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Multimodal spatiotemporal phenotyping of 
human retinal organoid development
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Organoids generated from human pluripotent stem cells provide 
experimental systems to study development and disease, but  
quantitative measurements across different spatial scales and  
molecular modalities are lacking. In this study, we generated multiplexed 
protein maps over a retinal organoid time course and primary adult 
human retinal tissue. We developed a toolkit to visualize progenitor and 
neuron location, the spatial arrangements of extracellular and subcellular 
components and global patterning in each organoid and primary tissue. 
In addition, we generated a single-cell transcriptome and chromatin 
accessibility timecourse dataset and inferred a gene regulatory network 
underlying organoid development. We integrated genomic data with 
spatially segmented nuclei into a multimodal atlas to explore organoid 
patterning and retinal ganglion cell (RGC) spatial neighborhoods, 
highlighting pathways involved in RGC cell death and showing that  
mosaic genetic perturbations in retinal organoids provide insight into  
cell fate regulation.

Technologies to measure multiple molecular modalities in single cells 
are transforming our ability to explore developmental biology1,2. Tran-
scriptomes and accessible chromatin can be profiled in thousands of 
cells per experiment1,2, and multiplexed imaging methods provide 
high-information-content spatial registrations of tissues3. Within devel-
oping systems, single-cell sequencing and image-based measurements 
can be used to reconstruct cell state trajectories, which promise new 
insights into the differentiation dynamics across lineages and spa-
tial domains. Applied to human stem cell-derived organoids4,5, these 

technologies could be used to understand how molecularly defined 
cell states relate to tissue structure and morphological development 
and ultimately to create predictive virtual models of human disease. 
Indeed, it is a major goal in systems biology to generate in silico tissue 
models that incorporate increasing complexity, capturing multiple 
high-resolution length scales and including multiple cellular feature 
modalities6,7. A major challenge to achieve this goal is to integrate multi-
modal measurements across spatial scales in meaningful ways to reveal 
the mechanisms that drive tissue development and morphogenesis. 
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and single-cell transcriptome characterization of developed organoids 
have confirmed their high similarity to the primary human retina14,16,17, 
providing a foundation for understanding human retina development 
and disease in vitro. Retinal organoids develop over the course of 
months, reaching a maximal in vitro maturation state around the age 
of 30 weeks with current methods14. Multiple studies have shown the 
potential value of retinal organoids for modeling human vision dis-
orders18–21. However, differentiation trajectories and morphological 
heterogeneity have yet to be quantitatively evaluated, and a recon-
struction of the gene regulatory networks (GRNs) that underlie dif-
ferentiation of each neuronal and glia cell type within the organoid 
tissues is lacking. More generally, we lack a foundation to integrate 
high-resolution and high-information-content imaging data of tissue 
organization with sequencing data to assess phenotypes within these 
complex organoid tissues.

In this study, we established an experimental pipeline for per-
forming iterative indirect immunofluorescence imaging (4i)22 on his-
tological sections of retinal organoids at high spatial resolution, and 
we developed a computational approach for inferring spatial develop-
mental dynamics from multiplexed protein maps of heterogeneous 

In particular for human development, where embryonic samples are 
scarce, there is the additional challenge to achieve this with organoid 
models, which often lack stereotypic organization, with substantial 
heterogeneity within and between organoids. There is, thus, a large 
unmet need to implement and integrate multimodal technologies in 
developmentally dynamic and human-relevant model systems8.

Retinal organoids generated from induced pluripotent stem cells 
(iPSCs) offer an inroad into studying human retina development, iden-
tifying mechanisms of disease and facilitating the discovery of new 
treatments9. From the breakthrough discovery that optic cups spon-
taneously self-organize in three-dimensional PSC-derived cultures 
in vitro10–12, multiple different protocols to generate human retinal 
organoids have been developed13–15. Retinal organoids are composed 
of diverse neural cell types: rod and cone photoreceptors (PRs), bipolar 
cells (BCs), horizontal cells (HCs), amacrine cells (ACs), retinal gan-
glion cells (RGCs), non-neural Müller glia (MG) and retinal pigment 
epithelium (RPE). These cells self-organize into a stereotypical laminar 
structure with outer and inner plexiform layers and outer (PR nuclei) 
and inner (ACs, BCs and HCs) nuclear layers (ONL and INL), together 
with RGCs in the RGC layer. Remarkably, immunohistochemical analysis 

1: HCs

Glass coverslip

Image (×40)

21 cycles 

b

96-well
super-

structure

c

- Denoise
- Register

- Acquire

a
Rod

Müller glia
Horizontal 
Bipolar

Cone

Amacrine
Ganglion

Retinal organoids

Human
iPSCs Timecourse (6–39 weeks)

Adult human
retina

Histological iterative indirect immunofluorescence imaging (Histo4i)

Organoid

39 weeks
Millimeter Nanometer

Pixel size
0.162 µm

- Pixel cluster
- Segment nuclei

Retinal organoid (39 weeks)
Multiplexed tissue

units (MTUs)

d

3

8

1

11

5

2

9

12

7

4

10

6

MTU

7: MG nuclei

9: BC cytoplasm

32: Collagen

29: BC nuclei

11: ACs

17:Mitochondria

25: Plexiform layer

2: PR nuclei

3: PR cytoplasm

10: OLM

23: LW cones

24 weeks

RHO

PRKCA

HES1

h

i

Low

High

18 weeks12 weeks6 weeksAdult retina

e fMTUs MTUs

Protein
expression

EPHB2

Outline

g

i

ii

i

ii

j k l m n

313024 2927 322823
15 17 2221191813 201614

2625
Elute antibodies

StainTissue
sections

Analyses:

U
M

AP
1

UMAP2

Segmented nuclei
(39 weeks)

HC

AC

Cone

BC MG
RPC

Rod

Intermediate

MTU 6 i

150 µm 2 µm

50 µm 50 µm50 µm 50 µm50 µm

50 µm

25 µm

150 µm

50 µm

Tissue 
units

Nuclei
heterogeneity

Morphology
trajectories

Cell 
neighboorhoods

Fig. 1 | Highly multiplexed immunohistochemistry reveals scale-crossing 
features of developing retinal organoids and primary human retina.  
a, 4i was performed on tissues of a timecourse of retinal organoid development 
(6, 12, 18, 24 and 39 weeks) and adult retina tissue. Schematic shows retinal cell 
type organization. b, Schematic of the 4i methodology and analyses. FFPE tissue 
sections were placed on a 96-well format coverslip that was subsequently attached 
to a 96-well superstructure allowing immunohistological treatment, followed 
by imaging and antibody elution. Here, we performed 21 immunohistochemical 
staining cycles. Images were acquired at ×40 magnification with a high-NA 
silicone oil objective, tiled across the tissue. c, Representative 4i dataset 
image showing overview of a Hoechst stain of a 39-week organoid section and 
progressive magnifications from millimeter to nanometer scales. d–f, Example of 
pixel clustering of a 39-week organoid section. d, Thirty-two global MTUs resolve 
the tissue structure with image quality and label biological structures in individual 
samples. e,f, Biological structures identified by unique MTUs include HCs, BC 

cytoplasm and nuclei, ACs and structural elements such as collagen-rich areas (e) 
and peripherally located structures such as mitochondria, the OLM, PR cytoplasm 
and nuclei, long-wave (LW) cones and the plexiform layers (f). g, MTU 6 (top) is 
enriched for EPHB2 protein expression (bottom) and non-uniformly distributed 
in the organoid section (outlined by red line). Insets show regions with high (i) and 
low (ii) detection of EPHB2 fluorescence immunohistochemical signal. Patterned 
EPHB2 staining was observed in all 39-week replicates (11 sections and three 
organoids). h, Heterogeneity analysis of nuclei with UMAP projection based on 
protein features and colored by labels transferred from sequenced cells. All major 
types are identified, including RGCs, HCs, cones, ACs, rods, BCs and MG. i, Feature 
plots highlighting median signal level per nucleus of HES1, identifying nuclei 
located in the INL; PRKCA, enriched in BCs; and RHO, identifying cells located in 
the ONL. j–n, Primary adult human retina section (j) and retinal organoid sections 
from different timepoints (k–n) with pixels labeled by MTUs derived from 
communal clustering and comparable across samples.
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organoids. We combined this with a dense single-cell RNA sequencing 
(scRNA-seq) and single-cell assay for transposase-accessible chroma-
tin using sequencing (scATAC-seq) dataset covering 6–46 weeks of 
development, which can reconstruct differentiation trajectories into 
each of the major neuronal and glial lineages. Integration of all data 
modalities provides a first-of-its-kind digital representation of human 
retinal organoid development. The digital organoid map can be used 
to explore spatial interactions over time and predict gene regulatory 
modules underlying retinal neurogenesis. We performed follow-up 
‘in organoid’ mosaic perturbations of selected transcription factors 
(TFs) and focused on the orthodenticle homeobox 2 (OTX2) regulon 
required for human retinal neurogenesis23–25. Altogether, we think that 
our work is a major advance toward a virtual human retinal organoid 
and our approaches should be adaptable to other developing organoid 
or other model systems.

Results
Spatial protein map of human retinal organoids and adult 
retina
To establish a spatial retinal organoid reference map, we applied 4i 
covering a timecourse of human retinal organoid development (6, 12, 18, 
24 and 39 weeks; 2–4 organoids per timepoint; Supplementary Table 1) 
as well as an adult primary human retina (Fig. 1a). For each retinal orga-
noid and the primary adult tissue, we performed multiplexed immu-
nohistochemistry on 3-μm-thick formalin-fixed, paraffin-embedded 
(FFPE) sections (1–4 sections per sample; Supplementary Table 1 
and Fig. 1b). We generated tiled images at ×40 magnification with a 
high-numerical-aperture (NA) silicone oil objective to cover length 
scales from the millimeter to the nanometer scale (pixel size, 0.1625 μm) 
(Fig. 1c). We established a panel of 63 antibodies covering major retinal 
cell types, subcellular compartments, morphological structures and 
signaling pathways split into three color channels (Supplementary 
Table 1). We obtained strong and reproducible signals over 21 imaging 
cycles, with usable data from 53 antibodies and a nuclei stain (Sup-
plementary Fig. 1a,b). To achieve multiplexing, we aligned images26 
across all cycles, allowing simultaneous display of any protein stain 
(Supplementary Figs. 1c–f and 2a,b). In our experimental design, we 
interspersed unstained cycles to subtract cycle-specific backgrounds, 
permuted antibodies to assess influence of antibody order and per-
formed elution controls (Methods). These technical assessments con-
firmed that the staining patterns passing quality control were robust 
(Supplementary Fig. 2c–f). Altogether, this resulted in an expression 
matrix with over 400 million pixels, registering 53 immunofluorescence 
intensity measurements and a Hoechst stain from a retinal organoid 
developmental timecourse comprising 41 retinal organoid sections 
and an adult human retina sample.

For all tissues and timepoints, we established a multiscale analy-
sis pipeline that includes an unsupervised machine-learning-based 
clustering of pixels from their 54-plex intensity profile (termed multi-
plexed tissue units (MTUs))22, nuclei segmentation (~330,000 nuclei) 
and assessment of nuclei heterogeneity and spatial arrangement from 
protein intensities and MTU distributions (Methods). MTUs can be 
generated for single samples or for the entire timecourse (global MTUs; 
Methods and Supplementary Fig. 3a–f). Global MTU analysis revealed 

32 MTUs, which we analyze throughout the manuscript. Focusing 
on an exemplary 39-week organoid, these MTUs provide a detailed 
characterization of the spatial organization of the tissue (Fig. 1d). 
Hierarchical clustering and heat map visualization of average protein 
expression within each MTU highlight how each protein stain associ-
ates with each MTU (Supplementary Fig. 4a). We found that the MTU 
patterns are similar across different sections from the same organoid 
as well as between organoids of the same timepoint (Supplementary 
Fig. 4b,c). This indicates that MTUs provide a meaningful approach 
to quantify principles of tissue organization and composition in an 
unbiased manner, which is robust to the morphological heterogene-
ity observed within and between organoids. We observed that certain 
MTUs distinguish different cell types, whereas others resolve subcellu-
lar and tissue structures (Fig. 1e,f), illustrating their versatile multiscale 
nature. For example, MTU 9 and MTU 29 segment a subset of BC nuclei 
and cytoplasm, respectively; MTU 17 resolves mitochondria; MTU 10 
highlights the outer limiting membrane (OLM); and MTU 25 labels the 
outer and inner plexiform layers. MTU 6 identified a surprising feature 
marked by ephrin type B receptor 2 (EPHB2) (Fig. 1g). EPHB2 functions 
in axon guidance and is asymmetrically expressed in retinal neurons 
demarcating dorsal and ventral domains of the developing mammalian 
retina27, suggesting that dorsoventral patterning domains can emerge 
during human retinal organoid development.

Focusing on segmented nuclei in an exemplary 39-week organoid 
section, variance analysis in the protein expression feature space and 
visualization in a uniform manifold approximation and projection 
(UMAP) embedding revealed eight molecularly distinct nuclei clusters 
(Supplementary Fig. 4d,e), and comparison of protein expression 
with single-cell transcriptomes14 enabled cell type assignment to each 
nuclei cluster (Fig. 1h,i and Supplementary Fig. 4e,f). The major retina 
cell types could be identified, including PRs, RGCs, HCs, ACs, BCs and 
MG (Fig. 1h). When combining all 39-week organoids into a combined 
embedding, we identified the same cell types distributed across all 
samples (Supplementary Fig. 4g).

Over the timecourse and in the adult primary tissue, we also 
observed striking progression of MTU and nuclei organization pat-
terns, further showcasing the robustness of the methods and the 
scale-crossing richness of the dataset for exploring developmental 
phenomena (Fig. 1j–n and Supplementary Fig. 3). We provide a web 
application (EyeSee4is, https://eyesee4is.ethz.ch/) to facilitate access 
to the imaging data and computed features over the timecourse. Alto-
gether, these data establish 4i on tissues as a flexible, robust, sensitive 
and high-dimensional method to describe organoid cell composition 
and structure based on protein measurements.

Spatiotemporal dynamics of retinal layer formation
To study how the laminar structure in retinal tissue emerges, we 
developed a computational approach to reconstruct organoid lami-
nar structure dynamics from multiplexed imaging data. This method 
(Laminator) establishes a contour around the organoid; segments and 
vertically orients adjacent laminar windows circumference-spanning 
each organoid; quantifies signals across laminar windows; analyzes 
laminar window heterogeneity; and applies graph embedding and 
diffusion analysis for trajectory reconstruction (Fig. 2a). We measured 

Fig. 2 | Analysis of laminar structure enables trajectory reconstruction and 
illuminates spatiotemporal dynamics of retinal organoid formation.  
a, Schematic overview of the Laminator algorithm developed for laminar window 
segmentation, vertical orientation and trajectory inference. Laminar windows 
measure 16.25 × 1.625 μm and are oriented on the tissue contour by maximizing 
the Euclidean distance transform of the masked organoid for each window. 
b, Force-directed graph embedding of laminar window clusters (numbered) 
colored by timepoint. Node size represents the fraction of laminar windows 
within a timepoint. Insets colored by timepoints show representative oriented 
laminar windows per cluster. c, Graph with laminar window clusters colored 

based on pseudotime from diffusion analysis. d, Density plot showing laminar 
window proportion along the pseudotime, grouped by timepoint. e, Heat map 
showing fluorescence intensity measurements (Hoechst and CTBP2) or MTU 
intensity profiles (MTU 20, MTU 25 and MTU 3) along the inner–outer laminar 
axis across oriented laminar windows ordered by pseudotime. f, Representative 
oriented laminar windows from multiple positions along the pseudotime course 
showing nuclei location (Hoechst, white), proliferating cells (MTU 20, blue) and 
plexiform layers (MTU 25, red) along the inner–outer laminar axis. g, Scatter plot 
showing signal similarity of each laminar window to adult laminar windows over 
pseudotime. Dots are colored by timepoint. c, cluster; Wk, week.
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immunofluorescence intensities, MTU distributions and nuclei features 
in an inner-to-outer axis per laminar window, clustered the features per 
oriented laminar window and visualized relationships within and across 
organoids using a UMAP embedding (Supplementary Fig. 5a–c). From 
this analysis, we could distinguish various structural components of 
the tissue, such as highly organized nuclear layers, disorganized zones, 

non-retinal regions and aggregates of RPE. We selected retinal regions 
and used a force-directed graph to analyze the relationships between 
clusters across the timepoints (Fig. 2b) and applied diffusion analysis 
to establish a trajectory of retinal neuron layer development (Fig. 2c 
and Supplementary Fig. 5d,e). The reconstructed pseudo-temporal 
trajectory reflected a temporal progression (Fig. 2d) and enabled us to 
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observe several interesting aspects of human retinal organoid devel-
opment preceding retinal lamination and spanning PR maturation 
(Fig. 2e and Supplementary Fig. 5f–h). In early phases of the trajectory, 
there were abundant cells in the G2/M phase of the cell cycle marked 
by MKI67 and PCNA, associated nuclei localized to outer surfaces and 
exhibited elongated shapes (Fig. 2e and Supplementary Fig. 6a). Pro-
genitor cells begin to differentiate into retinal neurons, and, subse-
quently, the plexiform layers emerge, becoming stratified between 
nuclei layers (Fig. 2e,f). In a later stage, PRs develop, and differentia-
tion of neuronal and glial cells is established (Supplementary Figs. 5h  
and 6b,c). Overall, there is a clear and consistent pattern across expres-
sion and morphological signals that retinal organoids increase in simi-
larity to the primary retina organization over the timecourse (Fig. 2g), 
consistent with scRNA-seq data14. We note that this reconstruction can 
be used to analyze the dynamic location of subcellular structures, such 
as mitochondria and P-bodies, and tissue structures, such as collagen 
and axonal fibers (Supplementary Figs. 5h and 6b,c). Altogether, these 
data provide a high-information-content spatial representation from 
protein measurements of human retinal organoid laminar develop-
mental dynamics.

Single-cell multiome analysis of human retinal organoids
To provide multiomic resolution to human retinal organoid devel-
opmental dynamics, we performed scRNA-seq and scATAC-seq from 
the same cell suspension across a timecourse (6–46 weeks) of human 
retinal organoid development (Fig. 3a). The dataset incorporates 22 
timepoints from four human iPSC lines, including iPSC lines with stable 
integration of doxycycline-inducible Cas9 in the AAVS1 safe harbor 
locus (iCas9) and previously published scRNA-seq datasets14 (Fig. 3b, 
scRNA-seq (in total 212,781), scATAC-seq (in total 151,684), and Sup-
plementary Table 2). We constructed ‘multiomic metacells’ containing 
information on both transcriptome and chromatin accessibility using 
minimum-cost, maximum-flow (MCMF) bipartite matching28 within 
canonical correlation analysis (CCA) space29 (Supplementary Fig. 7a). 
The metacells were integrated using cluster similarity spectrum (CSS)30, 
and the integrated data were visualized using a UMAP embedding  
(Fig. 3c). In addition, we performed multiome measurements from the 
same cell (10x Genomics) at key developmental timepoints (15 weeks 
and 36 weeks, 13,645 cells), incorporated the cells into the integration 
and used the multiome data to assess the overall integration (Fig. 3c 
and Supplementary Fig. 7b–k). Altogether, the integration revealed 
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human retinal organoid development. a, Paired scRNA-seq and scATAC-seq 
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data were also acquired and used to assist with data integration. Together with 
previously published scRNA-seq data14, scRNA-seq and scATAC-seq data were 
combined into metacell representations containing both modalities using 
CCA and MCMF. b,c, UMAP embedding of metacells colored by iPSC line (b) 
or by annotated cell type (c, top) and timepoint (c, bottom). d, Heat maps 
showing average expression of representative marker genes (top) or chromatin 
accessibility (bottom) for each major cell type. e, Feature plots showing cell 

type marker gene expression (left) or chromatin accessibility (right). f, Branch 
visualization in a force-directed layout, with circles representing high-resolution 
clusters, with both RNA and chromatin access features colored by assignment. 
g, UMAP embedding of the inferred TF network based on co-expression and 
inferred interaction strength between TFs. Color and size represent expression 
weighted pseudotime of TF regulator and PageRank centrality of each module.  
h, TF network colored by expression enrichment for different cell types. 
Exp. norm., expression normalized; Pt, pseudotime; Pt-dep., pseudotime 
dependency; Rel. expr., relative expression; wks, weeks.
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a continuous distribution of cell states through the timecourse, with 
rods, cones, BCs, ACs, HCs, RGCs, RPE and MG annotated (Fig. 3d). The 
high dimensionality of the data could be used to identify marker genes 
and gene regulatory regions for the different cell types (Fig. 3d,e and 
Supplementary Table 3). Indeed, the cell-type-specific gene regulatory 
regions overlap with cell-type-specific promoters and enhancers (Sup-
plementary Fig. 8), which may be useful to design cell-type-specific 
drivers for gene therapy31. These data provide a high-resolution feature 
assessment of human retinal organoid development from multipotent 
progenitor states and highlight the protocol reproducibility across 
different iPSC lines.

We next reconstructed the cell and GRNs that underlie human 
retinal development. We used RNA velocity32 and CellRank33 to generate 
a terminal fate transition probability matrix based on transcriptomes, 
which we used to construct a differentiation graph of high-resolution 
metacell clusters and assign branch identities. The graph, presented by 
a force-directed layout, reveals diversification of retinal cell types over 
the organoid timecourse (Fig. 3f). We used Pando34 to infer sets of posi-
tively or negatively regulated target genes (gene modules) as well as 
regulatory genomic regions (regulatory modules) for each annotated 
TF (Fig. 3g) and visualized module expression in a UMAP embedding. 
Feature plots reveal groups of TFs that associate with the development 
of specific cell types (Fig. 3h), including RGC development (POU4F2 
and ATOH7), HC/AC/BC differentiation (TFAP2A, TFAP2B and PRDM8) 
and PR diversification (rod NR2E3; cone NEUROG1; both CRX). Globally, 
this GRN shows that regulatory region accessibility and TF expression 
track with stages of retinal organoid development and segregate during 
neuron diversification.

Integrated multimodal map of retinal neurogenesis
We next sought to integrate the sequencing and multiplexed imaging 
data to generate a multimodal spatial map of human retinal organoid 
development. We subsetted metacells from each sequencing timepoint, 
performed high-resolution clustering in the transcriptome space and 
predicted 4i nuclei type based on correlation between transcript and 
protein expression (Fig. 4a). In this way, the transcriptome and acces-
sible chromatin modalities could be integrated with spatially localized 
nuclei in the 4i dataset, such that each nucleus contains chromatin, 
mRNA, protein and spatial features (multimodal nuclei; Fig. 4b and Sup-
plementary Fig. 9a). Focusing on the developed organoid (39 weeks), we 
highlight CRX and HES1 expression in PRs and MG, respectively (Fig. 4c),  
as well as rod and MG-specific gene regulatory regions (Fig. 4d). Applied 
to all sections and timepoints, we could map protein abundance, nuclei 
location, transcriptome and chromatin accessibility in all tissues, facili-
tating the spatial exploration of diverse data modalities across time 
(Fig. 4e and Supplementary Fig. 9). For example, we show that VSX2 is 
initially highly expressed in progenitor cells localized toward the outer 
portion of the early organoid (6–12 weeks) and becomes restricted to 
BCs localized in the INL in developed organoids (39 weeks) (Fig. 4f,g).  
We could resolve the temporal emergence of each neuronal class, 

observing the transition from multipotent progenitor cells that were 
distributed throughout the lamina into intermediates and differenti-
ated types that began to stratify over time to the INL and ONL (Fig. 4h,i).  
This analysis highlighted the emergence and disappearance of RGCs 
(marked by POU4F1) around weeks 6–18, a known deficiency of current 
retinal organoid protocols (Fig. 4h–j)13,14,35.

To evaluate our findings with an orthogonal method, we assessed 
the transcriptomes represented within spatially resolved nuclei using 
multiplexed detection of RNA transcripts in situ (single-molecule 
fluorescence in situ hybridization (FISH); Molecular Cartography). 
We generated a highly resolved expression map probing 100 genes 
in retina organoids at 13 weeks and 32 weeks of development (total 
of 20 sections and eight organoids; Fig. 5, Supplementary Fig. 10 and 
Supplementary Table 7). Gene expression can be explored across 
the organoid section and within laminar windows (Fig. 5a,b and 
Supplementary Fig. 10a). We developed a pipeline to segment cell 
bodies, quantify transcripts within each nucleus and assess hetero-
geneity between nuclei based on gene expression, which resolved the 
major retinal cell types at each timepoint (Fig. 5c and Supplementary  
Fig. 10b–f). Using Laminator, we identified architectural variation 
within each organoid similar to what was observed in the protein 
expression space (Supplementary Fig. 11a–g). We compared the meas-
ured transcript expression within each retinal window to the predicted 
transcript expression in the integrated spatiotemporal reconstruc-
tion and found that most had the highest correspondence to win-
dows within the nearest previously measured timepoint (Fig. 5d).  
We analyzed the correlation between measured and predicted tran-
script expression across laminar windows and found high correlation 
between most transcripts (Fig. 5e–g and Supplementary Fig. 11h). We 
also performed a power analysis to assess the ability to discern cell 
types using this integration. From the scRNA-seq data, we generated 
clusters at different levels of resolution (L1–L6). Notably, cluster 
level 1 distinguished each of the major retinal cell populations, and 
each subsequent cluster segmented each major cell type into further 
biological or technical states (Fig. 5h). We then compared inferred 
gene expression patterns in each multimodal integrated nucleus 
(containing RNA, chromatin access and protein information) with each 
cluster within the resolution hierarchy. We found that the integration 
is robust to at least the L3 hierarchy, and the 4i and FISH-based integra-
tions perform similarly well (Fig. 5i). These data provide a multiplexed 
in situ map of retinal organoid transcripts at two timepoints, and the 
analysis supports a robust multimodal 4i and sequencing integration 
for identification of major cell types.

We used our multimodal integration to identify transcriptome 
features that associate with spatial features. We first focused on larger 
spatial domains. Previous analyses identified MTU 6 in a 39-week orga-
noid that was distinguished by EPHB2 protein expression (Fig. 1g), 
a delineator of retinal dorsal–ventral patterning. We observed that 
multimodal nuclei in the integration also showed spatial heterogeneity 
in EPHB2 transcript abundance (Supplementary Fig. 12a). We searched 

Fig. 4 | Multimodal integration provides a digital organoid representation of 
human retinal neurogenesis. a, Schematic for integrating accessible chromatin, 
transcriptome and protein modalities into spatially resolved and segmented 
nuclei. High-resolution clusters were generated from scSeq data (RNA/ATAC 
metacells) of the closest matching timepoints to the imaging data. Label transfer 
was predicted based on correlation of RNA and protein features in sequenced 
cells and imaged nuclei, respectively. Left UMAP shows timecourse metacell 
embedding based on transcriptome and colored by cell type with 39-week cells 
highlighted. Right UMAP shows nuclei embedding based on protein features 
colored according to label transfer from the transcriptome space. b, Overview 
and laminar zoom of a representative 39-week retinal organoid colored based 
on nuclei type assignment from the label transfer. c,d, Representative 39-week 
organoid nuclei colored based on RNA expression (c) or chromatin accessibility 
(d) of markers for PRs (CRX, c; chr17-81655189–81657223, d) or MG (HES1,  

c; chr11-126082119–126083088, d). e, Multimodal integration across the other 
timepoints. Left metacell embedding colored based on indicated timepoint. 
Right nuclei UMAP colored by label transfer from the transcriptome space.  
f, Timecourse retinal organoids colored based on VSX2 transcript expression. 
Boxed inset shows zoom with inner (I) to outer (O) orientation. g, Heat map shows 
VSX2 expression densities along the inner–outer and pseudotime axes. Dashed 
lines demarcate stages (vertical) and the INL (horizontal). 1, 2 and 3 refer to the 
organoid developmental stage as in Fig. 2e. h, Heat map showing expression 
of RGCs (POU4F1), MG (HES1) and PR (CRX) markers along the inner–outer and 
pseudotime axes. i, Heat map showing nuclei type abundance densities for the 
major annotated retinal organoid cell types/states along the inner–outer and 
pseudotime axes. j, Density plots showing proportion of each annotated nuclei 
type over the trajectory. Inter., intermediate; Pt, pseudotime; wk, weeks.
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the multimodal nuclei for transcripts that spatially correlated and 
anti-correlated with EPHB2 expression. This analysis identified gene 
sets enriched in nuclei in EPHB2-high and EPHB2-low domains, and 
these genes had high expression in MGs and BCs and lower expression 
in PRs (Supplementary Fig. 12b,c). We performed Gene Ontology (GO) 
term enrichment analysis of genes positively or negatively spatially cor-
related with EPHB2. This revealed general sensory or neuronal terms for 
genes negatively spatially correlated with EPHB2. In contrast, terms of 

genes positively spatially correlated with EPHB2 related to metabolism 
and (axon) development, suggesting that cells high in EPHB2 might be 
developmentally active and that some aspects of retinal axon pathfind-
ing mechanisms can be detected in retinal organoids (Supplementary 
Table 4 and Supplementary Fig. 12d,e). These data support our previous 
observation that patterning domains can emerge in retinal organoids, 
which have an impact on longer-term expression patterns that emerge 
after weeks in culture.
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We next used the integrated dataset to explore spatiotemporal 
features of cell type development, focusing on the emergence and 
loss of RGCs. We previously observed that RGCs emerge at 6 weeks, 
become abundant at 12 weeks, but are nearly absent at 18 weeks of 
development (Fig. 4). Nuclei in 6-week organoids could be ordered 
into a retinal precursor cell (RPC) to RGC differentiation trajectory 
based on either protein or RNA features (Supplementary Fig. 13a–d). 
This ordering revealed gene expression changes during differentiation 
(Supplementary Fig. 13e,f), and spatial analysis showed that RGCs 
accumulate at the organoid inner surface (Supplementary Fig. 13g), 
consistent with in vivo observations of RGC development36. To under-
stand the loss of RGCs, we established a neighborhood analysis to 
explore microenvironmental variation in RGC locations. We segmented 
cell neighborhoods through a 6.5-μm radial extension from each RGC 
nuclei centroid, and then we searched for heterogeneity among neigh-
borhoods based on annotated features (for example, MTUs, protein, 
RNA and chromatin access) (Supplementary Fig. 14a). Clustering and 
visualizing RGC neighborhoods from 12-week organoids based on MTU 

profiles in a UMAP embedding identified significant heterogeneity 
among the RGC neighborhoods (Supplementary Fig. 14b,c). Inspection 
of RGC neighborhoods on the images revealed differential location pat-
terns between many of the clusters (Supplementary Fig. 14d). Interest-
ingly, certain RGC neighborhoods were localized within the interior of 
the organoid, and nuclei within these neighborhood clusters exhibited 
cell death features, including intense Hoechst staining and nuclei 
fragmentation37, and other protein and MTU characteristics (Supple-
mentary Fig. 14e–g). We explored heterogeneity in the transcriptome 
space and identified two major RGC types, distinguished by the pres-
ence and absence of POU4F1 expression (Supplementary Fig. 14h). 
Subclustering revealed 11 clusters, and differential expression analysis 
between clusters highlighted cluster 6 as having a strong signature of 
apoptosis (Supplementary Fig. 14i,j). GO analysis revealed pathways 
and specific genes that may be involved in RGC preservation or induc-
tion of cell death, which have implications for human vision disorders, 
such as glaucoma38,39 (Supplementary Table 5). Altogether, these data 
and analyses showcase how the digital retinal multimodal map can 
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Fig. 5 | Multiplexed spatial transcript detection in retinal organoids enables 
evaluation of multimodal integration. a, Multiplexed RNA FISH in retinal 
organoid cryosections (week 13 and week 32). A six-transcript overlay (100 
probed) is shown at two resolutions for one organoid at each timepoint. Scale 
bar, 100 μm; zoom, 55.2 × 165.6 μm. b, Transcript detection in a representative 
oriented (inner, I; outer, O) window for a week 13 (top) and a week 32 (bottom) 
organoid. First panel shows Baysor segmentation. c, Heterogeneity analysis of 
Baysor-segmented cell bodies from all organoid sections at week 13 (top) and 
week 32 (bottom). UMAP projection from FISH expression features and colored by 
labels transferred from sequenced cells. Major types are distinguished, including 
RGCs, HCs, cones, ACs, rods, BCs and MG. d, Box plots show averaged Euclidean 
genomic distances of matched spatial zones in week 13 (top, n = 1,697) and week 
32 (bottom, n = 1,666) laminar windows from FISH data and transferred transcript 
expression in the multimodal integrated laminar windows from each 4i timepoint. 
e, Left, VSX2 transcript detection in extended centroids of segmented cell bodies 
within an oriented week 13 (top) and week 32 (bottom) window. Right, line plot 

shows average VSX2 expression across matched windows of measured  
protein (black) and RNA (gray) from 4i and FISH experiments and transferred  
RNA from integrated 4i nuclei (dark blue) and FISH cells (light blue). f, Bar plots 
show spatially constrained correlation within paired multimodal metacells  
(FISH and 4i) between transferred and measured RNA and measured protein 
and RNA. g, Scatter plot shows correlation between imputed and measured 
RNA within segmented features from FISH (y axis) and 4i (x axis) datasets. Genes 
(circles) are colored by transcript detection in the single-cell sequencing data.  
h, Power analysis comparing expression correlations in 4i and FISH transcriptome 
integrations. Clusters from scRNA-seq data were generated at different resolution 
levels. Major cell types were distinguished at level 1 (L1), with subsequent 
resolution describing biological and technical cell states. i, Box plots show 
distribution of distances calculated between the best and second-best matches 
for label transfer (Seurat) between scRNA-seq cells and 4i (left, n = 366,540) and 
FISH (right, n = 64,579) nuclei. The data suggest that both methods, on average, 
perform equivalently well and broadly resolve cell types. Wk, week.
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be used to explore gene regulation and spatial feature co-variation, 
and cell neighborhood analyses can be performed for any cell type or 
spatial domain.

Mosaic perturbation of TF regulomes
The GRN analyses and integrated multimodal map illuminated TFs that 
are central regulators of development. To begin to understand how 
TFs regulate retinal cell type identity in human tissues, we established 
a pooled loss of function (LOF) experiment based on the CROP-seq 
protocol34,40 in developed retinal organoids (Supplementary Fig. 15a). 
We targeted five TFs (OTX2, NRL, CRX, VSX2 and PAX6) that are impor-
tant for retinal development41 and are expressed dynamically over the 
organoid developmental timecourse (Supplementary Fig. 15b,c and  
Fig. 6a). We found that OTX2, CRX and NRL are expressed in rods, cones, 
BCs and the RPE (Supplementary Fig. 15c). VSX2 and PAX6 are expressed 
in RPCs, and their expression is maintained in BCs and RGCs/ACs/HCs, 
respectively (Supplementary Fig. 15c).

To perform the LOF experiment, we established an inducible Cas9 
nuclease (409B2-iCas9) line and validated that it produces each of the 
major retina neuronal cell types (Fig. 3c,d). We generated a lentiviral 
library containing a GFP reporter34, targeting guides against OTX2, NRL, 
CRX, VSX2 and PAX6 and a non-targeting guide as control. The iCas9 
line was used to generate retinal organoids, which were infected with 
the pooled lentiviral library at 19 weeks of development, to investigate 
the role of the TFs in a timepoint in which all cell types are already 
present. At 3–5 weeks after infection, GFP+ cells were sorted and used 

for scRNA-seq (10x Genomics) and target amplicon sequencing (Sup-
plementary Fig. 15d,e). Based on RNA expression measurements, we 
generated a UMAP embedding, analyzed cell type heterogeneity and 
annotated the major cell types recovered in the experiment (Supple-
mentary Fig. 15f). We performed expression module analysis42 and 
found that OTX2 LOF cells showed the strongest effect, with OTX2 
module genes being significantly misregulated (Supplementary  
Fig. 15g–i). We, therefore, focused subsequent detailed analyses on the 
effect of perturbation of the OTX2 regulon.

We first explored OTX2 in our digital organoid map. The OTX2 reg-
ulon is distinguished by predicted positive regulation of genes enriched 
in rods, cones and BCs relative to the other retinal cell types, with the 
OTX2 motif being enriched within accessible chromatin of these cell 
types (Fig. 6a,b). Within the global GRN, we found that among direct 
and positively regulated OTX2 targets are NRL, NEUROG1 and HES6, 
which are TFs that are enriched in rods, cones or BCs, respectively. 
Conversely, direct negative targets are DLX1/2, HES5 and POU4F2, which 
are TFs enriched in fates that are predicted to be negatively regulated 
by OTX2 (Fig. 6c,d)24.

The CROP-seq experiment provided sufficient OTX2 guide RNA 
(gRNA) detection across the different retinal cell types to assess 
the impact of predicted LOF on each cell type expression module  
(Fig. 6e–g). For OTX2 LOF, we found that RGC, HC and AC expression 
modules were enriched and PR and BC expression modules were 
depleted in comparison to control cells (Fig. 6g). In addition, there 
was a correlation between GRN OTX2 target predicted regulation 
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Fig. 6 | Mosaic genetic perturbation and scSeq in organoids highlights OTX2 
regulome activity differences between retinal cell types. a, Heat map shows 
OTX2 transcript expression, motif enrichment and positive regulome (+) and 
negative regulome (−) densities along the inner (I) to outer (O) and pseudotime 
axes from the reconstructed multimodal map. b, Transcriptome-based UMAP 
metacell plot showing OTX2 expression (left) or motif enrichment within 
accessible chromatin peaks (right). c, Global TF GRN highlighting OTX2 (black 
node) and the predicted positively (red) and negatively (blue) regulated genes 
within the inferred OTX2 regulon. d, Box plots show the distribution of OTX2 
positively (top, +) or negatively (bottom, −) regulated targets within the GRN 
based on the expression correlation of each target to different retinal cell fates.  
e, Schematic of single-cell perturbation experiment using the CROP-seq method. 
Three gRNAs targeting OTX2 and four other TFs (Supplementary Information) 
were used together with a random non-targeting gRNA (dummy). Retinal 

organoids were infected with gRNA-containing lentiviruses at 19 weeks, and 
scRNA-seq and amplicon-seq were performed on suspensions at 22–24 weeks. 
f, UMAP projection colored by annotated cell type (left) or by cells with OTX2 
(top right, red) or dummy (bottom right, dark gray) gRNAs detected. Gray cells 
represent unknown or other targeted TFs. g, Heat map showing gene expression 
modules (columns) and their activity in cell clusters (rows). Left sidebar shows 
cluster type. Bottom sidebar shows module clusters. Top side bar shows the 
differential module activity for the OTX2 gRNA cells relative to dummy control. 
h, Scatter plot showing the relationship between differential expression between 
OTX2 LOF and control (x axis) and predicted directionality in the OTX2 GRN 
targets (y axis). i, GO enrichments for modules that are significantly affected 
by OTX2 LOF. j, Heat map shows the module activity scores across the retinal 
organoid spatiotemporal multimodal map. CL, control; KO, knockout;  
Pt, pseudotime; wks, weeks; ER, endoplasmic reticulum.
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directionality and differentially expressed genes between OTX2 LOF 
and control cells (Fig. 6h). The most depleted expression module in the 
OTX2 LOF condition (module 3) had ontology enrichments for many 
aspects of visual perception, consistent with the role of OTX2 in main-
taining PR identity and the critical role of OTX2 in the development and 
maintenance of the human visual system (Fig. 6i). Finally, we highlight 
the activity of these OTX2 regulated modules over the digital organoid 
map, showing that module 3 emerges temporally upon PR differentia-
tion as they localize to outer positions within the lamina (Fig. 6j).

These findings are consistent with previous results in non-human 
model systems showing that OTX2 governs sister fate choices in the 
developing retina, particularly directing and maintaining PR and BC 
programs, while inhibiting the AC/HC/RGC programs24,25,43. In addi-
tion, we looked at how each targeted TF in the CROP-seq affects the 
regulome of the other TFs targeted in the CROP-seq (Supplementary 
Fig. 15j). Interestingly, this reveals that OTX2 LOF induces a strong effect 
on the PAX6 (refs. 24,25) and CRX regulomes25. Because it is currently 
unknown how OTX2 controls PAX6, we used the GRN to predict this 
regulation and found that PAX6 might be indirectly downregulated by 
OTX2 through DLX2 and POU2F2 (Supplementary Fig. 15k). Accord-
ingly, DLX2 and POU2F2 regulomes are strongly affected by OTX2 LOF 
(Supplementary Fig. 15l). Altogether, these data bring together spati-
otemporal GRN analysis with perturbations using genetic manipulation 
to highlight the utility of organoids and digital multimodal maps to 
gain holistic insight into human retinal neurogenesis.

Discussion
Organoid models of human physiology and pathophysiology are 
becoming important multicellular systems for basic and translational 
research. However, the field has lacked integrative experimental and 
computational approaches for phenotyping organoid development 
across spatial and temporal scales. Here we show that 4i on tissues com-
bined with single-cell genomics can be a flexible and broadly applicable 
approach to generate high-information-content spatial and molecular 
descriptions of organoids and their primary counterparts covering 
chromatin, transcriptome and protein features. 4i on tissues is attrac-
tive as it uses off-the-shelf antibodies to measure protein expression 
spatially, and methods can be established for tissue processing, liquid 
handling and confocal imaging that provide data spanning subcel-
lular, cellular and tissue scales. In a single experiment, we generated 
a 53-plexed protein map from 41 samples covering multiple organoid 
timepoints, crossing length scales of ~150 nm to several millimeters in 
a total of more than 400 million multiplexed measurements. We also 
generated a 100-plexed RNA transcript map from 20 samples with 
similar resolution. Sequencing and imaging data integration at this 
level of multiplexing can robustly resolve major retinal cell types using 
both the in situ protein and RNA measurements and resolve biologically 
meaningful cell states. Cell type and state resolution is dependent on 
antibody and RNA probe selection, which can be adapted per experi-
ment. Our holistic analysis of organoid tissues provides data-driven 
approaches to explore global and local spatial heterogeneity. Thus, 
our multimodal map, together with previous assessments, suggests 
an optimistic view of the predictive capacity of retinal organoids.

Indeed, we provide evidence that the well-known master regulator 
OTX2 is required to maintain retinal neuronal identities, consistent 
with results on non-human models24,25. The vast majority of chromatin 
access, gene and protein expression profiles and cell differentiation 
profiles support the striking correspondence between organoid and 
primary retina counterparts. Human retinal organoids develop over 
many months in culture, and our data suggest that mosaic perturba-
tion experiments can be performed at any point in development using 
inducible Cas9 iPSC lines to interrogate gene LOF. We also observed 
that organoids contain disorganized or malformed regions that are 
not often highlighted in the literature, and we developed methods that 
allow classification of tissue types to allow for targeted inclusion or 

exclusion for downstream analysis. By establishing a novel approach 
to assess intra-organoid and inter-organoid heterogeneity based on 
tissue segmentation and clustering, we can overcome barriers asso-
ciated with organoid heterogeneity. Segmented tissue units can be 
arranged into trajectories to reconstruct morphological transitions 
(for example, lamination), and cell neighborhoods can be grouped to 
study microenvironmental variation associated with cellular states. We 
expect that these approaches will be useful for diverse organoid sys-
tems to explore tissue structure, to understand tissue developmental 
dynamics, to assess fidelity to primary counterparts and to quantify 
phenotypes in disease or other perturbation conditions.

Moving forward, a comprehensive organoid atlas will require 
integration of additional modalities together with temporal and spatial 
features. Future integrations may be achieved through incorporating 
‘bridge’ measurements, such as combining 4i with measurements 
of protein and RNA or chromatin accessibility in the same cell (for 
example, CITE-seq44) or through combined multiplexed transcript 
and protein detection in the same or adjacent sections. Combined 
with experimental perturbations and models of disease, such virtual 
or digital organoid systems will allow for comparative analyses across 
organoid phenotype spaces that span molecular and tissue scales. We 
envision that such data-rich representations of organoid phenotypic 
landscapes will provide new insights into human biology and disease.

In conclusion, we demonstrate that 4i on developing organoid 
tissues is a robust, reproducible and high-resolution method to profile 
heterogeneity across many samples and scales. The method is capable 
of resolving cell types, morphological structures, organelles and pro-
tein localization, thereby providing analytical access to spatial features 
beyond gene expression. We developed Laminator as a tool to classify 
stereotypic tissue windows and reconstruct tissue developmental 
dynamics from timecourse multiplexed image data. We show that 
multiplexed protein maps and single-cell transcriptome and chroma-
tin data can be integrated, and this phenotyping approach, especially 
across a developmental timecourse, can provide powerful multimodal 
information about cell type differentiation within a microenvironment. 
We provide a computational pipeline for 4i analysis and multimodal 
integration that can be adopted by the research community.

Online content
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Methods
Primary human tissue samples
The human retina tissue was obtained from an anonymous multi-organ 
donor by sampling non-transplantable eye tissue that was removed in 
the course of cornea harvesting for transplantation14. The donor had 
no documented history of eye disease, and the personal identifier was 
anonymized before processing. All tissue samples were obtained in 
accordance with the tenets of the Declaration of Helsinki, and experi-
mental protocols were approved by the local ethics committee. The 
sample included in this study is designated by the ID R-00646_06.

Stem cell and organoid culture
Four human iPSC lines were used: B7 (01F49i-N-B7 (ref. 14)), IMR90 
(iPS (IMR90)-4-DL-01, WiCell), B7-iCas9 (01F49i-N-B7-iCas9) and 
409B2-iCas9 (ref. 45). B7 iCas9 carried integration of the construct 
pAAVS1-ieCas9 (ref. 46) in AAVS1 locus. For 4i experiments, B7 orga-
noids at 6, 12, 18, 24 and 39 weeks were used. iPSCs were cultured in 
mTeSR1 (STEMCELL Technologies, 85857) or mTeSR Plus (STEMCELL 
Technologies, 100-0276) supplemented with penicillin–streptomycin 
(1:200, Gibco, 15140122) on Matrigel-coated plates (Corning, 354277). 
Cells were split 1–2 times per week after dissociation with EDTA in 
DPBS (0.5 mM) (Gibco, 12605010). Media were supplemented with 
rho-associated protein kinase (ROCK) inhibitor Y-27632 (5 μM, STEM-
CELL Technologies, 72302) after thawing. Cells tested negative by 
polymerase chain reaction (PCR) for mycoplasma infection (Venor 
GeM Classic, Minerva Biolabs). All cell lines showed normal karyotypes 
upon generation; the 409B2-iCas9 line acquired a common stem cell 
abnormality over time45; and the B7-iCas9 acquired a duplication in 
the centromeric region of long arm of chr20: q11.21–q11.22 (a known 
adaptation to cell culture growth conditions). All organoids were gener-
ated using the AMASS protocol14. To generate retinal organoids from 
the B7 and IMR90 lines, 600 cells were seeded in each microwell of an 
agarose chamber (MicroTissues 3D Petri Dish micro-mold, Z764019). 
409B2-iCas9 organoids were generated with 1,500 cells per microwell 
and treated with BMP4 (55 ng ml−1, Bio-Techne, 314-BP) on day 6 with 
half medium change on days 9, 12 and 15 (ref. 47). For the multiplexed 
FISH experiment, 300 cells were used for each organoid.

4i sample preparation
Retinal organoids were embedded in 1% low melting agarose at ~37 °C. 
Embedded organoids were fixed in 4% paraformaldehyde (PFA) in PBS 
at 4 °C overnight. Primary human retina samples were fixed in 4% PFA in 
PBS at 4 °C overnight without agarose embedding. Post-fixation sam-
ples were transferred to 70% ethanol for at least 30 min before paraffin 
embedding. A 96-well format cover slip (NEXTERION coverslips, 1535661) 
was coated with poly-l-lysine (Sigma-Aldrich, P4832) for 1 h at room 
temperature. Tissues were microtome-sectioned (3 μm) and transferred 
to the coated 96-well coverslip and then incubated at 37 °C for at least 
1 h before deparaffinization (60° for 45 min, 2 ×3 min Neo-Clear (Merck), 
2 ×3 min 100% ethanol, 1 ×3 min 96% ethanol, 1 ×70% ethanol, 1 ×5 min 
ddH2O). Samples were then fixed in 4% PFA in PBS for 15 min at room 
temperature. For antigen retrieval, the sample plate was transferred to 
800 ml of 1 mM citrate buffer (pH 6.0, 0.05% Tween 20, sterile filtered) 
and heated to 100 °C in a microwave (Milestone Micromed T/T Mega) for 
20 min. Samples in the citrate buffer cooled at approximately room tem-
perature for ~2 h with an open lid. The cover glass was removed from the 
buffer and patted dry between the samples with a tissue paper wrapped 
around a glass slide. Care was taken that the samples never dried out. The 
cover glass was then attached to the bottom of a 96-well self-adhesive 
super structure (Merck, GBL204969), placing each sample into a well, 
and wells were filled with PBS until further processing.

Multiplexed single-molecule FISH sample preparation
Retinal organoids (week 13 and week 32, cell line B7, four organoids 
per timepoint) were fixed in PAXgene Tissue FIX (Qiagen, 765312) 

for 2 h at room temperature and stabilized for 2 h in PAXgene Tis-
sue STABILIZER (Qiagen, 765512). Organoids were allowed to sink 
O/N in 30% sucrose in PBS (w/v) solution at 4 °C, embedded in OCT 
and frozen in 2-methylbutane (Sigma-Aldrich, 106056) on dry ice and 
stored at −80 °C. Organoids were cryosectioned (10 μm), and slices 
were placed within the capture areas of cold glass slides provided by 
Resolve Biosciences. Samples were transported on dry ice for analysis, 
whereby tissue sections were thawed and washed at room temperature 
in isopropanol, 95% ethanol and 70% ethanol. Fixed samples were used 
for Molecular Cartography (100-plex combinatorial single-molecule 
FISH (smFISH)) according to the manufacturer’s instructions  
(protocol 1.3). In brief, tissues were treated with buffer DST1, primed 
for 30 min at 37 °C and hybridized overnight with gene probes. Samples 
were washed and fluorescently tagged for imaging.

Multiplexed smFISH probe design
The 100-gene panel (Supplementary Table 7) was selected using gen-
eBasisR48, given the 4i gene panel and the top five marker genes of major 
cell types as the pre-selected genes. Genes with transcripts per million 
(TPM) > 10,000 in any major cell type were excluded. Probes were 
designed using the highest-scoring probes from Resolve’s proprietary 
algorithm based on full-length protein-coding transcript sequences 
from the ENSEMBL database (GENCODE annotation tag ‘basic’)49,50. To 
filter highly repetitive regions, the abundance of k-mers was obtained 
from the background transcriptome using Jellyfish51. Target sequences 
were scanned for all k-mers, with preference to rare k-mers for probe 
design. A probe candidate was generated by extending seed sequences 
to a threshold hybridization stability, and probes were filtered through 
assessing mapping to a background transcriptome using Thermo-
nucleotideBLAST52. Specific probes were then scored based on the 
number of on-target matches (isoforms), which were weighted by their 
associated APPRIS level53, favoring principal isoforms and those with 
protein-coding binding sites.

Multiplexed smFISH imaging
Imaging was performed on a Zeiss Celldiscoverer 7 at ×25 magnifica-
tion, with the ×50 Plan Apochromat water immersion objective, NA of 
1.2 and a CD7 CMOS camera (Zeiss Axiocam Mono 712, 3.45-μm pixel 
size). Image settings were optimized for each signal, 1,000-ms exposure 
per FISH channel and 20 ms for DAPI. z-stacks were recorded for each 
channel according to the Nyquist–Shannon principle. Two channels 
were imaged in parallel. Eight imaging rounds were performed to 
obtain 16 z-stacks per sample. Automation of the staining and imaging 
cycles was achieved using a Python script using the scripting API of the 
Zeiss ZEN software. For improved nuclei segmentation, DAPI was reim-
aged after the experiment with conditions identical to the 4i imaging.

4i imaging
Iterative staining and elution cycles22 included Hoechst (Invitrogen, 
33342) to the secondary antibody staining solution at a dilution of 
1:500. Pipetting was automated on a Hamilton STAR robotic system. 
Secondary antibodies were applied at a dilution of 1:500. Primary 
antibodies and dilutions used can be found in Supplementary Table 1. 
Imaging was performed using a Nikon Ti2 inverted microscope with a 
Yokogawa CSU- W1 SoRa spinning disk add-on and an ORCA-Flash4.0 
Digital CMOS camera, C11440, and NIS-Elements software. A ×40 
magnification was achieved using the Nikon PLAN APO ×40/1.25 SIL 
MRD73400 objective. The laser settings were kept constant through-
out the experiment—20% UV (405 nm), 20% green (488 nm), 20% red 
(561 nm) and 40% far red (640 nm) with 100-ms exposure each. Each 
two channels, 405 nm and 561 nm or 488 nm and 640 nm, were acquired 
in parallel. Twenty percent of the camera sensors at each side were 
cropped to minimize shading effects and maximize stitching accu-
racy, and 10% overlap was used for stitching. Images were acquired as 
z-stacks with a total of 6-μm thickness and 0.5-μm distance between 
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image planes. Every image consisted of a 6 × 6 tiling array. The image 
cycling strategy constituted ‘staining cycles’ (including elution and 
restaining) and ‘elution cycles’ (including elution and mock staining 
steps without addition of antibodies). The elution cycles were per-
formed every six cycles, allowing assessment of background signal 
across the experiment (Supplementary Table 1). The elution cycles 
were used for background subtraction. In each staining cycle, three pri-
mary and secondary antibody combinations and a Hoechst stain were 
imaged (rabbit antibody, green, 488 nm; mouse antibody, red, 568 nm; 
third species antibody, far red, 647 nm; Supplementary Table 1).  
Certain protein stains were excluded by visual examination.

Image pre-processing and registration
Background subtraction was achieved through acquiring a dark-field 
image across z-stacks and fluorescence settings identical to stained 
image acquisitions but with lasers off. For each channel, an average 
intensity projection per tile and an average of all tiles were generated, 
resulting in dark-field images. Sample image tiles were maximum 
intensity z-projected, and, for each channel, the dark-field images were 
subtracted from every tile, without shading correction. Stitching was 
performed after maximum intensity z-projection using multichannel 
images with a Fiji plugin54. Hoechst images were used to align images 
across all cycles using SimpleElastix55, and degradation of Hoechst 
staining required iterative image alignment (images cycle00 - cycle6 
to cycle01, cycle07 - cycle11 to cycle06, cycle12 - cycle16 to cycle11, 
cycle17 - cycle21 to cycle16). A tissue mask from the Hoechst channel in 
the reference cycle facilitated alignment. Alignment was performed in 
two steps: a rigid transformation followed by an affine transformation. 
The parameters used for the SimpleElastix algorithm (Supplementary 
Table 6) were optimized by visual examination of the results. Images of 
every cycle and every sample were assessed for alignment accuracy. In 
cases in which alignment was suboptimal, different cycles were chosen 
as reference to improve the alignment.

Image masking, denoising and background removal
ATP1A1 (membrane) and TUBA4A stains were used to generate tissue 
masks and isolate primary objects, by scaling images to the bottom 1st 
and upper 99th percentiles, divided by 2 and summed across images. 
Additionally, Otsu thresholding, dilation, expansion and closing of 
holes ensured that no tissue was excluded in tissue masking. All images 
were cropped to the bounding box based on these masks and denoised 
using the denoise_nl_means algorithm from scikit image in fast mode56. 
For denoising, a sigma was estimated from the images. Further param-
eters were patch_size = 5, patch_distance = 6, cutoff distance (h) = 0.8 ×  
estimated sigma. Several stainings had high spurious signals in areas 
corresponding to collagen-labeled areas, which were subsetted and 
excluded (Supplementary Table 1). Elution cycles bracketing imag-
ing cycles were used to support background removal. Elution cycle 
images were scaled to the upper and lower 1st percentiles, multiplied 
by the factor according to the desired proportion and summed. A fast 
non-negative least squares algorithm (https://github.com/jvendrow/
fnnls) was used to gauge a factor with which to multiply the background 
model before subtracting it from the respective foreground image.

Pixel matrix normalization
After registration, every sample has a defined pixel grid that is consist-
ent across all cycles, and a matrix can be generated in which every row 
corresponds to a pixel and every column to a signal measurement. 
Imaging conditions were constant within every color channel through-
out the experiment. To account for remaining signal divergences, 
samples were normalized while preserving divergent signals due to 
biological differences. All images were combined per timepoint to 
generate a pixel–signal matrix. For each timepoint, we calculated the 
mean and s.d. per stain channel, z-scored every image, multiplied it by 
the timepoint and color-channel-specific s.d. and added the timepoint 

and color-channel-specific mean (reverse z-scoring)22. Finally, every 
image channel was scaled to 0–1, where 0 is the bottom 1st percentile, 
and 1 is the upper 99th percentile across all images.

MTUs
Pixel clustering22 was performed on normalized and scaled values 
per sample and globally across all samples. For global clustering, a 
normalized global pixel matrix was generated by appending a random 
subset of every sample matrix row-wise by a factor of 1,000, but, for 
the single-sample clustering, the process used a random subset only 
on an individual sample. In both cases, FlowSOM57 was used to gener-
ate a self-organized pixel map (30 × 30 grid, Euclidean distance, 10 
runs). Median intensities of the fSOM output clusters were further 
clustered using phenograph58. The number of k-nearest neighbors 
specified for phenograph clustering was chosen by locating the inflec-
tion point (neighbor numbers versus number of clusters detected) 
using KneeLocator of the kneed package59. All pixels were assigned 
to the phenograph clusters by closest Euclidean distance in 4i inten-
sity measurement space. MTU images were generated by placing 
cluster-assigned pixels into the masks outlining the organoid images 
and assigning colors to pixels according to the assigned cluster number.

Nuclei segmentation and features
Nuclei were segmented using iterative optimization of Cellpose60 
parameters based on Otsu thresholding of the Hoechst signal from the 
reference cycle images. The parameters used were model_type: cyto, 
diameter: 35, flow_threshold: 0.8, cellprob_threshold: 0 and channels: 
[0, 0]. Nuclei features were retrieved using the segmented nuclei, the 
normalized pixel matrix and the regionprops_table function of the 
scikit-image toolbox56. Fluorescent intensity values measured per 
stain are the bottom 5th and top 5th percentiles, median, mean and 
pixel count (sum of all intensity values per nucleus). Spatial features, 
radial distance and nuclei density were measured per nucleus. For 
radial distance, the refined mask was distance transformed, and the 
mean distance value per nucleus was measured. For nuclei density, 
an elliptical structuring element with 100 × 100 pixels61 was used as a 
kernel, and the number of nuclei in a kernel around the centerpoint of 
each nucleus was used as a nuclear density measurement. For visualiza-
tion, nuclei features median fluorescence intensity values were scaled 
using the StandardScaler algorithm62, and a UMAP embedding63 was 
calculated from the first eight principal components (PCs) of the scaled 
features. Clustering was performed using the AgglomerativeClustering 
algorithm of the sklearn package62, and the number of clusters was set 
to 8 for clustering of a single replicate.

Reconstruction of laminar organization dynamics
Contour outlines of all organoid samples and the adult primary sam-
ple were extracted using the skimage function find_contours()56 after 
applying a Gaussian filter (σ = 50) and Otsu thresholding to the respec-
tive mask images. Contour coordinates for the primary adult sample 
were filtered to mark the outer circumference. Distance transforma-
tions were generated using the ndimage function distance_transform_
edt() on respective mask images and applying a Gaussian filter (σ = 25). 
The center of the outer edges of the laminar windows (100 × 1,000 
pixels, 16.25 × 162.5 μm) were positioned on every 100th coordinate 
of the respective contour outlines and oriented along the inner–outer 
axis by iteratively rotating each window on their respective distance 
transformed image and maximizing the sum of captured distance trans-
formation signal under each laminar window. Intensity profiles were 
extracted for all protein and MTU modalities by averaging across the 
inner–outer axis of each laminar window. Laminar windows positioned 
in straight contours and related to organoid regions outside of the field 
of view were removed, and windows with low signal or within damaged 
tissue were excluded by filtering windows for having more than 99% 
pixels with assigned MTUs. The laminar window intensity profiles of 
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each protein and MTU modality were then reverse z-scored according 
to organoid section and timepoint and scaled between 0 and 1. Inten-
sity profiles were smoothed by applying a one-dimensional (1D) mean 
filter (window size = 20) and downsampled by a factor of 2. Distances 
between laminar windows were calculated by fast Fourier transforming 
the intensity profiles and calculating the Euclidean distances of the first 
10 frequency components for each feature using the TSDist package in 
R64. The resulting distance matrices were analyzed using the DistatisR 
method65. Laminar tissue heterogeneity was assessed by diffusion 
analysis66 of the log10(x + 1) transformed and across features aggre-
gated distance matrix of laminar window intensity profiles. Results 
were then visualized by calculating UMAP embeddings for timepoint 
subsets of the first 10 diffusion components (DCs) and clustering 
laminar windows of each timepoint by performing Louvain clustering 
on the respective UMAP embeddings. Clustering performance and 
properties of laminar window clusters were evaluated by reconstruct-
ing the MTU images for all oriented laminar windows and ordered by 
timepoint-specific pseudotime. Louvain clusters were also mapped 
onto Hoechst stain images of each organoid, and clusters were selected 
for each timepoint not overlapping pigmented epithelium or other 
disorganized areas. All Louvain clusters from the primary tissue were 
retained and merged. A trajectory of laminar windows for the selected 
Louvain clusters (week 6: n = 5; week 12: n = 5; week 18: n = 3; week 24: 
n = 4; week 39: n = 4; adult: n = 1) were then reconstructed by applying 
diffusion pseudotime analysis.

A maturation score was calculated by measuring similarity of lami-
nar windows to the start and endpoint of the trajectory. The averaged 
compromised distances (DistatisR) to the upper and lower 5% quantile 
of pseudo-temporal ordered laminar windows were calculated, sub-
tracted from each other and scaled between −1 and 1. A constrained 
force-directed graph layout of laminar window Louvain clusters was 
generated by first filtering edges between clusters for being from the 
same or adjacent timepoints and then calculating edge weights by 
averaging the corresponding inter-laminar window cluster compro-
mised distances to construct a k-nearest neighbors graph (k = 4) from 
the resulting adjacency matrix. Exemplary laminar window clusters 
for each timepoint were illustrated by randomly selecting 10 win-
dows from each cluster and appending reconstructed MTU laminar 
windows along the pseudo-temporal trajectory. Spatiotemporal heat 
map visualization of features along the trajectory was achieved by 
scaling intensity profiles between the lower 1% and upper 5% quan-
tiles and smoothened by position on the inner–outer axis along the 
pseudo-temporal axis by applying a 1D mean filter (window size = 15). 
Average heat map of protein and MTU intensities along the pseudotime 
trajectory were generated by averaging intensity profiles across the 
inner–outer axis and smoothed with a 1D mean filter (window size = 25) 
along the pseudo-temporal axis.

scRNA-seq, scATAC-seq and multiome for the developmental 
timecourse
Retinal organoids were generated from four different stem cell lines (B7, 
IMR90.4, 409B2-iCas9 and B7-iCas9). Then, 1–3 organoids of the same 
batch were pooled and dissociated at multiple timepoints across the 
organoid developmental timecourse (Supplementary Table 2). Orga-
noids were washed three times with HBSS without Ca2+/Mg2+ (STEM-
CELL Technologies, 37250). Single-cell suspensions were obtained 
using a papain-based dissociation kit (Miltenyi Biotec, 130-092-628)14. 
In brief, 1 ml of pre-warmed papain solution was added to the orga-
noids and incubated for 10 min at 37 °C. To facilitate dissociation, 
the mix was pipette-mixed every 5 min with a p1000. Enzyme mix A 
was added and mixed by inversion and incubated for 10 min at 37 °C. 
Samples were pipette-mixed until tissue dissociation was confirmed 
via visual inspection. After incubation, cells were centrifuged for 5 min 
at 300g and 4 °C. Cells were resuspended in 250 μl of PBS + 0.04% BSA 
and sequentially filtered through a 70-μm filter (pluriSelect Mini, 

43-10070-50) and a 40-μm filter (pluriSelect Mini, 43-10040-40). Cell 
counts were assessed with a trypan blue assay on the automated cell 
counter Countess (Thermo Fisher Scientific). For scATAC-seq, nuclei 
were isolated according to the protocol provided by 10x Genomics 
using the low input protocol and a lysis time of 3 min. Nuclei were 
loaded in a concentration that would result in a recovery of 10,000 
nuclei. scATAC-seq libraries were generated with the Chromium Single 
Cell ATAC version 1.1 Library & Gel Bead Kit and sequenced on Illumina’s 
NovaSeq platform, NextSeq 550 or HiSeq 4000. For scRNA-seq, up to 
8,000 cells were targeted, and scRNA-seq libraries were generated 
with the Chromium Single Cell 3′ version 3.1 Library & Gel Bead Kit. 
Libraries were pooled and sequenced on llumina’s NovaSeq platform, 
NextSeq 550 or HiSeq 4000. Combined scRNA-seq and scATAC-seq 
(multiome) were generated with the Chromium Single Cell Multiome 
ATAC + Gene Expression kit. Nuclei were isolated as described for 
scATAC-seq. The gene expression and accessibility libraries were FAB 
treated and sequenced on Illumina’s NovaSeq platform.

Single-cell sequencing data pre-processing and multimodal 
data integration
For the scRNA-seq data of each retinal organoid sample, Cell Ranger 
(10x Genomics, version 4.0.0) with default parameters was used to align 
reads to the human reference (GRCh38, 10x Genomics, version 3.1.0) 
to generate the transcript count matrix for cells. Additional quality 
control was performed by excluding cells with detected transcript num-
ber fewer than 1,500 or higher than 20,000 as well as those with high 
mitochondrial transcript percentage (>20% for all the samples, except 
>40% for GB2_scRNAseq). The exonic and intronic count matrices 
were generated via dropEst67. For the scATAC-seq data of each retinal 
organoid sample, Cell Ranger ATAC (10x Genomics, version 1.2.0) with 
default parameters was used to align reads to the human reference 
(GRCh38, 10x Genomics, version 1.1.0) to generate the peak fragment 
count matrix for cells. Additional quality control was performed by 
excluding cells with detected ATAC fragments fewer than 200 or more 
than 10,000; cells with fewer than 20% fragments in the called peaks; 
cells with fragments at the blacklist genomic areas >2.5%; cells with 
nucleosome signal >3; and cells with transcriptional start site (TSS)<2.

To integrate scRNA-seq and scATAC-seq data measuring the same 
cell suspension of a retinal organoid sample, we modified a proce-
dure34 as follows. Seurat (version 4.0.0) was used to normalize and 
log-transform the scRNA-seq data, identify highly variable genes 
(vst method, 3,000 genes, followed by excluding mitochondrial and 
ribosomal genes), data scaling, principal component analysis (PCA, 
select top 20 PCs) and Louvain clustering (resolution = 0.5). Aver-
age transcriptome profiles were calculated for each cluster. Signac 
(version 1.4.0) was used to normalize the scATAC-seq data (default 
settings); perform partial singular value decomposition (SVD) on the 
normalized TFIDF of peaks with fragment detected in more than 0.5% 
of cells to obtain the latent semantic indexing (LSI) representation; 
and Louvain clustering (resolution = 0.5) based on the 2nd to 30th LSI 
components. Gene activity scores of annotated genes in each cell of 
the scATAC-seq data were calculated using Signac, and average gene 
activity scores were obtained for each scATAC-seq cluster. For each 
scRNA-seq cluster, the scATAC-seq cluster with the highest correlation 
across scRNA-seq highly variable genes that have non-zero gene activity 
scores in the scATAC-seq data was identified, and vice versa, result-
ing in a bipartite nearest neighbor network of clusters that contains 
multiple cluster components that are disconnected from each other. 
Next, CCA, implemented in Seurat, was performed on the scRNA-seq 
data and the scATAC-seq data represented by the gene activity scores 
based on the anchoring features selected by Seurat (same number as 
the highly variable genes in the scRNA-seq data). An MCMF analysis 
was applied to cells from the two modalities in each cluster compo-
nent. This constrained MCMF bipartite matching procedure resulted 
in bipartite edges, each of which connects one cell in the scRNA-seq 
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data with one cell in the scATAC-seq data. For each cell in the scRNA-seq 
data with at least one cell in the scATAC-seq data paired, a bimodal 
metacell was formed, with the RNA component being the scRNA-seq 
data and the ATAC component being the union fragments of the paired 
scATAC-seq cell.

To evaluate the integration performance, an unweighted k-nearest 
neighbor (k = 20) graph was obtained for the scRNA-seq and scATAC-seq 
sample separately, based on Euclidean distances across the top 20 PCs 
for the scRNA-seq data and Euclidean distances across the 2nd to 30th 
LSI components for the scATAC-seq data. We defined the distance 
between two cells as the shortest distance on the k-nearest neigh-
bor graph and then calculated the modal structure matching score 
(MSMS), which was defined as the Spearman correlation between the 
pairwise distances of cells in scRNA-seq with at least one cell in the 
scATAC-seq data paired and the pairwise distances of the paired cells in 
the scATAC-seq. A sample integration with MSMS < 0.1 was considered 
as a failure and was not used when forming the bimodal metacells.

For the multiome data, Cell Ranger ARC (10x Genomics, version 
2.0.0) was used to align reads of both the RNA library and ATAC library 
to the human reference (GRCh38, 10x Genomics, version 2020-A-2.0.0) 
to generate both the transcript and peak fragment count matrices. 
Additional quality control was applied with varied criteria for the 
two samples, on the transcript count number, on the ATAC fragment 
number and on mitochondrial transcript percentages. To generate a 
unified peak list to combine the chromatin accessibility profiles in dif-
ferent retinal organoid samples, we grouped all the scATAC-seq data 
into four groups based on organoid ages (0–10 weeks, 11–20 weeks, 
21–30 weeks and >30 weeks) and used MACS2 to perform peak calling 
on each group separately and merge (using the Signac-implemented 
wrapper function CallPeaks in default parameters). Based on the new 
peak list, the fragment number per peak of cells in the scATAC-seq and 
multiome data were requantified.

To integrate single-cell data across timepoints, we merged the 
scRNA-seq data (which contained ATAC-integrated metacells and cells 
without paired scATAC-seq data) and multiome data, together with a 
public scRNA-seq data of retinal organoids14. Focusing on the tran-
scriptomic profiles, highly variable genes (vst method, 3,000 genes) 
were identified for each of the three datasets, and those identified in 
at least two datasets were considered as the overall highly variable 
genes. Data scaling (cell cycle scores regressed out) and PCA (top  
20 PCs) were performed, and sample integration was performed using 
CSS30 stratified on samples (cluster resolution = 1). PCA (top 20 PCs) 
was applied to the resulting CSS matrix to generate the PCA-reduced 
CSS representation. Louvain clustering (resolution = 0.1) was applied, 
and one resulting cluster (cluster 6) was excluded for its expression of 
mesenchymal cell markers (for example, DCN). The same procedure 
was applied to the remaining cells, resulting in the new PCA-reduced 
CSS representation of the data. Louvain clustering (resolution = 0.5) 
was performed, and cells in three of the clusters were further excluded 
from the following analysis, for their expression of brain cell markers 
(for example, FOXG1 and GFAP). The UMAP embedding of the remain-
ing cells was generated given their PCA-reduced CSS representation.

Cells of all the scATAC-seq data, as well as those of the multiome 
data, were merged and integrated, considering their accessibility 
profiles across the unified peak list, using CSS stratified on samples, 
after data normalization with TFIDF and generating LSI representation 
with SVD (2nd to 30th LSI components) using peaks detected in more 
than 0.5% of cells. PCA was performed on the resulting CSS matrix to 
get the PCA-reduced CSS representation (top 20 PCs). Harmony68 was 
also performed based on the 2nd to 30th LSI components with default 
parameters to generate a Harmony representation. Louvain clustering 
(resolution = 0.5) was performed based on the PCA-reduced CSS repre-
sentation, and the clusters with enriched cells without any paired cells 
in the scRNA-seq data (Bonferroni-corrected one-sided Fisher exact test 
P < 0.01) were excluded. Next, the cluster labels of the scRNA-seq cells 

were transferred to the scATAC-seq data for those cells with only one 
paired cell in the scRNA-seq data or multiple paired cells but all sharing 
the same cluster label. For the rest of the cells, a network propagation 
procedure was developed to infer their corresponding cluster labels 
as follows. First, three unweighted k-nearest neighbor (k = 20) graphs 
were generated for the scATAC-seq cells, based on the LSI, PCA-reduced 
CSS and Harmony representation, respectively. The three graphs were 
averaged to form a weighted k-nearest neighbor graph. The adjacency 
matrix of the resulting k-nearest neighbor graph was obtained and 
row-normalized (that is, sum of each row is 1). The normalized adja-
cency matrix, denoted as the propagation matrix P, was further modi-
fied, so that, for any cell i that has a unique transferred cluster label 
from the scRNA-seq data, Pi,i = 1 and Pi, j = 0 if i ≠ j. This propagation 
matrix was then used to perform network propagation as St = P × St−1, 
where S0 is the initial transferred cluster identity matrix: S0

i,j = 1 if cell 
i has a paired cell in the scRNA-seq data in cluster j, otherwise 0. The 
propagation was performed 100 times. The cluster with the highest 
propagated score was considered as the transferred cluster label of a 
given cell. The transferred-label-based cleanup was then performed 
by excluding cells with no paired cells in the scRNA-seq data as well as 
cells with transferred cluster labels matching the mesenchymal or brain 
clusters. Afterwards, the similar procedure of dimension reduction and 
data integration across samples was applied. A UMAP embedding was 
generated based on the PCA-reduced CSS representation.

Cell type annotation and developmental trajectory 
characterization
Based on the combinatorial expression of canonical cell type mark-
ers in the mentioned Louvain clusters (resolution = 0.5), cells in the 
integrated retinal organoid cell atlas were coarsely annotated as rods, 
cones, BCs, ACs/HCs, RGCs, RPCs, MG, RPE cells and others. To further 
refine the annotation, we subsetted cells annotated as AC/HC, identi-
fied highly variable genes (default parameters) on the AC/HC subset, 
scaled the data, performed PCA (top 10 PCs), integrated data from 
different samples by MNN69 using the wrapper function in the R pack-
age SeuratWrappers with default parameters and performed Louvain 
clustering on the MNN representation (resolution = 0.5). Among those 
clusters, distinct ACs and HCs were identified. A similar procedure 
was applied to cells annotated as RGCs. Among the Louvain clusters 
(resolution = 0.3), cells were split into RGCs and precursors, and nine 
annotated cell types (RPCs and eight terminal cell types—rods, cones, 
BCs, ACs, HCs, RGCs, MG and RPE) were considered as well-defined cell 
types, whereas the rest of cells were considered as intermediate cell 
states. The average expression profiles of each cell type and the nor-
malized transcriptomic similarity between cell types were calculated. 
Cell type annotation and normalized transcriptomic similarities were 
transferred to the scATAC-seq atlas using the network propagation pro-
cedure described above, based on a new weighted k-nearest neighbor 
graph from the recalculated LSI, CSS and Harmony representation of 
the cleaned-up cells in the scATAC-seq data.

Marker genes were identified by comparing expression between 
cell types using the presto package in R combining multiple criteria 
(Benjamini–Hochberg-corrected two-sided Wilcoxon test P < 0.01, area 
under the curve (AUC) > 0.7, average fold change (FC) > 1.2, detection 
rate difference >20%, being detected in fewer than 20% of the other 
cells and excluding mitochondrial and ribosomal genes), ordered by 
cluster detection rates. Marker accessible peaks were defined as 1 with 
Benjamini–Hochberg-corrected two-sided Wilcoxon test P < 0.01, 
AUC > 0.51 and the ratio of detection rates in/out of the cluster >5, 
ordered by the detection rate differences.

scVelo70 was performed on the scRNA-seq data based on the sto-
chastic RNA velocity model. The PCA-reduced CSS representation 
was used as the transcriptomic data representation. The RNA veloc-
ity transition matrix and velocity pseudotime were both obtained 
with default parameters. CellRank analysis33 was then applied to the 
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same cells using a hybrid kernel (50% velocity kernel and 50% velocity 
pseudotime kernel), with the eight terminal cell types considered as 
terminal states, to calculate the terminal state probabilities. Network 
propagation was used to transfer both the velocity pseudotime and 
the terminal state probabilities to other cells, based on the unweighted 
k-nearest neighbor(k = 50) graph calculated from the PCA-reduced 
CSS representation.

We constructed a graph abstraction of the differentiation trajecto-
ries to different cell types from RPC as follows. Cells were grouped into 
three groups—ACs, HCs and others—and Louvain clustering (resolu-
tion = 20) was applied to the PCA-reduced CSS representation of cells 
in each group to get high-resolution clusters, which were then pooled, 
as the cell state representatives. Cell metadata, including categorical 
(for example, cell type annotation) and numeric (for example, velocity 
pseudotime and CellRank terminal state probabilities) information, 
were summarized to the clusters with either max-pooling or mean. 
PAGA, as implemented in scanpy, was used to compute connectivity 
between clusters given the PCA-reduced CSS representation (n_neigh-
bors = 20). Two clusters were connected if all the following three cri-
teria were satisfied: PAGA connectivity >0.2; one cluster being one 
k-nearest neighbor (k = 20) of the other cluster in the summarized 
CellRank terminal state probability space; and the two clusters do 
not belong to different terminal cell types. The connection was direc-
tional, from the cluster with lower pseudotime to the one with higher. 
A force-directed layout of the graph was generated for visualization.

To further refine cell type branching and trajectory estimates, we 
chose five clusters with the lowest velocity pseudotime as roots and 
performed 100,000 random walks toward a node with zero to-degree, 
discarding non-terminal nodes. For random walks reaching each of 
the eight terminal cell types, the frequencies of passing by each node 
in the graph were counted and normalized by the number of random 
walks reaching that terminal cell type. For each node, the resulting 
normalized frequencies to different terminal cell types were further 
normalized by the sum to get the estimated likelihoods of the cell state 
differentiating into different terminal cell types. Any likelihood less 
than 1% was set to 0 and renormalized to get the final likelihood matrix.

Reconstruction of GRN governing retinal organoid 
development
We applied Pando34 to the pseudocell-summarized data of the 
RNA-ATAC paired portion of the retinal organoid timecourse data to 
infer the GRN. Pando incorporates evolutionary conservation, prior 
regulatory elements, data-driven open accessible regions (for exam-
ple, peaks called in the scATAC-seq data), TF motif database and bind-
ing site prediction to identify putative cis-regulatory elements and 
putative trans-regulators (that is, TFs) of each gene and fits a linear 
model of gene expression against interactions of the cis-regulatory 
element accessibility and trans-regulator expression, followed by 
statistical tests to define significant TF-motif-target triplets. Pseudo-
cells were constructed by averaging transcriptomically similar cells 
from the same cluster of the same sample, following the procedure 
as described previously71 and implemented in the simspec package30, 
with selection ratio of 0.1. This procedure was to decrease the noise 
due to data sparseness, particularly chromatin accessibility data. 
The extended TF binding motif database was constructed using a 
similar procedure as described previously34, integrating JASPAR (2020 
release)72, CIS-BP database73 and sequence-similarity-based motif trans-
fer. Pando was run in default setting, except for the tf_cor threshold 
being 0.05. A TF-motif-target triplet was considered as significant if  
Benjamini–Hochberg-corrected P < 0.01.

To generate the layout of the resulting GRN highlighting TFs, 
the pairwise Pearson correlations of gene expression between dif-
ferent genes across the cell state representatives defined above were 
first calculated as the base TF–gene linkage score. Next, the lineage 
score between any TF–gene pair with no inferred direct regulatory 

relationship was set to 0. PCA (top 20 PCs) was then applied to con-
vert the linkage score matrix to represent each TF, which was used as 
the input to generate the UMAP embedding of the TFs. For each TF 
in the GRN, its expression pseudotime was calculated as the average 
pseudotime of cell state representatives weighted by the expression 
level of the TF in different cell state representatives. The pseudotime 
dependency of the TF is calculated as R2 between its expression across 
cell state representatives and the predicted values of a smooth splines 
model of expression against pseudotime (degree = 3).

Multimodal spatial integration
To integrate the spatially resolved time course of 4i nuclei with the 
multimodal single-cell sequencing (scSeq) dataset, we established 
an integration pipeline in Seurat (version 4.0.0) in which we perform 
high-resolution clustering in RNA space and transfer these metacluster 
labels to the 4i data by CCA anchoring. Protein stain intensity features of 
segmented 4i nuclei from the organoid samples of the developmental 
timecourse and the primary adult sample were log(x + 1)-transformed 
and imported into individual Seurat objects. Several protein stains 
were excluded (Supplementary Table 1) due to prior quality assess-
ment and protein stains that do not have an associated gene in the 
RNA expression data (MAPK1/MAPK3, Serotonin, NPC and Hoechst). 
For each timepoint in the developmental timecourse (weeks 6, 12, 18, 
24 and 39), the respective samples were integrated by CCA anchoring 
using the Seurat functions FindIntegrationAnchors(dims = 1:10) and 
IntegrateData(dims = 1:10). Subsequently, PCA was performed on the  
integrated samples, and UMAP embeddings were generated from  
the first 10 PCs for each timepoint. The adult sample was processed in 
the same manner but skipping the integration procedure.

Integration was performed for each timepoint of the 4i dataset 
separately by selecting respective matching and/or adjacent time-
points in the multimodal scSeq data. To maximize the proportion of 
ATAC-paired cells in the subsets, we matched week 6 of the 4i data with 
week 6 of the multimodal scSeq data; week 12 with weeks 11, 12 and 13; 
week 18 with week 18; week 24 with week 24; week 39 with weeks 36, 38 
and 40; and the adult sample with weeks 36, 38, 40 and 46, respectively. 
For each subset of the multimodal scSeq data, Harmony integration68 
was run accounting for sample grouping to evenly distribute paired 
ATAC cells among high-resolution metaclusters that were subsequently 
computed with the Seurat function FindNeighbors(resolution = 30, 
dim = 15). To account for low total numbers of paired ATAC cells in 
matched subsets for weeks 24 and 39, we imputed ATAC signals for 
cells with no ATAC information within respective k-nearest neighbor 
graphs by applying network diffusion (n = 20). RNA expression, ATAC 
peak regions and TF motif score matrices were averaged by assigned 
metaclusters of each respective timepoint. To spatially resolve RNA 
expression, ATAC peaks, cell-type-specific ATAC peak sets and TF motif 
scores, we transferred cell type and metacluster labels from matched 
multimodal scSeq subsets to the corresponding 4i nuclei data subsets 
by CCA anchoring. For visualization of the mapped ‘Intermediate’ cell 
types in UMAP embeddings and onto organoid images, we calculated 
mixed colors based on the maximal correlation of intermediate cells 
with the defined terminal cell states for the multimodal scSeq data and 
further averaged these by metaclusters for visualizing 4i nuclei cell 
types. We added the position on the inner–outer axis of each nucleus 
to the metadata by calculating the Euclidean distances to the respec-
tive organoid contour outlines. We also added the pseudotime rank 
of respective laminar windows as a binary count matrix that accounts 
for nuclei that might be positioned within overlapping neighboring 
laminar windows. For visualization of cell type and feature distribu-
tions along the inner–outer axis and pseudotime trajectory of laminar 
windows, the integrated multimodal datasets were filtered for nuclei 
that occur at least in one laminar window with assigned pseudotime 
rank and then plotted as density contour estimates from pseudotime 
and inner–outer axis resolved cell type frequency or amplified feature 
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count matrices. Count matrices for cell type abundances were gener-
ated by aggregating discretized nuclei positions along the inner–outer 
axis. To map continuous features, such as RNA expression or ATAC peak 
regions, count matrices of all nuclei were multiplied by their respec-
tive scaled (0–1) feature matrix, amplified by a factor of 10, rounded 
and aggregated.

EPHB2 spatial correlation analysis
Variable features (weeks 38 and 40) were detected with the Seurat 
function FindVariableFeatures(). We then calculated two-dimensional 
kernel density estimations with an axis-aligned bivariate normal ker-
nel for all respective per nuclei resolved spatial features across all 
organoid sections of week 39 using the kde2d() function from the R 
package MASS74 on a 200 × 200 grid. In addition, we calculated respec-
tive binary mask grids by calculating density estimations just based on 
nuclei positions and applying a threshold of 0.05. We then calculated 
the respective spatial correlations of all selected features with EPHB2 
across all organoid samples after multiplying respective density esti-
mations with their corresponding binary mask. Pearson correlations 
were then averaged by feature across all analyzed organoid sections. 
In addition, we calculated the spatial correlation of cell type distribu-
tions with EPHB2 in the same manner as described above, selected 
the top 115 positive and negative correlated features and performed 
GO term enrichment using the R package clusterProfiler75 setting the 
background genes to the complete human genome. For visualization, 
we plotted heat maps of the top four positive and negative correlating 
features as well as EPHB2 in all analyzed organoid sections. Correlation 
of cell type distributions with spatial EPHB2 expression was visualized 
as a heat map after applying hierarchical clustering (Ward.D2) of cell 
types across all analyzed sections. Results of the GO analysis were 
visualized as dot plots where we denote the detected gene ratios and 
−log10(adjusted P values). A complete list of input genes and resulting 
GO terms is shown in Supplementary Table 4.

Differentiation trajectory and cell neighborhood analysis  
of RGCs
To reconstruct RGC differentiation in week 6 retinal organoids from 
either RNA or protein information, averaged scaled RNA (for week 6  
detected variable features) and protein abundances for all week 6 
high-resolution metaclusters in the 4i data were calculated. Subse-
quently, RNA and protein metaclusters were assessed separately by dif-
fusion analysis, and respective diffusion pseudotimes were obtained. 
For visualization, we calculated averaged mixed colors for each meta-
cluster, averaged CellRank probabilities for RGCs by metacluster and 
applied hierarchical clustering (Ward.D2) to 25 RNA transcripts that 
showed the highest absolute Spearman correlation against pseudotime 
ranks and six transcripts whose corresponding 4i signals correlated 
with pseudotime (HES1, SOX9, VSX2, PAX6, POU4F2 and ONECUT2).

To analyze local, microenvironmental variation of RGC cells in 
the 4i data, we performed spatial resolved neighborhood analysis of 
protein and MTU signals within week 12 retinal organoid sections. We 
segmented RGC neighborhoods through a 40-pixel (6.5-μm) radial 
extension from each nuclei centroid and averaged respective protein 
signals by radial position. We masked respective nuclei to exclude 
protein intensity signals that stem from the nuclei themselves and to 
focus on the respective radial neighborhoods. We then processed the 
retrieved radial intensity profiles and reconstructed laminar organiza-
tion dynamics as described above. In brief, we first applied z-scoring 
and scaled the intensity profiles between 0 and 1, smoothed the signals 
by applying a 1D mean filter (window size = 20), downsampled by a fac-
tor of 2 and calculated respective distance matrices by applying fast 
Fourier transform and averaging the Euclidean distances of the first 10 
frequency components. We then assessed the heterogeneity of RGC 
microenvironments by applying diffusion analysis, calculating UMAP 
embeddings from the first 10 DCs and clustering radial neighborhoods 

by performing Louvain clustering on the UMAP embedding. Assigned 
Louvain clusters were then mapped onto respective week 12 organoid 
sections for visualization. We further averaged the MTU abundances 
within each Louvain cluster’s radial neighborhoods and applied hier-
archical clustering (Ward.D2) and visualized the results in a heat map. 
For further visualization of the detected radial spatial neighborhoods, 
we randomly selected six neighborhoods from all analyzed week 12 sec-
tions for each detected Louvain cluster and cropped respective image 
collages for Hoechst stain, all MTUs and an RGB overlay of POU4F2, 
HSPD1 and TUBB3 protein stains as well as a selection of MTUs 6, 8, 
13, 17 and 20.

As we observed RGC nuclei with apoptotic morphologies in 
several Louvain cluster neighborhoods, we further searched for 
apoptosis-related processes in the scRNA-seq data of RGCs in weeks 
11, 12 and 13. We, therefore, retrieved a list of human genes associated 
with the GO term apoptotic process (GO:0006915) from the AmiGO 2 
database (http://amigo.geneontology.org/amigo/term/GO:0006915), 
which includes genes that are positively and negatively regulating 
apoptosis. We detected variable transcripts of RGCs by using the 
Seurat function FindVariableFeatures(). Next, we performed PCA for 
detected variable features that are also present in the retrieved list of 
apoptosis-related genes and used the calculated PCA to run Harmony 
integration accounting for sample groupings. Based on the first 30 
dimensions of the Harmony embedding, we assigned clusters with 
the Seurat functions FindNeighbors() and FindClusters(resolution = 1) 
and calculated a UMAP embedding. Gene markers of each detected 
RGC cluster were identified by comparing expression of cells of one 
cluster to cells of other cluster cell types using the presto package in 
R for all detected variable features. Cluster markers were selected by 
combining Benjamini–Hochberg-corrected two-sided Wilcoxon test 
P < 0.05 and AUC > 0.5 criteria. We selected the top 50 markers from 
this ranking and used DAVID to perform GO term enrichment analysis 
and KEGG pathway analysis for cluster 6, which was defined by a set of 
marker genes strongly relating to apoptotic processes (Supplementary 
Table 5). We calculated a score for this detected apoptotic signature 
by using the Seurat Function AddModuleScore(ctrl = 5) for the top 10 
markers of cluster 6. For visualization, we created feature plots of the 
UMAP embedding for the detected clusters as well as POU4F1, POU4F2, 
DDIT3, SCG2, ATF3 and apoptotic module scores of cluster 6.

Processing and multimodal integration of multiplexed 
smFISH data
Spot segmentation and pre-processing of smFISH image data were 
performed as described76. To assign the detected spots of the multi-
plexed smFISH data to individual cells, we applied Baysor77 for cell seg-
mentation. As a prior input for segmentation, Cellpose-labeled nuclei 
masks from all 20 organoid slices were generated (model = ‘cyto2’, 
diameter = 50, flow_threshold = −3, cellprob_threshold = 0.8).  
Baysor was run with default settings and a specified initial estimated 
cell radius of 25 to obtain respective expression matrices, spot cell 
assignments, centroids and convex hulls of the segmented nuclei. For 
the visualization of spatial transcript distribution, we generated spatial 
multi-transcript plots as well as faceted insets of respective laminar 
organized tissue for a selection of high abundant transcript of both 
timepoints. We colored all measured transcripts in the same insets by 
assigned cell and generated an overlay of DAPI images (week 13 and 
week 32) and their respectively colored convex hulls for representative 
laminar organized tissue areas.

For integration of the spatially resolved FISH nuclei with the mul-
timodal scSeq dataset, we used an integration pipeline similar to the 4i 
integration pipeline. In brief, we imported Baysor expression matrices 
into Seurat objects, and, for each timepoint in the FISH dataset (weeks 13  
and 18), the respective samples were integrated by CCA anchoring 
using the Seurat functions FindIntegrationAnchors(dims = 1:10) and 
IntegrateData(dims = 1:10). Then, PCA was performed on the integrated 
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samples, and UMAP embeddings were generated from the first 10 PCs 
for each timepoint. Cell type label and high-resolution metacluster 
transfer from the multimodal scSeq datasets to the spatially resolved 
FISH nuclei were performed in the same manner as described above 
for the 4i nuclei. For integration, we matched weeks 11, 12, 13 and 15 to 
the week 13 smFISH samples and weeks 30, 31, 32 and 34 to the week 32  
smFISH samples. For visualization purposes, we resolved labeled ‘Inter-
mediate’ cell types in the shown UMAP embeddings and organoid 
overlays with the same color mixing approach as for the 4i nuclei. 
Furthermore, we averaged transcript abundance by assigned cell type 
labels, z-scored average expression across transcripts, applied hierar-
chical clustering (Ward.D2) and visualized the results as a heat map.

Multimodal spatial comparison of 4i and smFISH
To generate laminar windows for the smFISH data, Laminator analysis 
was applied in a similar manner as for the 4i data. Initial masks for 
each organoid sample were created by generating binary images of 
all located spots per sample and applying a combination of dilation, 
fill holes and erosion binary operations, followed by Gaussian blur-
ring, Otsu thresholding and selection of the largest segmented area 
(for details, see GitRepo). Tiles that were not imaged were further 
masked by thresholding corresponding DAPI images and combining 
the tile masks with their corresponding initial masks. Similarly to the 
above-described Laminator analysis, organoid contours were detected, 
and laminar windows (100 × 1,000 pixels) were placed and oriented 
at the same intervals along the contours. We generated individual 
binary images for all transcripts from the respective discretized spa-
tial coordinates, extracted intensity profiles and applied filtering for 
straight contour areas that stem from unimaged tiles, reverse z-scoring, 
smoothing and downsampling of retrieved intensity profiles, distance 
matrix construction and averaging, diffusion analysis and Louvain clus-
tering of laminar windows with the same parameters as for the 4i data.

We compared and matched smFISH laminar windows with the 
spatiotemporal laminar window trajectory of the 4i dataset. Segmented 
smFISH and 4i nuclei were assigned to their respective laminar win-
dows, and their position on the inner–outer axis was determined. Lami-
nar windows (smFISH and 4i) were separated into equally spaced zones 
(n = 6) along the inner–outer axis, and pseudobulk transcriptomes 
were calculated from the respective assigned nuclei’s scaled expres-
sion values. Note that, for the 4i nuclei, we used the predicted scaled 
expression values of the transcripts overlapping with the measured 
transcripts of the smFISH data. Averaged Euclidean genomic distances 
of matched spatial zones between all smFISH and 4i windows were 
calculated. Consequently, each smFISH window was paired with the 
4i window with the respective minimal averaged genomic distance if 
the same spatial zones were populated by nuclei as in the compared 
smFISH window. To visualize the similarity of smFISH to 4i windows 
across experiments, we grouped matched window pairs by 4i and 
smFISH timepoint and plotted the respective distributions of averaged 
genomic distances as box plots.

To assess spatially constrained correlation between measured 
and predicted RNA abundance, we further matched nuclei across 
matched smFISH and 4i laminar windows. Each nucleus in the smFISH 
windows was paired with the 4i nucleus that had maximal Pearson 
correlation between the smFISH scaled expression of transcripts and 
predicted scaled transcript expression in the 4i nuclei. From these 
paired multimodal metacells, which possess protein-level, predicted 
RNA levels from 4i nuclei as well as measured and predicted RNA levels 
from smFISH, intermodality correlations for each of the measured 
transcripts of the smFISH data were calculated for week 13 and week 32  
smFISH samples. For visualization of predicted and measured RNA 
levels and protein levels, we calculated the respective averaged inner–
outer intensity profiles for all modality types of VSX2, weighting 4i 
laminar windows that were matched multiple times with log(n + 1). In 
addition, we added the respective 1–99% confidence intervals for the 

null hypothesis of Pearson correlation and log10(n + 1) counts of total 
transcript abundances to related bar plots and scatter plots.

Power analysis 4i and smFISH
To estimate the power of distinguishing different cell types or subtypes 
using the 4i and smFISH data, we curated a graph of clusters with varied 
resolutions on transcriptome in a hierarchical manner, based on the 
scRNA-seq data. The classification of cells into eight major cell types 
(RPCs, RGCs, HCs, ACs, BCs, cones, rods and RPE) and the intermediate 
state, which covers all the other non-initial and non-terminal cell states, 
is considered as the first layer (L1). The second layer of clustering (L2) 
expanded the intermediate state into nine different clusters, the RPC 
cluster into G2M-phase RPC and other RPC clusters and the BC cluster 
into BC-on and BC-off clusters, all based on the Louvain clustering 
(resolution = 0.3) mentioned above. Afterwards, cells of different L2 
clusters were split, and the Louvain clustering was applied to each 
subgroup with varied resolutions (0.1, 0.5 and 1) to obtain subtypes 
of each cell type, which altogether defined the third to fifth layer of 
clustering (L3–L5). Finally, the cell states used for the above-mentioned 
graph abstraction of the differentiation trajectories were considered 
as the finest layer of clusters (L6). The average transcriptome profiles 
were calculated for every cluster on different layers by averaging the 
transcriptome profiles of cells assigned to the cluster.

To visualize the hierarchy of clusters, we represented different 
layers of clusters as a graph, where each cluster was a node, and two 
clusters were connected by an edge only if they were from two nearby 
layers and the two clusters had at least one shared cell. The edge was 
weighted as nij / ni, where nij is the number of cells shared by the two 
clusters, and ni is the number of cells in the cluster at the coarser layer. 
Edges with weights less than 0.1 were trimmed. The cluster graph was 
then visualized using the ggraph package in R with the tree layout 
implemented in the igraph package (the layout_as_tree function), with 
the edge weights represented by the edge alpha-transparency.

Next, the Pearson correlation coefficient (PCC) was calculated 
between the average transcriptome profiles of each cluster and the 
protein abundance profile of every segmented nucleus in the 4i exper-
iments. For each 4i nucleus, PCC was calculated for all L1 clusters, 
whereas, for the other layers, only clusters reachable from the L1 clus-
ter that the nucleus was predicted to be in the integration procedure 
mentioned above were included. The power of discriminating different 
clusters at different layers for the 4i experiment was represented by the 
distribution of differences between the maximal and the second-largest 
PCC in all the 4i nuclei. A similar procedure was also applied to the 
Baysor segmented cells in the smFISH experiments. To estimate the 
background of the discrimination power, cells of each L1 cluster were 
randomly grouped into two groups, each of which with the average 
transcriptome profiles calculated. For each 4i nucleus or smFISH seg-
mented cell, PCCs were calculated to the two average transcriptome 
profiles of the cluster it was predicted to be. The distribution of differ-
ences between the two PCCs across all 4i nucleus or smFISH cells was 
considered as the background of zero discrimination capacity.

Vector and lentivirus preparation for perturbation 
experiment
The lentiviruses for perturbation experiment were produced as 
described34,40 with minor modifications. In brief, a modified CROP-seq 
vector carrying GFP34 was used. Three gRNAs per targeted gene (NRL, 
OTX2, PAX6, VSX2 and CRX) were designed using the GPP Web Portal 
(https://portals.broadinstitute.org/gpp/public/) and synthesized by 
IDT following40 recommendations. Moreover, a non-targeting ‘dummy’ 
guide (CGCTTCCGCGGCCCGTTCAA) was added. Oligonucleotides 
were pooled in equal amounts and assembled in the vector backbone 
by Gibson isothermal assembly. The plasmid library was sequenced 
to validate the complexity of the pooled plasmid library, and 10 ng of 
plasmid library was used for generating a sequencing library with a 
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single PCR reaction. Illumina i7 and i5 indices were added by PCR, and 
the library was sequenced on Illumina’s MiSeq platform. Upon valida-
tion, lentiviruses were generated.

‘In organoid’ CROP-seq perturbation experiment
Retinal organoids derived from 409B2-iCas9 line at 19 weeks of 
development were infected with the lentiviral pool described above. 
Twenty organoids were individually infected in ultra-low attachment 
96-well plates (Costar). Each organoid was infected with 1 μl of LV 
(titer = 5.61 × 108 TU ml−1) in 100 μl of medium. After 4 h, 150 μl of 
medium was added for O/N incubation. The day after, organoids 
were moved to 10-cm plates and treated with doxycycline 4 μg ml−1 
for 1 week to induce Cas9. After 3 weeks, 10 organoids were dissoci-
ated with the papain-based dissociation kit (Miltenyi Biotec, 130-
092-628) described previously, and GFP+ cells were enriched by 
fluorescence-activated cell sorting (FACS) (Experiment 1). The other 
10 organoids were processed 5 weeks after infection (Experiment 2). 
We obtained a total of 12,000 and 7,000 GFP+ cells, respectively, and 
loaded them for scRNA-seq. We note that the first sample experienced 
a potential wetting error during GEM generation. scRNA-seq libraries 
were generated with the Chromium Single Cell 3′ version 3.1 Library & 
Gel Bead Kit. The expression libraries were FAB treated and sequenced 
on Illumina’s NovaSeq platform.

gRNA detection from single-cell cDNA
gRNA sequences from single cells were amplified from 30 ng of 
scRNA-seq cDNA as described in ref. 34. The first PCR amplifies a 
broad region targeting the outer part of the U6 promoter. The second, 
nested, PCR targets the inner portion of the U6 promoter adjacent 
to the guide sequence and adds a TruSeq Illumina i5 adapter. Finally, 
a third PCR adds Illumina sequencing i7 adaptors. PCRs were moni-
tored by quantitative PCR to avoid over-amplification. The samples 
were purified using SPRI beads (Beckman Coulter), and libraries were 
sequenced at 1:10 proportion of the transcriptome library on Illumina’s 
NovaSeq.

CROP-seq data pre-processing and analysis
CROP-seq experiment reads were aligned to the human reference 
(GRCh38, 10x Genomics, version 3.1.0) with Cell Ranger (10x Genomics, 
version 4.0.0) to generate the transcript count matrix for each sample. 
The amplicon sequencing reads detecting the gRNAs were aligned to 
the extended human reference (GRCh38-based, 10x Genomics, version 
3.1.0) using Cell Ranger (version 4.0.0) adding a guide-GFP construct 
as an artificial chromosome. A quality control procedure34 was used 
to extract informative gRNA transcripts detected in each cell based 
on a Gaussian mixture model of number of reads per unique molecu-
lar identifier (UMI), resulting in a guide transcript count matrix for 
each sample, which was binarized to obtain the final cell-to-gRNA and 
cell-to-target assignments.

CROP-seq transcriptomic data were merged and normalized 
using Seurat (version 4.0.0). Highly variable genes were identified 
(vst method, 3,000 genes, excluding cell-cycle-related genes and mito-
chondrial and ribosomal genes), and data scaling and PCA (top 20 PCs) 
were then performed, followed by data integration by CSS and further 
PCA reduction. The data were projected to the CSS space30 of the retinal 
organoid timecourse, and the k-nearest neighbor (k = 50) of each cell (i) 
in the CROP-seq data in the timecourse cell atlas (denoted as Nr

i), as well 
as the average of their distances in the CSS space (denoted as di), were 
obtained. The average distance of each cell (j) in the timecourse atlas to 
its k-nearest neighbor (k = 50) within the atlas (d′j) was also calculated. 
A normalized projected distance of each cell in the CROP-seq data to 
the timecourse atlas was, thus, defined as

di = di/ (∑
j∈Nr

i

d′
j /|N

r
i |) .

The bimodal distribution of di  suggested a group of cells with large 
projection distance to the reference data, which implied failure of the 
projection—that is, cell types/states that did not exist in the reference 
data. A Gaussian mixture model was then fitted to identify those cells 
that were excluded from the following analysis. A UMAP embedding 
was generated, and Louvain clustering with varied resolutions  
(0.2 and 0.6) was performed, both based on the PCA-reduced CSS 
representation of the remaining cells.

To estimate the perturbation probability of each cell being 
induced by the gRNA and Cas9 expression, we adapted the perturba-
tion probability calculation34, using experiments and the Louvain clus-
ter labels (resolution = 0.6) as covariates. The resulting perturbation 
probabilities were considered as the proxy of perturbation status of 
a cell and used in the following differential expression (DE) analysis. 
The DE analysis was applied to co-expression gene modules, which 
were defined in the retinal organoid timecourse cell atlas as follows. 
A k-nearest neighbor (k = 50) graph of genes detected in at least 1% of 
cells in the timecourse cell atlas was based on the Pearson correlation 
distance between gene expression across the abstracted cell state 
representatives. Louvain clustering (resolution = 10) was applied to 
the gene k-nearest neighbor graph to identify the co-expression gene 
modules. The gene module activities were quantified for cells in the 
timecourse atlas as well as cells in the CROP-seq data, separately, using 
the AddModuleScores function in Seurat with default parameters. 
An ANOVA-based DE method was then applied to the gene module 
activity scores of each co-expression gene module, testing whether 
the cell perturbation status of different targeting TFs significantly 
explained variance of the activity score of a gene module in the data-
set, with additional covariates, such as experiments and cell clusters 
(resolution = 0.6), included in the model. Co-expression gene modules 
with Benjamini–Hochberg-corrected P < 0.1 were considered as dif-
ferentially expressed modules (DEMs) caused by the perturbation 
of the targeting TF. The size of the DE effect was represented by a 
signed −log10(P), where P is the ANOVA P value and the sign being the 
sign of the estimated coefficient. The resulting DEMs were clustered 
using hierarchical clustering (Ward.D2 method), given the pairwise 
Pearson correlation distance across the timecourse cell state repre-
sentatives. DAVID was used to do functional enrichment analysis of 
genes in each cluster of DEMs. The DE analysis was also applied to the 
two CROP-seq experiments separately with only the cluster label as 
the additional covariate, to estimate the robustness of the detected 
DE of the identified DEMs.

Statistics and reproducibility
Imaging analysis and integration were performed on the entire data-
sets of the 4i and smFISH experiments, respectively. 4i and smFISH 
experiments were performed once each. They included multiple 
controls and analysis illustrating reproducibility and robustness of 
the procedures. All images and spatial plots presented are representa-
tive of the entire respective datasets or specific timepoints within the 
respective dataset if indicated. The 4i dataset included 16 organoids 
and one primary tissue. For each organoid timepoint, at least two 
organoids with at least two sections are represented with a total of 
40 sections. The primary tissue sample is represented with a single 
section. See Supplementary Table 1 for details on the experimental 
design. For the smFISH data, four organoids per timepoint week 13 
and week 32 were used. Week 32 organoids are represented with 12 
sections and week 13 organoids with eight sections (Supplementary 
Table 7). All the box plots presented in figures were created using the 
default box plot setup in R. In brief, the midlines in boxes represent 
medians; the widths of boxes represent the lower and upper quartiles; 
the upper and lower whiskers represent values outside the middle 
50% that are no more than 1.5 times the interquartile range from the 
boxes; and values out of the ranges are considered as outliers, which 
are shown as dots or not shown.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the data can be visualized and explored via the EyeSee4is app 
(https://eyesee4is.ethz.ch/). Compressed images in JPEG format, an 
example 4i image dataset in the raw TIFF format, multiplexed smFISH 
spot data, processed datasets of integrated scRNA-ATAC, 4i nuclei and 
smFISH nuclei as well as the 4i-scRNA-ATAC and smFISH-scRNA-ATAC 
integrated multimodal data are available via Zenodo (https://doi.
org/10.5281/zenodo.7561908)78. The raw sequencing data are available 
via ArrayExpress under accession number E-MTAB-12622 (CROP-seq)79. 
The scRNA-seq and scATAC-seq data are available at ArrayExpress under 
accession number E-MTAB-12714. The B7 cell line data are available in 
the European Genome-phenome Archive under accession number 
EGAS00001007065. The complete 4i image data of raw TIFF files are 
too large to provide on public repositories. They are available upon 
reasonable request to the corresponding authors.

Code availability
Laminator and other code used in the analyses are available on GitHub 
(https://github.com/quadbiolab/spatial_multimodal_retinal_organoid ).
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