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Quantitative analysis of tRNA abundance and 
modifications by nanopore RNA sequencing
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Noelia Camacho3, Virginie Marchand    4, Yuri Motorin4, 
Lluís Ribas de Pouplana3,5 & Eva Maria Novoa    1,2 

Transfer RNAs (tRNAs) play a central role in protein translation. Studying 
them has been difficult in part because a simple method to simultaneously 
quantify their abundance and chemical modifications is lacking. Here we 
introduce Nano-tRNAseq, a nanopore-based approach to sequence native 
tRNA populations that provides quantitative estimates of both tRNA 
abundances and modification dynamics in a single experiment. We show 
that default nanopore sequencing settings discard the vast majority of 
tRNA reads, leading to poor sequencing yields and biased representations 
of tRNA abundances based on their transcript length. Re-processing of raw 
nanopore current intensity signals leads to a 12-fold increase in the number 
of recovered tRNA reads and enables recapitulation of accurate tRNA 
abundances. We then apply Nano-tRNAseq to Saccharomyces cerevisiae 
tRNA populations, revealing crosstalks and interdependencies between 
different tRNA modification types within the same molecule and changes in 
tRNA populations in response to oxidative stress.

Transfer RNAs (tRNAs) are abundant small non-coding RNAs that play 
a pivotal role in decoding genetic information1–3. Based on their ami-
noacylation identity, tRNAs are subdivided into 20 accepting groups 
(alloacceptors), each comprising several tRNAs that translate synony-
mous codons with the same amino acid (isoacceptors). To fulfill their 
function as adapter molecules between the RNA and protein codes, 
tRNAs are extensively modified, containing on average 13 modifications 
per tRNA molecule4. Although some tRNA modifications are thought 
to be structural and static, others are dynamic and even reversible5–8, 
affecting the fate and function of individual tRNA molecules2,9–13. Nota-
bly, mutations in multiple tRNA modification enzymes have been asso-
ciated with a wide variety of human diseases14–17, highlighting their 
importance in proper cellular functioning.

tRNA modifications are present in all domains of life18,19 and are 
synthesized by dedicated tRNA-modifying enzymes that alter spe-
cific tRNAs in a site-specific fashion20. The chemical nature of these 
modifications is highly diverse and includes methylations, acetylations, 

isomerizations, deaminations and conjugation to amino acids, among 
others21,22. Certain tRNA modifications are found only in a single tRNA 
species, whereas others are found in multiple tRNA species20,23. For 
example, 2-lysidine (k2C) tRNA modifications are placed at position 
34 of the anticodon of tRNAIle(AUA)24, whereas pseudouridine (Ψ) can 
be placed at diverse positions of the tRNA molecule and in multiple 
tRNA isoacceptors25–27. Regarding their function, tRNA modifications 
can sometimes act as identity elements recognized by aminoacyl-tRNA 
synthetases28–30, and, without modifications, many tRNAs have poor 
aminoacylation capability31. On the other hand, tRNA modifications can 
affect the decoding preferences of tRNA molecules, especially those 
found at position 34 of the anticodon16,32–34, restricting or increasing 
the wobbling capacity of the tRNAs and, consequently, changing the 
set of ‘preferred’ or ‘optimal’ codons that will be translated35–44.

In the last few years, it has been shown that some tRNA modifi-
cations are reversible8,45–47 and can be dynamically regulated upon 
environmental exposures48–50, across cell cycle stages51 and upon 
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required to run nanopore sequencing experiments, erroneously dis-
cards the majority of tRNA reads, misinterpreting them as ‘adapters’, 
and also causes biases in the estimated tRNA abundances due to pref-
erential capture of longer tRNAs (for example, tRNALeu, tRNAArg and 
tRNASer). To overcome these limitations, here we provide a computa-
tional framework that allows us to capture ~10× more tRNA reads and 
accurately recapitulates tRNA abundances.

Altogether, our work provides a simple, cost-effective, 
high-throughput and reproducible method to accurately quantify 
tRNA abundances and capture tRNA modification changes simultane-
ously using native tRNA nanopore sequencing, providing a framework 
to study the tRNAome at single-molecule resolution. We envision that 
Nano-tRNAseq will contribute to the study of the biological function of 
tRNA modifications in a wide variety of contexts, such as cancer, stress 
exposures or viral infection, and opens the possibility of exploiting 
these molecules as biomarkers of human health and disease.

Results
Standard nanopore DRS results in low tRNA sequencing yields
Nanopore DRS is a well-established long-read sequencing technol-
ogy to study RNA molecules, typically polyadenylated mRNAs93–97. 
Although several works have shown that this technology can also 
be used to study short RNA molecules, such as snoRNAs and snR-
NAs96,98, DRS is inefficient at capturing RNA molecules shorter than 
200 nucleotides (nt) and is generally considered unable to capture 
sequences shorter than ~100 nt96,97, limiting its applicability to study 
short RNA populations, such as tRNAs. In addition, the first ~15 nt at 
the 5′ end of RNA molecules are typically lost in DRS runs93,99, as this 
portion cannot be adequately basecalled due to the increase in the 
RNA translocation speed when the 5′ end of the molecule exits the 
helicase99. To overcome these limitations, we reasoned that extension 
of the 5′ and 3′ ends of the tRNA would lead to improved sequenc-
ing of tRNA molecules, as these would now be beyond the ~100-nt 
threshold, in addition to capturing the sequence and modification 
information of 5′ tRNA ends.

We first attempted a modified tRNA DRS approach in which a 
5′ RNA adapter, complementary to the 3′ CCA overhang present in 
mature tRNA molecules, was ligated to the 5′ end of tRNAs that had 
been previously in vitro polyadenylated (Strategy A; Extended Data 
Fig. 1 and Methods). A set of nine synthetic in vitro transcribed (IVT) 
tRNAs of various lengths and sequences (Supplementary Table 1) were 
sequenced using this strategy. However, this approach produced poor 
sequencing yields (56,002 reads; Supplementary Table 2) compared 
to a standard DRS run (~1–2 million reads). Moreover, only 7.5% of 
reads mapped uniquely to tRNAs using minimap2 (ref. 100) with rec-
ommended parameters (-ax map -ont -k15) (Supplementary Table 2). 
Relaxation of the mapping parameters (-ax map-ont -k5), which had 
previously been shown to improve the mappability of highly modified 
RNAs98, did not significantly increase the number of mapped tRNA 
reads (Supplementary Table 2).

Next, we altered our library preparation protocol to replace the 
poly(A) tail with a 3′ DNA adapter complementary to the 5′ RNA adapter 
(Strategy B), such that the two oligonucleotides could be pre-annealed 
and ligated to the tRNA (Extended Data Fig. 1). However, this strategy 
also yielded a low number of sequenced reads (63,502 reads) and a low 
percentage of uniquely mapped reads (6.5%) (Supplementary Table 2).  
We speculated that the low number of reads could be due to steric 
interference of the poly(A) preventing 5′ ligation (Strategy A) or that 
the 3′ DNA adapter is not basecalled (Strategy B). These scenarios would 
lead to low coverage of the 5′ or 3′ ends, respectively, decreasing the 
mappability of reads resulting from these two strategies.

Extending tRNA ends with RNA adapters improves basecalling
Based on the results of Strategy A and Strategy B, we rationalized 
that padding the 5′ and 3′ tRNA ends with RNA adapters, which can 

tumorigenesis52–56. Similarly, tRNA abundances are also dysregulated 
upon environmental exposures, such as oxidative stress48,57,58, as well 
as in diverse types of cancer52,59–61. Modulation of tRNA abundances  
and/or tRNA modifications is generally regarded as a molecular strategy 
that allows cells to adapt to distinct physiological states or conditions, 
leading to increased expression of subsets of proteins that otherwise 
would remain poorly translated under ‘normal’ tRNA abundances60,62,63.

Despite the pivotal function that tRNAs play in cellular processes 
and their involvement in numerous human diseases, we currently lack 
a simple and cost-effective method to accurately quantify both tRNA 
abundances and their modifications systematically. On the one hand, 
tRNA modifications are typically identified and quantified with high 
accuracy using liquid chromatography coupled to mass spectrometry 
(LC–MS) methodologies48,64–69. In these methods, RNA molecules are 
fragmented into oligomers or monomers, and their abundance is 
measured via UV absorption or MS/MS. LC–MS/MS techniques using 
triple quadrupole-based detection are among the most sensitive, 
allowing limits of quantification in the low femtomole range48,64,70–72, 
but they typically cannot identify the tRNA isoacceptor that contained 
each detected modification. On the other hand, tRNA abundances 
can be determined using tRNA microarrays36,59,73 and, more recently, 
by employing next-generation sequencing (NGS) technologies74–82, 
which require an initial conversion of the tRNA molecules into cDNA. 
Consequently, NGS-based methods are blind to most tRNA modifica-
tions, as these are typically erased during the reverse transcription step. 
Moreover, tRNA modifications that disrupt the Watson–Crick base 
pairing, which are abundant in tRNAs, will interfere with the reverse 
transcriptase enzyme, causing it to drop off, producing truncated 
reads, in addition to misincorporations72,83–85 (Fig. 1a). To overcome 
these limitations, a wide variety of improved tRNA sequencing pro-
tocols have been developed in recent years, which often include the 
use of highly processive reverse transcriptase enzymes75,77 and/or 
cocktails of demethylases74,75,79. However, despite these improvements, 
NGS-based methods still suffer from the following caveats: (1) they 
introduce significant biases during the library preparation, caused by 
incomplete reverse transcriptions84,86, incomplete demethylations87 
and polymerase chain reaction (PCR) amplification88, resulting in 
skewed representations of existing tRNA populations; and (2) they 
cannot detect most tRNA modifications, as these are typically ‘erased’ 
during the conversion of RNA to cDNA. Therefore, a simple, robust and 
efficient tRNA sequencing method is still needed.

A promising alternative to the use of NGS-based technologies to 
characterize the tRNAome is the direct RNA sequencing (DRS) platform 
developed by Oxford Nanopore Technologies (ONT). This technology 
allows direct sequencing of native RNA molecules and, as such, can, 
in principle, detect and measure both tRNA modifications and tRNA 
abundances without the need for reverse transcription or PCR. Previ-
ous works have demonstrated that nanopores can capture tRNAs using 
solid-state or biological (ONT) nanopores89–92. For example, sequencing 
of five distinct tRNAs was achieved using solid-state nanopores89, and 
tRNAs were shown to be distinguishable from other short RNAs using 
the MspA pore90. Later studies showed that, by lengthening the tRNA 
molecules with ligated adapter extensions, tRNAs could be sequenced, 
basecalled and mapped using biological nanopores92. However, in 
these studies, the proposed approach led to low sequencing yields 
of tRNA molecules (~20–40× lower than expected for a DRS run) and 
did not report whether extant in vivo tRNA abundances and/or tRNA 
modifications were recapitulated using this method.

Here we present Nano-tRNAseq, a nanopore-based approach that 
allows accurate and direct measurement of native tRNA molecules. 
The library preparation benefits from the 3′ CCA overhang typically 
present in the mature tRNAs to incorporate a double ligation of RNA 
adapters at both the 5′ and 3′ ends of the tRNA molecules, which leads 
to an improved proportion of basecalled and mapped tRNA molecules. 
Moreover, we show that MinKNOW, the ONT proprietary software 
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be accurately basecalled and mapped, would enable us to capture 
the entirety of the tRNA sequence. This approach, which we termed 
Nano-tRNAseq (Fig. 1b), was the most successful at sequencing, base-
calling and mapping both in vitro and native tRNA molecules using 
nanopore DRS. We should note that a recent work also proposed a 
similar solution to facilitate native tRNA nanopore sequencing92.

In the first step, a 5′ RNA adapter (orange) complementary to the 
CCA overhang of mature tRNAs is pre-annealed to a 3′ RNA adapter 
(red) containing three DNA bases (pink) at the 3′ end (Fig. 1b). In 
preliminary Nano-tRNAseq runs, we used an RNA-only 3′ adapter 
but observed that RNA-only 3′ adapters led to increased self-ligation 

(Supplementary Table 2), an issue that we mitigated by adding DNA 
bases to the end of the adapter (Extended Data Fig. 1). Next, the 
pre-annealed 5′ RNA and 3′ RNA:DNA splint adapters were ligated 
to deacylated tRNAs. Knowing that an RNA:RNA ligation with an 
RNA bridge has a low efficiency101, various ligation times and the 
addition of a molecular crowding agent were tested to ensure that 
conditions that maximized ligation efficiency were chosen (Extended 
Data Fig. 2a,b). Subsequently, ONT RTA oligoA and oligoB were 
pre-annealed and ligated to the tRNA molecule using T4 DNA Ligase 
(see Extended Data Fig. 3 for validation of each ligation step). This 
approach resulted in >200,000 basecalled reads (Supplementary 
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Fig. 1 | Nano-tRNAseq can efficiently sequence both IVT and native 
tRNA populations. a, Schematic of the modifications found in S. cerevisiae 
cytoplasmic tRNA, shown in its usual secondary structure form with circles 
representing nucleotides and lines representing base pairs. Gray circles 
represent unmodified nucleotides; pink circles represent possible modification 
sites; and those with a black outline indicate modifications that cause errors 
during reverse transcription. Possible RNA modifications occurring at 
each position are listed in the surrounding boxes; modifications that cause 
misincorporation during reverse transcription are in green; and those that cause 

reverse transcription truncation are in blue. b, Schematic overview illustrating 
the steps required for tRNA library preparation using Nano-tRNAseq (see 
Extended Data Fig. 1 for more details). c, IGV snapshots of Nano-tRNAseq mapped 
reads from synthetic IVT tRNAs (upper panels) or biological tRNAs (lower panel). 
Positions with a mismatch frequency greater than 0.2 are colored, whereas those 
showing mismatch frequencies lower than 0.2 are shown in gray. d, Scatter plot  
of tRNA abundances showing the replicability of Nano-tRNAseq when WT  
S. cerevisiae tRNA biological replicates are sequenced. The correlation strength is 
indicated by Spearman’s correlation coefficient (ρ). RT, reverse transcription.
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Table 2), thus significantly increasing sequencing output by up to 
fourfold relative to the previous strategies, and also with improved 
5′ and 3′ coverage of both synthetic and biological tRNAs (Fig. 1c). 
Additionally, we found Nano-tRNAseq to be highly replicable when 
sequencing native tRNAs (ρ = 0.984) (Fig. 1d).

Mapping parameters significantly affect tRNA read 
mappability
The alignment of native tRNA reads is challenging due to their short and 
highly modified nature. Indeed, native tRNAs contain a large proportion 
of mismatched bases, often originating from inaccurate basecalling 
of modified bases in DRS datasets94,98,102. As a consequence of these 
miscalled bases, the commonly used long-read mapper minimap2 
with recommended settings (-ax map-ont -k15) aligned only a frac-
tion (2.56%) of the reads (Fig. 2a–c and Supplementary Table 2). We 
further tested a range of minimap2 parameters and observed only 
incremental improvements in mapping and an increase in false align-
ments (antisense mapped reads served as a proxy of mismapping) 
(Supplementary Table 3).

To improve the mappability of Nano-tRNAseq reads, we next 
tested the mapping algorithm BWA, a short-read mapping algorithm 
commonly used to map Illumina reads103,104. Using sequencing data 
from a Nano-tRNAseq run that contained three different tRNA con-
structs (IVT Drosophila melanogaster mitochondrial tRNAAla(UGC), 
IVT Streptococcus pneumoniae tRNASer(UGA) and native S. cerevisiae 
tRNAPhe; see Supplementary Table 2 for a summary of the sequencing 
runs in this work), we found that the BWA-MEM aligner with recom-
mended parameters outperformed minimap2 in terms of propor-
tion of mapped reads (Fig. 2c), in agreement with recent works92. 
Although more relaxed configurations of BWA-MEM aligned more 
reads, this also came at the expense of increased false alignments 
(Fig. 2c and Supplementary Table 4). An optimal balance between 
increased mapped reads and false alignments was found when using 
bwa mem with parameters -W13 -k6 -xont2d -T20, which mapped 
54.63% of the reads, with very few false alignments (0.19%). When 
comparing the performance of the mapping algorithms in native 
tRNA molecules, the contrast was even more stark; although mini-
map2 mapped IVT tRNAs, it failed to map a single biological tRNA 
read (Fig. 2d and Supplementary Table 5). The alignment identity 
was similar to minimap2 for reads that mapped to IVT tRNAs but was 
slightly lower than the typical identity obtained in nanopore DRS 
runs, suggesting that short reads, even without modifications, cause 
a drop in the basecalling accuracy (Fig. 2e). Notably, the alignment 
identity of S. cerevisiae tRNAPhe was lower (~74.5%) than in synthetic 
tRNAs (81.8%), presumably due to the presence of base modifications 
present on endogenously modified S. cerevisiae tRNAPhe (Fig. 2e and 
Supplementary Table 5).

We then assessed whether the mappability of Nano-tRNAseq 
reads might be affected by the length of the 5′ and 3′ RNA adapters. 
To simulate different RNA adapter lengths, we trimmed one or both 
adapters from the reference sequences. We found that the absence 
of both RNA adapters had only a modest effect on the mappability 
of reads originating from IVT tRNAs (decrease of 6–11%) (Fig. 2f and 
Supplementary Table 6), whereas their absence had a major effect 
in the mappability of native S. cerevisiae tRNAPhe (55% loss). Thus, 
we concluded that short and unmodified sequences can be aligned 
efficiently even without RNA adapters in the reference sequences, 
whereas short and modified reads greatly benefit from the extension 
with adapters, demonstrating that extending molecules with RNA 
adapters is essential for guiding the correct alignment of short reads 
enriched in ‘mismatches’, such as those derived from native tRNAs. 
For native S. cerevisiae tRNAPhe, the read mappability plateaued at a 3′ 
adapter length of 25 nt (Fig. 2f), suggesting that the 30-nt RNA portion 
of the 3′ RNA:DNA oligo used in Nano-tRNAseq is more than sufficient 
to achieve optimal read mappability.

Custom MinKNOW improves yield and tRNA abundance 
estimates
A surprising feature of our initial tRNA sequencing runs was the low 
amount of sequenced reads. Although pore clogging caused by tRNA 
structure might partially explain the low sequencing yield92, we also 
noticed that the MinKNOW software classified a high proportion of 
reads as ‘adapter-only’ reads in real time. Hence, we hypothesized 
that a considerable fraction of tRNA reads might be discarded by the 
MinKNOW software due to their short signal lengths, as they resemble 
‘adapter-only’ reads.

The MinKNOW software is responsible for analyzing the con-
tinuous electrical current (signal intensity) measured at each pore, 
reporting the signal regions that correspond to ‘reads’ into FAST5 
files, which are then basecalled to generate a FASTQ file (Fig. 3a). We 
noted that MinKNOW, by default, reports reads that last at least 2 sec-
onds, roughly corresponding to RNA molecules of 140 nt (assuming 
constant helicase processivity of 70 nt per second in DRS) (Extended 
Data Fig. 4). Considering that canonical tRNA molecules are ~73 nt, 
this would imply that even after double RNA adapter ligation (where 
24 and 30 RNA nucleotides are added to the 5′ and 3′ ends of the tRNA 
molecule, respectively), the size of the ligated tRNA molecule would 
still be below the threshold, possibly leading to misassignment of tRNA 
reads as ‘adapter-only’ reads. To alleviate this issue, we tested whether 
alternative MinKNOW configurations would improve the classification 
of tRNA reads and boost sequencing yields. To this end, the bulk ‘raw’ 
dump files were saved during the sequencing and were reprocessed 
using alternative MinKNOW configurations (Supplementary Table 7).

By lowering the MinKNOW strand minimum duration to 1 sec-
ond and the adapter maximum duration to 2 seconds (see Extended 
Data Fig. 4 for schematic), a configuration that we refer to as custom, 
we captured ~12-fold more basecalled and ~4.5-fold more uniquely 
mapped tRNA reads compared to the default MinKNOW configura-
tion (Fig. 3b,c and Supplementary Table 7). Notably, we found that 
the default MinKNOW configuration not only led to low sequencing 
outputs but also caused significant biases in the relative abundances 
of tRNA molecules. Specifically, we found a greater representation of 
shorter tRNAs in our custom configuration (Fig. 3d,e and Supplemen-
tary Table 8), suggesting that the default MinKNOW configuration is 
discarding shorter tRNA molecules and preferentially capturing longer 
ones, such as tRNA molecules with variable arms (for example, tRNALeu, 
tRNAArg and tRNASer). Moreover, the relative proportion of tRNA reads 
was better recapitulated using the custom configuration than default 
settings (Fig. 3f), and the reported tRNA abundances using custom 
settings correlated well to the expected values (ρ = 0.93) (Fig. 3g and 
Supplementary Tables 9 and 10).

Reverse transcription of tRNAs increases sequencing yield
We next questioned whether removing the tRNA structure, which can 
be achieved via linearization by reverse transcription, would further 
improve our sequencing yield. We should highlight that, in the case 
of DRS, the native RNA molecule is sequenced, whereas the cDNA 
strand is not (see Fig. 4a schematic). A linear tRNA molecule may (1) 
reduce the clogging of pores, allowing more reads to be sequenced, 
and maintain the integrity of the flowcell longer and/or (2) stabilize the 
tRNA translocation speed through the pore, improving the accuracy 
of basecalling algorithms. Notably, tRNAs are notoriously difficult to 
fully and accurately reverse transcribe due to their compact second-
ary and tertiary structures as well as their abundance of modifications 
that disrupt the Watson–Crick base pairing74,80,86 (Fig. 1a). To examine 
whether tRNA linearization might improve sequencing yield, we tested 
a range of commercial reverse transcriptases and incubation conditions 
on both IVT and native tRNAs and examined their cDNA outputs using 
TapeStation (Extended Data Fig. 5a,b and Methods). We found that 
both Maxima and SuperScript IV at 60 °C offered the best performance 
in the production of full-length cDNA products, and we opted to use 
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Fig. 2 | The choice of mapping software and parameters markedly affects the 
number of mapped tRNA reads. a,b, IGV snapshots of reads mapped to IVT D. 
melanogaster mitochondrial tRNAAla(UGC) (a) and S. cerevisiae tRNAPhe (b), mapped 
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and mismapped reads (purple; reads mapping to antisense strands were used 
as a proxy to assess mismapping) (Supplementary Table 4). The proportion of 
mapped reads (d) and alignment identity (e) for each template from the bar 
plot in c, using either minimap2 or bwa mem -W13 -k6- T20. We should note that 
minimap2 alignment identity in S. cerevisiae tRNAPhe was not computed because 
no reads were mapped to this tRNA using minimap2 with -ax map-ont -k15 
parameters (Supplementary Table 5). f, Bar plot showing the effect of trimming 
the length of the 5′ RNA adapter (reds) and 3′ RNA adapter (blues) on tRNA read 
mappability (Supplementary Table 6). The conditions used by Nano-tRNAseq are 
gray, whereas the effect of not using RNA adapters is black.
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Maxima at 60 °C in our subsequent tRNA sequencing experiments 
(Extended Data Fig. 5b).

Next, we examined whether linearization of the tRNAs would 
increase our sequencing yields. To this end, total tRNA from S. cerevisiae 
was sequenced using Nano-tRNAseq with and without the reverse tran-
scription step. The default MinKNOW configuration without reverse 
transcription condition resulted in more reads compared to the with 
reverse transcription condition (Supplementary Table 2). We found 

that non-linearized tRNAs, which are more structured than linearized 
ones, caused the helicase enzyme to process these molecules more 
slowly (Extended Data Fig. 5c), possibly increasing the likelihood that  
they are classified as a ‘read’ by the default MinKNOW configura-
tion (see Extended Data Fig. 4 for a schematic of read classification). 
Using the custom MinKNOW configuration (Fig. 3b–e), the number 
of basecalled reads with reverse transcription was 1.5-fold higher 
compared to without reverse transcription (Extended Data Fig. 5d 
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Fig. 3 | Adjustment of MinKNOW parameters increases the number of 
sequenced and mapped tRNA reads. a, MinKNOW software classifies 
continuous current passing through pores as open pore, adapter or strand 
(actual reads) and outputs fragments classified as strand to a FAST5 file, which 
are then basecalled to generate a FASTQ file. b, Diagram showing the conceptual 
difference between default and custom MinKNOW read classification (Extended 
Data Fig. 4). c, Bar plot of sequencing yield in terms of basecalled and uniquely 
mapped reads obtained with default and custom configurations (Supplementary 
Table 7). d, Scatter plot of the relative fold change of uniquely mapped reads 

with respect to tRNA length (Supplementary Table 8). e, Histogram of read 
count and alignment length of IVT tRNA reads captured with default and custom 
configurations. f, Bar plot of the relative proportion of IVT tRNA molecules  
D. melanogaster mitochondrial tRNAAla(UGC) and S. pneumoniae tRNASer(UGA) 
and native S. cerevisiae tRNAPhe reads recovered with default and custom 
settings (Supplementary Table 9), where the dotted line indicates the expected 
proportion. g, Expected versus observed log read counts of nine IVT and one 
native tRNA molecules captured using the custom MinKNOW configuration 
(Supplementary Table 10). Spearman correlation (ρ) is shown.
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and Supplementary Table 11). Likewise, the number of reads uniquely 
mapped to tRNAs increased by 1.5-fold with reverse transcription, and 
the relative abundance of tRNA isoacceptors was not affected by the 
linearization step (Fig. 4a; ρ = 0.996). Overall, linearization of tRNA 
molecules improved the sequencing yields by increasing the helicase 
translocation rate, and, therefore, the reverse transcription step was 
included in all subsequent Nano-tRNAseq library preparations.

Nano-tRNAseq correlates with Illumina-based methods
Our results show that Nano-tRNAseq, when used with optimized map-
ping settings and custom MinKNOW configuration, resulted in observed 
tRNA abundances highly similar to the expected values (Fig. 3g; ρ = 0.93). 
We, therefore, wondered whether tRNA abundances predicted using 
Nano-tRNAseq would correlate well with Illumina-based approaches. 
To this end, we compared Nano-tRNAseq S. cerevisiae tRNA abundances 
to those reported using three different Illumina-based methods: (1) 
ARM-seq74, (2) Hydro-tRNAseq80 and (3) mim-tRNAseq77. In ARM-seq, 
tRNAs are pre-treated with demethylating enzyme Escherichia coli 
AlkB, which removes m1A, m3C and a fraction of m1G modifications. 
Hydro-tRNAseq relies on partial alkaline RNA hydrolysis that generates 
fragments amenable for sequencing. In the case of mim-tRNAseq, the 
authors improved the efficiency of cDNA synthesis by optimizing TGIRT 
reverse transcription conditions and allowing for position-specific 
mismatch tolerance during read alignment. Nano-tRNAseq correlated 
best with the Illumina-based methods that address the presence of 
reverse-transcription-truncating modifications, namely ARM-seq 
(ρ = 0.555) and mim-tRNAseq (ρ = 0.626), and worst with Hydro-tRNAseq 
(ρ = 0.182) (Fig. 4b). The low correlation with Hydro-tRNAseq is prob-
ably due to the fact that (1) fragments that harbor such modifications 
are especially short and less likely to be PCR amplified and (2) map-
ping fragmented samples is challenging and can lead to spurious tRNA 
counts. Overall, the generally low correlation of Illumina-based methods 
with Nano-tRNAseq is unsurprising given the substantial differences 
in library preparation and analysis as well as potential differences in 
yeast culturing conditions between laboratories. We should note that 
Illumina-based tRNA sequencing methods showed only modest correla-
tions with each other (ρ = 0.283–0.616) (Extended Data Fig. 6).

Nano-tRNAseq can quantify tRNA modification differences
Previous works have shown that basecalling errors, or mismatches to 
the reference, can be used to detect RNA modifications94,98,102,105–109. In 
agreement with these observations, biological S. cerevisiae tRNAPhe 
showed considerably more mismatch errors than those seen in syn-
thetic IVT tRNAs (Fig. 1d). On closer inspection, the position of many 
of these mismatches largely coincided with known RNA modifications, 
some of which affect the basecalled features with single-base resolu-
tion, such as Ψ, whereas others influence the signal of neighboring 
bases, such as m1A (Extended Data Fig. 7), in agreement with previous 
observations98.

To confirm whether the basecalling ‘errors’ observed in native 
tRNAs were indeed the result of RNA modifications, we sequenced 
tRNAs from wild-type (WT) and a Pus4-deficient S. cerevisiae strain. 
Pus4 is an enzyme responsible for synthesizing Ψ55 from U55 in the 
T-loop of tRNAs110. Upon knockout of Pus4, we observed a striking 
loss of the characteristic U-to-C mismatch of Ψ98,111,112 at position 55 
in all tRNAs, whereas other known Ψ sites, which are not reported to  
be catalyzed by Pus4, were unaffected (Fig. 4c,d and Supplementary 
Table 12). Despite the loss of Ψ55 in Pus4-deficient S. cerevisiae, we 
observed only modest changes in tRNA isoacceptor levels (Extended 
Data Fig. 8a and Supplementary Table 13). Using NanoRMS, a tool that 
we previously developed for quantifying RNA modification stoichiom-
etry in ONT DRS data and validated for Ψ modifications98, we calculated 
the change in Ψ55 stoichiometry. As expected, upon knockout of Pus4, 
we observed a change in stoichiometry between 68% and 93%, with the 
exception of Ile-TAT (33%), potentially due to low coverage (Extended 
Data Fig. 8b and Supplementary Table 14).

Similarly, we also sequenced tRNAs from Pus1-deficient and 
Pus7-deficient S. cerevisiae strains. Pus1 is a multi-site Ψ synthase that 
modifies tRNA at positions 1, 26–28, 34, 36, 65 and 67 (refs. 113–115), 
whereas Pus7 catalyzes pseudouridylation at position 13 in a sub-
set of tRNAs116 (Supplementary Table 15). In both cases, we observed 
a loss of Ψ in most annotated Ψ sites upon Pus1 or Pus7 depletion 
(Extended Data Fig. 9a,b and Supplementary Tables 15 and 16) using 
Nano-tRNAseq. We should note that, in the case of Glu-TTC, the Ψ27 
position appears to be shifted by −1 nt, as is Ψ28 in Leu-TAG (Extended 
Data Fig. 9a). In this work, we used annotated modified positions listed 
in MODOMICS as our reference list (Supplementary Table 18), which we 
manually curated using previously published literature3,25,117. We think 
that these positions are shifted by −1 nt because it occurs at canonical 
position 26 and 27 in the Glu-TTC and Leu-TAG, respectively, rather 
than a shift in the basecalling error of Ψ, which typically produces a 
basecalling error at the expected base (the modified site)98,111.

Nano-tRNAseq identifies tRNA modification 
interdependencies
tRNA modifications are introduced in a defined sequential order, and 
the chronology is controlled by the crosstalk between modification 
events and RNA-modifying enzymes118,119. Using time-resolved nuclear 
magnetic resonance (NMR) monitoring of tRNA maturation, Barraud 
et al.120 reported a robust modification hierarchy in the T-loop of S. 
cerevisiae tRNAPhe, with Ψ55 positively influencing the introduction 
of both m5U54 and m1A58, and m5U54 positively influencing the intro-
duction of m1A58. To explore whether our method could capture the 
effect of Ψ55 loss on other modifications, we examined the summed 
basecalling error (base mismatch, insertion and deletion) for each 
nucleotide position and tRNA molecule reference, comparing the tRNA 
modification profiles of each tRNA isoacceptor in Pus4 knockout (KO) 
strains relative to WT (Fig. 4e, Extended Data Fig. 9a and Supplementary 

Fig. 4 | Nano-tRNAseq can quantify tRNA abundance and RNA modifications 
as well as capture modification interdependencies. a,b, Scatter plots of WT 
S. cerevisiae tRNA abundances sequenced with Nano-tRNAseq with and without 
the reverse transcription step (a) and compared to orthogonal Illumina-based 
tRNA sequencing methods (b). Each point represents a tRNA alloacceptor and 
is colored by alloacceptor type; the key is shown in b. The correlation strength is 
indicated by Spearman’s correlation coefficient (ρ). c, IGV tracks of tRNAAla(AGC) 
from WT and Pus4 KO S. cerevisiae strains (n = 2 biological replicates). Ψ55 is 
indicated with a black arrowhead. Adjacent are zoomed IGV snapshots of the 
Ψ55 region. Positions with a mismatch frequency greater than 0.2 are colored, 
whereas those lower than 0.2 are shown in gray. d, Scatter plot showing the 
mismatch frequencies for Ψ sites in S. cerevisiae WT versus Pus4 KO tRNA 
molecules. Each data point represents a known tRNA Ψ site; a black outline 
indicates Ψ55 sites; and a red fill indicates sites with a summed basecalling error 
of ≥0.25 compared to WT. e, Heat map of the summed basecalling error of Pus4 KO 

relative to WT, for each nucleotide (x axis) and for each tRNA isoacceptor (y axis, 
ordered from most to least abundant in descending order)(Supplementary  
Table 17). The positions of known tRNA modifications found in each tRNA gene 
are listed in Supplementary Table 18. The Pus4 target Ψ55 is indicated with a 
green arrowhead and m5U54 and m1A58 with pink arrowheads. See also Extended 
Data Fig. 9a for biological replicate 2. f, Schematic of the tRNA T-loop targeted 
by the Pus4 enzyme. Nucleotides with a dotted outline represent the Pus4 
binding motif (RRUUCNA); Ψ55 is highlighted in green; and m5U54 and m1A58 are 
highlighted in pink. g, LC–MS/MS validation of S. cerevisiae tRNA modification 
levels. See also Supplementary Tables 19 and 20. Bars represent mean ± s.e.m. 
for n = 3 biological replicates per condition. P values were determined using 
a one-way ANOVA with Tukey correction for multiple comparisons, and 
significance was assessed by comparison to WT. *P < 0.05, **P < 0.01, ***P < 0.001, 
P(m5U) = 0.0015, P(Ψ) and P(m1A) < 0.0001. RT, reverse transcription.
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Table 17; see Supplementary Table 18 for a summary of all S. cerevisiae 
annotated RNA modifications and their positions). In addition to the 
decrease in basecalling error at position 55 (corresponding to the loss 

of the modification), we observed a decrease also at positions 54 and 
57–59 (Fig. 4e,f), depending on the tRNA isoacceptor. LC–MS/MS of 
the same samples confirmed that there was a reduction in m5U and 
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m1A modification levels, further supporting that the incorporation of 
m1A58 and m5U54 depends on the presence of Ψ55 (Fig. 4g, Extended 
Data Fig. 10 and Supplementary Tables 19 and 20).

As an orthogonal validation, we analyzed HydraPsiSeq data from 
S. cerevisiae WT and Pus4 mutant strains generated in a previously 
published study121. HydraPsiSeq is an NGS-based quantitative Ψ map-
ping technique relying on specific protection from hydrazine/aniline 
cleavage, where U residues are sensitive to hydrazine and, thus, effi-
ciently cleaved. In contrast, Ψ residues are resistant and provide only 
background signals (Supplementary Fig. 1a). In the resulting Integrative 
Genomics Viewer (IGV) tracks, loss of Ψ is represented by a dropoff, 
and we observe that the m1A58 mismatch error is significantly reduced 
in the Pus4 KO condition relative to WT (Supplementary Fig. 1b,d) in 
some of the isoacceptors. We should note that the loss of m5U cannot be 
quantified using this method, as reverse-transcription-based methods 
are blind to tRNA modifications that do not affect the Watson–Crick 
base pairing86. Altogether, we found that Nano-tRNAseq can reveal RNA 
modification interdependencies at distinct tRNA sites within the same 
isoacceptor and quantify site-specific modification changes across 
tRNA isoacceptors in a high-throughput manner, with the concurrent 
benefit of measuring tRNA abundances.

Nano-tRNAseq reveals 3′ deadenylation upon oxidative stress
Previous works have shown that both tRNA abundances57 and modifica-
tions can be re-programmed under stress conditions, such as elevated 
temperature122 and oxidative stress48. Studies that quantified changes 
in tRNA abundances upon stress used NGS-based methods, which do 
not capture RNA modification information (with some exceptions in 
which the RNA modifications affect the reverse transcription signa-
ture). On the other hand, studies that quantified tRNA modification 
changes employed LC–MS/MS-based methods, which do not provide 
information about which tRNA isoacceptor the modification detected 
originates from.

To examine how stress exposures affect tRNA abundances and 
modification profiles and in which tRNA isoacceptors, we sequenced 
tRNAs from S. cerevisiae cells exposed to either heat or oxidative 
stress using Nano-tRNAseq. We found that stress exposures caused 
only mild effects in terms of tRNA abundances, compared to WT 
(Fig. 5a and Supplementary Tables 21–23), with significant changes 
in the abundance of one tRNA isoacceptor (tRNAGln(UUG)) upon heat 
stress and seven tRNA isoacceptors upon oxidative stress (corre-
sponding to 12% of tRNA isoacceptors mapped). To our surprise, we 
found only very modest differences in tRNA modification profiles 
upon stress exposures (Fig. 5b, Supplementary Fig. 2a,b and Sup-
plementary Table 17), in contrast to previous reports48. To confirm 
our findings, we then performed LC–MS/MS on the same samples 
used for Nano-tRNAseq, which corroborated our observations that 
RNA modifications are not significantly dysregulated upon either of 
the two stress exposures tested (Fig. 4g, Supplementary Tables 19  
and 20 and Methods).

On the other hand, upon oxidative stress, but not heat stress, 
we observed a substantial increase in basecalling error frequency of 
the last nucleotide, position 76 (Fig. 5b and Supplementary Fig. 2b), 
which corresponds to the terminal A of the CCA overhang (Fig. 5c). 
Examination of IGV123–125 tracks showed that the terminal A had reduced 
coverage relative to its neighboring bases (Fig. 5d), which is indicative 
of a deletion (see Supplementary Figs. 3–23 for the IGV tracks of all 
tRNA isoacceptors across S. cerevisiae runs). We then calculated the 
deletion frequency of the terminal A for each tRNA isoacceptor and 
found that the deletion frequency in tRNAs subjected to oxidative 
stress was significantly higher compared to WT, Pus4 KO and heat stress 
(Fig. 5e and Supplementary Table 24), in agreement with a previous 
study that reported rapid loss of terminal A of the 3′ CCA tail during 
oxidative stress126.

Discussion
For many years, tRNAs and their modifications have been primarily 
viewed as static contributors to gene expression and tRNA struc-
ture127–130. However, multiple studies have shown that tRNA abundances 
and modification profiles are, in fact, dynamic and can differ in distinct 
cellular environments and diseases52,59,131,132. Measuring both tRNA abun-
dances and their modifications with single-transcript resolution has 
not been feasible due to a lack of available methods that can simultane-
ously capture both features. This has been a substantial limitation in 
moving forward with studying the biological function and dynamics 
of tRNA populations and their modifications and, consequently, their 
involvement in human diseases, among other aspects.

Our method, Nano-tRNAseq, enables the accurate and direct 
measurement of native tRNA molecule abundance and their modi-
fication status using nanopore DRS (Fig. 1b–d). During the library 
preparation protocol, the 5′ and 3′ ends of mature tRNAs are extended 
with RNA adapters, improving basecalling and mappability of the 
tRNA molecules. Notably, we found that double ligation of RNA adapt-
ers alone is insufficient to recapitulate known tRNA abundances and 
that the default MinKNOW configuration leads to biases in estimated 
tRNA abundances by preferentially capturing longer tRNA molecules. 
To overcome this limitation, we demonstrate that our customized 
MinKNOW configurations capture tRNA reads more efficiently, 
regardless of the tRNA length, and abrogate length-dependent biases  
(Fig. 3d–g). Moreover, by using this configuration, we demonstrate 
that the sequencing yield of tRNA runs increases up to 12-fold (Fig. 3c).

Recent works have also shown that ONT DRS can be used to quan-
tify the expression of tRNAs, employing a double ligation of RNA:DNA 
adapters similar to the one described here92. However, we found that 
this approach alone is insufficient to recapitulate the abundance of 
tRNAs accurately (Fig. 3f) and leads to significantly lower sequenc-
ing yield (17× fewer sequenced reads and 15× fewer mapped reads 
compared to Nano-tRNAseq). Moreover, we eliminate the need for 
gel-mediated tRNA selection, which is not only cumbersome but also 
known to contribute to tRNA fragmentation133 and cause significant loss 

Fig. 5 | Characterization of tRNA abundance and modification dynamics 
upon exposure to stress reveals that the CCA tail is deadenylated in oxidative 
stress. a, Scatter plots of tRNA abundances of S. cerevisiae heat stress (45 °C for 
1 hour) and oxidative stress (2 mM H202 for 1 hour) across biological replicates. 
Each point represents a tRNA alloacceptor and is colored based on alloacceptor 
type. The correlation strength is indicated by Spearman’s correlation coefficient 
(ρ). See also Supplementary Table 21. Volcano plots depicting differentially 
expressed tRNAs (relative to the untreated condition) are also shown for each 
stress type. See also Supplementary Tables 22 and 23. Differentially expressed 
tRNAs were defined as having an adjusted log10 P < 0.01 and an absolute log2 
fold change greater than 0.6. b, Heat map of summed basecalling error of 
oxidative stress relative to WT, for each nucleotide (x axis) and for each tRNA 
(y axis, ordered from most to least abundant in descending order). See also 
Supplementary Table 17. The positions of specific RNA modifications in each 

tRNA are listed in Supplementary Table 18. Nucleotides with a lower summed 
basecalling error frequency relative to WT are in blue tones, and those with a 
higher summed basecalling error frequency are in red tones, as seen with the 
terminal A at position 76 (black arrowhead). Heat maps corresponding to other 
biological replicates can be found in Supplementary Fig. 2b. c, Schematic of a 
generic S. cerevisiae cytoplasmic tRNA in its usual secondary structure with the 
terminal A nucleotide of the CCA tail highlighted in red. d, Zoomed snapshots of 
IGV tracks featuring the terminal A (black arrowhead). Positions with a mismatch 
frequency greater than 0.2 are colored, whereas those showing mismatch 
frequencies lower than 0.2 are shown in gray. e, Bar plot of the deletion frequency 
of the terminal A base for each S. cerevisiae tRNA isoacceptor under oxidative 
stress (red), Pus4 KO (orange) or heat stress (purple) or in WT conditions (blue) 
(Supplementary Table 24). Error bars represent mean ± s.d. for n = 2 biological 
replicates per condition.
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of material. In addition, the previously reported method is incompat-
ible with the linearization of the tRNA molecule92; by linearizing tRNAs 
with our optimized reverse transcription protocol, we further increased 

sequencing yield by 50% (Extended Data Fig. 5d). Moreover, we dem-
onstrate that Nano-tRNAseq can detect tRNA modifications (Fig. 4c–e 
and Extended Data Fig. 9) and quantify changes in their stoichiometry 
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(Fig. 4d,e and Extended Data Fig. 8). On the other hand, compared to 
NGS-based approaches, Nano-tRNAseq directly sequences the native 
RNA molecule, thus circumventing the need to remove modifications 
that perturb reverse transcription74,75. Furthermore, it does not require 
PCR amplification, which is known to introduce unwanted variation in 
the sequencing results.

A notable feature that sets tRNAs apart from other RNA bio-
types is the abundance and diversity of the modified bases in their 
structures4,134,135. Previous works have shown that the addition of a 
certain modification often depends on a pre-existing modification 
at another site118–120,136,137. Traditional methods for detecting the 
sequential addition of tRNA modifications, such as two-dimensional 
thin-layer chromatography (2D-TLC)138 and primer extension139, have 
contributed a wealth of knowledge to this area but are restricted 
by modification type and do not provide sequence or tRNA isoac-
ceptor context. Similarly, high-performance liquid chromatogra-
phy (HPLC)-based methods cannot provide sequence context, and, 
although HPLC–MS may be able to deduce sequence context through 
enzymolysis67,140, it is a targeted approach. Newer methods, namely 
NAIL-MS141 and NMR120, can dissect RNA modification circuits but are 
labor intensive and, in the latter case, are limited to studying specific 
tRNAs in isolation. In contrast, Nano-tRNAseq enables quantification 
of RNA modifications across the entire length of the transcript, in all 
tRNA isoacceptors, in a high-throughput and cost-effective man-
ner, with the combined benefit of measuring tRNA abundances. To 
demonstrate this, we sequenced WT and Pus4-deficient S. cerevisiae 
and confirmed that Nano-tRNAseq could recapitulate the known 
relationship between loss of Ψ55, which Pus4 catalyzes, and the 
subsequent loss of m1A58 and m5U54 (Fig. 4e,f), in agreement with 
previous reports120. With the generation of yeast KO strains of every 
tRNA-modifying enzyme nearly complete (available from the Yeast 
Knockout Collection as part of the Saccharomyces Genome Deletion 
Project142,143), Nano-tRNAseq presents an excellent opportunity to 
describe tRNA modification circuits in a holistic manner, provid-
ing invaluable insights into how these processes are regulated and 
impact health and disease.

Previous studies have reported that some tRNA modifications 
are significantly altered under stress conditions48, likely conferring 
adaptation to environmental exposures49,51. Changes in tRNA modifi-
cation levels may be attributed to the induction of new RNA modifica-
tion enzymes, upregulated or attenuated expression of existing RNA 
modification enzymes or selective degradation of tRNAs. However, 
we did not observe significant changes in S. cerevisiae tRNA mod-
ification levels under oxidative stress or heat stress, neither using 
Nano-tRNAseq (Supplementary Fig. 2) nor using LC–MS/MS (Fig. 4g). 
The disparity in the results of our study compared to previous studies 
could likely be attributed to the difference in sample preparation; in 
Chan et al.48, LC–MS/MS was performed on ‘tRNA-containing small 
RNA species’, specifically small RNAs of 100 nt and fewer, and not just 
tRNAs. Therefore, the RNA fraction analyzed by Chan et al. could, in 
principle, contain tRNA-derived fragments (tRFs)144, fragments from 
other RNA biotypes (for example, mRNAs and rRNAs) as well as other 
small RNA species, such as miRNAs, snoRNAs and snRNAs, which also 
harbor RNA modifications, potentially contributing in the estimation of 
tRNA modification levels. By contrast, Nano-tRNAseq captures mature 
full-length tRNAs, and our LC–MS/MS experiments were conducted on 
gel-purified samples (70–110 nt; Supplementary Fig. 24c,d), which cor-
respond to full-length tRNAs. Therefore, the differences in the results 
obtained between our study and previous works48 might be explained 
by differences in the input RNA pools (that is, mature tRNAs versus 
<100-nt RNAs that include tRNAs) that were used for sequencing and/
or LC–MS/MS experiments.

All mature tRNAs contain a single-stranded CCA sequence at the 
3′ terminus, which is generated and maintained by the CCA-adding 
enzyme ATP(CTP):tRNA nucleotidyltransferase, and is necessary for 

tRNA aminoacylation. Strikingly, we observed that the terminal A of 
the tRNA CCA tail was deadenylated under oxidative stress but not 
heat stress (Fig. 5b–e). Indeed, it has been previously shown that, 
under oxidative stress induced by sodium arsenite, the terminal A of 
the 3′ CCA sequence can be removed by endonuclease angiogenin126. 
Consistent with published results, although in this study oxidative 
stress is induced by H2O2, all tRNA isoacceptors exhibit 3′ CCA dead-
enylation. Regulation at the translation level through deadenylation of 
tRNA ends, thereby blocking their use in translation, could provide the 
plasticity for immediate changes in cellular activities and protein levels. 
Additionally, after removal of the stressor, the terminal A deadenylation 
is reversible and quickly repairable by the CCA-adding enzyme, thus 
making the tRNAs chargeable again, representing a rapid mechanism 
of suppressing and reactivating translation at a low metabolic cost. 
Using Nano-tRNAseq, we demonstrated this fast and dynamic transla-
tion repression by quantifying the terminal A deadenylation with tRNA 
isoacceptor resolution.

Although this study primarily uses tRNAs from S. cerevisiae, 
the natural next step would be to apply Nano-tRNAseq to a broader 
range of organisms and cell types. The modification profiles of lower 
eukaryotic species, such as S. cerevisiae, are mostly complete, while 
the modification profiles of only 18 out of 200 human cytosolic tRNAs 
are characterized in detail134. In this regard, Nano-tRNAseq can provide 
a means to catalog the RNA modification profiles for the tRNAs that 
lack this information. On the other hand, several studies have shown 
that tRNA dysregulation is associated with cancer progression and 
malignancy16–18, and that specific tRNAs are significantly upregulated 
as they gain metastatic activity52,132,145. However, tRNA abundances 
and modifications are currently not being used as screening, diag-
nostic or prognostic markers for cancer detection or progression, 
as the lack of cost-effective and reliable methodologies to detect 
and quantify tRNAs accurately has hindered their potential use as 
biomarkers. Nano-tRNAseq might offer an optimal solution to extract 
the maximal information from these molecules with minimal library 
preparation steps and use them as biomarkers for cancer screening 
and monitoring.

We should note that estimations of tRNA abundances obtained 
with Nano-tRNAseq will be limited to those tRNAs included in the 
reference FASTA set used in the mapping step. In this work, we chose 
to build a non-redundant set of S. cerevisiae tRNAs (Methods) that 
differed in at least 5% of its sequence (~2 nt), to avoid multi-mapping 
artifacts that would otherwise lead to biases in the tRNA abundance 
estimates146. Such reduction or clustering is commonly used in 
NGS-based studies77,81,146, as the relaxed mapping parameters used—
to allow for mismatches caused by tRNA modifications—would oth-
erwise lead to multi-mapping reads and, consequently, inaccurate 
tRNA abundance estimates. That being said, we should note that the 
tRNA reference used in this work contains at least one representative 
tRNA gene per tRNA isoacceptor, thus ensuring that Nano-tRNAseq 
can be used to investigate and identify modulations in tRNA isoac-
ceptor abundances.

Collectively, Nano-tRNAseq is a sensitive and accurate method for 
the quantification of tRNA abundance and modification profiles with 
single-transcript resolution. The robust and straightforward library 
preparation workflow can be completed within a day and sequencing 
within a second day. We anticipate that our method will help shed new 
light on the dynamics of tRNA biology and may be used in the near 
future for diagnostics and prognostics of human disease.
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Methods
Preparation of IVT transcribed tRNAs
A total of nine unmodified IVT tRNAs with diverse lengths and 
sequences (Supplementary Table 1) were prepared as previously 
described147. In brief, each tRNA was assembled using six DNA oligo-
nucleotides that were first annealed and then ligated between HindIII 
and BamHI restriction sites of the plasmid pUC19. BstNI-linearized plas-
mids were used to perform the IVT with T7 RNA polymerase, according 
to standard protocols148. Transcripts were separated by 8 M urea/10% 
polyacrylamide gel electrophoresis. The tRNA was identified by UV 
shadowing, electroeluted and ethanol precipitated, and the tRNA pel-
let was resuspended in RNAse-free water. The integrity of the IVT tRNA 
products was confirmed (Supplementary Fig. 25) by running 200 ng of 
each sample on a 7 M urea/15% polyacrylamide gel (Life Technologies, 
EC6885BOX) in 1× TBE Buffer, using the Low Range ssRNA as a ladder 
(New England Biolabs (NEB), N0364S). Then, 2× RNA Loading Dye 
(Thermo Fisher Scientific, R0641) was added to each sample and ladder 
to a final volume of 1×, and the samples and ladder were heated at 95 °C 
for 3 minutes and cooled on ice before running. The gel was incubated 
in 1× TBE Buffer with 1× SYBR Gold Nucleic Acid Dye for 10–15 minutes 
with gentle agitation and visualized using a Bio-Rad Molecular Imager 
FX (ex: 495 nm, em: 537 nm).

Removal of 5′ triphosphate of IVT tRNAs
The 5′ triphosphate was converted to 5′ monophosphate by incu-
bating 1 µl of RppH enzyme (NEB, M0356S) per 100 ng of input IVT 
tRNAs, with 1× ThermoPol Buffer (NEB, B9004S), in a total reaction 
volume of 30 µl at 37 °C for 2 hours. The reaction was inactivated by 
adding 0.6 µl of 500 mM EDTA and incubating at 65 °C for 5 minutes, 
followed by cleanup using a Zymo RNA Clean and Concentrator-5 kit 
(Zymo Research, R1016), following the manufacturer’s instructions 
to retain RNAs ≥17 nt.

Yeast strains and culturing
S. cerevisiae parental strain (BY4741), Pus1 KO strain (BY4741 MATa 
pus1::KAN), Pus4 KO strain (BY4741 MATa pus4::KAN) and Pus7 KO 
strain (BY4741 MATa pus7::KAN) were obtained from the Yeast Knock-
out Collection (Dharmacon) and grown under standard conditions 
overnight in 4 ml of YPD medium (1% yeast extract, 2% Bacto Peptone 
and 2% dextrose) at 30 °C. The next day, cultures were diluted to 0.0001 
OD600 in 200 ml of YPD and grown overnight at 30 °C with shaking 
(250 r.p.m.). When cultures reached the mid-exponential growth phase 
(between OD600 0.5), the WT culture was divided into 3 × 50 ml subcul-
tures, which were then incubated for 1 hour at 30 °C (control), 45 °C 
(heat stress) or in 2 mM H202 (oxidative stress). The Pus4 culture was 
divided into 1 × 50 ml culture and incubated at 30 °C. After incubation, 
cultures were quickly transferred into a pre-chilled 50-ml Falcon tube 
and centrifuged at 3,000g for 5 minutes at 4 °C, followed by two washes 
with water, and then pellets were snap-frozen at −80 °C. Biological 
replicates were performed on consecutive days.

RNA extraction from yeast cultures
Snap-frozen yeast pellets were resuspended in 660 µl of TRIzol Reagent 
(Thermo Fisher Scientific, 15596018) with 340 µl of acid-washed and 
autoclaved 425–600-µm glass beads (Sigma-Aldrich, G8772). The cells 
were disrupted by vortexing on top speed for seven cycles of 15 seconds 
and chilling the samples on ice for 30 seconds between cycles. The 
samples were then incubated at room temperature for 5 minutes, and 
200 µl of chloroform was added. After briefly vortexing the suspen-
sion, the samples were incubated for 5 minutes at room temperature 
and centrifuged at 14,000g for 15 minutes at 4 °C. The upper aqueous 
phase was transferred to a new tube. To precipitate RNA, 1× volume 
of molecular-grade isopropanol and 1 µl of GlycoBlue co-precipitant 
(Thermo Fisher Scientific, AM9515) were added and mixed by invert-
ing and incubated for 10 minutes at room temperature. The samples 

were centrifuged at 14,000g for 15 minutes at 4 °C, and the pellet was 
then washed with ice-cold 70% ethanol. The pellet was resuspended 
in nuclease-free water after air drying for 5 minutes on the benchtop, 
and the RNA purity was measured using a NanoDrop 1000 spectropho-
tometer. The samples were treated with Turbo DNase (Thermo Fisher 
Scientific, AM2238) and subsequently cleaned up using a Zymo RNA 
Clean and Concentrator-5 kit (Zymo Research, R1016) following the 
manufacturers’ instructions to retain RNAs ≤200 nt. In brief, 1× volume 
of RNA Binding Buffer was combined with 1× volume of 100% ethanol. 
Then, 2× volume of the RNA Binding Buffer and ethanol solution was 
added to the reaction, transferred to a Zymo-IC column and spun at 
≥12,000g at room temperature for 1 minute. Next, 1× volume of 100% 
ethanol was added to the flow-through, which contains the 17–200-nt 
fraction, and this was transferred to a new Zymo-IC column and spun 
at ≥12,000g at room temperature for 1 minute. Then, 400 µl of RNA 
Prep Buffer was added to the column and spun at ≥12,000g at room 
temperature for 1 minutes, and then 800 µl of RNA Wash Buffer was 
added, and the column was spun at >12,000g at room temperature for 
2 minutes, transferred to a fresh collection tube and spun for 1 minute. 
The RNA was eluted in nuclease-free water. RNA concentration was 
determined using Qubit Fluorometric Quantitation; RNA purity was 
measured with a NanoDrop 1000 spectrophotometer; and the RNA 
electropherogram was obtained using Agilent 4200 TapeStation RNA 
HS ScreenTape Assay (Supplementary Fig. 24a).

tRNA deacylation
Commercial S. cerevisiae tRNAPhe (Sigma-Aldrich, R4018), commercial S. 
cerevisiae total tRNA (Sigma-Aldrich, AM7119) and tRNAs purified from 
S. cerevisiae BY4741 WT and Pus4 KO cultures were resuspended in 10 µl 
of nuclease-free water and deacylated in 95 µl of 100 mM Tris-HCl (pH 
9.0) at 37 °C for 30 minutes. Deacylated tRNAs were recovered using 
Zymo RNA Clean and Concentrator-5 kit (Zymo Research, R1016), 
following the manufacturer’s instructions to retain RNAs ≥17 nt but 
increasing the ethanol concentration to 1.3× after the RNA Prep Buffer 
step. The tRNA profiles were confirmed using Agilent 4200 TapeStation 
RNA HS ScreenTape Assay (Supplementary Fig. 24b).

Nanopore tRNA sequencing library preparation 
(Nano-tRNAseq)
tRNA libraries were prepared using the SQK-RNA002 kit (ONT) with 
some protocol alterations as described here. All oligonucleotides used 
in this study were obtained from Integrated DNA Technologies (IDT) 
(Supplementary Table 25). The 5′ RNA splint adapter (/5/rCrCrUrA-
rArGrArGrCrArArGrArArGrArArGrCrCrUrGrGrN) was designed to be 
complementary to the 3′ NCCA overhang of mature tRNAs, and the 3′ 
splint RNA:DNA adapter (/5Phos/rGrGrCrUrUrCrUrUrCrUrUrGrCrUr-
CrUrUrArGrGrArArArArArArArArArAAAA) was designed to be comple-
mentary to the rest of the 5′ RNA splint adapter, with a short poly(A) 
segment for the RTA adapter to anneal to (Fig. 1b and Extended Data 
Fig. 1). The 5′ and 3′ splint adapters were prepared at a 1:1 molar ratio 
in a solution of 10 mM Tris-HCl (pH 7.5), 50 mM NaCl and 1 µl of RNasin 
Ribonuclease Inhibitor (Promega, N251A), with a final concentration 
of 50 ng µl−1 and heated to 75 °C for 15 seconds and cooled to 25 °C at 
a rate of 0.1 °C s−1 to hybridize the adapters. DNA oligos with the same 
sequence as ONT RTA adapters were ordered from IDT and annealed 
in the same manner as the 5′ and 3′ splint adapters. Deacylated tRNAs 
were ligated to the pre-annealed 5′ and 3′ splint adapters at a molar ratio 
of 1.2:1 (assuming an average tRNA length of 90 nt). The ligation was 
carried out at room temperature for 2 hours in a total reaction volume 
of 50 µl with 20% PEG 8000 (NEB, B10048), 1× T4 RNA Ligase 2 Buffer 
(NEB, B0239S), 4 µl of 6 mg ml−1 recombinant E. coli T4 RNA 2 Ligase 
(made in-house; see below) and 1 µl of RNasin Ribonuclease Inhibitor 
(Promega, N251A). A 2× volume of room-temperature-equilibrated 
AMPure RNAClean XP beads (Beckman Coulter, A63987) was then 
added to the reaction, pipetting gently up and down, and incubated 
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for 15 minutes at room temperature on a Hula Mixer. The beads were 
washed with freshly prepared 70% ethanol and left to air dry. The sam-
ples were eluted by resuspending the beads in nuclease-free water and 
incubating them for 10 minutes at room temperature on a Hula Mixer. 
The RNA concentration was determined using RNA HS Qubit Fluoro-
metric Quantification. Then, 200 ng of 5′ and 3′ ligated tRNAs were 
ligated to the pre-annealed RTA adapters at a molar ratio of 1:2 (roughly 
4.3 pmol tRNAs to 8.6 pmol of RTA adapter). The ligation was carried 
out at room temperature for 30 minutes in a total reaction volume of 
15 µl with 1× Quick Ligation Reaction buffer (NEB, B6058S), 1.5 µl of T4 
DNA Ligase (NEB, M0202M, 2,000,000 units per milliliter) and 0.5 µl 
of RNasin Ribonuclease Inhibitor (Promega, N251A). After ligation, a 
reverse transcription master mix of 13 µl of nuclease-free water, 2 µl 
of 10 mM dNTPs (NEB, N0447S), 8 µl of 5× Maxima H Minus Reverse 
Transcriptase Buffer and 2 µl of Maxima H Minus Reverse Transcriptase 
(Life Technologies, EP0751) were added directly to the reaction, mixed 
well by pipetting and incubated at 60 °C for 1 hour, 85 °C for 5 minutes 
and then brought to 4 °C. The linearized tRNAs were cleaned up using 
2× AMPure RNAClean XP beads as described for the ligation reac-
tion. Finally, the ONT RMX sequencing adapters were ligated at room 
temperature for 30 minutes in a total reaction volume of 40 µl with 1× 
Quick Ligation Reaction buffer (NEB, B6058S), 3 µl of T4 DNA Ligase 
(NEB, M0202M, 2,000,000 units per milliliter) and 6 µl of RMX adapt-
ers. A 2× volume of AMPure RNAClean XP beads was then added and 
mixed into the reaction by pipetting gently up and down and incubated 
for 10 minutes at room temperature on a Hula Mixer. The sample was 
washed twice with 150 µl of WSB (Wash Buffer), in which the pellet was 
resuspended by flicking the tube. The sample was eluted in 20 µl of ELB 
(Elution Buffer) and incubated for 10 minutes at room temperature 
on a Hula Mixer. The final library was prepared by adding 17.5 µl of 
nuclease-free water and 37.5 µl of vortexed RRB and kept on ice until 
loading. The MinION flow cell (FLO-MIN-106) was quality controlled, 
primed and loaded as per the standard ONT SQK-RNA002 protocol.

Alternative nanopore tRNA sequencing strategies tested
Below we describe the initial strategies tested to build nanopore tRNA 
DRS libraries (Strategy A and Strategy B), which are not recommended. 
However, details to build them are included below to ensure that all 
results included in this work can be reproduced if desired.

Strategy A. tRNA DRS libraries were prepared using the SQK-RNA002 
kit (ONT) with some protocol alterations as described here for the fol-
lowing library preparation protocol strategies (Extended Data Fig. 1). 
Deacylated tRNAs were polyadenylated using E. coli poly(A) polymerase 
(NEB, M0276S) at 37 °C for 30 minutes following the manufacturer’s 
instructions. The 5′ RNA splint adapter, as used in Nano-tRNAseq and all 
library preparation strategies described, was ligated to poly(A)-tailed 
tRNAs at a molar ratio of 2:1. The reaction was carried out overnight at 
4 °C with 20% PEG 8000, 1× T4 RNA Ligase 2 Buffer, 4 µl of 6 mg ml−1 
recombinant E. coli T4 RNA 2 Ligase and 1 µl of RNaseOUT (Invitrogen, 
18080051), in a total reaction volume of 50 µl. A 1.8× volume of AMPure 
RNAClean XP beads was then added and mixed into the reaction by 
pipetting gently up and down and incubated for 15 minutes at room 
temperature on a Hula Mixer. The beads were washed with freshly 
prepared 70% ethanol and left to air dry. To elute, the beads were resus-
pended in nuclease-free water and incubated for 10 minutes at room 
temperature on a Hula Mixer. RNA concentration was determined 
using Qubit Fluorometric Quantification. The ligation of RTA and RMX 
adapters, final library preparation steps and flowcell quality control 
and loading are as described in Nano-tRNAseq.

Strategy B. tRNA DRS libraries were prepared using the SQK- 
RNA002 kit (ONT) with some protocol alterations as described 
here for the following library preparation protocol strategies  
(Extended Data Fig. 1). The 5′ splint RNA adapter (/5/rCrCrUrArArGrAr 

GrCrArArGrArArGrArArGrCrCrU rGrGrN) and ONT RTA adapter 
oligo A were annealed in a molar ratio of 1:1 as described above. The 
annealed 5′ splint RNA adapter and 3′ splint DNA adapter were ligated 
to 5′ monophosphate, deacylated tRNAs and cleaned up using the 
same protocol as in Strategy A. The ligation of RMX adapters, final 
library preparation steps and flowcell quality control and loading are 
as described in Nano-tRNAseq.

Recombinant protein expression of E. coli T4 RNA Ligase 2
The codon-optimized sequence of E. coli T4 RNA Ligase 2 (T4RNL2) 
ORF DNA was ordered from IDT and cloned into the expression plasmid 
pETM14 in frame, with a coding sequence of a hexa-histidine tag fol-
lowed by a 3C PreScission cleavage recognition sequence. The protein 
expression and purification were performed in the Protein Technolo-
gies Unit at the Center for Genomic Regulation (CRG), following previ-
ously described procedures101. For long-term storage at −80 °C, glycerol 
was added to a final concentration of 10%. For assays, 6 mg ml−1 recom-
binant E. coli T4 RNA 2 Ligase was kept in 10 mM Tris-HCl, 50 mM KCl, 
35 mM (NH4)2SO4, 0.1 mM DTT, 0.1 mM EDTA and 50% glycerol at −20 °C.

Gel purification of tRNAs and LC–MS/MS
Gel-purified tRNAs were only used for LC–MS/MS. First, 5 µg of the 
17–200-nt fraction of each sample, and commercial S. cerevisiae tRNAPhe 
and total tRNA, which served as size markers, were prepared in 2× RNA 
loading dye (NEB, B0363A) and heat denatured at 94 °C for 5 minutes. 
Running samples were loaded into 15% 7 M TBE-urea gels (Life Technolo-
gies, EC6885BOX) with a lane left free between each sample to avoid 
cross-contamination and run in 1× TBE at 100 V until the bromophenol 
blue marker was at three-quarters of the way down the gel. The gel 
was post-stained in the dark in 1× TBE with 1× SYBR Gold (Invitrogen, 
S11494) for 5 minutes. Gels were transferred to copier transparency 
film (Niceday, 607510), and, using UV underlighting, the gel region 
corresponding to tRNAs (Supplementary Fig. 24c) was excised using 
a sterile scalpel and transferred into a Zymo-Spin IV Column from 
the ZR small-RNA PAGE Recovery Kit (Zymo Research, R1070). tRNAs 
were extracted from the gel as per manufacturer instructions, and the 
extracted tRNA profiles were confirmed using Agilent 4200 TapeSta-
tion RNA HS ScreenTape Assay (Supplementary Fig. 24d). Then, 500 ng 
of gel-purified tRNAs were digested at 37 °C for 1 hour using Nucleoside 
Digestion Mix (NEB, M0649), following manufacturer instructions. The 
nucleoside digestion solution was then desalted using HyperSep Spin-
Tip Column (Thermo Fisher Scientific, 60109-404). First, the column 
was washed with 40 µl of 60% acetonitrile by centrifuging at 100g for 
10 minutes and then washed with 40 µl of 0.1% formic acid by centri-
fuging at 100g for 5 minutes. The digested sample was combined with 
30 µl of formic acid, added to the column and collected in a fresh col-
lection tube by centrifuging at 100g for 10 minutes. The flow-through 
was re-applied to the column and centrifuged at 100g for 10 minutes. 
Now bound to the column, the sample was washed with 40 µl of 0.1% 
formic acid by centrifuging at 100g for 5 minutes. Next, 40 µl of 60% 
acetonitrile was added to the column, and the sample was eluted by 
centrifuging at 100g for 5 minutes. The CRG/UPF Proteomics Facility 
conducted LC–MS/MS of S. cerevisiae tRNA modifications. In brief, 
125 ng of each digested and desalted sample was analyzed by LC–MS/
MS using a 40-minute gradient on an Orbitrap XL. As a quality control, 
ribonucleoside standards were run between samples to prevent car-
ryover and to assess the instrument performance (see Supplementary 
Table 19 for raw data and Supplementary Table 20 for normalized 
data). Heat stress replicate 2 had an altered chromatographic profile 
with significantly less Ψ than all other samples and was, therefore, 
discarded from the analysis.

tRNA reverse transcription optimization
IVT tRNAs and commercial S. cerevisiae tRNAPhe were poly(A) tailed 
(as described in Strategy A) and used for reverse transcription tests. 
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For the SuperScript II, 100 ng of poly(A)-tailed RNA, 1 µl of 100 µM 3′ 
reverse transcription test adapter (see Supplementary Table 25 for 
oligonucleotides) and 1 µl of 10 mM dNTP (Promega, M750B) were 
combined in a total reaction volume of 12 µl, incubated at 65 °C for 
5 minutes and then chilled on ice. Then, 4 µl of either 5× first-strand 
(FS) buffer (Thermo Fisher Scientific, 18064014) or 5× FS buffer sup-
plemented with 65 mM MnCl2, 1 µl of 0.1 M DTT, 1 µl of RNaseOUT and 
1 µl of SuperScript II reverse transcriptase (Thermo Fisher Scientific, 
18064014) were added, and the reaction was incubated at 42 °C for 
1 hour and inactivated by heating at 70 °C for 15 minutes, followed by 
RNAse digestion. For SuperScript IV, 100 ng of poly(A)-tailed RNA, 1 µl 
of 100 µM 3′ reverse transcription test adapter and 1 µl of 10 mM dNTP 
were combined in a total reaction volume of 12 µl, incubated at 65 °C for 
5 minutes and then chilled on ice. Then, 4 µl of 5× SuperScript IV reverse 
transcription buffer (Thermo Fisher Scientific, 18090010), 1 µl of 0.1 M 
DTT, 1 µl of RNaseOUT and 1 µl of SuperScript IV reverse transcriptase 
(Thermo Fisher Scientific, 18090010) were added, and the reaction 
was incubated at 55 °C or 60 °C for 1 hour and inactivated by heating at 
85 °C for 5 minutes, followed by RNAse digestion. For TGIRT, 100 ng of 
poly(A)-tailed RNA, 1 µl of 100 µM 3′ reverse transcription test adapter, 
4 µl of 5× TGIRT reverse transcription buffer, 1 µl of 0.1 M DTT, 1 µl of 
TGIRT-III (InGex, TGIRT50) and 1 µl of RNaseOUT were combined in a 
total reaction volume of 19 µl and incubated at room temperature for 
30 minutes. Then, 1 µl of 10 mM dNTPs was added, and the reaction 
was incubated at 60 °C for 1 hour and inactivated by heating at 75 °C 
for 15 minutes, followed by RNAse digestion. For Maxima, 100 ng of 
poly(A)-tailed RNA, 1 µl of 100 µM 3′ reverse transcription test adapter 
and 1 µl of 10 mM dNTP were combined in a total reaction volume of 
12 µl, incubated at 65 °C for 5 minutes and then chilled on ice. Then, 4 µl 
of 5× Maxima reverse transcription buffer, 1 µl of RNaseOUT and 1 µl 
of Maxima H Minus reverse transcriptase (Thermo Fisher Scientific, 
EP0751) were added, and the reaction was incubated at 55 °C or 60 °C 
for 1 hour and inactivated by heating at 85 °C for 5 minutes, followed by 
RNAse digestion. After reverse transcription, the RNA was digested by 
adding 1.5 µl of RNase Cocktail Enzyme Mix (Thermo Fisher Scientific, 
AM2286) to the reaction and incubating at 37 °C for 10 minutes. The 
reactions were cleaned up using 1.5× AMPure XP beads as described, 
and the tRNA cDNA and input poly(A) tRNA was run on TapeStation 
using the RNA HS assay.

S. cerevisiae tRNA reference set
Reference sequences for mature S. cerevisiae tRNAs were retrieved 
from GtRNAdb2 (ref. 149). GtRNAdb2 reports 275 tRNA sequences 
annotated in the S. cerevisiae genome. Most tRNA isoacceptors (that is, 
with the same anticodon) have multiple copies; for example, Asp-GTC 
and Gly-GCC have 16 copies each, and most of these copies are identi-
cal—only 54 unique, mature tRNA sequences exist. From these, 12 
sequences are highly similar to other tRNA genes, having 95–99% iden-
tity (Supplementary Table 26) with another tRNA gene; for example, 
Asp-GTC-1 and Asp-GTC-2 have an identity of 96.9%. To facilitate reliable 
alignment and accurate tRNA quantification, we kept the 42 sequences 
that were at least 5% divergent at nucleotide level (including ligated 5′ 
and 3′ oligos), which kept one reference tRNA gene per tRNA isoaccep-
tor. The final reference file used in this work is available in the GitHub 
repository (https://github.com/novoalab/Nano-tRNAseq). Modifica-
tions for S. cerevisiae tRNAs were obtained from MODOMICS22, and the 
canonical position was manually curated using published literature 
(Supplementary Table 18)3,25,117,150.

Basecalling and mapping tRNA reads
Reads were basecalled using Guppy basecaller version 3.6.1 in 
high-accuracy (hac) mode. All Us were converted to Ts before mapping. 
Basecalled reads were mapped using minimap2 version 2.17-r941 with 
recommended parameters (-ax map-on -k15) or sensitive parameters 
(-ax map-ont -k5) or BWA version 0.7.17-r1188. For BWA, two modes 

(MEM and SW) were tested, and several sets of parameters were invoked 
as follows (ordered from the most stringent to the least stringent set-
tings): (1) bwa mem -W13 -k6 -xont2d; (2) bwa mem -W13 -k6 -xont2d 
-T20; (3) bwa mem -W13 -k6 -xont2d -T10; (4) bwa mem -W9 -k5 -xont2d 
-T10; and (5) bwa sw -z10 -a2 -b1 -q2 -r1 (Supplementary Table 3). Reads 
mapping to the reverse strand (antisense) were assigned as ‘wrong 
alignments’. We selected the best-performing algorithm and param-
eters (bwa mem -W13 -k6 -xont2d -T20) by comparing the number of 
uniquely aligned reads and the number of wrong alignments (Supple-
mentary Table 4). We should note that the sequence of 5′ and 3′ RNA 
adapters were included in the respective references when mapping the 
tRNA reads. The effect of 5′ and 3′ RNA adapters length on the mappa-
bility was tested by shortening the respective adapter sequence from 
the alignment reference with a step of 5 nt (Supplementary Table 6). All 
reference files used in this work are available in the GitHub repository 
(https://github.com/novoalab/Nano-tRNAseq).

Analysis of tRNA abundances
tRNA abundances were quantified using the get_counts.py script (avail-
able on GitHub: https://github.com/novoalab/Nano-tRNAseq). Unique 
(mapping quality above 0) primary alignments were considered. Dif-
ferentially expressed tRNAs were inferred using DESeq2 (ref. 151). 
Volcano plots were generated using the EnhancedVolcano package152. 
Differentially expressed tRNAs were defined as those having adjusted 
P < 0.01 and absolute log2 expression fold change greater than 0.6.

Analysis of differential tRNA modifications
Differential tRNA modifications were measured using differential 
basecalling errors (mismatch, insertion and deletion) for each tRNA 
nucleotide. The sum of basecalling errors was calculated by subtracting 
the frequency of the reference base from 1. The frequency of the refer-
ence base equals the number of reads with a basecalled equivalent to 
the reference base, divided by the depth of coverage for that position. 
Only uniquely aligned reads (primary alignment with mapping quality 
above 0) were considered. To ease the above calculations, we developed 
a script (get_sum_err.py), which reports the sum of basecalling errors 
and frequencies of A, C, G, T, deletions and insertions for every posi-
tion of tRNA reference as well as plotting heat maps that order tRNA 
isoacceptors from highest to lowest expressed (plot_heatmap.py). The 
script is available at https://github.com/novoalab/Nano-tRNAseq. For 
heat maps, only tRNAs whose sequences were consistent between the 
tRNAdb2 and MODOMICS databases could be used, with the exception 
of His-GTG, whose sequence varied between tRNAdb2 and MODOMICS 
databases. The disparity was manually resolved by replacing the first 
base in the MODOMICS alignment with a gap. The difference in Ψ55 
modification stoichiometry between WT and Pus4 KO was quantified 
using NanoRMS98, using a supervised k-nearest neighbor (KNN) clas-
sification algorithm, incorporating signal intensity and trace features. 
Ψ55 sites with coverage lower than 5 reads in either the WT or Pus4 KO 
condition were excluded from the NanoRMS analysis. The script is 
available at https://github.com/novoalab/nanoRMS.

Adjusting MinKNOW parameters to capture small RNAs
Sequencing runs were conducted without live basecalling, and the 
bulk dump raw file was recorded for a subset (channels 1–50 for runID 
4_NanotRNAseq_IVT + tRNAphe) or all 512 channels (all remaining 
runs). MinKNOW version 21.06.0 was used for sequencing and running 
the simulations with distinct MinKNOW parameter settings from raw 
data dumps. The sequencing simulations were performed with default 
and custom MinKNOW configurations. By default, MinKNOW defines 
adapter duration as up to 5 seconds and the strand (an actual read) as 
at least 2 seconds. Thus, the RNA molecule has to spend up to 7 seconds 
in the pore to be classified and reported as an actual read. The motor 
protein (RNA helicase) used in DRS experiments has an average speed 
of 70 nt per second; thus, 7 seconds corresponds to roughly 490 nt.  
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Such a definition makes sense for long-molecule sequencing, as it fil-
ters out the adaptor-only reads. However, for short RNA sequencing, 
it would be reasonable to shorten both the adapter and strand defini-
tions. We evaluated several configurations, shortening the duration 
of the adapter to 1 second and the strand to 1, 2, 3 or 4 seconds. Sub-
sequently, the number of reported, basecalled, aligned and uniquely 
aligned reads generated by default and custom MinKNOW configura-
tions were compared. We concluded that using the 1 second definition 
for the adapter and 2 seconds for the strand (Extended Data Fig. 4) 
resulted in the highest number of aligned and uniquely aligned reads 
(Supplementary Table 7). Therefore, those settings are used across this 
study unless stated otherwise. Alternative MinKNOW configuration 
files are deposited and described in detail in the GitHub repository: 
https://github.com/novoalab/Nano-tRNAseq.

Comparisons with published datasets
Nano-tRNAseq S. cerevisiae tRNA expression estimations were compared 
to estimates reported by orthogonal Illumina-based tRNA sequencing 
methods ARM-seq74, Hydro-tRNAseq80 and mim-tRNAseq77. The pub-
lished estimates were reported per tRNA isoacceptor–anticodon pair 
and included the same references as the ones used in this work, with the 
exception of Hydro-tRNAseq, which missed two references (Leu-GAG 
and iMet-CAT) and reported an additional five references (Leu-AAG, 
Leu-CAG, Ala-CGC, Pro-CGG and Arg-TCG). These references were 
excluded from pairwise comparisons with Hydro-tRNAseq. HydraPsiSeq 
data were obtained from the authors121, and reads were mapped to  
S. cerevisiae tRNAs as described above (without the Nano-tRNAseq 
adapters included in the reference) but using adjusted bwa mem param-
eters -W13 -k6 -L0 -T15 to capture HydraPsiSeq reads, which are shorter. 
The summed mismatch error for each nucleotide in each Pus4 KO tRNA 
isoacceptor was calculated relative to WT, as described above.

Reporting Summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Basecalled FAST5 nanopore data have been deposited in the European 
National Archive (ENA) under accession PRJEB55684. From these data, 
both basecalled FAST5 and/or FASTQ files can be acquired153. FASTQ 
from HydraPsiSeq data121 has also been deposited in ENA under acces-
sion PRJEB55684 (ref. 153). A description of all the runs used in this 
work is included in Supplementary Table 7 and Supplementary Table 
27. The list of tRNA modifications present in S. cerevisiae tRNAs was 
obtained from MODOMICS (https://iimcb.genesilico.pl/modomics/
sequences/) and was retrieved on 21 September 2021. tRNA expression 
estimates from Illumina-based S. cerevisiae tRNA sequencing were 
obtained from following sources: mim-tRNAseq (Gene Expression 
Omnibus: GSE152621), tRNA-HydroSeq (Supplementary Material of the 
publication) and ARM-seq (Supplementary Table 2 of the publication).

Code availability
The reference FASTA, alignment and modification BED files, cus-
tom MinKNOW configurations and all code used to analyze the runs 
are publicly available on GitHub (https://github.com/novoalab/
Nano-tRNAseq)154. The NanoRMS script is available at https://github.
com/novoalab/nanoRMS (ref. 98).
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Extended Data Fig. 1 | Comparison of the strategies tested to sequence tRNA molecules using nanopore DRS. (a) Schematic overview of the three distinct library 
preparations, Strategy A, Strategy B, and Nano-tRNAseq, tested to sequence tRNA molecules.
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Extended Data Fig. 2 | Increased ligation time and addition of PEG8000 
improves 5′ RNA adapter ligation efficiency. (a) TBE-Urea gels showing 
the effect of reaction duration and the addition of 20% PEG8000 on ligation 
efficiency using commercial S. cerevisiae tRNAPhe as the ligation template. (b) 
Barplot of the ligation product (tRNAPhe ligated to the 5′ RNA adapter) normalized 

to an unligated tRNAPhe control. Error bars represent mean ± stdev for n = 3 
replicates per condition. P values were determined using a two-sided t-test, 
*P < 0.05, 2 h 25 °C vs 2 h 25 °C p-value = 0.0241, 20 min 25 °C vs 20 min 25 °C 
p-value = 0.0450. ON = overnight, PEG = PEG8000 (final concentration of 30%).
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Extended Data Fig. 3 | 5′ and 3′ RNA oligos can be efficiently ligated to tRNA 
molecules. TBE-Urea gel of adapter ligation steps used in Nano-tRNAseq, 
using commercial S. cerevisiae tRNAPhe as the ligation template. The lanes are as 
follows (1) 5′ RNA adapter, (2) 3′ RNA adapter, (3) tRNAPhe, (4) tRNAPhe ligated to 

5′ and 3′ adapters, (5) tRNAPhe and 5′ and 3′ adapters, without ligase control, (6) 
tRNAPhe ligated to 5′ and 3′ adapters and RTA adapter, (7) tRNAPhe and 5′ and 3′ 
adapters and RTA adapter, without ligase control. The experiment was repeated 
independently twice with similar results.
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Extended Data Fig. 4 | Schematic of default and custom MinKNOW read 
classification. Under default settings, sequenced templates are classified as 
reads and if the Adapter portion, which contains the ONT adapter, RTA adapter, 
and polyA tail, is 5 seconds or less, and the Strand portion, which contains the 
RNA template, is more than 2 seconds, which corresponds to an RNA molecule 
of roughly 140 nt. For Nano-tRNAseq, we use a custom configuration in which 

the Adapter portion, which contains the ONT adapter, RTA adapter, and the DNA 
portion of the 3′ RNA:DNA adapter, is 2 seconds or less, and the Strand portion, 
which contains the RNA portion of the 3′ RNA:DNA adapter, the tRNA template, 
and the 5’ RNA adapter, is 1 second or more, which corresponds to an RNA 
molecule of roughly 70 nt.
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Extended Data Fig. 5 | Comparison of the activity of diverse reverse 
transcriptase enzymes for tRNA linearization. (a) The strategy used to test 
the reverse transcription activity of different enzymes. Starting from either 
in vitro transcribed (IVT) or native tRNA (1), the tRNA was polyadenylated (2) 
and annealed with an oligodT adapter (3), which was used to initiate the cDNA 
synthesis using different RT enzymes and conditions. The RNA strand of the 
linearized product (4) was digested, leaving the cDNA strand (5), which was 
checked via TapeStation. (b) TapeStation profiles depicting the original polyA 
(pA) tRNA product (blue) and the cDNA product (orange) that is produced 
by reverse transcription of the template using diverse reverse transcriptases 

and incubation conditions. Truncated cDNA products are shown with a gray 
triangle. The 25 nt peak that is present in all samples corresponds to the loading 
size marker. The upper panel is IVT tRNA, and the lower panel is commercial 
S. cerevisiae tRNAPhe. (c) Helicase speed (events/s roughly corresponds to nt/s 
sequenced) over time of wild-type (WT) S. cerevisiae total tRNA sequenced with 
or without reverse transcription (RT) and classified using the default or custom 
MinKNOW configuration. (d) Barplot showing the fold change of basecalled 
and uniquely mapped reads when WT S. cerevisiae total tRNA is linearized with 
reverse transcription, compared to without reverse transcription.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01743-6

Extended Data Fig. 6 | Comparison of the Illumina-based methods to each 
other. Scatterplots comparing Illumina-based tRNA sequencing methods 
ARM-seq, Hydro-tRNAseq, and mim-tRNAseq, to each other when sequencing 

wild-type S. cerevisiae total tRNA. Each point represents a tRNA alloacceptor and 
is colored based on alloacceptor type. The correlation strength is indicated by 
Spearman’s correlation coefficient (ρ).
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Extended Data Fig. 7 | RNA modification signatures observed in Nano-
tRNAseq datasets span multiple bases and are sequence-dependent. Zoomed 
snapshots of WT S. cerevisiae Nano-tRNAseq runs, highlighting the signatures 
at m5C, m1A, I, and t6A modified sites. The upper row corresponds to biological 

replicate 2, and the lower row corresponds to biological replicate 2. Positions 
with a mismatch frequency greater than 0.2 are colored, whereas those showing 
mismatch frequencies lower than 0.2 are shown in gray.
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Extended Data Fig. 8 | tRNA abundance and changes in RNA modification 
stoichiometry can be quantified using Nano-tRNAseq. (a) Scatterplots showing 
tRNA abundances of S. cerevisiae Pus4 knockout (KO) across biological replicates. 
See also Supplementary Table 21. Each point represents a tRNA alloacceptor 
and is colored based on alloacceptor type. The correlation strength is indicated 
by Spearman’s correlation coefficient (ρ Differential expression volcano plot of 

pus4KO versus WT (see also Supplementary Table 13). Differentially expressed 
tRNAs were defined as having an adjusted -log10 P-value of <0.01 and an absolute 
log2 fold change greater than 0.6. (b) Change in Ψ55 mismatch frequency upon 
knockout of Pus4, relative to WT, for each isoacceptor, as calculated by NanoRMS. 
Data are presented as mean ± SEM for n = 2 biological replicates.
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Extended Data Fig. 9 | See next page for caption.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01743-6

Extended Data Fig. 9 | Nano-tRNAseq can capture RNA modifications 
changes upon knockout of pseudouridine synthase enzymes. (a) Heatmap 
of summed basecalling error frequency of Pus4 KO biological replicate 2, Pus1 
KO, and Pus7 KO (see also Supplementary Table 16 and Supplementary Table 
17). The known positions of specific RNA modifications in each tRNA, as listed in 
MODOMICS, are shown in schematic above, as well as listed in Supplementary 
Table 18. Ψ positions observed in Nano-tRNAseq are highlighted in green (greater 
or equal to 0.1, see Supplementary Table 15). Nucleotides with a higher summed 

basecalling error frequency relative to WT are in red tones, and those with a 
lower summed basecalling error frequency are in blue tones. (b) Comparison of 
mismatch frequencies for known Ψ sites in S. cerevisiae WT vs. Pus1 and Pus7 KO 
tRNA molecules. Each data point represents a known tRNA Ψ site; a black outline 
indicates Ψ55 sites targeted by the enzyme in question, and a red fill indicates 
sites with a summed basecalling error of ≥0.1 for Pus 1 KO and Pus 7 KO compared 
to WT, which serves as a proxy for Ψ modification frequency.
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Extended Data Fig. 10 | Ψ55-dependent basecalling error is restricted to 
position 55 independent of m1A58 presence. Heatmap of summed basecalling 
error frequency of Pus4 KO biological replicate 1 (as in Fig. 4e) categorized by 
tRNA isoacceptors without an annotated m1A58 (upper panel) or those with an 
annotated m1A58 (lower panel). The positions of specific RNA modifications in 

each tRNA are listed in Supplementary Table 18. Nucleotides with higher summed 
basecalling error frequency relative to WT are in red tones, and those with a 
lower basecalling error frequency are in blue tones. Ψ55 is indicated by a green 
arrowhead, m5U54 by a pink arrowhead, and m1A58 by an orange arrowhead.
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