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Dandelion uses the single-cell adaptive 
immune receptor repertoire to explore 
lymphocyte developmental origins

Chenqu Suo1,2,9, Krzysztof Polanski    1,9, Emma Dann    1, Rik G. H. Lindeboom    1, 
Roser Vilarrasa-Blasi1, Roser Vento-Tormo    1, Muzlifah Haniffa1,3,4, 
Kerstin B. Meyer    1, Lisa M. Dratva    1, Zewen Kelvin Tuong    1,5,6,8,10 , 
Menna R. Clatworthy    1,5,10  & Sarah A. Teichmann    1,7,10 

Assessment of single-cell gene expression (single-cell RNA sequencing) 
and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been 
invaluable in studying lymphocyte biology. Here we introduce Dandelion, 
a computational pipeline for scVDJ-seq analysis. It enables the application 
of standard V(D)J analysis workflows to single-cell datasets, delivering 
improved V(D)J contig annotation and the identification of nonproductive 
and partially spliced contigs. We devised a strategy to create an AIR feature 
space that can be used for both differential V(D)J usage analysis and 
pseudotime trajectory inference. The application of Dandelion improved 
the alignment of human thymic development trajectories of double-positive 
T cells to mature single-positive CD4/CD8 T cells, generating predictions 
of factors regulating lineage commitment. Dandelion analysis of other cell 
compartments provided insights into the origins of human B1 cells and  
ILC/NK cell development, illustrating the power of our approach. Dandelion 
is available at https://www.github.com/zktuong/dandelion.

Single-cell genomics has advanced our understanding of human immu-
nology1,2. Paired adaptive immune receptor (AIR) sequencing with 
mRNA expression in the same cell allows for direct linkage of AIR reper-
toire with cellular phenotypes, which is a powerful way to understand 
lymphocyte development and function3–6.

Multi-omics analysis has enabled the study of cellular biology 
across data modalities at an unprecedented resolution. This includes 
the integration of paired single-cell RNA sequencing (scRNA-seq) and 
assay for transposase-accessible chromatin with high-throughput 

sequencing data or cellular indexing of transcriptomes and epitopes 
by sequencing data7,8. However, unlike these modalities, which largely 
consist of continuous data, AIR data consist of a mixture of categorical 
and continuous data, posing additional challenges for integration. This 
includes annotations of variable (V), diversity (D) and joining ( J) genes, 
which are recombined and selected during B/T cell development9. The 
Adaptive Immune Receptor Repertoire (AIRR) community was formed 
in 2015 to help address challenges related to AIR data analysis10–12. This 
has led to the standardization of repertoire data representation across 
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example, scirpy13, scRepertoire15 and Platypus18 (Extended Data Fig. 1). 
In the Immcantation23 workflow, nonproductive contigs are preserved 
and there are specific instructions for filtering or retention during anno-
tation and clone definition steps. Moreover, igblastn is a V gene anno-
tation tool25 and would filter contigs without V gene. We found that a 
significant proportion of αβTCR, γδTCR and BCR data were nonproduc-
tive in fetal human tissues3 and the majority were due to absent V genes, 
with the exception of the TRA locus where most were due to presence of 
premature stop codons (Fig. 2a). This pattern was consistent even after 
excluding thymic samples to account for developing T cells (Extended 
Data Fig. 2a). These nonproductive contigs without V genes were cap-
tured in scVDJ-seq because the rapid amplification of 5′ complemen-
tary DNA (cDNA) ends (5′ RACE) technology used in the protocol does 
not require primers against V genes for targeted enrichment, in con-
trast to the previous multiplex PCR approach (Extended Data Fig. 2b).  
They likely represent products of partial or failed recombination and 
we reasoned that they are still biologically meaningful, reflecting a cell’s 
history and origin. The Immcantation workflow would divert these 
contigs into a ‘failed’ file and this file is not typically exposed to the user. 
Therefore, Dandelion does not automatically filter out nonproductive 
contigs, and this data have utility, as later discussed.

We also discovered that multiple J genes can be sequentially 
mapped onto different regions in the same mRNA contig, a phenom-
enon we termed ‘multi-J mapping’. We found that the majority of the 
most frequent multi-J mapping contigs contained two to four neighbor-
ing J genes interspersed with introns (Supplementary Table 1). As RNA 
splicing, rather than DNA recombination, is the process of linking the 
chosen J to C genes, contigs with multi-J mapping are likely products of 
partially spliced transcripts (Fig. 2c). It is biologically plausible that the 
J gene nearest to the 5′ end is the intended exon that would be expressed 
in the mature mRNA.

We next investigated factors that might contribute to multi-J map-
ping. We first noted that nonproductive contigs without V genes were 
more likely to have multi-J mapping (Fig. 2c). This difference could be 
due to nonsense-mediated decay (NMD), an RNA degradation process 
that is triggered due to premature stop codons27. Multi-J mapping 
contigs containing a V gene will initiate translation from the V gene, 
triggering degradation by NMD due to premature stop codons in J gene 
introns, whereas those without a V gene cannot be translated and will 
therefore evade degradation by NMD. To test the contribution of NMD 
to multi-J mapping, we analyzed peripheral blood mononuclear cells 
(PBMCs) treated with cycloheximide against control cells. Treatment 
resulted in an increase in the proportion of multi-J mapping in TCR 
contigs with V genes (Extended Data Fig. 2c), supporting that NMD 
recognizes and degrades V-gene-containing multi-J mapping contigs.

Using a logistic regression model, we found that there was a sig-
nificant interaction (Benjamini–Hochberg (BH) adjusted P = 7.07 × 10−4) 
between V gene presence and cycloheximide treatment on multi-J map-
ping (Fig. 2d; ref. 3; Supplementary Table 2, cycloheximide treatment, 
and Supplementary Table 3), supporting the above findings. However, 
the significant noninteracting V gene term (BH adjusted P = 5.73 × 10−182) 
suggests that NMD may only partially account for the effect of V genes 
on multi-J mapping. Furthermore, we found that the known consensus 
motif for splicing, ‘GTAAGT’ in +1 to +6 position of adjacent intron28, 
was disrupted in J genes associated with more multi-J mapping (Fig. 2e 
and Supplementary Table 4). In conclusion, specific cell types, J gene 
identity, V gene presence and NMD are factors that may contribute to 
multi-J mapping (Extended Data Fig. 2d).

Dandelion also performs γδTCR contig annotation. There are two 
existing methods for sc-γδTCR mapping as follows: (1) 10X Genomics’ 
cellranger vdj, (primarily tailored for αβTCR contigs); (2) TRUST4 
(ref. 29), which performs de novo contig assembly and annotation. 
The cellranger software can reconstruct γδTCR contigs but most ver-
sions struggle with annotating them (Supplementary Note). While 
TRUST4 can yield sc-TCR annotations, including γδTCR, it relies on 

AIR analysis domains. There are established packages that can deal with 
single-cell AIR repertoire data and they provide a variety of methods 
for downstream analyses (nonexhaustive list of popular tools is shown 
in Extended Data Fig. 1). The functions include re-annotation of AIR 
genes, quality control checks, matching contigs to cells, clonotype 
definition, mutation quantification, diversity estimation and many 
more (Extended Data Fig. 1). Single-cell AIR software are often designed 
to interact with a companion single-cell gene expression software, 
for example, scirpy13 with scanpy14 and scRepertoire15 with Seurat16, 
providing valuable analysis and visualization options. There are also 
tools for predicting antigen specificity of T cell receptors (TCRs; for 
example, TcellMatch17), annotating TCRs with epitopes (for example, 
Platypus18 and Immunarch19) and extraction of significant motifs and 
motif groups (for example, ALICE20). Tools for joint embedding of 
single-cell gene expression and AIR complementarity-determining 
region 3 (CDR3) sequences have also been developed (for example, 
CoNGA21 and mvTCR22). There remain opportunities for new methods 
to realize the full potential of paired scRNA-seq and scVDJ-seq data.

To that end, we developed Dandelion, a holistic analysis frame-
work for understanding single-cell lymphocyte biology. It offers a B 
cell receptor (BCR) and TCR contig annotation pipeline, integrative 
analysis with single-cell RNA-seq data and a V(D)J feature space for dif-
ferential V(D)J usage and pseudotime trajectory inference. Here using 
two immune development datasets, we showcase how Dandelion can 
improve the alignment of cells along T cell development trajectory 
and provide insights into human B1 cell origin and innate lymphoid 
cell (ILC) and natural killer (NK) cell development.

Results
Dandelion enables holistic scVDJ-seq analysis
As Dandelion operates on the AIRR data format, it is highly interoper-
able with existing AIRR tools13,23. It can serve as a bridge between the 
various tools for AIRR analysis and the single-cell software ecosystem, 
for example, scverse14,24 (Fig. 1a). Dandelion has been certified by the 
AIRR Software Working Group to be AIRR standards compliant.

Dandelion can be used to analyze single-cell BCR, αβTCR and 
γδTCR data, allowing for mutation calling, improved γδTCR annotation, 
analysis of productive and nonproductive V(D)J contigs and identifi-
cation of unspliced J gene alignments (Fig. 1b). Dandelion performs 
quality control checks, clonotype calling and network generation for 
downstream analyses. It is designed to work with AIRR-formatted input 
or 10X Genomics’ cellranger vdj output. A main feature of Dandelion is 
the creation of a ‘V(D)J feature space’ that can be used to perform and 
visualize differential TCR/BCR usage across cell pseudo-bulks or neigh-
borhoods and infer pseudotime trajectory inference. Extended Data 
Fig. 1 shows a summary of features in Dandelion and other pipelines. 
Dandelion was previously applied to a large COVID-19 study4, which 
showcased its network-based repertoire diversity analysis method.

Dandelion provides a streamlined preprocessing pipeline
For optional re-annotation of contigs, Dandelion expects 10X Genom-
ics’ cellranger vdj output files (for example, all_contig_annotations.
csv and all_contig.fasta).

Similar to Change-O23, Dandelion re-annotates V(D)J contigs using 
igblastn25 with reference sequences contained in the international 
ImMunoGeneTics information system (IMGT) database26. blastn is also 
used to check the D and J genes separately (same settings as igblastn25. 
The additional blastn step allows us to (1) apply an e-value cutoff for 
D/J calls to only retain high confidence calls; (2) identify ‘multi-J map-
ping’ contigs (see below) and (3) recover contigs without V gene calls 
(removed by igblastn). We packaged this preprocessing workflow into 
a singularity container to streamline and improve the user experience 
and avoid the difficulties with setting up the pipeline.

Nonproductive contigs do not translate into functional proteins 
and are often filtered out by other scVDJ-seq analysis pipelines, for 
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Fig. 1 | Holistic scVDJ-seq analysis pipeline. a, Schematic illustration showing 
that Dandelion bridges methods from single-cell V(D)J workflows, such as AIRR 
standards and the single-cell gene expression analysis software, and combines 
with them additional new methods of its own to create a holistic pipeline for 
analysis. b, Schematic illustration of the Dandelion workflow. Paired single-cell 
gene expression (scRNA-seq) and AIR repertoire (scVDJ-seq) data are generated, 
followed by mapping of the sequencing reads. From the mapped results, 

Dandelion provides refined contig annotations with BCR mutation calling, 
improved γδTCR mapping and identification of multi-J mapping contigs. It 
also provides downstream analysis after integration with scRNA-seq results. 
Apart from allowing the users to explore clonotype networks and V(D)J usage, 
Dandelion also supports building a V(D)J feature space on pseudobulked 
cells, that can be used for differential V(D)J usage and pseudotime inference. 
Additional unique features provided by Dandelion are boxed in orange.
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Fig. 2 | Dandelion offers improved contig annotations. a, Left—barplot of 
proportion of contigs that are productive or nonproductive in each locus. Right—
barplot showing the causes of nonproductive contigs in each locus. b, Schematic 
illustration of the V(D)J rearrangement process and the potential cause of multi-J 
mapping. c, Boxplot of the proportion of contigs with multi-J mapping, in the 
presence (blue) or absence (orange) of V genes. Only samples with at least ten 
contigs are shown. Boxes capture the first to third quartiles and whisks span a 
further 1.5× interquartile range on each side of the box (two-sided Wilcoxon rank-
sum test). The sample sizes of all boxplots from left to right are 51, 46, 52, 55, 26, 
29, 20, 29, 33, 27, 33, 29, 34 and 25. d, Top—logistic regression formula to explore 
factors associated with multi-J mapping. Bottom—volcano plot summarizing 
logistic regression results (ref. 3); y axis: −log10(BH adjusted P value); x axis: 
log(odds ratio). Variables that were also significant in our control/cycloheximide-
treated PBMC dataset are highlighted in red (associated with increased multi-J 

mapping) or blue (associated with decreased multi-J mapping). e, Sequence 
logos covering the last 11 and first 10 nucleotides at 3′ ends (position 1–11) and 
the neighboring intron (position 12–21), respectively, for genes associated with 
increased (top) or decreased (bottom) multi-J mapping. J genes associated 
with increased multi-J mapping were less likely to have T in position 17 (logistic 
regression; two-tailed P value). ‘GTAAGT’ is a known consensus motif for splicing 
in position 12–17 that is +1 to +6 in the intron. They were also more likely to have 
T in position 6 (logistic regression; two-tailed P value). f, Swarmplots of fraction 
difference of sc-γδTCR contigs (n = 33) annotated by Dandelion versus 10X 
cellranger vdj (v6.1.2). The red dashed line marks the threshold of 0, above which 
Dandelion recovers more γδTCR contigs than 10X. Left—all high confidence 
contigs. Right—high confidence productive contigs. Data for a, c, d (bottom) and 
f were taken from ref. 3 and each dot represents a sample.
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the presence of a V gene in the contig thus unable to handle nonpro-
ductive contigs without V genes. For comparisons, we processed 33 
γδTCR libraries3; one mapping was done with cellranger 6.1.2 to the 
10X GRCh38 5.0.0V(D)J reference, with the contigs identified by cell-
ranger as high confidence subsequently re-annotated with Dandelion. 
Another mapping was done with cellranger 6.1.2 to the 5.0.0 reference 
modified to obtain annotated γδTCR contigs as per 10X Genomics’ 
workaround instructions. We see a consistently higher recovery rate of 
both high confidence γδTCR contigs and high confidence productive 
γδTCR contigs in the mapping postprocessed with Dandelion (high 
confidence contigs: P = 5.39 × 10−7, high confidence productive contigs: 
P = 3.14 × 10−6, Wilcoxon signed-rank test; rank correlations were 1 and 
0.98, respectively; Fig. 2f). While 10X Genomics has introduced some 
γδTCR support with cellranger 7.0.0, the results were inferior to the 
prior workaround from version 6 (Extended Data Fig. 2e).

Creating a V(D)J feature space
To better leverage the combined gene expression and AIR repertoire data, 
we introduced an analysis strategy to create a pseudobulked V(D)J feature 
space, transforming V(D)J data from categorical to continuous format for 
downstream applications (Fig. 3a). Transcriptionally similar cells are first 
grouped into pseudo-bulks, which can be based on metadata features, 
or partially overlapping cell neighborhoods30. For instance, cells can 
be pseudobulked by cell type, donor and organ to perform differential 
analysis across cell types while controlling for donor and organ differ-
ences. For trajectory analysis, we recommend pseudo-bulking cells by 
partially overlapping cell neighborhoods sampled from gene expression 
space for example using Milo30 to model a more continuous cell state. 
For each pseudobulk, we compute the fraction of cells using each of the 
genes in a segment (for example, TRAJ1 to TRAJ61 in the TRAJ segment). 
The fractions from the various segments are concatenated, forming the 
V(D)J matrix/space. This can then be used with conventional dimension 
reduction techniques such as principal component analysis (PCA) or 
uniform manifold approximation and projection (UMAP).

One utility of this V(D)J space is demonstrated as we pseudobulked 
adult human T cells5 by cell types and donors to explore differential 
usage that is consistent across different donors. On the V(D)J feature 
space-based UMAP, pseudobulks containing mucosal-associated 
invariant T (MAIT) cells formed a distinct cluster, in contrast to the 
single-cell gene expression-based UMAP (Fig. 3b and Extended Data  
Fig. 3a,b). This is expected due to the semi-invariant nature of MAIT 
TCRs and illustrates the power of the V(D)J feature space. Although 
there is no clear clustering in other cell types apart from MAIT 
(Extended Data Fig. 3b), CD4+ T cells were distinctly separated from 
CD8+ T cells (Fig. 3b). Differential V(D)J usage for each cell type can be 
computed, for example, with nonparametric statistical tests imple-
mented within scanpy14 (Fig. 3b and Supplementary Table 5).

Leveraging V(D)J usage in pseudotime trajectory inference
We also developed a new usage for V(D)J data by performing pseudo-
time inference on the cell neighborhood-based V(D)J feature space. 
Many pseudotime inference methods have been proposed based 
on transcriptome similarity31. However, current approaches remain 
problematic in immune cell development because the differentiation 
process is often interspersed with waves of proliferation, and transcrip-
tomic convergence, for example, between NKT and NK cells can be mis-
leading. Because the usage of V(D)J genes in AIRs changes definitively 
as a result of cycles of recombination and selection during lymphocyte 
development, the AIR repertoire acts as a natural ‘time-keeper’ for 
developing T and B cells. A developing T cell’s fate toward CD8 versus 
CD4 T cells is determined by whether its TCR interacts with antigen 
presented on MHC class I or class II during positive selection. There-
fore, it is biologically conceivable that the TCR gives more accurate 
predictions on the branch probability of each T cell lineage. For this 
task, we chose to pseudobulk by cell neighborhoods as modeling cell 

states with partially overlapping cell neighborhoods has advantages 
over clustering into discrete groups.

We sampled cell neighborhoods from developing T cells with 
productive αβTCR (double positive (DP) to mature single positive 
CD4+/CD8+ T cells)3 on a k-nearest neighbor graph built with gene 
expression data using Milo30 and constructed the neighborhood V(D)
J feature space (Fig. 3c and Extended Data Fig. 3c). Trajectory analysis 
on this V(D)J feature space was performed using Palantir32. It outputs 
pseudotime and branch probabilities (Fig. 3c) to each terminal state 
(Extended Data Fig. 3d). The inferred pseudotime follows from pro-
liferating to quiescent DP ((DP(P)) and DP(Q)) T cells, to abT(entry), 
which splits into CD8+ T and CD4+ T lineages. TCR usage trend can be 
visualized along the pseudotime trajectory (Extended Data Fig. 3e). The 
average pseudotime and branch probabilities per cell can also then be 
projected back from its neighborhoods (Fig. 4a).

There are two alternative tools, CoNGA21 and mvTCR22, that inte-
grate transcriptome with TCR information. Both were created to detect 
clonally expanded cell types with CDR3 sequences being the input. We 
tested whether they could also be used to reveal developmental rela-
tionships with the same dataset above. Both CoNGA and mvTCR failed 
to preserve the intercellular relationships (Extended Data Fig. 4a,b). 
This is not surprising, as selection of different V(D)J genes underpins 
recombination, while CDR3 diversity can additionally be influenced 
by random nucleotide insertions.

V(D)J trajectory accurately orders T cell development
We next compared the results of trajectory inference on feature spaces 
from pseudobulked neighborhood V(D)J, pseudobulked neighborhood 
gene expression or single-cell gene expression.

The analysis of single-cell gene expression performed unsatis-
factorily as a large proportion of CD8+ T and CD4+ T cells were mis-
classified with higher branch probabilities to the opposite terminal 
state (Extended Data Fig. 5a,b). Therefore, we mainly focused our 
comparison with results from pseudobulked neighborhood gene 
expression (GEX) space, which produced more biologically meaningful 
pseudotime and branch probabilities (Fig. 4a). When projected back 
to cells, the inferred pseudotime in the pseudobulked space better 
reflected the known biology of DP(P)_T to DP(Q)_T, to abT(entry) and 
subsequent splits into CD8+ T and CD4+ T lineages (Extended Data  
Fig. 5c,d). This suggests that pseudotime inference with pseudobulked 
cells works better than directly from single cells, potentially due to less 
noise compared to single-cell data.

We observed two major differences when comparing the pseu-
dotime inferred from neighborhood V(D)J feature space versus that 
from neighborhood GEX space (Fig. 4a). First, the DP(Q) T cells dwelled 
for a longer ‘time’ in the V(D)J trajectory compared to the GEX trajec-
tory. Second, the branching point of CD8+ T and CD4+ T cell lineages 
happened earlier in abT(entry) cells in the V(D)J trajectory (Extended 
Data Fig. 6c). To assess the fidelity of the V(D)J trajectory, we used the 
known fact that V–J recombination in the TRA locus happens proces-
sively33 (from middle to distal ends on the genome). We encoded the 
genomic order numerically for each TRAV and TRAJ gene and the V(D)J 
pseudotime ordering for each DP(Q) neighborhood showed a substan-
tially better monotonic relationship with the TRAV relative locations  
(Fig. 4b). Average local correlations across adjacent neighborhoods 
along V(D)J pseudotime had higher absolute correlation coefficients on 
average (−0.67 versus −0.43 for TRAV; Extended Data Fig. 6a). A smaller 
improvement was also observed for TRAJ, with the average local Pear-
son’s correlations improved from 0.42 to 0.50 (Extended Data Fig. 6b).

CD4 versus CD8 T cell lineage commitment is a classical immuno-
logical binary lineage decision that has been intensely investigated over 
many years34 but remains challenging to study as the selection intermedi-
ates have been difficult to observe directly35. We examined which genes 
in abT(entry) cells showed expression patterns that are correlated with 
branch probabilities to CD8+ T versus CD4+ T lineage (Fig. 4c).

http://www.nature.com/naturebiotechnology
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probabilities to CD8+ T and to CD4+ T, respectively, overlaid onto the same UMAP 
embedding on the left. Right bottom—scatterplot of branch probability to CD8+ 
T against pseudotime. Each point represents a cell neighborhood, colored by the 
dominant cell type in each neighborhood.
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The top genes that were positively correlated with the CD8+ 
T cell lineage choice included CD8A and CD8B, which are markers for 
CD8+ T cells6. The top genes that were negatively correlated included 
CD40LG, which is a marker for CD4+ T helper cells6, and ITM2A (induced 
during positive selection and causes CD8 downregulation36). Other 
markers of CD4+ T cells such as CD4 (ref. 6), together with highly vali-
dated transcription factors (TFs) that are known to be involved in 
CD8+ T or CD4+ T lineage decisions34, including RUNX3 (ref. 37,38), 
ZBTB7B39,40, TOX41 and GATA3 (ref. 42,43), all displayed significant cor-
relations in the expected directions. However, when using GEX pseu-
dotime, the correlations were notably reduced and some (for example, 
TOX and RUNX3) were no longer statistically significant (Fig. 4c). For 
TOX, the direction of the correlation was wrongly inverted (Fig. 4c). In 
addition, the V(D)J pseudotime also revealed new associations for TFs 
such as ZNF496, MBNL2 and RORC for CD8+ T, and SATB1, STAT5A and 
STAT1 for CD4+ T (Extended Data Fig. 6d and Supplementary Table 6).

We have also used different pseudotime inference methods to 
ensure the robustness of the results. Neighborhood V(D)J-based pseu-
dotime trajectories inferred using monocle3 (ref. 44) and diffusion 
pseudotime45 similarly showed a better monotonic relationship with 
TRAV/TRAJ relative locations compared to neighborhood GEX-based 
pseudotime (Extended Data Fig. 7a,b). Overall, Palantir is preferred 
as it outputs the branch probabilities, which is useful in deciphering 
CD4/8 lineage decisions.

Taken together, we showed that V(D)J-based pseudotime inference 
gives more accurate DP(Q) T cell alignment and improves lineage asso-
ciation within abT(entry) cells. We can use this approach to recapitulate 
known regulators and uncover new candidate regulators underlying 
CD8+ T/CD4+ T fate choice.

Using nonproductive recombination as a ‘fossil record’
Based on our earlier observations of high proportions of nonproduc-
tive contigs being represented in the single-cell V(D)J data (Fig. 2a), 
we next explored whether this was cell-type specific. As expected, 
nonproductive BCR contigs were restricted to B lineage cells (Extended 
Data Fig. 8a,b). However, nonproductive TRB contigs were surprisingly 
expressed in many cell-type lineages (developing DN T cells, ILC/NK, 
B cells; Fig. 5a and Extended Data Fig. 8c). The majority of the nonpro-
ductive TRB contigs within ILC/NK/B cells were contigs without V gene 
(Extended Data Fig. 8d).

The B lineage cells with nonproductive TRB contigs included 
pre–pro B and B1 cells but not pro- or pre-B cells (Fig. 5a and Extended 
Data Fig. 8c). Pre–pro B and B1 cells expressed only nonproductive 
TRB but not TRG/D contigs (Extended Data Fig. 9a–c), suggesting that 
they share a common developmental route (Fig. 5b), bypassing pro-/
pre-B cell stages. This clarifies that human fetal B1 cells can emerge 
through an alternative route. The conventional route is thought to 
progress from pre–pro, pro-, pre-, immature, to mature naive B cells46. 
Our observations are consistent with findings in mouse B1s, which 
were shown to bypass the pre-BCR selection stage47,48, which normally 
happens in pre-B cells to remove self-reactive B cells. This may also 
explain why B1 cells have BCRs with shorter noncoded/palindromic 

(N/P) nucleotide insertions3, due to negligible expression of DNTT 
in pre–pro B but much higher expression in pro- and late pro-B cells3. 
In addition, as pre–pro B cells are almost undetectable in adult bone 
marrow49, it potentially explains the difficulty of identifying B1-like 
cells in adult human tissues3.

Similar to DN T cells, the ILC/NK lineage also expressed nonproduc-
tive TRG/D contigs with some TRA contigs (Extended Data Fig. 9a–c).  
We used TRBJ frequency to construct a V(D)J feature space because all 
T/ILC/NK cells express TRBJ (Fig. 5b and Extended Data Fig. 10a). The 
inferred trajectory suggests that ILC/NK cells deviate away from T cell 
development between DN(early) and DN(Q) stage (Fig. 5b,c).

Previous literature on the ILC/NK lineage has also demonstrated 
partial recombination of TRG/D in mouse lung ILC2 (ref. 50) and of 
TRB/G in mouse thymic ILC2 (ref. 51), leading to the hypothesis of 
‘aborted’ DNs for ILC/NK development52. Our observation of the expres-
sion of nonproductive TRB/G/D in ILC/NK cells partially supports this 
theory. Notably, we also observed nonproductive TRB expression in 
ILC/NK cells in other fetal organs, with no overt differences in frequen-
cies between organs (Extended Data Fig. 9d). This potentially suggests 
that T cells and ILC/NK cells might share the same initial stage of devel-
opment, and then deviate away from each other before productive 
TRB/TRG/TRD is made.

We observed that expression levels of genes encoding TFs (Fig. 5c) 
and cell surface proteins (Extended Data Fig. 10b) such as SPI1, RAG1, 
HHEX, TCF12, CD34, CD3D, CD8A and CD8B, followed an expected 
pattern along the TRBJ-inferred trajectory53. At the same time, we 
also discovered many new genes that could redefine DN stages at a 
higher resolution than previously reported in the literature. We note 
that there were some discordances in expression patterns of selected 
TFs between human and mouse DN development53 (Extended Data  
Fig. 10c). However, this discrepancy could be due to age mismatch that 
is fetal human to adult mouse, and the mouse data was mainly learned 
from TF-knockout studies. Future work with detailed comparison using 
paired scRNA-seq and scVDJ-seq in mice and humans of different age 
groups will help provide clarity to this.

Finally, we repeated the analysis in human fetal myeloid cells3 
to ask whether the pDCs that have initiated BCR rearrangements are 
derived from lymphoid progenitors54,55. pDC can be derived from both 
myeloid and lymphoid lineages54,55 and there is IgH D-J rearrangement 
in some pDCs54,56–59. We found some nonproductive BCR in pDC (both 
heavy and light chain as shown in Supplementary Fig. 1a,b) in agree-
ment with previously reported IgH D-J rearrangement in pDC54,56–59. 
However, pDC itself expresses RAG and DNTT (Supplementary  
Fig. 1c). The presence of nonproductive BCR does not necessarily 
indicate that pDCs are derived from lymphoid progenitors as BCR 
rearrangement can be carried by RAG in pDC itself57. While it may be 
interesting to use our VDJ-based trajectory to explore whether the 
development of pDC overlaps with early B cell development, the cur-
rent dataset is limited by the cell number as only 51 pDC and cycling 
pDC cells have nonproductive IGH.

In summary, the unexpected finding of expression of nonpro-
ductive TCR contigs in specific cell types has the potential to shed 

Fig. 4 | Comparing pseudotime inferred from V(D)J space or gene expression 
(GEX) space. a, Top—pseudotime and branch probability to CD8+ T inferred from 
neighborhood V(D)J space in Fig. 3c, projected back to the cells, overlaid onto 
the same UMAP embedding as in the top left panel. Left bottom—UMAP of DP 
to mature T cells with paired productive αβTCR in data from ref. 3. Each point 
represents a cell, colored by cell types. Underneath the UMAP is a schematic 
showing the T cell differentiation process. Right bottom—pseudotime and 
branch probability to CD8+ T inferred from neighborhood GEX space, projected 
back to the cells, overlaid onto the same UMAP embedding as in the top left panel. 
b, Scatterplots of the pseudotime ordering against the average relative TRAV 
or TRAJ location. Each point represents a cell neighborhood. Each TRAV or TRAJ 
gene is encoded numerically for its relative genomic order. The x axis represents 

the average TRAV/TRAJ relative location for each cell neighborhood. Top—results 
from pseudotime inferred from neighborhood V(D)J space. Bottom—results 
from pseudotime inferred from neighborhood GEX space. c, Stripplot of 
correlation coefficients of gene expression with branch probabilities to CD8+ 
T within abT(entry) cells, for branch probabilities inferred from neighborhood 
V(D)J space and neighborhood GEX space separately. Only genes that are known 
CD4+/CD8+ T cell markers or TFs involved in CD8+ T/CD4+ T lineage decisions are 
labeled and colored. The rest of the genes are grayed out. Labeled genes that 
had significant (BH adjusted P < 0.05) positive correlations were colored in red, 
the ones with significant negative correlations were colored in blue and those 
without significant correlations were colored in orange.
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new light on lymphocyte development. Our analysis suggests that B1 
potentially arises directly from pre–pro B cells and provides support 
for the ‘aborted’ DN theory for ILC/NK cell origins.

Discussion
Overall, Dandelion improves upon existing methods with more refined 
contig annotations, recognizing nonproductive contigs, identifying 
multi-J mapping and recovering more γδTCR contigs. Pseudotime 
inference on V(D)J feature space better aligned CD4/CD8 T cell lineage 
trajectories and suggested developmental origins of ILCs.

Our improved workflow revealed two unexpected data challenges 
and opportunities with scVDJ-seq. First, the high proportion of nonpro-
ductive TCR/BCR contigs suggests that these are unique challenges 
due to the choice of single-cell library construction. However, it is not 
unexpected as V(D)J rearrangement is a ‘wasteful’ exercise, a price to 
generate effective and diverse immune responses, for example, two 
of three rearrangement events for immunoglobulins are destined 
to be nonproductive60,61. While nonproductive and productive TCR/
BCRs from high-throughput ‘bulk’ AIR sequencing data have been 
previously used together to estimate the generation probabilities and 
diversities of AIRs during affinity maturation and infection62,63, these 
would only have included contigs with V gene due to library limitations 
as discussed.

Second, detection of multi-J mapping suggests that these are 
naturally occurring and likely represent products of partial splicing 
events. While a few factors were identified to be associated with multi-J 
mapping, the biological implications are unclear at this stage, warrant-
ing future explorations.

We introduced a new way of analyzing the single-cell V(D)J modal-
ity in Dandelion with the pseudobulk V(D)J feature space, which can be 
used for visualization and differential V(D)J usage testing. When pseu-
dobulked on cell neighborhoods, the V(D)J feature space is anchored to 
the underlying neighborhood gene expression space and can be used 
for pseudotime trajectory inference.

The first case study examined thymic T cell development. Previ-
ously, abT(entry) cells were suggested to be a divergent point as it was 
between DP T cells and mature single positive T cells6. With the V(D)J 
trajectory, we are now able to better delineate the branching point to 
a much earlier point within the abT(entry) cells. The new trajectories 
better aligned CD4/CD8 T cell fate with gene expression patterns of 
known marker genes and TFs and additionally revealed new associa-
tions with other TFs that remain to be explored.

This method can be useful for other applications for example 
studying T cell developmental stages across the lifespan, diseases and 
in vitro settings. It remains to be seen whether a VDJ-based trajectory 
can be used in T cell activation. This approach has not been optimized 
for BCR trajectories, as we are limited by the small number of B progeni-
tors in available data. Further, BCRs have additional rearrangement 
rules that need to be considered, for example, somatic hypermutation, 
asymmetric usage of kappa/lambda light chains and light chain edit-
ing64, as well as recently described light chain coherence in functional 

antibodies. We hope to improve on these aspects in a future iteration 
of Dandelion when more single-cell V(D)J data become available.

The second case study extended the observations of nonproduc-
tive V(D)J contigs in single-cell data, which has been largely ignored 
and/or not easily accessible with other workflows, for example, scirpy13 
and immcantation23. Our unexpected finding that B1 cells and pre–pro 
B cells expressed relatively higher levels of nonproductive TRB contigs 
suggest that B1 lineage commitment diverged earlier than expected, 
between the pre–pro B stage and pro-B stage. Two competing models 
have been described regarding B1 origin65. The lineage model or layered 
immune system hypothesis66 proposed that B1 and B2 cells arise from 
distinct progenitors that emerge at different times during develop-
ment67–70, while the selection model hypothesized that they originate 
from the same progenitors but after differential signaling depending 
on self-reactivity71,72. Our findings here potentially offer a reconciliation 
of both models, with fetal-specific pre–pro B cells being B1 progeni-
tors, supporting the layered immune system model, and the skipping 
of pre-BCR selection presumably allows the formation of self-reactive 
BCR, supporting the selection model.

Enrichment of the nonproductive TRB/TRG/TRD contigs was also 
observed in NK/ILC lineages. Partial recombination of TCR has been 
reported in mouse ILC50,51 and our findings support the ‘abandoned’ 
DN theory52. The hypothesis is that ILC/NK cells are originally on a 
canonical T cell development trajectory but subsequently influenced to 
abort this process, resulting in sustained expression of nonproductive 
TCR, although we cannot rule out other routes of ILC/NK development.

In summary, Dandelion is a freely available package for integrative 
analyses of single-cell GEX and V(D)J data. The V(D)J trajectories are 
also publicly available for use as a reference to a project or to align new 
query data. We hope that the software and resource will be useful in 
generating more insights into immune cell development and function.
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Methods
Dandelion
Preprocessing. Dandelion can run the preprocessing of data using the 
standard outputs from all cellranger vdj versions. In this manuscript, 
single-cell V(D)J data from the 5′ Chromium 10X kit were initially pro-
cessed with cellranger vdj pipeline (v6.1.2) with cellranger vdj refer-
ence (v5.0.0). TCR and BCR contigs contained in ‘all_contigs.fasta’ and 
‘all_contig_annotations.csv’ from all three library types (αβTCR, γδTCR 
and BCR) were then re-annotated using an immcantation-inspired23 
preprocessing pipeline contained in the Dandelion singularity con-
tainer (v0.3.0).

The preprocessing pipeline includes the following steps:

 i. Adjust cell and contig barcodes by adding user-supplied suf-
fixes and/or prefixes to ensure that there are no overlapping 
barcodes between samples.

 ii. Optionally subset to contigs deemed high confidence in the 
cellranger output; this was done in the analysis performed here.

 iii. Re-annotation of contigs with igblastn (v1.19.0) against IMGT 
(international ImMunoGeneTics) reference sequences (last 
downloaded: 01/08/2021) with the following parameters: mini-
mum D gene nucleotide match = 9, V gene e-value cutoff = 10−4; 
rearrangements missing the CDR3/junction sequences are 
enforced to be nonproductive (productive = ‘F’) and incomplete 
(complete_vdj = ‘F’).

 iv. Re-annotation of D and J genes separately using blastn with 
similar parameters as per igblastn25 (dust = ‘no’, word size ( J = 7; 
D = 9)) but with an additional e-value cutoff ( J = 10−4 in contrast 
to igblastn’s default cutoff of 10; D = 10−3). This is to enable the 
annotation of contigs without the V gene present.

 v. Identification and recovery of nonoverlapping individual J gene 
segments (under associated ‘j_chain_multimapper’ columns). 
In the list of all mapped J genes (all_contig_j_blast.tsv) from 
blastn, the J gene with the highest score ( j_support) was chosen. 
Dandelion then looks for the next J gene with the highest 
‘j_support’ value, and with start ( j_sequence_start) and end 
( j_sequence_end) positions not overlapping with the selected J 
gene, and does so iteratively until the list of all mapped J genes 
are exhausted. In contigs without V gene annotations, we then 
select the 5′ end leftmost J gene and update the ‘j_call’ column 
in the final AIRR table. For contigs with V gene annotations, but 
with multiple J gene calls, we use the annotations provided by 
igblastn (NCBI IgBLAST Release 1.19.0’s release notes state that 
they ‘*Added logic to handle the case where there is an unrear-
ranged J gene downstream of the VDJ rearrangement.’).

For BCRs, there are two additional steps:

 i. Additional re-annotation of heavy-chain constant (C) region 
calls using blastn (v2.13.0+) against curated sequences from 
CH1 regions of respective isotype class.

 ii. Heavy chain V gene allele correction using TIgGER (v1.0.0)  
(ref. 74). The final outputs are then parsed into AIRR format with 
change-o scripts23.

All the outputs from each step are saved in a subfolder, which 
the user can elect to retain or remove as per their requirements. Typi-
cally, a user would proceed with the file ending with the suffix ‘_con-
tig_dandelion.tsv’ as this represents the rearrangement sequences 
that pass standard quality control checks. In this manuscript, we used  
the data found in the ‘all_contig_db-all.tsv’ as it also contains the multi-J 
mapping.

Postprocessing. In addition to the preprocessing steps at the contig 
level, postprocessing or integrating cell-level quality control is per-
formed using Dandelion’s ‘check_contig’ function. The function checks 
whether a rearrangement is annotated with consistent V, D, J and C 

gene calls and performs special operations when a cell has multiple 
contigs. All contigs in a cell are sorted according to the unique molecular 
identifier (UMI) count in descending order, and productive contigs are 
ordered higher than nonproductive contigs. For cells with other than 
one pair of productive contigs (one VDJ and one VJ), the function will 
assess if the cell is to be flagged with having orphan (no paired VDJ or VJ 
chain), extra pair(s) or ambiguous (biologically irreconcilable, for exam-
ple, both TCRs and BCRs in the same cell) status with some exceptions 
as follows: (1) IgM and IgD are allowed to coexist in the same B cell if no 
other isotypes are detected; (2) TRD and TRB contigs are allowed in the 
same cell because rearrangement of TRB and TRD loci happens at the 
same time during development, and TRD variable region genes exhibit 
allelic inclusion75. The function also asserts a library type restriction 
with the rationale that the choice of the library type should mean that 
the primers used would most likely amplify only relevant sequences to a 
particular locus. Therefore, if there are any annotations to unexpected 
loci, these contigs likely represent artifacts and will be filtered away. A 
more stringent version of ‘check_contigs’ is implemented in a separate 
function, ‘filter_contigs’, which only considers productive VDJ contigs, 
asserts a single cell should only have one VDJ and one VJ pair, or only 
an orphan VDJ chain, and explicitly removes contigs that fail these 
checks (with the same exceptions for IgM/IgD and TRB/TRD as per 
above). If a single-cell gene expression object (AnnData) is provided to 
the functions, it will also remove contigs that do not match to any cell 
barcodes in the gene expression data. Lastly, Dandelion can accept 
any AIRR-formatted data format, for example, BDRhapsody VDJ data.

Clonotype definition and diversity. Dandelion’s mode of clonotype 
definition and network-based diversity analysis has been previously 
described4. Briefly, TCRs and BCRs are grouped into clones/clono-
types based on the following sequential criteria that apply to both 
heavy-chain and light-chain contigs as follows: (1) identical V and J genes 
usage; (2) identical junctional CDR3 amino acid length and (3) CDR3 
sequence similarity—for TCRs, 100% nucleotide sequence identity 
at the CDR3 junction is recommended while the default setting for 
BCRs is to use 85% amino acid sequence similarity (based on Hamming 
distance). Single-cell V(D)J networks are constructed using adjacency 
matrices computed from pairwise Levenshtein distance of the full 
amino acid sequence alignment for TCR/BCR(s) on a per-cell basis. A 
minimum-spanning tree is then constructed on the adjacency matrix 
for each clone/clonotype, creating a simple graph with edges indicating 
the shortest total edit distance between a cell and its neighbor. Cells 
with a total pairwise edit distance of zero are then connected to the 
graph to recover edges trimmed off during the minimum-spanning-tree 
construction step. A graph layout is then computed either using the 
Fruchterman–Reingold algorithm in networkx (≥v2.5) or Scalable 
Force-Directed Placement algorithm implemented through graph-tool 
(v2.46) package76,77. Visualization of the resulting single-cell V(D)J 
network is achieved via the transfer of the graph to relevant ‘AnnData’ 
slots, allowing for access to plotting tools in scanpy. The resulting V(D)
J network enables computation of Gini coefficients based on cluster/
cell size/centrality distributions, as discussed previously4.

Pseudobulk V(D)J feature space. Pseudobulk construction requires 
pseudobulk assignment information of cells, along with V and J genes 
for the cells’ identified primary TCR/BCR contigs (selected based 
on productive status and highest UMI count). The former is a cell by 
pseudobulk binary matrix, which can be either explicitly provided by 
the user or inferred from unique combinations of cell-level discrete 
metadata. While the code is calibrated to work with Dandelion’s struc-
turing by default, it can work with any V(D)J processing provided it 
stores cell-level information on primary per-locus V/D/J calls. The input 
is used to generate a pseudobulk by V(D)J feature space, with the V(D)J 
calls converted to a binary matrix, added up for each pseudobulk, and 
normalized to a unit sum on a per-pseudobulk, per-locus, per-segment 
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basis. The cell by pseudobulk information is stored in the resulting 
object for potential communication with the original cell space. Util-
ity functions are provided for compatibility with Palantir32 output for 
trajectory inference.

Nonproductive TCR/BCR contigs
Single-cell BCR, αβTCR and γδTCR data from ref. 3 were remapped 
with cellranger vdj (v6.1.2) and processed further using Dandelion as 
described above. For all samples, contigs were extracted from ‘all_con-
tig_igblast_db-all.tsv’ or in the case whereby ‘all_contig_igblast_db-all.
tsv’ was empty, ‘all_contig_igblast_db-fail.tsv’ was used. Preprocessed 
and annotated scRNA-seq data was downloaded from https://devel-
opmental.cellatlas.io/fetal-immune. Only contigs from annotated 
cells were kept for downstream analysis. For each contig, productive 
status was obtained from the column ‘productive’, and the causes for 
nonproductive contigs were extracted from ‘vj_in_frame’ (is ‘F’ if there 
is a frameshift), ‘stop_codon’ (is ‘T’ if there is a premature stop codon) 
and ‘v_gene_present’ (is ‘False’ if V gene is absent) columns.

Cycloheximide treatment on PBMC
A vial of frozen PBMCs was acquired from Stemcell Technologies 
(70025.1) with informed consent (as stated by Stemcell Technologies) 
and approval from the Yorkshire & The Humber—Leeds East Research 
Ethics Committee (19/YH/0441). Frozen PBMCs were thawed in pre-
warmed RF10 media, which was RPMI (Corning, 10-041-CV) supple-
mented with 10% FBS (Gibco, A4766801) and penicillin/streptomycin 
(Sigma-Aldrich, P4333). Cells were pelleted by centrifugation at 500g 
for 5 min and resuspended in RF10 media, and split between two 10 cm 
Petri dishes. Control PBMCs were then incubated in a total of 10 ml RF10 
media at 37 °C for 2 h, whereas treated PBMCs were incubated in RF10 
supplemented with cycloheximide (Sigma-Aldrich, C4859-1ML; final 
concentration of 100 μg ml−1). After incubation, control and treated 
PBMCs were washed with ice-cold RF10 and resuspended in 2% FBS 
in PBS (Gibco, 14190144). For treated PBMCs, both the washing and 
resuspension buffer contained 100 μg ml−1 cycloheximide.

Control and treated PBMCs were then loaded onto two separate 
channels of the chromium chip from chromium single cell V(D)J kit (10X 
Genomics 5′ v2 PN-1000263) following the manufacturer’s instructions 
before droplet encapsulation on the Chromium controller. Single-cell 
cDNA synthesis, amplification, gene expression (GEX) and targeted BCR 
and αβTCR libraries were generated. Sequencing was performed on 
the Illumina Novaseq 6000 system. The gene expression libraries were 
sequenced at a target depth of 50,000 reads per cell using the follow-
ing parameters: Read1, 26 cycles; i7, 8 cycles; i5, 0 cycles and Read2, 91 
cycles to generate 75-bp paired-end reads. BCR and TCR libraries were 
sequenced at a target depth of 5,000 reads per cell.

Raw scRNA-seq reads were mapped with cellranger 3.0.2 with 
Ensembl 93-based GRCh38 reference. Low-quality cells were filtered 
out (minimum number of reads >2,000, minimum number of genes 
>500, maximum number of genes <7,000, maximum mitochondrial 
reads fraction <0.2 and maximum scrublet78 (v0.2.1) doublet score 
≤ 0.5). Data normalization and log transformation were performed 
using scanpy14 (v1.9.1) (scanpy.pp.normalize_per_cell(counts_per_
cell_after=10e4) and scanpy.pp.log1p). Highly variable genes were 
then selected (scanpy.pp.highly_variable_genes), and PCA (scanpy.
pp.pca), neighborhood graph (scanpy.pp.neighbors) and UMAP 
(scanpy.tl.umap) were computed. Automatic annotation was done 
using celltypist (v1.2.0) (celltypist.annotate(model = 'Immune_All_Low.
pkl', majority_voting = True)).

Single-cell αβTCR and BCR sequencing data were mapped with 
cellranger vdj (v6.1.2) and processed further using Dandelion, as 
described above. For all samples, contigs were extracted from ‘all_con-
tig_igblast_db-all.tsv’ or in the case whereby ‘all_contig_igblast_db-all.
tsv’ was empty, ‘all_contig_igblast_db-fail.tsv’ was used. Only contigs 
from annotated cells were kept for downstream analysis.

Factors associated with multi-J mapping
Logistic regression analysis. We used the following logistic regression 
model to look for factors associated with multi-J mapping:

log pi
1 − pi

= βcell,c(i) + βJ,j(i) + βVxV,i + βcycloxV,ixcyclo,i

where pi is the probability of multi-J mapping present in the ith contig, 
c(i) and j(i) are the cell type and the 5′ end J gene of the ith contig, respec-
tively, xV,i is the indicator of whether V gene is present in the ith contig 
and xcyclo,i is the indicator of whether ith contig belongs to a cell that 
had c ycloheximide treatment. Here (βcell,c ∶ c ∈ cell types) , 
(βcell,j ∶ j ∈ 5′ end J genes), βV and βcyclo are parameters to be estimated.

To control for multiple testing, two-tailed P values were adjusted 
with BH procedure79. This was applied on all contigs from the 
γδTCR, αβTCR and BCR sequencing data that were identified within 
high-quality annotated cells from ref. 3 and results are shown in Sup-
plementary Table 2, and it was also applied on contigs from the αβTCR 
and BCR sequencing data that were identified within high-quality 
annotated cells from control/cycloheximide-treated PBMCs and results 
are shown in Supplementary Table 3.

Splicing site motif analysis. For the lists of 5′ end J genes that had sig-
nificant (BH adjusted two-tailed P < 0.05) association with increased or 
decreased multi-J mapping from Supplementary Table 2, the sequences 
of the last 11 nucleotides at each gene’s 3′ ends with the first ten nucleo-
tides of its 3′ end intron were extracted from the 10X GRCh38 2020-A 
reference. Sequence logos shown in Fig. 2e were generated on https://
weblogo.berkeley.edu/logo.cgi (ref. 80).

γδTCR annotation comparison
To compare our γδTCR annotations against the 10X cellranger vdj out-
put in the 33 γδTCR libraries3, we performed two additional mappings 
following 10X γδTCR support instructions. In one, the 5.0.0 reference 
was modified according to 10X instructions by replacing all instances of 
TRG with TRA and TRD with TRB. The reference was filtered to just TRG/
TRD sequences before this replacement to avoid erroneous sequence 
overlaps. For the other, we performed the alignment with cellranger 
v7.0.0 with the accompanying reference (v7.0.0). The output of these 
two mappings was compared with the cellranger–Dandelion preproc-
essing pipeline described above. The number of high confidence γδTCR 
contigs and high confidence productive γδTCR contigs were determined 
for each mapping and each sample, and mappings were compared with 
the Wilcoxon signed-rank test. The effect size r is the rank correlation, 
which is the signed-rank test statistic divided by the total rank-sum81.

Differential V(D)J usage in adult T cell subsets
Preprocessed and annotated scRNA-seq data of TLC and ILCs with 
paired αβTCR information from ref. 5 was downloaded from https://
www.tissueimmunecellatlas.org/. Only cells within the T cell subsets 
with paired αβTCR were included in the downstream analysis. T_CD4/
CD8 was excluded as a low-quality cell cluster. The cells were then pseu-
dobulked by donor ID and cell type, and the pseudobulk V(D)J feature 
space was created with TRAV, TRAJ, TRBV and TRBJ. Only pseudobulks 
with at least ten cells were kept. PCA, neighborhood graph and UMAP 
of the pseudobulk V(D)J feature space were computed using scanpy14 
(v1.9.1) with default settings (scanpy.pp.pca, scanpy.pp.neighbors, 
scanpy.tl.umap).

For low-level cell type annotations, Tem/emra_CD8, Tnaive/
CM_CD8, Trm/em_CD8 and Trm_gut_CD8 were grouped into CD8+ 
T, and Teffector/EM_CD4, Tfh, Tnaive/CM_CD4, Tnaive/CM_CD4_
activated, Tregs and Trm_Th1/Th17 were grouped into CD4+ T, 
while MAIT was left as a separate annotation. For differential V(D)
J usage, Wilcoxon rank-sum test was performed using scanpy.
tl.rank_genes_groups(method=‘wilcoxon’).
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Pseudotime inference from DP to mature T cells
Data integration and filtering. scRNA-seq data of human fetal lymphoid 
cells from ref. 3 was integrated with Dandelion preprocessed αβTCR, 
BCR and γδTCR data (see section ‘Nonproductive TCR/BCR contigs’, 
using all_contig_igblast_db-all.tsv for all samples) with dandelion.
tl.transfer. Two samples from F67, F67_TH_CD137_FCAImmP7851896 
and F67_TH_MAIT_FCAImmP7851897 were excluded from the analysis as 
they were sorted for specific T cell subpopulations, instead of the CD45 
sorting in all other donor samples, and inclusion might result in biased 
TCR sampling within this donor. Only DP(P)_T, DP(Q)_T, ABT(ENTRY), 
CD8+ T and CD4+ T cells with productive TRA and TRB were included in 
the trajectory analysis. Neighborhood graph (scanpy.pp.neighbors(n_
neighbors=50)) and UMAP (scanpy.tl.umap) were recalculated using 
scVI latent factors as the initial data was integrated with scVI82.

Pseudotime inference from neighborhood V(D)J feature space. 
Neighborhoods were sampled using Milo30 (milopy v0.1.0) (milo.make_
nhoods). Cells were pseudobulked by the sampled neighborhoods and 
the V(D)J feature space was created with cells’ primary TRAV, TRAJ, 
TRBV and TRBJ genes. The cell type annotation of each neighborhood 
was assigned to be the most frequent annotation of the cells within that 
neighborhood. PCA, neighborhood graph and UMAP of the neighbor-
hood V(D)J feature space were computed using scanpy14 (v1.9.1) with 
default settings (scanpy.pp.pca, scanpy.pp.neighbors, scanpy.tl.umap).

For pseudotime trajectory analysis, Palantir32 (v1.0.1) was used 
and diffusion map was computed using the first five principal com-
ponents (PCs; (palantir.utils.run_diffusion_maps(n_components=5), 
palantir.utils.determine_multiscale_space). The root cell was chosen 
to be the DP(P) T neighborhood with the smallest value on UMAP1 
axis, and the two terminal states were chosen with the largest and 
smallest values on the UMAP2 axis for CD4+ T and CD8+ T neighbor-
hoods, respectively (Extended Data Fig. 3d). Pseudotime and branch 
probabilities to the terminal states were then computed with palantir.
core.run_palantir(num_waypoints = 500).

Imputed pseudotime and branch probabilities were then pro-
jected back from neighborhoods (Fig. 3c) to cells (Fig. 4a, top panel) by 
averaging the parameters from all neighborhoods a given cell belongs 
to, weighted by the inverse of the neighborhood size. Cells that did not 
belong to any neighborhood were removed (91 of 17,248).

For pseudotime inferred with other trajectory inference methods 
as shown in Extended Data Fig. 7, monocle3 (ref. 44; 0.2.3.0) was applied 
on the UMAP embedding of the neighborhood V(D)J feature space and 
diffusion pseudotime45 was applied using scanpy.tl.dpt function with 
default settings. The same root cell neighborhood was used as above.

Pseudotime inference from neighborhood GEX feature space. Raw 
gene counts from scRNA-seq data were pseudobulked by the same cell 
neighborhoods as above. Data normalization and log transformation were 
performed using scanpy14 (v1.9.1) (scanpy.pp.normalize_per_cell(counts_
per_cell_after=10e4) and scanpy.pp.log1p). Highly variable genes were then 
selected (scanpy.pp.highly_variable_genes), and PCA (scanpy.pp.pca), 
neighborhood graph (scanpy.pp.neighbors) and UMAP (scanpy.tl.umap) 
of the neighborhood GEX feature space were computed. Pseudotime tra-
jectory inference was done similar to above with the first five PCs. The root 
cell was chosen to be the DP(P) T neighborhood with the smallest value on 
UMAP1 axis, and the two terminal states were chosen with the smallest and 
largest values on the UMAP2 axis for CD4+ T and CD8+ T neighborhoods, 
respectively (Extended Data Fig. 5c). Imputed pseudotime and branch 
probabilities were then projected back from neighborhoods (Extended 
Data Fig. 5d) to cells (Fig. 4a, bottom right panel).

Pseudotime inference from single-cell GEX. Pseudotime trajectory 
inference was performed with Palantir32 (v1.0.1) using the first 20 scVI 
latent factors. The root cell was chosen to be the DP(P) T cell with the 
largest value on UMAP2 axis, and the two terminal states were chosen 

with the largest value on the UMAP2 axis for CD8+ T and the smallest 
value on the UMAP1 axis for CD4+ T cells, respectively (Extended Data 
Fig. 5a). Results of the inferred pseudotime and branch probabilities 
are shown in Extended Data Fig. 5b.

Correlation between pseudotime ordering and relative TRAV/
TRAJ locations. The relative genomic location of each TRAV gene was 
encoded numerically based on its order among all TRAV genes from  
5′ to 3′ on the genome, and similarly for TRAJ. For each neighborhood, 
its relative TRAV or TRAJ location was computed by the average relative 
locations of all cells within that neighborhood. Only neighborhoods 
that had more than 90% cells being DP(Q) T cells were selected. The 
relative pseudotime order was plotted against the average relative 
TRAV or TRAJ location for each neighborhood in Fig. 4b. Local Pearson’s 
correlations were then computed over sliding windows of 30 adjacent 
neighborhoods on the pseudotime order (Extended Data Fig. 6a,b).

Correlation between gene expression and branch probabilities 
to CD8+ T in abT(entry) cells. Pearson’s correlations were computed 
between gene expression and branch probabilities to CD8+ T lineage 
within abT(entry) cells for all genes. Two-tailed P values were adjusted 
for multiple testing with BH procedure. Results are shown in Fig. 4c, 
Extended Data Fig. 6d and Supplementary Table 6.

VDJ-based dimensionality reduction with CoNGA
Preprocessed and annotated scRNA-seq data of human fetal lymphoid 
cells from ref. 3 was downloaded from https://developmental.cellatlas.
io/fetal-immune. Matching αβTCR samples had their all_contig_anno-
tations.csv cellranger output files flagged with the sample IDs for 
both cell and contig IDs and were subsequently merged into a single 
file and subset to just high confidence contigs for cells present in the 
scRNA-seq object. This file was used on input for CoNGA’s21 (v0.1.1) 
setup_10x_for_conga.py script, which produced a tcrdist-based PCA 
representation of the cells’ VDJ data. The PCA coordinates were used to 
compute a neighborhood graph and UMAP representation (Extended 
Data Fig. 4a), using default scanpy settings.

Joint embedding of single-cell gene expression and TCR with 
mvTCR
The same cells for which we performed pseudotime inference from DP 
to mature T cells above were used in the mvTCR22 (version under devel-
opment, cloned from the repo at commit 528d3e11a360fc4b0f09d-
782b88f5ec7de9283d6) trial. Clonotypes were called based on CDR3 
nucleotide sequence identity of the cells’ primary TRA and TRB chains 
(scirpy.pp.ir_dist, and scirpy.tl.define_clonotypes(receptor_arms=’all’, 
dual_ir=’primary_only’)).

Normalized and log-transformed data were used as recommended 
in mvTCR’s tutorial. The donor ID was one-hot encoded and supplied 
as a conditional variable. Eighty percent of cells were used as training 
data, the remaining 20% for validation. The models were trained for 
200 epochs. Three runs were performed with the GEX to TCR ratio 
varying between 1:1, 2:1 and 3:1. Each run produced 15 trials and each 
trial had a different combination of model hyperparameters resulting 
from an automated hyperparameter grid search. The ‘best’ trial (lowest 
validation loss) was indicated at the end of each run; however, when we 
manually inspected all the trial results, we found the ‘best’ trials showed 
strong variations between different donors. Thus, we selected one 
representative result from each run with minimal cross-donor batch 
effects for Extended Data Fig. 4b.

Pseudotime inference combining ILC/NK and T cells
Pseudotime inference using TRBJ. scRNA-seq data of human fetal 
lymphoid cells from ref. 3 was integrated with αβTCR data as described 
above. Only DN(early)_T, DN(P)_T, DN(Q)_T, DP(P)_T, DP(Q)_T, ILC2, 
ILC3, CYCLING_ILC, NK and CYCLING_NK cells with TRBJ were included 
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for the trajectory analysis. Neighborhood graph (k = 50) and UMAP 
were recalculated using scVI latent factors similar to those above.

For pseudotime trajectory analysis, Palantir32 (v1.0.1) was used and 
a diffusion map was computed using the first five PCs. The root cell was 
chosen to be the neighborhood with the highest CD34 expression, and 
the two terminal states were chosen with the largest and smallest values 
on the UMAP1 axis for T and NK/ILC cell neighborhoods, respectively 
(Extended Data Fig. 10a). Pseudotime and branch probabilities to the 
terminal states were then computed and projected back from neigh-
borhoods (Fig. 5b) to cells (Fig. 5c top panel).

Gene expression trend in DN T cells along pseudotime. Chatterjee’s 
correlations73 were computed between gene expression and inferred 
pseudotime within DN T cells for all genes that were expressed in at 
least 50 cells. Chatterjee’s correlation was chosen instead of Pearson’s 
or Spearman’s correlation to look for any functional change and not 
restricted to a monotonic change. TFs83 and genes encoding cell sur-
face proteins that had significantly high Chatterjee’s correlation with 
pseudotime (BH adjusted P < 0.05; correlation coefficient >0.1) were 
shown in Fig. 5c and Extended Data Fig. 10b, respectively.

Other visualization
In general, results were plotted using seaborn (v0.11.1; python) or 
ggplot2 (v3.3.3; R). Other single-cell plots were plotted using scanpy 
(v1.9.1). Visualization of Milo neighborhood graphs was plotted in R 
using ggraph (v2.1.0) and igraph (v1.2.6). Correlation/volcano plots 
were plotted in R using ggplot2 (v3.3.3). dplyr (v1.0.5) was used for 
general data frame handling for plotting in R.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing data for newly generated sequencing libraries have 
been deposited in ArrayExpress (accession number E-MTAB-12524). 
Other datasets used are available at https://developmental.cellatlas.
io/fetal-immune and https://www.tissueimmunecellatlas.org/.

Code availability
Dandelion is implemented as an open-source package in Python 3 
(https://github.com/zktuong/dandelion) with tutorials available at 
https://sc-dandelion.readthedocs.io/en/latest/. The tool and work-
flow are also available through an interactive online Google Colab 
notebook at https://colab.research.google.com/github/zktuong/dan-
delion/blob/master/container/dandelion_singularity.ipynb. Code and 
data used to generate figures and perform analyses in the manuscript 
are available at https://github.com/zktuong/dandelion-demo-files/
dandelion_manuscript.

References
74. Gadala-Maria, D., Yaari, G., Uduman, M. & Kleinstein, S. H. 

Automated analysis of high-throughput B-cell sequencing 
data reveals a high frequency of novel immunoglobulin V gene 
segment alleles. Proc. Natl Acad. Sci. USA 112, E862–E870 (2015).

75. Sleckman, B. P., Khor, B., Monroe, R. & Alt, F. W. Assembly of 
productive T cell receptor delta variable region genes exhibits 
allelic inclusion. J. Exp. Med. 188, 1465–1471 (1998).

76. Hu, Y. Efficient, high-quality force-directed graph drawing. Math. J. 
10, 37–71 (2005).

77. Peixoto, T. P. The graph-tool python library. https://doi.
org/10.6084/M9.FIGSHARE.1164194 (2017).

78. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational 
identification of cell doublets in single-cell transcriptomic data. 
Cell Syst. 8, 281–291 (2019).

79. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: 
a practical and powerful approach to multiple testing. J. R. Stat. 
Soc. 57, 289–300 (1995).

80. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: 
a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

81. Kerby, D. S. The simple difference formula: an approach to 
teaching nonparametric correlation. Compr. Psychol., https://doi.
org/10.2466/11.IT.3.1 (2014).

82. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep 
generative modeling for single-cell transcriptomics. Nat. Methods 
15, 1053–1058 (2018).

83. Lambert, S. A. et al. The human transcription factors. Cell 175, 
598–599 (2018).

Acknowledgements
We acknowledge the Cellular Genetics IT, New Pipeline Group and 
DNA pipelines of Sanger Institute. K.B.M. and S.A.T. are supported 
by Wellcome (WT211276/Z/18/Z, 108413/A/15/D, Sanger core 
grant WT206194 and Sanger QQ award 220540/Z/20/A). K.B.M. 
acknowledges funding from the MRC (MR/S035907/1). M.H. is 
supported by Wellcome (grant WT107931/Z/15/Z), the Lister Institute 
for Preventive Medicine, NIHR, and the Newcastle Biomedical Research 
Centre. S.A.T. is supported by an ERC Consolidator Grant ThDEFINE 
(646794). C.S. is supported by a Wellcome Trust Ph.D. Fellowship 
for Clinicians. Z.K.T. and M.R.C. are supported by a Medical Research 
Council Research Project Grant (MR/S035842/1). M.R.C. is supported by 
the National Institute of Health Research (NIHR) Research Professorship 
(RP-2017-08-ST2-002), a Wellcome Investigator Award (220268/Z/20/Z), 
the Blood and Transplant Research Unit in Organ Donation and the 
NIHR Cambridge Biomedical Research Centre. This publication is part 
of the Human Cell Atlas (www.humancellatlas.org/publications). We 
would like to thank the reviewers for their thoughtful comments and 
suggestions, which helped us to improve the quality of the manuscript.

Author contributions
C.S., Z.K.T., M.R.C. and S.A.T. conceived the initial project. C.S. and 
Z.K.T. set up and directed the study. C.S., K.P., E.D. and Z.K.T. performed 
bioinformatic analyses. C.S., K.P. and Z.K.T developed the software. 
C.S. and R.V.B. performed cell culture experiments. E.D., R.G.H.L., 
R.V.B., R.V., M.H., K.B.M., M.R.C. and S.A.T. provided intellectual input. 
M.R.C. and S.A.T. acquired funding. C.S., K.P. and Z.K.T. wrote the 
manuscript. All authors read and/or edited the manuscript.

Competing interests
In the past three years, S.A.T. has received remuneration for Scientific 
Advisory Board Membership from Sanofi, GlaxoSmithKline, Foresite 
Labs and Qiagen. S.A.T. is a cofounder and holds equity in Transition 
Bio. Z.K.T. has received consulting fees from Synteny Biotechnologies 
Ltd. on activities unrelated to this manuscript. The remaining authors 
declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s41587-023-01734-7.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41587-023-01734-7.

Correspondence and requests for materials should be addressed to 
Zewen Kelvin Tuong, Menna R. Clatworthy or Sarah A. Teichmann.

Peer review information Nature Biotechnology thanks Francesca 
Finotello, Kelly McNagny, and the other, anonymous, reviewer for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturebiotechnology
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-12524/
https://developmental.cellatlas.io/fetal-immune
https://developmental.cellatlas.io/fetal-immune
https://www.tissueimmunecellatlas.org/
https://github.com/zktuong/dandelion
https://sc-dandelion.readthedocs.io/en/latest/
https://colab.research.google.com/github/zktuong/dandelion/blob/master/container/dandelion_singularity.ipynb
https://colab.research.google.com/github/zktuong/dandelion/blob/master/container/dandelion_singularity.ipynb
https://github.com/zktuong/dandelion-demo-files/dandelion_manuscript
https://github.com/zktuong/dandelion-demo-files/dandelion_manuscript
https://doi.org/10.6084/M9.FIGSHARE.1164194
https://doi.org/10.6084/M9.FIGSHARE.1164194
https://doi.org/10.2466/11.IT.3.1
https://doi.org/10.2466/11.IT.3.1
http://www.humancellatlas.org/publications
https://doi.org/10.1038/s41587-023-01734-7
https://doi.org/10.1038/s41587-023-01734-7
https://doi.org/10.1038/s41587-023-01734-7
http://www.nature.com/reprints


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01734-7

Extended Data Fig. 1 | List of features included in AIR repertoire analysis 
pipelines. A table outlining the features of a non-exhaustive list of other methods 
compared to Dandelion. Handling of non-productive contigs (with or without V 
gene annotation) is not common across the various software packages. While the 
Immcantation workflow is capable of handling the data, contigs without V genes 

are typically diverted to a ‘failed’ file but can be retrieved separately. The output 
from Dandelion is compatible with any AIRR-compliant software for example 
Dandelion output can be passed to Immcantation to perform phylogenetic 
lineage inference.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Dandelion offers improved contig annotations.  
a, Left: barplot of proportion of contigs that are productive or non-productive 
in each locus. Right: barplot showing the causes of non-productive contigs 
in each locus. For both plots, sc-γδTCR, -αβTCR and -BCR data were taken 
from Suo et al. 20223 excluding thymus samples. b, Schematic illustration 
showing that mRNA without V genes would be captured by 5′RACE + Switch 
oligo technique but not by multiplex PCR strategy. c, Pointplot of proportion 
of contigs with multi-J mapping in the presence of V gene in control and 
cycloheximide-treated PBMC samples. Points are colored by locus of TCR/BCR. 

For both IGH and IGL/IGK, the proportions were 0% in control and treated.  
d, Schematic illustration showing the factors associated with multi-J mapping 
and the proposed mechanisms. e, Boxplots of sc-γδTCR contig counts 
annotated by 10X cellranger vdj v6.1.2 versus v7.0.0 using data from n = 33 
independent samples from Suo et al. 20223. Left: all high confidence contigs 
(P-value 5.43e-6, r 0.91 in the two-sided Wilcoxon signed-rank test). Right: 
high confidence productive contigs (P-value 1.69e-6, r 0.96 in the two-sided 
Wilcoxon signed-rank test). Boxes capture the first to third quartiles and whisks 
span a further 1.5X interquartile range on each side of the box.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01734-7

Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01734-7

Extended Data Fig. 3 | V(D)J feature space. a, Gene expression UMAP of all  
T cells from Conde et al. 20225, colored by donor ID (left) or high-level cell type 
annotations (right). Each point represents a cell. b, UMAP of the pseudo-bulk 
V(D)J feature space of the same cells as in a, colored by donor ID (left) or high-
level cell type annotations (right). Each point represents a cell pseudo-bulk.  
c, Left: UMAP of DP to mature T cells with paired productive αβTCR in data from 
Suo et al. 20223. Each point represents a cell, colored by cell types. Right: cell 
neighborhood graph on the same UMAP embedding. Each point represents a cell 

neighborhood, colored by cell types. The point size represents neighborhood 
size, with connecting edges representing overlapping cell numbers between 
any two neighborhoods. Only edges with more than 30 overlapping cells are 
shown. The layout of nodes is determined by the position of the neighborhood 
index cell in the UMAP on the left. d, The root cell and terminal states selected 
for pseudotime inference in Fig. 3c. e, Gene expression trends over CD8 + T 
pseudotime imputed with Palantir32. Only the top 10 most frequently used TRAV 
or TRAJ genes are shown.
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Extended Data Fig. 4 | Embedding with alternative methods. a, UMAP 
representation of tcrdist-derived PCA coordinates of VDJ data computed by 
CoNGA21, with the same dataset as used in Supplementary Fig. 3c, colored by 
cell types. b, UMAP representation of joint gene expression and TCR embedding 

computed by mvTCR22 with varying weights for GEX and VDJ input, on the same 
dataset as used in Supplementary Fig. 3c. Cells are colored by donor ID (top 
panel) or cell types (bottom panel).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | T cell development pseudotime inference comparison. 
a, DP to mature T cells with paired productive αβTCR in data from Suo et al. 
20223, on the same UMAP embedding as in Fig. 4a and Supplementary Fig. 3c. The 
first two panels show the root cell and terminal states selected for pseudotime 
inferred directly from single-cell gene expression. The last panel shows the cell 
types. b, Top: pseudotime and branch probabilities inferred directly from single-
cell gene expression on the same UMAP embedding as in a. Bottom: scatterplot 
of branch probability to CD8+ T against pseudotime. Each point represents a cell. 

c, UMAP of neighborhood GEX space, with the same neighborhoods as sampled 
in Supplementary Fig. 3c and UMAP embedding computed on gene expression 
pseudo-bulked by neighborhoods. Each point represents a cell neighborhood. 
The first two panels show the root cell and terminal states selected for 
pseudotime inferred from neighborhood GEX space. The last panel shows the cell 
types. d, Inferred pseudotime, and branch probabilities to CD8+ T and to CD4+ T 
respectively overlaid onto the same UMAP embedding in c.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Comparing pseudotime inferred from neighborhood 
V(D)J space or GEX space. a, Pearson’s correlation coefficients of pseudotime 
order and average relative TRAV location over sliding windows of 30 adjacent 
neighborhoods on the pseudotime order (left: pseudotime inferred from 
neighborhood V(D)J space; right: pseudotime inferred from neighborhood 
GEX space). Y-axis is the correlation coefficient and the x-axis is the median 
pseudotime order of the 30 adjacent neighborhoods. The color of the points 
represents statistical significance (orange: P-value from the Pearson’s correlation 
< 0.05; blue: P-value ≥ 0.05). The red dashed lines mark the correlation coefficient 
of 0. b, The same plot as in a but for TRAJ. c, Scatterplots of branch probability to 

CD8+ T against pseudotime in abT(entry) cells. Each point represents a cell.  
Top panel: pseudotime inferred from neighborhood V(D)J space as in  
Fig. 4a top panel. Bottom panel: pseudotime inferred from neighborhood GEX 
space as in Fig. 4a bottom right panel. d, Volcano plot summarizing results of 
TFs that are correlated with branch probabilities to CD8+ T lineage in V(D)J 
pseudotime within abT(entry) cells. The y-axis is the -log10(BH adjusted P-value) 
and the x-axis is the correlation coefficient. Labeled TFs that had significant 
(BH adjusted P-value < 0.05) positive correlations (correlation coefficient > 0.1) 
were colored in red, the ones with significant negative correlations (correlation 
coefficient < −0.1) were colored in blue, and the rest were colored in black.
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Extended Data Fig. 7 | Pseudotime inferred with different trajectory 
inference methods. a, First three panels display pseudotime inferred 
from neighborhood V(D)J space using Palantir32, monocle344, and diffusion 
pseudotime45 respectively, overlaid onto the same UMAP embedding as in  
Fig. 3c with each point represents a cell neighborhood. The fourth panel 
represents the pseudotime inferred from neighborhood GEX space 
using Palantir32. The last panel represents the dominant cell type in each 
neighborhood. b, Scatterplots of the pseudotime ordering against the average 
relative TRAV (top) and TRAJ (bottom) location. Each point represents a cell 

neighborhood. Each TRAV or TRAJ gene is encoded numerically for its relative 
genomic order. The x-axis represents the average TRAV/TRAJ relative location 
for each cell neighborhood. The y-axis represents the pseudotime order inferred 
from neighborhood V(D)J space using Palantir32, monocle344, and diffusion 
pseudotime45, and the pseudotime order inferred from neighborhood GEX space 
using Palantir32 respectively. The Pearson’s correlations are −0.95, −0.91, −0.95, 
and −0.90 respectively (P-values of 4.8e-76, 4.9e-56, 2.1e-74, and 7.4e-54) for 
TRAV, and 0.93, 0.90, 0.93, and 0.89 respectively (P-values of 1.7e-62, 3.8e-54, 
7.6e-65, and 4.2e-52) for TRAJ.
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Extended Data Fig. 8 | Non-productive BCR and TCR. a,b,c, Boxplot of the 
proportion of cells with productive (blue) or non-productive (orange) BCR light 
chain (a) and heavy chain (b), and TRB (c) in different fetal lymphocyte subsets. 
Each point represents a sample and data were taken from Suo et al. 20223. Only 

samples with at least 20 cells are shown. Boxes capture the first to third quartiles 
and whisks span a further 1.5X interquartile range on each side of the box. d, 
Barplot showing the VDJ composition of non-productive TRB contigs in selected 
lymphocyte subsets from Fig. 5a.
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Extended Data Fig. 9 | See next page for caption.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01734-7

Extended Data Fig. 9 | Non-productive TCR. a–c, Boxplot of the proportion 
of cells with productive (blue) or non-productive (orange) TRA (a), TRG (b) and 
TRD (c) in different fetal lymphocyte subsets. Each point represents a sample 
and data were taken from Suo et al. 20223. Only samples with at least 20 cells 
are shown. Boxes capture the first to third quartiles and whisks span a further 
1.5X interquartile range on each side of the box. d, Boxplot of the proportion of 
cells with non-productive TRB in different fetal lymphocyte subsets, colored by 

organs. Each point represents a sample. Only samples with at least 20 cells are 
shown. Boxes capture the first to third quartiles and whisks span a further 1.5X 
interquartile range on each side of the box. Sample sizes (n) of all box plots from 
left to right are 3, 12, 10, 15, 13, 13, 1, 1, 4, 2, 12, 3, 2, 8, 3, 1, 2, 1, 12, 3, 2, 8, 2, 1, 2, 12, 3, 2, 
7, 1, 12, 1, 2, 6, 1, 12, 1, 2, 8, 2, 2, 4, 3, 1, 4, 2, 7, 3, 2, 6, 3, 1, 4, 5, 3, 2, 7, 6, 1, 7, 8, 3, 3, 2, 8, 5, 
2, 7, 1, 1, 3, 2, 7, 2, 1, 4, 2, 1, 1, 3, 10, 1, 4, 11, 1, 2, 3, 10, 1, 1, 7, 10, 1, 2, 1, 7, 9, 2, 5, 1, 4, 3, 1, 6, 
5, 6, 1, 3, 2, 8, 2, 1, 3, 1, 2, 3, 2, 3, 3.
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Extended Data Fig. 10 | TRBJ-based trajectory for ILC/NK/T cell lineage.  
a, Neighborhood V(D)J feature space covering ILC, NK and developing T cells with 
TRBJ on the same UMAP embedding as in Fig. 5b. The first two panels show the 
root cell and terminal states selected for pseudotime inference. The last panel 
shows the cell types. b, Heatmap of gene expression for genes encoding cell 
surface proteins across pseudotime in DN T cells. Pseudotime is equally divided 
into 100 bins, and the average gene expression is calculated for DN T cells with 

pseudotime that falls within each bin. Genes selected here had significantly 
high Chatterjee’s correlation with pseudotime (BH adjusted P-value < 0.05, and 
correlation coefficient > 0.1). c, Heatmap of gene expression for TFs known to be 
important in mouse DN T cell development53, across pseudotime in human fetal 
DN T cells. TFs that showed discordant expression patterns between mouse and 
human are highlighted in red.
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