resuspended in 
PBSB. We then incubated 50 μl of 0.1 mg ml−1 PSR with the washed beads 
at 4 °C with rocking for 20 min. Beads were then washed with PBSB and 
incubated with 0.001× streptavidin-APC (BioLegend, 405207) and 
0.001× goat anti-human Fab fragment FITC ( Jackson ImmunoResearch, 
109-097-003) at 4 °C with rocking for 15 min. Beads were then washed 
and resuspended with PBSB. Beads were profiled via flow cytometry 
using a BD Accuri C6 flow cytometer. Data analysis was performed with 
BD CSampler Plus software version 1.0.34.1 to obtain median fluores-
cence intensity (MFI) values, which are reported for each antibody 
across three or more replicate wells. Elotuzumab (purified using the 
low-throughput FPLC methodology described above), ixekizumab 
(FPLC purified as described above) and 4E10 (HIV Reagent Program, 
ARP-10091) are also included in each assay as controls.

Lentivirus production
We produced SARS-CoV-2 Spike (D614G and Beta variants) pseu-
dotyped lentiviral particles. Viral transfections were done in 
HEK293T cells (American Type Culture Collection, CRL-3216) using 
BioT (BioLand) transfection reagent. Six million cells were seeded in 
D10 media (DMEM + additives: 10% FBS, L-glutamate, penicillin, strep-
tomycin and 10 mM HEPES) in 10-cm plates 1 day before transfection. 
A five-plasmid system was used for viral production, as described in 
Crawford et al.64. The Spike vector contained the 21-amino-acid trun-
cated form of the SARS-CoV-2 Spike sequence from the Wuhan-Hu-1 
strain of SARS-CoV-2 (GenBank: BCN86353.1) or the Beta variant of 
concern (GenBank: QUT64557.1). The other viral plasmids, used as 
previously described64, are pHAGE-Luc2-IRS-ZsGreen (NR-52516), 
HDM-Hgpm2 (NR-52517), pRC-CMV-Rev1b (NR-52519) and HDM-tat1b 
(NR-52518). These plasmids were added to D10 medium in the follow-
ing ratios: 10 μg pHAGE-Luc2-IRS-ZsGreen, 3.4 μg FL Spike, 2.2 μg 
HDM-Hgpm2, 2.2 μg HDM-Tat1b and 2.2 μg pRC-CMV-Rev1b in a final 
volume of 1,000 μl.

Ebola GP-pseudotyped lentiviruses were produced using the 
same packaging (pHAGE-Luc2-IRS-ZsGreen) and helper plasmids 
(HDM-Hgpm2, HDM-Tat1b and pRC-CMV-Rev1b) but with the plasmid 
encoding full-length Ebola GP (GenBank: AAG40168.1).

After adding plasmids to medium, we added 30 μl of BioT to form 
transfection complexes. Transfection reactions were incubated for 
10 min at room temperature, and then 9 ml of medium was added 
slowly. The resultant 10 ml was added to plated HEK cells from which 
the medium had been removed. Culture medium was removed 24 h 

http://www.nature.com/naturebiotechnology
https://www.ncbi.nlm.nih.gov/protein/BCN86353.1
https://www.ncbi.nlm.nih.gov/protein/QUT64557.1
https://www.ncbi.nlm.nih.gov/protein/AAG40168.1


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01763-2

after transfection and replaced with fresh D10 medium. Viral super-
natants were harvested 72 h after transfection by spinning at 300g for 
5 min, followed by filtering through a 0.45-μm filter. Viral stocks were 
aliquoted and stored at −80 °C until further use.

Pseudovirus neutralization
The target cells used for infection in SARS-CoV-2 pseudovirus neu-
tralization assays are from a HeLa cell line stably overexpressing 
human angiotensin-converting enzyme 2 (ACE2) as well as the pro-
tease known to process SARS-CoV-2: transmembrane serine protease 
2 (TMPRSS2). Production of this cell line is described in detail by  
Rogers et al.65 with the addition of stable TMPRSS2 incorporation. 
ACE2/TMPRSS2/HeLa cells were plated 1 day before infection at 
8,000 cells per well. For Ebola pseudovirus neutralization assays, 
HEK293T cells were seeded in 96-well plates 1 day before infection 
at 20,000 cells per well. Ninety-six-well, white-walled, white-bottom 
plates were used for neutralization assays (Thermo Fisher Scientific).

On the day of the assay, purified IgGs in 1× PBS were sterile filtered 
using a 0.22-μm filter. Dilutions of this filtered stock were made into 
sterile 1× Dulbecco’s PBS (DPBS) (Thermo Fisher Scientific), which was 
5% by volume D10 medium. A virus mixture was made containing the 
virus of interest (for example, SARS-CoV-2) and D10 media (DMEM + 
additives: 10% FBS, L-glutamate, penicillin, streptomycin and 10 mM 
HEPES). Virus dilutions into media were selected such that a suitable 
signal would be obtained in the virus-only wells. A suitable signal was 
selected such that the virus-only wells would achieve a luminescence 
of at least >5,000,000 relative light units (RLU). Then, 60 μl of this 
virus mixture was added to each of the antibody dilutions to make a 
final volume of 120 μl in each well. Virus-only wells were made, which 
contained 60 μl of 1× DPBS and 60 μl of virus mixture. Cells-only wells 
were made, which contained 120 μl of D10 media.

The antibody/virus mixture was left to incubate for 1 h at 37 °C. 
After incubation, the medium was removed from the cells on the plates 
made 1 day prior. This was replaced with 100 μl of antibody/virus dilu-
tions and incubated at 37 °C for approximately 24 h. Infectivity readout 
was performed by measuring luciferase levels. SARS-CoV-2 and Ebola 
pseudovirus neutralization assays were read out 48 h and 72 h after 
infection, respectively. Medium was removed from all wells, and cells 
were lysed by the addition of 100 μl of BriteLite assay readout solution 
(PerkinElmer) into each well. Luminescence values were measured 
using an Infinite 200 PRO Microplate Reader (Tecan) using i-control 
version 2.0 software (Tecan). Each plate was normalized by averaging 
the cells-only (0% infection) and virus-only (100% infection) wells. We 
used the neutcurve Python package version 0.5.7 to fit the normalized 
datapoints and to compute the IC50 values, which we report to two 
significant digits. To estimate measurement error, we computed the 
CV for each antibody–virus IC50 pair, and we report the mean CV for 
each virus in Supplementary Tables 5, 8 and 9.

HLA binding prediction
As a proxy for predicting T-cell-mediated immunogenicity, we used 
NetMHCPan version 4.1 and NetMHCIIPan version 4.1 (ref. 43) to predict 
peptide binders to class I and class II HLA, respectively, across a number 
of alleles. For the class I analysis, we applied NetMHCPan with default 
parameters to the VH and VL sequences of the wild-type sequences as 
well as the VH and VL variant sequences listed in Fig. 3a. We considered 
all 9-mer peptides and predicted binding to HLA-A01:01, HLA-A02:01, 
HLA-A03:01, HLA-A24:02, HLA-A26:01, HLA-B07:02, HLA-B08:01, 
HLA-B27:05, HLA-B39:01, HLA-B40:01, HLA-B58:01 and HLA-B15:01. 
For each VH or VL sequence, we counted the number of peptides deter-
mined as ‘strong binders’ or ‘weak binders’ according to NetMHC-
Pan. We then tested for a significant change in the number of binders 
between the evolved variant sequence and its corresponding wild-type 
using the binom_test function in scipy.stats. For the class II analysis, we 
similarly applied NetMHCIIPan with default parameters to the same 

set of VH and VL sequences. We considered all 15-mer peptides and 
predicted binding to DRB1_0101, DRB3_0101, DRB4_0101, DRB5_0101, 
HLA-DPA10103-DPB10101 and HLA-DQA10101-DQB10201. For each 
VH or VL sequence, we counted the number of peptides determined 
as ‘strong binders’ or ‘weak binders’ according to NetMHCIIPan. We 
then tested for a significant change in the number of binders between 
the evolved variant sequence and its corresponding wild-type using 
the binom_test function in scipy.stats.

Computing frequency of changes to antibody protein 
sequences
We computed the frequency of residues involved in affinity-enhancing 
substitutions by aligning the wild-type VH and VL sequences of our 
antibodies to databases of protein sequences. The first database that 
we considered is UniRef90, where we used the same database release 
used to train ESM-1v. For each antibody protein sequence, we obtained 
the set of 10,000 sequences in UniRef90 that are closest to the anti-
body by sequence similarity based on Levenshtein distance (with the 
farthest sequences having between 18% and 47% sequence similar-
ity). We computed sequence similarity using the FuzzyWuzzy Python 
package version 0.18.0. We then used MAFFT version 7.475 to perform 
multiple sequence alignment among the set of sequences. We used 
the alignment to compute amino acid frequencies at each site in the 
VH or VL sequence.

The second database that we considered is provided by the abYsis 
webtool, which also computes the frequency of amino acids at each 
position based on a multiple sequence alignment. We aligned VH and VL 
protein sequences using the default settings provided in the ‘Annotate’ 
tool, using the database of ‘All’ sequences as of 1 March 2022.

We also considered the frequency of affinity-enhancing substitu-
tions conditioned on the corresponding V or J gene. We obtained all 
sequences and corresponding gene annotations from IMGT/LIGM-DB 
(the international ImMunoGeneTics information system, Laboratoire 
d’ImmunoGénétique Moléculaire database) (https://www.imgt.org/ 
ligmdb/)66 as of 13 July 2022. For MEDI8852, MEDI8852 UCA, mAb114 
and mAb114 UCA, we used the V and J gene annotations from the origi-
nal publications29,30. For S309, REGN10987 and C143, we used the V and 
J gene annotations in CoV-AbDab (http://opig.stats.ox.ac.uk/webapps/
covabdab/)67–75. For a given substitution, we obtained all corresponding 
V or J protein sequences, performed a multiple sequence alignment 
with MAFFT version 7.475 and used the resulting alignment to compute 
amino acid frequencies.

Therapeutic antibody database evaluation and runtime 
benchmark
We downloaded 742 therapeutically relevant antibodies from the 
Thera-SAbDab database as of 26 February 2022 (http://opig.stats.
ox.ac.uk/webapps/newsabdab/therasabdab/)47. For each antibody 
VH and VL sequence, we used the same procedure described above for 
computing consensus substitutions that have higher language model 
likelihood than wild-type. We measured the computational runtime 
using the time module in Python 3.8. Experiments were performed 
with an Advanced Micro Devices EPYC Rome 7502P 2.5-GHz CPU and 
an Nvidia Ampere A40 48GB GPU.

Natural protein evaluation and benchmarking based on 
scanning mutagenesis data
We evaluated the ability for the language models and algorithms used 
in our study to guide efficient evolution in other settings beyond anti-
bodies. We used deep mutational scanning (DMS) datasets to validate 
that our approach would enable a researcher to acquire high-fitness 
variants. We used all DMS datasets from the benchmarking study by 
Livesey and Marsh48 with 90% or higher coverage of all single-residue 
substitutions; variants that were not measured were excluded from 
the analysis. We also used a scanning mutagenesis dataset generated 
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by Markin et al.8 that measured Michaelis–Menten kinetics of all 
single-site glycine or valine substitutions to the bacterial enzyme PafA; 
for this dataset, any language-model-recommended substitutions that 
did not involve glycine or valine substitutions were excluded from the 
analysis. We applied a cutoff for each dataset to binarize sequences as 
high-fitness or low-fitness variants (cutoffs are provided in Supple-
mentary Table 13); we then compared enrichment of high-fitness vari-
ants among the language-model-recommended variants to the 
background frequency of high-fitness variants among all single-residue 
substitutions. For these proteins, as with our antibody experiments, 
we chose values of k that result in a small number (~101) of acquired 
substitutions: we used α = 1 and k = 2 for all proteins except those where 
this resulted in |𝒜𝒜| ≤5, in which case we set k = 1 (and additionally α = 0.5 
for infA).

To quantify the statistical significance of an enrichment, we 
assumed that the null distribution of the number of high-fitness, 
language-model-recommended variants was given by a hypergeomet-
ric distribution parameterized by the number of language- 
model-recommended variants |𝒜𝒜|, the number of high-fitness variants 
among the all single-residue substitutions and the total number of 
single-residue substitutions considered, which we used to compute a 
one-sided P value. We used the hypergeometric calculator at https://
stattrek.com/online-calculator/hypergeometric.aspx.

To test the relationship between likelihood stringency and the 
fraction of high-fitness substitutions, we also performed a small-scale 
parameter sweep varying the cutoff values α and k and computing (1) 
the percentage fraction of high-fitness substitutions in 𝒜𝒜; (2) the maxi-
mum fitness value of a variant in 𝒜𝒜 divided by the maximum fitness 
value of a variant across the full mutational scan; and (3) the maximum 
fitness value of a variant in 𝒜𝒜 divided by the 99th percentile of the fit-
ness values across the full mutational scan; before this normalization, 
the raw fitness values are also linearly scaled to take values between  
0 and 1, inclusive. Normalized values, the number of acquired  
variants |𝒜𝒜| and the parameter combinations are plotted in Extended 
Data Fig. 4.

We also tested how well alternative methods for ranking substitu-
tions would be able to suggest high-fitness variants. To enable a direct 
comparison to the language model consensus strategy described 
above, we selected the same number of substitutions and kept all other 
parameters fixed while only varying the method used to rank substitu-
tions. We used the benchmarking results obtained by Livesey and 
Marsh48 enabling us to test 46 different methods for ranking substitu-
tions, which use evolutionary information, biophysical properties of 
amino acids or protein structure information; these methods are 
described in greater detail in Table EV1 of ref. 48. We also tested how 
well using the summed log-likelihood ratios across all ESM language 
models (that is, computing ∑j (logpj (x′i |x) − logpj (xi|x))  at each site i 
and substitution x′i) would compare to the consensus strategy. For each 
DMS dataset, we computed the number of high-fitness mutations that 
were acquired by each of these 47 benchmark methods (Extended Data 
Fig. 5); we broke any ties in variant effect predictor scores by randomly 
selecting substitutions and computing the average number of 
high-fitness variants over 100 random seeds. We aggregated results 
across DMS datasets by ranking methods within each DMS (averaging 
the ranks that would have been assigned to tied values) and computed 
the mean rank across the eight DMS datasets (Extended Data Fig. 5 and 
Supplementary Data 5).

Reporting Summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw data for this study have been deposited to Zenodo at https://doi.
org/10.5281/zenodo.6968342. Kd, IC50 and Tm values across replicate 

experiments are available as Supplementary Data 1. Median fluores-
cence intensity values for the polyspecificity experiments are available 
as Supplementary Data 2. Experimental values for our benchmarking 
of sequence-based methods and results from our UniRef90 parameter 
sweeps are available as Supplementary Data 3. High-likelihood amino 
acid substitutions for 742 therapeutic antibodies are available as Sup-
plementary Data 4. Mean rank values for our deep mutational scanning 
benchmark experiments are available as Supplementary Data 5. A list 
of oligonucleotides used in the study is provided as Supplementary 
Data 6. We also make use of the following publicly available databases 
and datasets:
•	UniProt:	https://www.uniprot.org/
•	UniRef50	2018_03	(ref.	23): https://ftp.uniprot.org/pub/databases/
uniprot/previous_releases/release-2018_03/uniref/
•	UniRef90	2020_03	(ref.	23): https://ftp.uniprot.org/pub/databases/
uniprot/previous_releases/release-2020_03/uniref/
•	abYsis44: http://www.abysis.org/abysis/
•	IMGT/LIGM-DB66: https://www.imgt.org/IMGTindex/LIGM-DB.php
•	Thera-SAbDab47: https://opig.stats.ox.ac.uk/webapps/newsabdab/
therasabdab/search/
•	Livesey	and	Marsh	benchmarking	dataset48,68–75.

Code availability
We provide open-source code that enables a user to easily and quickly 
evaluate the language models on a sequence of interest. We implement 
this as a simple call to a Python script with the wild-type sequence as 
the main argument, which is available at https://github.com/brianhie/
efficient-evolution. Code and scripts used in this study are available as 
Supplementary Code and have been deposited to Zenodo at https://
doi.org/10.5281/zenodo.6977562.
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Extended Data Fig. 1 | ESM masked versus wildtype marginals.  
(a) Representative scatter plots showing all possible single-site substitutions 
to an antibody sequence plotted according to their log-likelihood ratios to 
wildtype, where likelihoods are computed based on either masked marginals 
(y-axis) or wildtype marginals (x-axis). A red dashed line is plotted where masked 

and wildtype marginal values are equal. The wildtype marginal log-likelihoods 
are consistently lower overall, effectively serving to make the α parameter more 
stringent, while (b) the rank-based correlation between masked marginals and 
wildtype marginals is close to 1 in all cases.
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Extended Data Fig. 2 | Pseudovirus neutralization of affinity-matured 
variants. (a) Neutralization curves for wildtype antibodies (gray) and variants 
obtained by our language-model-guided affinity maturation campaigns. Also 
see Supplementary Tables 5, 8, and 9 for corresponding IC50 values. Points 
indicate the mean; error bars indicate the standard deviation; n = 4 independent 
assays. (b) Fold-improvement in kon has low correlation with fold-change in IC50 

(Spearman r = 0.12), while fold-improvement in koff has high correlation with fold-
change in IC50 (Spearman r = 0.79); compare to Fig. 3c. Correlations involve n = 15 
antibody variants. We define a higher kon and a lower koff as improved, so we divide 
the mutant value by the wildtype value to calculate fold-improvement in kon and 
vice-versa to calculate fold-improvement in koff.
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Extended Data Fig. 3 | UniRef90 significance and robustness analysis. (a)  
A histogram of the null distribution generated by simulating how many avidity-
enhancing substitutions would be recommended from a site-independent 
model based on UniRef90 alignments. Results are for n = 4.5 million simulations 
as described in Methods. Based on this null distribution and given that the 
language models recommended 12 avidity-enhancing substitutions, we 
estimate P = 0.0085. (b) The number of known avidity-enhancing substitutions 
recommended by a UniRef90 site-independent model at varying alignment 

depths, where our benchmark analyses are performed using an alignment 
depth of 10,000. The red line indicates the number of avidity-enhancing 
substitutions found by the language models. The combined number of known 
avidity-enhancing substitutions is provided in the stacked bar plot on the left 
and are separated by the antibody in the three right panels. The substitutions 
corresponding to each alignment depth and antibody are provided in 
Supplementary Data 3.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Relationship between likelihood stringency and 
fitness efficiency. To obtain the set 𝒜𝒜 of language-model-recommended 
variants, we varied two parameters controlling the stringency of acquired 
variants (where more stringent corresponds to fewer variants): α is a cutoff 
controlling the likelihood ratio of the mutant probability to the wildtype 
probability, and k is a cutoff controlling the number of consensus language 
models (Methods). (a) At varying cutoffs, we computed the percentage fraction 
of variants in 𝒜𝒜 that correspond to high-fitness variants, using scanning 
mutagenesis data for validation. When α = 0 and k = 1, this value is equivalent to 
the percentage of high-fitness variants in the full scanning mutagenesis dataset 
(a black dashed line is also drawn at this value for each protein). In all cases except 
for P53, we observe that increasing the likelihood stringency generally improves 
the efficiency at which high-fitness variants are acquired. In Fig. 4, we report 
values for α = 1, k = 2, except for when these cutoffs result in |𝒜𝒜| < 5 (infA, MAPK1, 

and PafA), in which case we report α = 1, k = 1. (b, c) Given a set of acquired variants 
𝒜𝒜 at varying cutoffs, we also computed how much the maximum fitness 
represented in 𝒜𝒜 compares either to the maximum possible fitness value 
obtained across the full mutational scan (b) or to the 99th percentile of fitness 
values across the full mutational scan (c). To compare across proteins, we plotted 
the maximum acquired fitness value normalized by the maximum possible 
fitness (b) or by the 99th percentile with a threshold at 1 (c). At even at the most 
stringent cutoffs, the best acquired variant of most proteins has at least 50% of 
the fitness value of the maximum fitness peak. Additionally, at the most stringent 
cutoffs, the best acquired variant of all proteins is above or close to the 99th 
percentile of fitness values. (d) We plotted the number of acquired variants |𝒜𝒜|, 
which is the denominator of the values plotted in (a). A gray horizontal dashed 
line is also plotted at 100.
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Extended Data Fig. 5 | Benchmarking enrichment of high-fitness variants.  
(a, b) Variant effect prediction methods were ranked by the number of high-
fitness variants acquired, controlling for the sample size N of total acquired 
variants used in Fig. 4, and ordered by the mean rank across eight proteins 
(Methods). Our consensus voting strategy (‘ESM vote’) ranks higher on average 
than all other methods based on its ability to acquire high-fitness variants. 
Methods profiled by Livesey and Marsh48 are in black text; ESM-based strategies 
profiled in this study are in red text. The full list of mean ranks is provided 
as Supplementary Data 5. ESM vote: the consensus strategy for acquiring 
substitutions used to select variants for experimental measurement in our 
antibody experiments. ESM summed: acquiring substitutions based on summed 

language model likelihood across the six language models used in this study.  
(b) Strip plot illustrating the number of high-fitness variants (vertical axis) 
among the top-N acquired substitutions to each protein (horizontal axis), 
where each point represents a different method for acquiring substitutions. 
These values are used to calculate the mean rank in (a). The expected number of 
variants that would be acquired via random guessing is plotted as a horizontal 
dashed line for each protein. (c, d) A similar analysis as in (a, b) but comparing the 
consensus voting strategy to each component of the ESM ensemble individually. 
Ensembling the recommendations across language models more consistently 
acquires high-fitness variants than when only using a single language model.
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Extended Data Fig. 6 | Scatter plots of DMS fitness data and ESM-ranked 
variants. Variants of each protein (with a single-site substitution from wildtype) 
are plotted as blue circles according to the experimentally-determined fitness 
value on the y-axis and the summed log-likelihood across the six ESM models 

considered in our analysis. The variants acquired by the ESM consensus voting 
scheme are plotted as red circles. The cutoff above which we define a high-fitness 
variant is plotted as a gray dashed line. The marginal distribution of experimental 
fitness values is also plotted as a histogram along the y-axis.
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Extended Data Fig. 7 | Comparison of affinity fold improvements versus 
experimental scale. Points indicate the results of affinity maturation beginning 
with an unmatured starting point (indicated by circles) or with a matured starting 
point (indicated by plus signs). The horizontal axis indicates the experimental 
scale in terms of variants tested or the experimental library size. The vertical 
axis indicates the fold improvement obtained by affinity maturation. Results 
from this study are plotted in black. While there is substantial uncertainty about 
the size of the mutational space explored by in-vivo somatic hypermutation (to 
include the unproductive B cell clones), we estimate a scale between 103 to 106 
based on the number of B cells contained within a germinal center (about 103 to 
104)76,77, the mutation rate of somatic hypermutation (about 1 mutation per kb 

per division)13, the doubling time of B cells (about 10 hours)76, and a timescale 
of a few weeks13. The results of natural affinity maturation of the unmatured 
antibodies in this study29,30,38, are plotted as blue dots (Supplementary Data 1). We 
also plot the results of recent studies reporting advances in antibody engineering 
technologies, including Mason et al.28 who achieve a 3-fold improvement in the 
binding of trastuzumab to human epidermal growth factor receptor 2 (HER2) 
using a library of ~39 K variants and Wellner et al.14 who achieve between a 2.3- and 
580-fold improvement in the binding of unmatured nanobodies to SARS-CoV-2 
RBD (picked out of a naïve library) using a continuously evolving yeast system 
involving 106 to 107 sorted cells over four or more rounds of selection.
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