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A relay velocity model infers cell-dependent 
RNA velocity

Shengyu Li1,2,3,4,7, Pengzhi Zhang1,2,3,4,7, Weiqing Chen    1,5, Lingqun Ye1,2,3, 
Kristopher W. Brannan2,3,4, Nhat-Tu Le2,4, Jun-ichi Abe    6, John P. Cooke2  
& Guangyu Wang    1,2,3,4 

RNA velocity provides an approach for inferring cellular state transitions 
from single-cell RNA sequencing (scRNA-seq) data. Conventional RNA 
velocity models infer universal kinetics from all cells in an scRNA-seq 
experiment, resulting in unpredictable performance in experiments 
with multi-stage and/or multi-lineage transition of cell states where the 
assumption of the same kinetic rates for all cells no longer holds. Here 
we present cellDancer, a scalable deep neural network that locally infers 
velocity for each cell from its neighbors and then relays a series of local 
velocities to provide single-cell resolution inference of velocity kinetics. 
In the simulation benchmark, cellDancer shows robust performance in 
multiple kinetic regimes, high dropout ratio datasets and sparse datasets. 
We show that cellDancer overcomes the limitations of existing RNA velocity 
models in modeling erythroid maturation and hippocampus development. 
Moreover, cellDancer provides cell-specific predictions of transcription, 
splicing and degradation rates, which we identify as potential indicators of 
cell fate in the mouse pancreas.

A cell may transition to a new fate during or after development in 
response to transcriptional factors and epigenetic modifiers that 
are modulated by intracellular or external signaling1–5. The advent 
of single-cell RNA sequencing (scRNA-seq) generated insights into 
cell subpopulations, detecting biological factors that influence 
cellular state shifts and deciphering cellular response to environ-
mental and immune stimuli in health and disease at single-cell reso-
lution6,7. High-throughput scRNA-seq data provide an unbiased and 
high-resolution transcriptomic landscape of cellular states8. How-
ever, scRNA-seq captures only snapshots of a set of cells and does not 
explicitly demonstrate dynamical transitions between cellular states. 
Thus, trajectory inference algorithms were developed by constructing 
a potential branching trajectory based on the similarity in the tran-
scriptomic profiles9–11. A major challenge of trajectory inference is to 

determine the direction of the trajectories or the root and terminal 
cellular states. One way of inferring such directed dynamics of cellular 
states is to incorporate ‘RNA velocity’12. RNA velocity correlates the 
abundance of the nascent, unspliced mRNAs with that of the mature, 
spliced mRNAs using a simple first-order kinetics model. The progres-
sion of the current cellular state shifting toward a future state is extrapo-
lated using the RNA velocities across genes. RNA velocity has brought 
biological insights to cell differentiation and disease progression13–16.

RNA velocity was proposed to model the dynamic process of tran-
scription, splicing and degradation of mRNA in a single cell. This model 
was initially applied to circadian-associated genes to extrapolate the 
progression of the circadian cycle (24 hours) on the bulk RNA-seq data 
of the mouse liver12. Later, it was applied to infer the cell fates from 
scRNA-seq data, assuming that all cells in an scRNA-seq experiment 
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neighboring cells of i (Fig. 1b). Second, we extrapolated s(ti + Δt) and  
u(ti + Δt) of cell i at time t + Δt to infer a velocity vector that points from 
the current state to the future in the gene phase portrait. We defined a 
loss function by summing every cell’s maximum cosine similarity for the 
predicted and observed velocity vectors (Methods). Finally, optimized 
rates of each cell were obtained by minimizing the loss function (Fig. 1b).

We initially evaluated the training progress of cellDancer on sev-
eral well-studied genes in pancreatic endocrinogenesis and mouse 
hippocampus development17. We observed that cellDancer captured 
the transcriptional dynamics of these genes (Fig. 1c and Supplemen-
tary Fig. 1). Then, we scaled up the performance evaluation of cell-
Dancer on 1,000 simulated mono-kinetic genes with the shared β, γ 
and two-step α values. The predicted parameters are highly correlated 
with the ground truth (R2 = 0.98 for α/β and 0.93 for γ/β; Extended Data  
Fig. 1a). Remarkably, cellDancer can identify two clusters of α val-
ues representing active (positive) and repressive expression phases 
(centered ~0) on a benchmark dataset, without a prior constraint of a 
two-step transcription rate (Extended Data Fig. 1b).

Inferring RNA velocity in multi-rate kinetics
As cellDancer provides the single-cell resolution of α, β and γ, we next 
examined whether cellDancer could resolve the multi-rate kinetic 
regimes. We simulated three multiple kinetic regimes, including tran-
scriptional boost, multi-lineage forward and multi-lineage backward 
genes (Extended Data Fig. 1c–e, right panels, and Methods). Transcrip-
tional boost refers to a boost in the expression induced by a change 
in the transcription rate; multi-lineage forward and multi-lineage 
backward refer to induction and repression in separate lineages, 
respectively. We generated 2,000 cells and 1,000 genes for each 
regime. We compared cellDancer with scVelo (dynamic) and velocyto 
(static) algorithms and two deep learning algorithms, DeepVelo19 and 
VeloVAE20. The error rates in cellDancer were significantly lower than 
those in scVelo, velocyto, DeepVelo and VeloVAE in all three simulated 
regimes (Extended Data Fig. 1c–e; P < 0.001, one-sided Wilcoxon test). 
Specifically, cellDancer exhibited the lowest error rate for simulated 
transcriptional boost, multi-forward branching and multi-backward 
branching kinetics with 13%, 3% and 9% compared to velocyto, scVelo, 
DeepVelo and VeloVAE, respectively (Supplementary Table 1). To test 
the effect of imbalanced cell numbers in different lineages or stages, 
we downsampled the cells at the stage after transcriptional boost-
ing (Extended Data Fig. 1c) and the cells in lineage 1 (Extended Data 
Fig. 1d,e). Results showed that cellDancer is not affected by the bias of 
cell distribution. Next, we estimated the required number of epochs 
to optimize cellDancer DNN. cellDancer converged at 25 epochs for 
mono-kinetic, multi-forward and multi-backward branching genes and 
100 epochs for transcriptional boost genes (Extended Data Fig. 1f–i).

Delineating transcriptional boost on single-cell resolution
We compared cellDancer to the dynamical model of scVelo on 
the scRNA-seq experiment of mouse gastrulation erythropoiesis2 
(Extended Data Fig. 2a and Fig. 2a), in which transcriptional boost genes 
were reported13. The vector flow in a uniform manifold approxima-
tion and projection (UMAP) embedding of the transcriptome clearly 
suggests that cellDancer recaptures the progression of erythroid dif-
ferentiation (Fig. 2a, top), whereas scVelo’s prediction was reversed18 
(Fig. 2a, bottom).

Barile et al.18 identified 89 multiple rate kinetics (MURK) genes, 
such as Smim1 and Hba-x, of which transcription rates boost in the 
middle of erythroid differentiation, and showed that the prediction 
of scVelo was severely affected by the boost of transcription, resulting 
in incorrect predicted directions. cellDancer predicted the correct 
changes of well-known MURK genes, such as Smim1 and Hba-x, on the 
phase portraits (Fig. 2b), whereas scVelo, DeepVelo and VeloVAE had 
incorrect predictions. Moreover, cellDancer revealed the transcrip-
tional boost by the cell-specific α (Fig. 2b). We next tested the overall 

share similar kinetics12,17. However, cellular state transitions often 
involve multiple stages and/or lineages, each of which may have dissimi-
lar kinetics. The existing velocity models assume uniform kinetics of all 
cells in an scRNA-seq experiment, which may result in poor predictive 
performance when cell subpopulations have dissimilar RNA velocity 
kinetics. For example, a number of genes (for example, Hba-x) exhibit 
a boost in their transcription rates during mouse erythrocyte matura-
tion, which have opposite predictions by scVelo18. It was also reported 
that there are five major branching lineages during the development of 
the mouse hippocampus13. The expression of some genes (for example, 
Ntrk2), termed branching genes, increase rapidly in several lineages 
and slowly in the other lineage. RNA velocities inferred by the existing 
models12,17 were inverted, in whole or in part, for the branching genes18. 
Thus, the estimation of RNA velocity kinetics is sensitive to heterogene-
ity in terms of biological conditions and cell populations.

Here we propose a ‘relay velocity model’ that uses the relay of a series 
of local velocities to provide single-cell resolution inference of velocity 
kinetics (Fig. 1a). Compared to other kinetic models, in the relay velocity 
model the cell-specific velocity of each cell is informed by its neighbor 
cells and then relays cell-specific velocities. To implement the relay 
velocity model, we developed cellDancer, which is a model-based deep 
neural network (DNN) framework. The cellDancer algorithm separately 
trains a DNN for each gene. For a gene, cellDancer assesses the spliced 
and unspliced mRNA velocities of each cell in a DNN to calculate the 
cell-specific transcription, splicing and degradation rates (α, β and γ) and 
to predict the future spliced and unspliced mRNA by the outputted α, β 
and γ using an RNA velocity model. The key step of cellDancer DNN is to 
define a loss function to train the DNN based on the similarity between 
the predicted future spliced and unspliced mRNA of each cell and the 
observation of its neighbor cells. After optimizing the global similarity 
between prediction and observation, cellDancer infers α, β and γ at a 
single-cell resolution rather than bulk rates used in existing methods12,17.

We demonstrate that cellDancer extends the velocity estimation 
with cell-specific kinetics on heterogeneous cell populations, includ-
ing those involved in erythroid maturation during gastrulation and 
those of the hippocampal dentate gyrus during neurogenesis. The 
cellDancer algorithm outperforms steady and early switching models 
on multi-stage and multi-lineage cell subpopulations. We show that 
cell-specific α, β and γ could be indicators of fate for cell identity in 
the mouse pancreas. cellDancer is available as a highly modularized, 
parallelized and scalable implementation.

Results
Learning cell-specific RNA kinetics by a relay velocity model
The cellDancer algorithm is a deep learning framework to generalize the 
estimation of RNA velocity in both homogeneous and heterogeneous 
cell populations from scRNA-seq data by estimating cell-dependent 
transcription (α), splicing (β) and degradation (γ) rates. Cell-specific α, 
β and γ were predicted by an RNA velocity model that incorporated the 
neighbor cells (see details regarding the selection of the neighbor cells 
in the Methods). Specifically, we resolved the RNA velocity kinetics by 
estimating the reaction rates from the weights and biases of the nodes 
in a DNN, which is a generalized framework of velocity estimation (see a 
demonstration in Supplementary Note 1). To train the cellDancer DNN, 
we first discretized the original reaction kinetics as follows:

u (t + Δt) − u (t)
Δt = α (t) − β (t)u (t) ,

s (t + Δt) − s (t)
Δt = β (t)u (t) − γ (t) s (t) ,

where time t is discretized and Δt is a small time slot. In our model, α, β 
and γ are cell specific. For an individual gene in cell i, cellDancer used 
a DNN to predict cell-specific rates α(ti), β(ti) and γ(ti) from the spliced 
and unspliced mRNA abundances u(ti) and s(ti) of genes at time t and 
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prediction of cellDancer on transcriptional boost genes. We applied 
cellDancer and scVelo to the 89 MURK genes and projected the velocity 
inference to the transcriptome UMAP. cellDancer recaptured the cor-
rect directional flow of differentiation using only MURK genes (Fig. 2c), 

whereas scVelo, DeepVelo and VeloVAE predicted an opposed direction 
in multiple cell types (Extended Data Fig. 2b).

Next, we demonstrated cellDancer’s capabilities of deciphering 
transcriptional changes along the differentiation pseudotime. We 
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Fig. 1 | Predicting RNA velocity in localized cell populations via DNNs.  
a, Transcription dynamics of the premature (unspliced) and mature (spliced) 
mRNAs are governed by the transcription (α), splicing (β) and degradation 
(γ) rates. Multi-kinetics genes involve multiple-lineage and/or multi-stage 
transitions of the cellular states; hence, cell-dependent rates (α, β, γ)t are 
required to accurately capture the transcription dynamics of those genes. In 
the illustration, the (α, β, γ)t for cell t are computed by locating the future state 
cell in the neighboring cells of t (‘local environment’), assuming that the cells 
in the local environment share the same (α, β, γ). b, cellDancer uses a DNN to 
predict cell-specific α, β and γ for each gene. The DNN consists of an input layer 

with the spliced and unspliced mRNA abundances (ui, si) i = 1,2, …, ncells, two fully 
connected hidden layers each with 100 nodes and an output layer yielding cell-
specific α, β and γ. The loss function is defined as the sum of every cell’s cosine 
similarity of predicted and observed velocity vectors. The DNN is iteratively 
optimized by minimizing the loss function. c, The progress of minimizing the 
loss function. RNA velocities for the examples of the mono-kinetic gene Sulf2 
in pancreatic endocrinogenesis, and the multi-lineage gene Gnao1 in mouse 
hippocampus maturation is projected onto the phase portraits during the 
training process of their DNNs.
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Fig. 2 | Delineating gastrulation erythroid maturation and resolving 
transcriptional boost. a, The velocities derived from cellDancer (top) are 
consistent with the erythroid differentiation but opposite in scVelo dynamic 
model (bottom) by using all genes. b, The velocities derived from cellDancer, 
scVelo dynamic model, DeepVelo and VeloVAE for the transcriptional boost 
genes (Hba-x and Smim1) are illustrated on the phase portraits. The cells are 
colored according to the cell types. The box plots of α for each cell type predicted 
by cellDancer are included to show the boost in the α rates in the course of 
erythroid maturation, especially in erythroid 3. c, The velocities derived from 
cellDancer for gastrulation erythroid maturation using transcriptional boost 
genes are projected on the UMAP of the original work, demonstrating that 
cellDancer can infer the correct cell differentiation direction by using only the 

transcriptional boost genes. d, Gene-shared pseudotime on UMAP is consistent 
with the progression of gastrulation erythroid maturation. e, Genes that show 
high similarity in transcriptional changes along time are classified into eight 
clusters according to their transcriptional changes. The heat map describes 
the expression of the genes along time (rows: genes; columns: cells ordered 
according to the pseudotime). Genes were selected by Pearson correlation 
coefficient (R2) > 0.8. f, Average expression of each cluster along the pseudotime 
(top) and the enriched pathways for each cluster of genes (bottom) (Benjamini–
Hochberg procedure, one-sided, P < 0.05). P value indicates the significance of 
enrichment of a pathway in Fisher’s exact test. g, In silico perturbation analysis by 
dynamo shows a critical role of Gata2 in hematopoiesis.
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first inferred major trajectories during cell differentiation from the 
transition matrix based on the correlation of velocities among neigh-
bor cells (Methods). Then, we estimated a universal pseudotime from 
trajectories to capture the cell’s position along with the erythroid 
maturation. The pseudotime of cellDancer accurately illustrated the 
transcriptional changes of genes (Extended Data Fig. 2c) and the ter-
minal of erythroid maturation (Fig. 2d). To delineate the dynamics of 
transcriptional activity, we grouped genes into eight clusters based on 
the similarity in the transcriptional changes along pseudotime (Fig. 2e). 
The expression of genes in the first three clusters was high at the early 
stage in the hematoendothelial progenitor cells and diminished dur-
ing differentiation. Gene expression in clusters 4–6 decreased slower 
than the gene expression in the first three clusters and decreased close 
to zero in the erythroid 3 subpopulation. Gene expression in clusters 
7 and 8 increased during erythroid maturation. We next investigated 
the biological function of each gene cluster during erythroid cell dif-
ferentiation. Gene Ontology (GO) analysis through DAVID21 showed 
that these genes are highly enriched in the angiogenesis and wound 
healing pathways. Genes in clusters 4–6 were enriched in basic cellular 
functions, including cell cycle, cell division, chromatin organization, 
RNA splicing and translation pathways. It is not surprising that these 
genes are enriched in erythrocyte development, heme biosynthetic 
process, oxygen transport and cellular oxidant detoxification pathways  
(Fig. 2f). Finally, we applied dynamo22 to in silico suppress the expression 
of Gata2, a critical regulator in hematopoiesis, in blood progenitor 1.  
We observed the diversions of hematopoietic fate after the perturba-
tion (Fig. 2g), which is consistent with the experimental study23.

Inferring RNA velocities on each branch for branching genes
We evaluated cellDancer using data from the branching lineages in 
mouse hippocampus development. There are five major branching 
lineages in the mouse hippocampus, corresponding to dentate gyrus 
granule neurons, pyramidal neurons in subiculum and CA1, pyramidal 
neurons in CA2/3/4, oligodendrocyte precursors (OPCs) and astro-
cytes12. The cell velocity graph shows that cellDancer accurately inferred 
five major branching lineages in hippocampus development (Fig. 3a), 
confirming the reliable performance of cellDancer on multi-lineage 
populations.

We further studied the velocity inference of individual branching 
genes. As branching genes have different reaction rates among line-
ages, they have lineage-specific regulation of transcription, splicing 
and degradation and often play an important role in hippocampus 
development. For example, branching genes are vital to neurogenesis 
(Diaph3, Klf7 and Ncald; Extended Data Fig. 3)24–26 and are involved in the 
differentiation of the neural system (Cadm1 and Gpm6b)27,28. Branching 
genes are also related to neurological or neuropsychiatric disorders. 
For instance, mutations of Gnao1 may contribute to epilepsy, develop-
mental delay and movement disorders in the neural system29. Aberrant 
Psd3 proteins are related to autism spectrum disorder and schizophre-
nia30. We applied cellDancer to the branching genes. Phase portraits 
show that cellDancer can accurately infer the velocities of branching 
genes on each lineage (Fig. 3b and Extended Data Fig. 3), whereas 
scVelo, velocyto, DeepVelo and VeloVAE predicted the correct veloci-
ties on a limited number of cells (Fig. 3b and Supplementary Fig. 2).  
Moreover, cell-specific α, β and γ were inferred on each branch. For 
instance, neurotrophic tyrosine kinase receptor type 2 (Ntrk2)31 has 
two major branches: the upper branch corresponds to astrocytes and 
OPCs, and the lower branch corresponds to dentate gyrus granule 
neurons and pyramidal neurons (Fig. 3b). Astrocytes and OPCs have 
high α and low β, resulting in high expression of unspliced Ntrk2 on the 
upper branch. Dentate gyrus granule neurons and pyramidal neurons 
have high β and low γ, resulting in high expression of spliced Ntrk2 on 
the lower branch (Extended Data Fig. 3).

cellDancer calculates a minimized loss function after optimizing 
a DNN for each gene. A small loss score indicates a good fit with the 

RNA velocity model. We ranked genes based on their loss function 
score. Top-ranking genes include both mono-kinetic and branching 
genes (Fig. 3c). Next, we performed GO pathway enrichment analysis 
through DAVID21 for the top 500 genes. The enriched pathways are 
associated with neurogenesis, nervous system development, neuron 
differentiation, synaptic signaling, chemical synaptic transmission 
and brain development (Fig. 3d).

We applied pseudotime analysis to infer the differentiation order 
of cells in hippocampus development. cellDancer automatically iden-
tified radial glia cells as a shared root state of hippocampus develop-
ment (Fig. 3e), which is in good agreement with the previous study32. 
We also identified five terminal states without prior knowledge of the 
number of branches in the development process and applied dynamo 
to predict the most probable path of each terminal state (Fig. 3e). The 
pseudotime analysis of cellDancer suggests that astrocytes and OPCs 
are produced earlier than granule neurons and pyramidal neurons. 
Together, cellDancer has the capability to infer the global differentia-
tion pseudotime of branching cell lineages.

We investigated the temporal progression of transcription dur-
ing hippocampus development. We observed multiple expression 
patterns of individual genes on different branches. For instance, Dcx 
transiently upregulates in neuroblasts with consistently low expres-
sion in astrocytes (Fig. 3f), which is supported by previous studies 
that Dcx transiently expresses in the early neurogenesis stage and is 
a widely used marker for neurogenesis33,34. By contrast, genes associ-
ated with neurogenesis, such as Slc4a10 (ref. 35), Ncald26 and Ntrk2 
(ref. 31), show increasing expression in all branches at different rates 
(Extended Data Fig. 4).

Vector fields analysis using cell-specific RNA velocity
cellDancer extends the bulk reaction rates (α, β and γ) to single-cell 
resolution in an scRNA-seq experiment. As gene expression is regu-
lated by transcription, splicing and degradation, the reaction rates 
tend to be more stable than expression in a cell type during cell dif-
ferentiation (Fig. 4a). Thus, we asked if the cell-dependent reaction 
rates in cellDancer provide biological insights into cell identity. We 
applied cellDancer to infer cell-dependent α, β and γ in the endocrine 
development of the mouse pancreas profiled from embryonic day 15.5 
(E15.5)36. Previous works reported four terminal cell types in endocrino-
genesis, including glucagon-producing alpha-cells, insulin-producing 
beta-cells, somatostatin-producing delta-cells and ghrelin-producing 
epsilon-cells37. UMAP of transcriptome shows that alpha-, beta-, delta- 
and epsilon-cells are distributed closely (Fig. 4b). Reaction param-
eters are always more consistent than transcriptomes in a cell type. 
For instance, expression of Sulf2 increases in Ngn3-low endocrine 
progenitors and decreases in pre-endocrine (Fig. 4c), whereas α is a 
similar positive value in Ngn3-low endocrine progenitors and ~0 in 
pre-endocrine. Next, we investigated the overall similarity of α, β and 
γ in each cell type. We applied UMAP to embed α, β and γ into two 
dimensions. Alpha-, beta-, delta- and epsilon-cells separate into dis-
tinct groups on UMAP of α, β and γ (Fig. 4d and Supplementary Fig. 3), 
suggesting that cell-specific α, β and γ are available as an indicator of cell 
identity. Notably, the cycling subpopulation of ductal cells and endo-
crine progenitors was separated from those without cycling (Fig. 4e).

Furthermore, we inputted the cell velocity to the established 
framework dynamo, which provides rich downstream analyses by 
learning differentiable velocity vector fields and inferring gene regu-
lation networks. Noticeably, absorbing fixed points are identified 
in the alpha-, beta- and epsilon-cells, and an emitting fixed point is 
identified in the pancreas progenitor cells (Fig. 4f). To investigate the 
alpha-cell and beta-cell fate determination, we inspected the expres-
sion of Arx and Pax4, two well-known transcription factors that deter-
mine the endocrine cell fates (the alpha and beta lineages)38. Consistent 
with the previous study38, we observed exclusively high expression  
of Arx and Pax4 in the alpha-cells and beta-cells, respectively (Fig. 4g). 
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Fig. 3 | Identifying the branching lineage in the hippocampus development. 
 a, The velocities derived from cellDancer for the mouse hippocampus development 
dataset are visualized on the pre-defined t-SNE embedding. Directions of the 
projected cell velocities on t-SNE are in good agreement with the reported 
directions. b, The phase portraits of two branching genes (Ntrk2 and Gnao1) 
predicted by cellDancer, scVelo dynamic mode, velocyto, DeepVelo and VeloVAE 
demonstrate the advantage of cellDancer in predicting the velocities of the 
branching genes. The RNA velocities of Ntrk2 and Gnao1 predicted by cellDancer 
are consistent with the expectation of hippocampus developmental progress, 
whereas the directions predicted by others are inconsistent in part. The cells 
are colored according to the cell types. c, Distribution of the minimized loss for 
all the genes. Those genes with low loss scores show mono-kinetic or divergent 
dynamics, whereas genes with high loss scores show pattern-less phase portraits. 

d, The GO pathway enrichment analysis using adjusted P values of Fisher’s exact 
test (Benjamini–Hochberg procedure, one-sided, P < 0.05) of DAVID for the 
500 genes with the lowest training loss score shows that these genes are highly 
involved in pathways associated with nervous and brain development. e, Gene-
shared pseudotime is projected on t-SNE by cellDancer, and the most probable 
paths are inferred by dynamo, showing the order of cell differentiation during 
hippocampus development. f, The phase portraits (left, cells colored according to 
a), the expression on t-SNE embedding (middle) and the expression pseudotime 
profiles (right) for the genes Dcx and Psd3. Dcx (top) and Psd3 (bottom) have distinct 
dynamic behaviors. Dcx is a mono-kinetic gene (left), and its expression gradually 
increases in neuroblasts (right). Psd3 is a branching gene (left), and its expression 
increases in each branching lineage at different speeds (right). FDR, false discovery 
rate; nIPC, neural intermediate progenitor cell.
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analyzing gene regulation through vector fields. a, Schematic illustration 
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types rather than the expressions of the genes. b, The velocities derived from 
cellDancer for the pancreatic endocrinogenesis cells are visualized on the pre-
defined UMAP embedding. c, Phase portraits of the gene Sulf2. The α rates of 
the Sulf2 gene for each cell calculated by cellDancer clearly illustrate the gene’s 
induction and regression phases (left). Sulf2 is in induction in the Ngn3-high 
embryonic progenitor (EP) cell type and in regression in the pre-endocrine 

cell type, whereas it is barely transcribed in other cell types (right). d,e, UMAP 
embedding using the cell-specific α, β and γ rates calculated by cellDancer 
indicates that our computed kinetics rates might be useful in assigning cell 
subpopulations (d) and cell identity (e). f, The velocity vector fields were learned 
by dynamo. The red digit 0 reflects the identified emitting fixed point. The 
black digits 1, 2 and 3 reflect the absorbing fixed points. g, Jacobian analysis 
and the gene expression of Arx and Pax4 on the UMAP space. It shows that Pax4 
is downregulated by Arx in alpha-cells. Arx is downregulated by Pax4 in beta-cells.
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Then, we used dynamo to perform Jacobian analyses and detected 
mutual inhibition between Arx and Pax4 in the alpha-cells and 
beta-cells. These analyses are in line with the experimental findings39 
and provide mechanistic insight from gene regulation at single-cell 
resolution, showing that cellDancer can be seamlessly integrated with 
downstream analysis, such as dynamo vector field analysis.

Revealing the turnover strategies of mRNA during cell cycle
A previous study showed that metabolic labeling technology, such as 
sequencing mRNA labeled with 5-ethynyl-uridine (EU) in single cells 
(scEU-seq), can measure the synthesis and degradation of mRNA 
using the sequencing method40. Furthermore, Qiu et al.22 showed 
that scEU-seq can be used to predict the dynamics of the cell cycle. To 
investigate whether the predicted kinetic parameters are consistent 
with the experimental measurements, we used metabolic labeling data 
(that is, scEU-seq) of RPE1-FUCCI cells at specific points during cell 
cycle progression as a benchmark40. We first clustered RPE1-FUCCI cells 
into eight groups based on cell cycle stages and calculated the average 
spliced and unspliced expression of cell-cycle-associated genes, which 
also have synthesis and degradation rates in scEU-seq (Extended Data 
Fig. 5a). We applied cellDancer to predict the velocities and kinetic 
parameters of cell cycle genes and compared the predicted α and γ to 
the experimentally derived synthesis and degradation rates measured 
by scEU-seq40 (Extended Data Fig. 5b). Overall, the predicted α and γ are 
associated with the experimental measurements of mRNA synthesis 
and degradation (Extended Data Fig. 5b,c), especially in the highly 
expressed genes (Extended Data Fig. 5a). We also observed a difference 
between the predicted α and scEU-seq synthesis rates in the G1 state 
for the low-expression genes, of which expression starts to increase 
at the G1 state (Extended Data Fig. 5a). Our prediction captures this 
increase by a relatively large α in the G1 state, whereas scEU-seq shows 
a low synthesis rate, which may be due to the potential limitation of 
scEU-seq in the low-expression genes. Next, we predicted the velocity 
flow and pseudotime of the cell cycle procession using cell cycle genes. 
cellDancer predicts the direction of transcriptome shifting and the 
pseudotime during the cell cycle (Extended Data Fig. 5d). Together, the 
cellDancer-predicted kinetic parameters reflect the reality of mRNA 
turnover rates in cell cycle.

We further investigated the functions of genes with different 
kinetic patterns. We grouped genes into seven clusters according to 
dynamic patterns of α and γ (Extended Data Fig. 6a). We calculated 
the correlation of α and γ and the average expression in each cluster 
(Extended Data Fig. 6b). We identified three positively correlated 
groups and four negatively correlated groups, indicating different 
turnover strategies in the clusters. Next, we investigated the func-
tions of genes in each cluster through DAVID21 (Extended Data Fig. 6c). 
Overall, all clusters are associated with cell cycle pathways, including 
cell division, proliferation, chromatin remodeling, DNA replication 
and cell cycle checkpoints. We noticed that the genes in cluster F have 
large transcription and degradation rates in the mitosis stage, indicat-
ing a fast turnover of mRNAs. The genes in cluster F are enriched in 
pathways related to cell communication, including signal transduction, 
enzyme-linked receptor protein signaling, TGF-β receptor signaling 
and stress-activated protein kinase signaling, suggesting a quick com-
munication of cells during mitosis.

To investigate the capacity of cell-specific rates in identifying cell 
subpopulations, we recaptured that pseudotime is continuous in the 
gene expression space during the cell cycle. Specifically, the G2 phase 
(pseudotime 0.8~1) is in proximity to the M phase (pseudotime 0~0.2) 
(Extended Data Fig. 6d). Then, we clustered the cells into 17 subpopula-
tions according to the cell-specific rates (Extended Data Fig. 6d) using 
SCANPY41 and used the hierarchical method to further cluster each 
subpopulation (Extended Data Fig. 6e). We found that these subpopu-
lations were globally clustered together in good agreement with cell 
cycle pseudotime except clusters 3 and 4 (a cell subpopulation at the 

M phase). The reaction rates of this cell subpopulation are more in line 
with clusters 1 and 2, which are at the G1 and S stages (Extended Data 
Fig. 6e). Next, we compared the gene expression and reaction rates 
of this intricate cell subpopulation with the other cells. We identified 
116 differentially expressed genes and 181 genes having differential 
transcriptional rates by comparing this subpopulation to the rest 
and found that only 10% of genes having differential transcriptional 
rates were captured by the raw expression (Extended Data Fig. 6f). 
We further investigated the enriched pathways of these 163 genes that 
are uniquely identified by the rates through DAVID21. Those genes are 
enriched with cell division pathways, such as cytokinesis, cell division 
and mitotic metaphase congression (Extended Data Fig. 6g), sug-
gesting that transcriptional regulation plays an important role in cell 
division at the M stage.

Decoding human embryonic glutamatergic neurogenesis
We further investigated RNA velocity on an scRNA-seq dataset of the 
developing human forebrain at 10 weeks after conception, which was 
used as a benchmark in previous studies12,42. We used cellDancer to 
predict RNA velocity on human embryonic glutamatergic neurogenesis. 
The velocity on the embedding space and the derived pseudotime show 
that cellDancer accurately recaptures the cell fate of human embryonic 
glutamatergic neurogenesis (Extended Data Fig. 7a,b). The velocities of 
genes that are vital to neural development and neurogenesis, such as 
ELAVL4 (ref. 43) and DCX33,34, were also correctly predicted (Extended 
Data Fig. 7c).

To test whether cellDancer is sensitive to the methods of neighbor 
cell detection, we applied cellDancer to predict velocity vector flow 
based on the nearest neighbors defined by the spliced RNAs or by the 
spliced and unspliced RNAs. Results suggest that the prediction of 
velocities using spliced RNAs is consistent with the prediction using 
spliced and unspliced RNAs (Extended Data Fig. 7a).

cellDancer has a robust and efficient performance
The high proportion of zero reads is a key feature in scRNA-seq data, 
one cause of which is technical dropout. We tested whether cellDancer 
is robust with technical dropout (Extended Data Fig. 8a). cellDancer 
was able to correctly predict the gene dynamics even with high dropout 
ratios and learned RNA velocities in noisy scRNA-seq data (Extended 
Data Fig. 8b).

Next, we tested the robustness of our algorithm among different 
cell numbers. We gradually reduced the number of cells from 10,000 to 
1,000 in the simulation dataset to predict RNA velocity and compared 
the prediction of α/β and α/γ. Results show that our model is robust in 
data with sparsity (Extended Data Fig. 8c).

We tested the sensitivity of the stopping criteria for the training of 
cellDancer DNN. Two key parameters, ‘checkpoint’ and ‘patience’, are 
associated with the stopping criteria. We performed the full cellDancer 
analysis in the mouse hippocampus development experiment using a 
different number of checkpoints and patience for training. cellDancer 
shows low sensitivity to the stopping criteria of training (Extended Data 
Fig. 9). Furthermore, cellDancer independently predicted an individual 
DNN for each gene, which allows us to apply the multi-processing 
approach to speed up the efficiency. Overall, cellDancer has an opti-
mized runtime (Extended Data Fig. 10).

Discussion
In this study, we first showed that RNA velocity was automatically 
inferred from a neural network by optimizing a simple loss function 
based on local cosine similarity and implemented this deep learning 
algorithm to cellDancer, which is a flexible, robust and extensible frame-
work for velocity inference. Our algorithm delivers four innovations. 
First, cellDancer overcomes the barriers for inferring RNA velocity 
with multiple kinetics, such as branching genes and transcriptional 
boost genes by local but not global velocity estimation. cellDancer also 
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largely improves the reaction rates inference from bulk to single-cell 
resolution and illuminates the regulation of transcription, splicing and 
degradation at a single-cell resolution.

Second, cellDancer can be adapted to other velocity ordinary dif-
ferential equations (ODEs) using the same framework. cellDancer does 
not require an analytic solution for ODEs. Therefore, cellDancer can be 
conveniently extended from original velocity ODEs to other extended 
ODEs. For example, scVelo and another recent study, UniTVelo44, 
proposed two stochastic models that considered the second-order 
moments of dynamics of the transcriptome to resolve cell-specific 
dynamics. To adapt to those velocity models, we could modify step 
2 (computing predicted spliced/unspliced mRNA abundance) in the 
cellDancer workflow by using the velocity ODEs without changing 
other steps.

Third, cellDancer is highly modularized and extensible to 
multi-omics velocity models. As explained in the Methods, cellDancer 
is applicable to dynamics governed by first-order rate equations. More 
generally, in principle, cellDancer fits any dynamics following these 
rate kinetics:

dT(t)
dt

= f (T (t) ,R (t))

where T(t) is the abundance vector of mRNAs, proteins, etc.; R(t) is the 
reaction rates vector; and f is a function of T(t) and R(t) and does not 
explicitly contain time t. For instance, Gorin et al.45 developed a protein 
velocity model by extending the RNA velocity model to cell surface 
protein translation. The protein velocity model has one more equa-
tion than the RNA velocity model to delineate the translation process. 
cellDancer can adapt to protein velocity by adding protein abundance 
into the input matrix and updating the module of loss function from 
RNA velocity to protein velocity. Moreover, chromatin accessibility 
measured by single-cell assay for transposase-accessible chromatin 
with sequencing (scATAC-seq)46 can be likewise included in cellDancer 
to reinforce the estimation of the transcription rates.

Finally, cellDancer DNN is scalable. A small, fully connected DNN 
was used in cellDancer to boost the running speed. If the relationship 
between kinetic parameters and spliced/unspliced mRNA abundance 
is complex, or multi-omics data are included in the velocity model, 
the fully connected DNN can be replaced or extended by other DNNs, 
such as a long short-term memory (LSTM) network47 or a convolutional 
neural network (CNN)48. This feature allows us to customize an optimal 
network structure based on the complexity of the velocity model and 
experimental data. Furthermore, due to the limitation that scRNA-seq 
captures only spliced and unspliced mRNA abundances, it is unfeasible 
to infer the absolute magnitude of the RNA velocity and the underlying 
(α,β,γ) values using only scRNA-seq data. Additional time information 
introduced by experimental techniques, such as metabolic labeling 
or different timepoint datasets, could be incorporated to obtain such 
absolute kinetic rates. This functionality would be included in a future 
version of cellDancer.

Together, cellDancer represents a notable advance to quantitatively 
predict the time evolution of cellular transcriptomics, applicable to numer-
ous biological models and disease processes at a genome-wide scale.
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Methods
Modeling RNA transcriptional dynamics
The reaction kinetics of a single gene is described by two ordinary 
differential equations:

du (t)
dt

= α (t) − β (t)u (t) (1)

ds (t)
dt

= β (t)u (t) − γ (t) s (t) (2)

where u(t) and s(t) are time-dependent concentrations of the prema-
ture and mature mRNAs, and α, β, γ indicate the transcription, splicing 
and degradation rates, respectively. For simplicity, one of the key 
assumptions in previous models for estimation of RNA velocity is that 
α is either a constant (velocyto model) or a binary (scVelo model) value, 
and β and γ are shared by all the genes and cells. However, the assump-
tion fails in evaluation of a heterogeneous cell subpopulation. In this 
study, we developed cellDancer, a deep learning framework, to general-
ize estimation of RNA velocity in both homogeneous and heterogene-
ous cell populations by predicting cell-specific time-dependent α, β and 
γ from premature and mature reads. A unique feature of the cellDancer 
framework is its capability to determine gene-specific kinetics that can 
be described by the rate equations (Eqs. 1 and 2).

In cellDancer, we use a DNN with a set of network parameters (θ) 
to learn the unknown functions that map the predictive features to 
the rates. Specifically, for gene i in the scRNA-seq dataset, there are 
n captured cell snapshots (t = t1, t2,…,tn) at different stages of the cell 
development (for simplicity, we also refer to time tj as ‘cell j’ throughout 
the paper), and we formulated the reaction rates as functions of the 
abundances of the unspliced and spliced mRNAs in Eq. 3:

(αi(t),βi(t), γi(t))T = Φθi (ui (t) , si (t)) (3)

where the DNN is described as a mapping Φ with gene-specific network 
parameters (θi). To train the DNN, we send one gene to the DNN at a  
time. We randomly sample a subset of cells (details in the ‘Model param-
eters’ subsection) as the input in each epoch of training. We leave out 
the superscript notation i in the following detailed steps for prediction.

First, the reaction kinetics ODEs in Eqs. 1 and 2 are discretized:

u (t + Δt) − u (t)
Δt = α (u (t) , s (t)) − β (u (t) , s (t))u (t) , (4)

s (t + Δt) − s (t)
Δt = β (u (t) , s (t))u (t) − γ (u (t) , s (t)) s (t) , (5)

where pseudotime t is discretized and Δt is an infinitesimal time incre-
ment. We use cellDancer to jointly predict cell-specific α(u(tj), s(tj)), 
β(u(tj), s(tj)) and γ(u(tj), s(tj)) given spliced and unspliced mRNA abun-
dance u(tj) and s(tj) of cell j. Second, we use the predicted rates to cal-
culate the extrapolated mRNA abundance s(tj + Δt) and u(tj + Δt) by the 
discretized reaction kinetics. To measure the difference between pre-
dicted and true velocity vectors, we define a loss function ℒ based on 
every cell’s cosine similarity between the predicted and observed 
velocity vectors:

ℒ =
n
∑
j=1

ℒj, (6)

ℒj = 1 −max
{ j ′}

vj ⋅ v′j
||vj|| ∗ ||v′j ||

, (7)

vj = (u (tj + Δt) − u (tj) , s (tj + Δt) − s (tj)) , (8)

v′j = (u (tj ′ ) − u (tj) , s (tj′) − s (tj)) , (9)

ℒ (ℒj) is the overall (cell j) loss function; vj (v′j) is the predicted (observed) 
RNA velocity vector, where {j′} is a collection of cells in the neighbor-
hood of cell j; and tj ′ is the observed cell in the neighboring cells {j′} that 
minimizes the loss function for cell j. Note that the neighboring cells 
are controlled by the number of n_neighbors and can be either 
gene-specific (calculated in the phase space of each gene) or 
gene-shared (calculated in the embedding space using the abundances 
of the spliced mRNA or the abundances of both the spliced and the 
unspliced mRNA).

Finally, we obtain θi by minimizing the overall loss function ℒ for 
gene i by applying the Adam optimization algorithm in a DNN. The 
configuration of the DNN is as follows: an input layer with 2n nodes; 
two fully connected hidden layers each with 100 nodes and the leaky 
ReLU activation function; and an output layer with 3n nodes. The sig-
moid activation function σ (x) = 1

1+e−x
 is applied as a regularization to 

constrain the outputs (α, β and γ) within the range [0, 1]. The learning 
rate of the Adam optimizer is 0.001. The weight decay is 0.004, which 
adds L2 penalty to the weights parameters and prevents overfitting. 
The training of the DNNs is terminated if the loss function does not 
decrease after three checkpoints. Those training parameters are fully 
controllable by the user in the cellDancer command line interface. The 
DNN in cellDancer is implemented using PyTorch Lightning49, a widely 
used Python library.

Simulation details
To assess the accuracy and limitation of cellDancer, we generate vari-
ous kinetic regimes of the expression profiles using time-dependent 
rates of transcription, splicing and degradation (α,β,γ). Specifically, for 
one gene, a set of differential equations is solved by numerical integra-
tion using the function integrate.solve_ivp under the SciPy package50 
with the Runge–Kutta method51,52. The unspliced and spliced reads 
are initialized to 0. Gaussian noises are added to the generated gene 
expression level for each cell.

We simulate the spliced and unspliced expression of 2,000 cells 
and 1,000 genes for transcriptional boost, multi-forward branching 
and multi-backward branching regimes. For transcriptional boost 
genes, α is sampled from a uniform distribution of U(1.6, 2.4) before 
boosting and U(4, 6) for cells after boosting where the lower and upper 
limits are set by varying 20% from the mean values of 2 (before boost-
ing) and 5 (after boosting). β is sampled from a uniform distribution of 
U(1.8, 2.2) for all cells where the lower and upper limits are set by varying 
10% from the mean value of 2. γ is sampled from a uniform distribution 
of U(0.9, 1.1) where the lower and upper limits are set by varying 10% 
from the mean value of 1 for all cells. For multi-forward branching 
genes, α is sampled from a uniform distribution of U(0.8, 1.2) for cells 
in the first lineage and U(4, 6) for cells in the second lineage where the 
lower and upper limits are set by varying 20% from the mean values 
of 1 (first lineage) and 5 (second lineage). β is sampled from a uniform 
distribution of U(0.4, 0.6) for cells in the first lineage and U(0.8, 1.2) 
for cells in the second lineage where the lower and upper limits are set 
by varying 20% from the mean value of 0.5 (first lineage) and 1 (second 
lineage). γ is sampled from a uniform distribution of U(0.2, 0.3) for cells 
in the first lineage and U(4, 6) for cells in the second lineage where the 
lower and upper limits are set by varying 20% from the mean values of 
0.25 (first lineage) and 5 (second lineage). For multi-backward branch-
ing genes, α is set to 0 in all cells. β and γ are sampled from a uniform 
distribution of U(0.9, 1.1) where the lower and upper limits are set by 
varying 10% from the mean value of 1 for all cells. In the first lineage, 
cells start from a region around a point of (s = 1.3, u = 0.2) to decrease. 
In the second lineage, cells start from a region around a point of (s = 1, 
u = 1) to decrease. The data are used as input of a standard cellDancer 
analysis pipeline. After velocity estimation, we calculate an error rate to 
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evaluate the accuracy of cellDancer against the ground truth velocity. 
The error rate is calculated as the percentage of cells having a low cor-
relation coefficient (lower than 0.7 as a cutoff) between the estimated 
velocity and the ground truth velocity.

To investigate the robustness of cellDancer in data with high tech-
nical dropout, we simulate dropout in the expression of unspliced and 
spliced mRNAs. According to the experimental datasets in this study, 
the average dropout ratios for the unspliced and spliced mRNA reads 
are in the range of 50% to 70% for the top 2,000 highly variable genes. 
Therefore, for dropout ratios of 50%, 60% and 70%, we simulate 1,000 
genes each. To achieve this, we first generate the spliced and unspliced 
abundances (ui

j and sij for gene i of cell j), which follow the transcriptional 
dynamics equations (Eqs. 1 and 2). We assume that those abundances 
are averaged over the raw counts (Ui

{j ′} and Si{j ′}) of the neighboring cells, 

as in real scRNA-seq data those raw counts are zero-inflated. Based on 
this assumption, for a gene i in any given cell j, we randomly generate 
spliced and unspliced raw counts that follow the Poisson law 
(Ui

{j ′} ∼ Poisson (ui
j) and Si{j ′} ∼ Poisson (sij)) for 200 neighboring cells {j′}. 

We perform a grid search for the kinetic rate parameters (α,β,γ) in the 
range [0.1, 1.0] at a step of 0.1. We use kinetic parameters that lead to 
dropout ratios (50% ± 3%, 60% ± 3% and 70% ± 3%) in our RNA velocity 
estimation, where the averaged raw counts (sample average) are used 
for the unspliced and spliced abundances.

Pseudotime estimation
The RNA velocity vector for a cell j is represented by a high-dimensional 

vector vj = (v1j , v
2
j ,… , vgj ), where g is the total number of genes and vij is 

the velocity for gene i in cell j. Following the method of velocyto and 
scVelo, we project the velocity vectors of the cells into the 
low-dimensional embedding space {ξ}dim using embedding algorithms 
such as PCA, t-distributed stochastic neighbor embedding (t-SNE) or 
UMAP for visualization and gene-shared pseudotime estimation. Under 
the assumption that the more correlated the change in the gene expres-
sion δjj ′ = sj − s′j from cells j and j′ with the direction of the velocity vj, 

the higher chance that cell j could transition to cell j′, we construct the 
transition probability matrix by applying an exponential kernel to the 
correlation between δjj ′ and vj:

Pjj ′ ∝ e
corr(vj ,δjj ′ )

σ , (10)

where σ = 0.05. A normalization factor is applied to ensure the sum of 
transition probabilities for cell j to its neighboring cells (N, which is 
determined by k-nearest neighbors in the high-dimensional space or 
optionally the low-dimensional embedding space) is 1:

∑j ′∈N Pjj ′ = 1, (11)

The velocity of cell j on the low-dimensional embedding space {ξ} 
is estimated as

ṽj = ∑j ′∈N (Pjj ′ − 1)θ̂jj ′ , (12)

where θ̂jj ′ is the unitary vector of the displacement between cell j and j′ 
in the embedding space.

To detect the cell state transition paths and track the continuous 
changes in transcriptome along those paths, we sort the cells in tem-
poral order by carrying out cell (gene-shared) pseudotime analysis 
based on the RNA velocities. First, we divide the low-dimensional 
embedding space {ξ} to a customized grid to smooth the abrupt velocity 
vector flows, and the velocity of a cell j in a grid I (or ‘meta cell’) is esti-
mated as the mean velocity ̃vI of the enclosed cells. We then generate 

a pool of trajectories {ξrj (t0) , ξ
r
j (t1) , ξ

r
j (t2) ,…}

r=1,…,nrepeats

j=1,…,ncells
 tracing the  

velocity streamlines starting from any cell j using the following equa-
tion of motion:

ξj (t + Δt) = ξj (t) + ̃vIΔt. (13)

A Gaussian-distributed swaying angle θ ∈ N(0, π/6) is applied at 
every timestep to allow a slight deviation from the direction of the 
velocity flow. Second, from the trajectory pool, we select m trajectories 
{Lk(t)}k = 1,...,m whose traverse length is a local maximum (or long trajec-
tories, as shown in Extended Data Fig. 2d for the erythroid maturation 
dataset). The traverse length is computed as the accumulated distance 
of a trajectory ∑t ∥ ξ (t + Δt) − ξ (t) ∥. The long trajectories are deter-
mined by iteratively selecting the longest trajectory and eliminating 
its similar trajectories within a cutoff until no trajectory is left in the 
pool. The fate of a neighboring cell j is decided by whether most of the 
trajectories originated from the position of cell j, ξj(t0), terminate on/
around a long trajectory Ll(t). The pseudotime tj of cell j is then assigned 
as the time on Ll(t), where Ll(tj) is closest to ξj(t0) (Extended Data  
Fig. 2d). Finally, at this moment, all the cells are assigned a relative time 
according to the respective paths, or ‘time zones’, and we need to adjust 
the relative time of the cells by finding the time shift between those 
‘time zones’. This is done based on an assumption that ‘overlapping’ 
cells (in practice, we consider cells in close proximity) in the embedding 
space (or optionally in the high-dimensional expression space) also 
share the same time. The assumption is consistent with the assumption 
on which the transition probability matrix is based. The time for the 
cells in each ‘time zone’ (or cluster) is adjusted using a graph-based 
approach. The time adjustment algorithm is outlined below.

 (1) Construct the graph. Every cluster forms a node, and an edge is  
formed between nodes l and m if there is a time shift Δtlm = tl − tm 
between the ‘overlapping’ cells going for path Ll and path Lm. 
Therefore, each cell abiding by the Lm ‘time zone’ needs addi-
tion of Δtlm to the original cell time to consolidate all the cell 
time in the two clusters.

 (2) Divide the graph into individual trees. If the graph is a forest, di-
vide it into trees. If a cycle exists, the time adjustment algorithm 
fails. In the latter scenario, we suggest reducing the n_path 
parameter to reduce the number of long trajectories.

 (3) Compute the accumulative time shift τabsk  needed for each node 
k ∈ {1,2,…, nnodes} in each tree T in a few steps.

 (4) Initiate {τabsk } with 0 for each node k ∈ {1,2,…,nnodes}. Initiate a 
marker for each node {flagk} with 0.

 (5) Start from a node o and set the marker to 1. Traverse all the 
connections. For a connection between node l and m: add τabsm  by 
Δtlm if l equals o and set the marker for node m to 1; subtract τabsl  
by Δtlm if m equals o and set the marker for node l to flagk = 1. 
Repeat the process until all the nodes are marked as 1.

scRNA-seq data and pre-processing
All scRNA-seq data in this study were downloaded publicly (see details 
in the ‘Data availability’ section).

 (1) For the pancreatic endocrinogenesis data, we followed the 
method by Bergen et al. in the scVelo study17 and filtered 3,696 
cells with 2,000 genes for further analysis.

 (2) For the mouse hippocampal dentate gyrus neurogenesis data, 
we followed the gene and cell filtering methods by La Manno 
et al.12 and selected 18,140 cells with 2,159 genes.

 (3) For the erythroid lineage of the mouse gastrulation data, we se-
lected 12,329 cells from cell types, including hematoendothelial 
progenitors, blood progenitors 1/2 and erythroid 1/2/3 in stages 
of E7.0, E7.25, E7.5, E7.75, E8.0, E8.25 and E8.5. We followed 
the standard data pre-processing procedures in scVelo with 
default parameters except that we used 100 nearest neighbors 
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for the calculation of the first moment to reduce the noise in 
transcripts.

 (4) For the human embryo glutamatergic neurogenesis dataset, we 
kept cells with at least 200 genes expressed and kept genes that 
were captured in at least three cells. We identified all the high 
variable genes with the default settings of scanpy.pp.highly_ 
variable_genes() by using SCANPY41. In total, 1,054 cells with 
1,720 genes were selected. We used 200 nearest neighbors 
for the calculation of the first moment to reduce the noise in 
transcripts.

 (5) For the cell cycle progression in the REP1-FUCCI cells, we used 
the scEU-seq data, in which we took 3,058 cells with the top 
2,000 high variable genes from the pulse experiment. The 
unspliced mRNA reads were calculated as the addition of the 
unspliced labeled and unspliced unlabeled reads, likewise 
for the spliced mRNA reads. We used 300 nearest neighbors 
for the calculation of the first moment to reduce the noise in 
transcripts. The synthesis and degradation rates (molecules per 
hour) measured by scEU-seq data were obtained from the study 
of the original paper40.

Model parameters
In DNN training, the learning rate and patience are associated with the 
total number of training epochs. In all case studies, the learning rate was 
set to 0.001, which is widely used in Adam optimizer. The patience was 
set to 3 in all case studies. The time increment Δt in Eqs. 4 and 5 was set to 
0.5. The permutation ratio determines how many cells were sent to train 
the model in each epoch. We recommend using a large permutation 
ratio for datasets with a small number of cells or datasets presenting 
a clear pattern in gene phase portraits. Specifically, for gastrulation 
erythroid maturation (12,329 cells) and the cell cycle progression in 
REP1-FUCCI data (3,058 cells), we used the default permutation ratio of 
0.125; for the mouse hippocampus development dataset (18,140 cells), 
we set the permutation ratio to 0.1; for the pancreatic endocrinogen-
esis data (3,696 cells), we set the permutation ratio to 0.5; and for the 
human embryo glutamatergic neurogenesis data (1,720 cells), we set 
the permutation ratio to 0.3. For all genes within the same dataset, the 
DNN parameters were kept the same.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the scRNA-seq raw data are publicly accessible. The pancreatic 
endocrinogenesis data can be extracted using scVelo’s CLI: scvelo.
datasets.pancreas() or accessed from the original work36 under acces-
sion number GSE132188 of the Gene Expression Omnibus (GEO). 
The hippocampal dentate gyrus neurogenesis data can be accessed 
at http://pklab.med.harvard.edu/velocyto/DentateGyrus/Dentat-
eGyrus.loom or the original paper53 under GEO accession number 
GSE95753. The erythroid lineage of mouse gastrulation data can be 
extracted using scVeloʼs CLI: scvelo.datasets.gastrulation() or from 
the original work2 under accession number E-MTAB-6967 of ArrayEx-
press. Human embryo glutamatergic neurogenesis can be accessed at 
https://github.com/pachterlab/GFCP_2022/blob/main/notebooks/
data/hgForebrainGlut.loom or the original work12 under Sequence 
Read Archive accession code SRP129388. Cell cycle progression in 

REP1-FUCCI cells can be extracted using dynamo’s CLI: dyn.sample_
data.scEU_seq_rpe1() or from the original work22 under GEO accession  
number GSE128365.

Code availability
cellDancer is implemented in Python and is available at https://github.
com/GuangyuWangLab2021/cellDancer.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Resolving RNA velocity of simulated multiple rate 
kinetics genes. (a) High correlation between the simulated (background truth) 
and the predicted 𝛼/𝛽 (left) and 𝛾/𝛽 (right). The Pearson correlation coefficients 
(R2) between the prediction and the simulation are computed. (b) RNA velocity 
predicted by cellDancer is projected onto the phase portraits of a simulated gene 
with 𝛼 equals 1.8 (induction) and 0 (repression) (left) and the density plot of the 
predicted 𝛼 (right). (c-e) We measured the accuracy by computing the error rate 
as the percentage of cells whose predicted RNA velocity is poorly correlated 
with the ground truth velocity (cosine similarity < 0.7). The box plots of the error 
rates show that cellDancer outperforms scVelo, velocyto, DeepVelo, and VeloVAE 
in the estimation of RNA velocities for the simulated transcriptional boost (c), 
multi-lineage forward branching (d), and multi-lineage backward branching 
(e) genes. Middle line in box plot, median; box boundary, interquartile range; 
whiskers, 10–90 percentile; minimum and maximum, not indicated in the box 

plot; gray dots, individual datapoints. The error rate is defined as the percentage 
of falsely predicted directions. Different sampling ratios were investigated at 
40%, 60%, 80%, and 100% (n = 1,000 genes), representing the ratio of the number 
of post-boosting cells to the number of pre-boosting cells in (c) and the ratio of 
the number of cells in lineage 1 to the number of cells in lineage 2 (d-e). Example 
phase portraits for sampling ratio (1:1) are provided in each case. (f-i) The loss 
scores are plotted against epochs of training on the simulated mono-kinetic (top 
left), multi-lineage forward branching (top right), transcriptional boost (bottom 
left), and multi-lineage backward branching (bottom right) genes at quantiles 0, 
0.1, 0.4, 0.6, 0.9, and 1. In all cases, the loss scores converge in about 25 epochs, 
except for the transcriptional boost genes, for which the convergence emerges in 
about 100 epochs.
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Extended Data Fig. 2 | RNA velocity estimation for the multiple rate kinetics 
(MURK) genes in the gastrulation erythroid maturation dataset. (a) RNA 
velocities predicted by cellDancer are projected onto the spliced-unspliced 
phase portraits for a set of selected genes. (b) The velocities derived from scVelo 
dynamic model, DeepVelo, and VeloVAE for gastrulation erythroid maturation 
cells using MURK genes are visualized on the pre-defined UMAP embedding. 
Inverted flows from the erythroid 3 to the blood progenitors 2 cell type are 
observed for the scVelo and DeepVelo predictions; inverted flows from the 
erythroid 3 to the erythroid 1 cell type are observed for the VeloVAE prediction. 
(c) Expression pseudotime profiles for four MURK genes Hba-x, Blvrb, Mllt3, 

and Hbb-y show the expression patterns of transcriptional boost in gastrulation 
erythroid maturation. (d) Long trajectories used for pseudotime estimation 
in gastrulation erythroid maturation are visualized on the UMAP embedding. 
The long trajectories are local maxima of traverse length and are colored from 
light to dark according to their unadjusted pseudotime. The schematic diagram 
demonstrates how the unadjusted pseudotime of cells is determined according 
to the time in the long trajectories. The black bold lines stand for the long 
trajectories and the pseudotime for the originating cells of the short trajectories 
(gray lines) is obtained as the time of the closest cell in the corresponding  
long trajectory.
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Extended Data Fig. 3 | Cell-specific kinetic rate parameters improve RNA 
velocity inference in hippocampus development. Panel (1) Velocities of 
selected genes inferred by cellDancer are projected onto the phase portraits; 

Panels (2–4) Cells are colored according to the cell-specific α,β, and γ rates for 
the referenced gene in the t-SNE embedding for the hippocampus development; 
Panel (5) Cells are colored according to the gene expression.
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Extended Data Fig. 4 | The expressions along pseudotime of genes in hippocampal neurogenesis data. The expression pseudotime profiles for a selected set of 
genes in hippocampal neurogenesis.
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Extended Data Fig. 5 | Revealing the turnover strategies of mRNA in the cell 
cycle process. (a) The spliced and unspliced reads of cell cycle genes in the cell 
cycle progression. The averaged spliced and unspliced reads were calculated for 
each cell cycle group. (b) Heatmaps show 𝛼, β, and γ estimated by cellDancer (first 
column) is associated with the experimentally derived synthesis and degradation 
status in scEU-seq (second column) in the cell cycle progress. (c) The phase 

portraits of cell cycle genes show the predicted kinetic parameters are related 
to experimental measurements in scEU-seq. (d) The velocities derived from 
cellDancer for metabolic labeling dataset are visualized on the relative position 
along the cell cycle using the Geminin-GFP and the Cdt1- RFP signals from the 
FUCCI system. Gene-shared pseudotime on the relative position is consistent 
with the experimental cell cycle position.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01728-5

Extended Data Fig. 6 | See next page for caption.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01728-5

Extended Data Fig. 6 | The dynamic pattern of rates identifies the different 
turnover strategies of genes, and cell-specific reaction rates reveal 
cell subpopulation uncaptured by expression. (a) 𝛼 and γ of genes along 
pseudotime. Genes are clustered into seven groups according to their dynamic 
patterns of 𝛼 and γ. The Pearson correlation coefficients between 𝛼 and γ are 
calculated. (b) The normalized spliced and unspliced reads of genes along 
pseudotime in each clustered group. (c) The GO pathway enrichment analysis 
using adjusted p-values of Fisher’s Exact test (Benjamini–Hochberg procedure, 
one-sided, p < 0.05) for genes in each group. (d) The 3D UMAP based on 𝛼, β, 
and γ colored by Leiden clusters (top) and the 3D UMAP based on expression 

colored by cell cycle pseudotime (bottom). (e) The hierarchical tree of the Leiden 
clusters. The box plot (n = 3,058 cells) shows the pseudotime of each cluster. 
Middle line in box plot, median; box boundary, interquartile range; whiskers, 
10–90 percentile; minimum and maximum, not indicated in the box plot; gray 
dots, individual datapoints. (f ) Venn diagram of genes with significant difference 
(p < 0.05, FC > 1.5 or FC < 1/1.5) on expression, 𝛼, β, and γ between the clusters 3 
& 4 and other clusters. (g) The GO pathway enrichment analysis using adjusted 
p-values of Fisher’s Exact test (Benjamini–Hochberg procedure, one-sided, 
p < 0.05) of DAVID for the 163 genes that only differential in 𝛼.
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Extended Data Fig. 7 | cellDancer decodes human embryonic glutamatergic 
neurogenesis. (a) The velocities derived from cellDancer for human embryo 
glutamatergic neurogenesis are visualized on the UMAP embedding based 
on spliced reads (left), and on the UMAP embedding based on the spliced and 

unspliced reads (right). (b) Gene-shared pseudotime projected on UMAP shows 
the order of cell development during neurogenesis. (c) RNA velocities predicted 
by cellDancer are projected onto the phase portraits for a set of selected genes.
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Extended Data Fig. 8 | Robustness under different dropout ratios and 
number of cells. (a) Heatmaps show the overview of the simulated genes 
with a dropout of 70% on both unspliced and spliced reads. We simulated raw 
mRNA counts using a Poisson distribution to obtain the unspliced and spliced 
abundances with 50%, 60%, and 70% technical zeros. (b) Scatter plot shows a 
high correlation between the simulated (background truth) and the predicted 
𝛼/𝛽 (top) and 𝛼/𝛾 (bottom) under different dropout ratios of the spliced and 

unspliced reads. The dropout was applied to both spliced and unspliced reads. 
The Pearson correlation coefficients between the prediction and the simulation 
are computed. The Pearson correlation coefficient in data with different dropout 
rates is larger than 0.96 and 0.84 for α/β and α/γ, respectively. (c) The predicted 
𝛼/𝛽 (top) and 𝛼/𝛾 (bottom) are plotted against numbers of cells on the simulated 
mono-kinetic, multi-lineage forward branching, transcriptional boost, and multi-
lineage backward branching genes.
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Extended Data Fig. 9 | Sensitivity of the stopping criteria for the DNN 
training. The velocities derived by cellDancer with different combinations of 
stopping criteria parameters. The ‘check every n epoch’ means the number of 
epochs to skip (or a checkpoint) when computing the loss function. cellDancer 

calculates the loss of DNN every several epochs, which is specified by the 
checkpoint. The patience means the number of checkpoints waited before 
stopping the training when the loss score doesn’t decrease.
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Extended Data Fig. 10 | The speedup of cellDancer. (a, b) Scatter plots showing 
the total time (a) and the training speed (b) of cellDancer when applying 
multiprocessing. We tested the parallel speedup ratio of cellDancer by increasing 
job numbers from 1 to 30. We applied full analysis of cellDancer to 2,159 genes 
in 18,140 cells (the hippocampal dentate gyrus neurogenesis dataset) with 
the default parameters and calculated the runtime and speed of different job 
numbers. The evaluation of all the algorithms and the speedup ratio analysis 
was performed on a 2.7 GHz 24-Core Intel Xeon W processor. Total runtime 
decreases from 286 to 36 minutes when adding job numbers from 1 to 30 and 
reaches saturation at 15 jobs with 40 minutes. cellDancer has a feasible runtime 

of 53 genes per minute using 15 jobs. The training speed (number of genes per 
unit time) increases with the number of jobs. (c) Bar plot showing the total time 
of the comparison between velocyto, scVelo, DeepVelo, VeloVAE, and cellDancer. 
We compared the runtime of cellDancer with velocyto, scVelo, DeepVelo, 
and VeloVAE. The benchmark is based on 18,140 cells and 2,159 genes in the 
hippocampal dentate gyrus neurogenesis dataset with the default parameters. 
We set the number of jobs (threads) to 15 for scVelo, DeepVelo, VeloVAE, and 
cellDancer. cellDancer shows a comparable running time with the other two deep 
learning algorithms.
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