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SEACells infers transcriptional and 
epigenomic cellular states from single-cell 
genomics data

Sitara Persad1,2, Zi-Ning Choo1, Christine Dien3,4, Noor Sohail1, Ignas Masilionis1, 
Ronan Chaligné1, Tal Nawy    1, Chrysothemis C. Brown5,6, Roshan Sharma1, 
Itsik Pe’er    2, Manu Setty    1,3,4  & Dana Pe’er    1,7 

Metacells are cell groupings derived from single-cell sequencing data that 
represent highly granular, distinct cell states. Here we present single-cell 
aggregation of cell states (SEACells), an algorithm for identifying metacells 
that overcome the sparsity of single-cell data while retaining heterogeneity 
obscured by traditional cell clustering. SEACells outperforms existing 
algorithms in identifying comprehensive, compact and well-separated 
metacells in both RNA and assay for transposase-accessible chromatin 
(ATAC) modalities across datasets with discrete cell types and continuous 
trajectories. We demonstrate the use of SEACells to improve gene–peak 
associations, compute ATAC gene scores and infer the activities of critical 
regulators during differentiation. Metacell-level analysis scales to large 
datasets and is particularly well suited for patient cohorts, where per-patient 
aggregation provides more robust units for data integration. We use our 
metacells to reveal expression dynamics and gradual reconfiguration of the 
chromatin landscape during hematopoietic differentiation and to uniquely 
identify CD4 T cell differentiation and activation states associated with disease 
onset and severity in a Coronavirus Disease 2019 (COVID-19) patient cohort.

A fundamental disconnect currently exists between the cellular reso-
lution of single-cell genomics data and the cluster-level resolution of 
most analyses. To overcome the sparsity and noise of these data, tens 
of thousands of cells are typically summarized by a small set of clus-
ters. Clustering also makes it feasible to analyze large single-cell RNA 
sequencing (scRNA-seq) datasets. As projects such as the Human Cell 
Atlas1 and the Human Tumor Atlas Network2 scale to millions of cells, 
even routine dimensionality reduction and visualization tasks strug-
gle with computational complexity. Sparsity and noise are especially 

problematic in single-cell assay for transposase-accessible chromatin 
sequencing (scATAC-seq) data, which capture only trinary zygosity 
states at a few thousand of the hundreds of thousands of open chro-
matin regions in any individual cell (Supplementary Fig. 1), rendering 
aggregation essential.

A typical cluster, however, is not homogenous (Fig. 1a,b). Moreo-
ver, single-cell data have been shown to reside on a continuum3–6. For 
instance, binning the expression of GATA2, a driver of erythroid fate, 
in one cluster of erythroid precursor cells7 demonstrates gradual cell 
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cell–cell similarity kernel matrix. This kernel projects cells into a 
higher-dimensional space wherein two cells are alike only if they share 
neighbors and the distances to the shared neighbors are similar. The 
stricter similarity conditions imposed by this transformation projects 
highly similar cells into tiny clusters, such that boundary cells are the 
most similar to every other cell in their cluster, making archetypes in 
kernel space good representatives of each unique cellular state. Kernel 
archetypal analysis, thus, partitions cells into tight clusters of highly 
similar cells (Fig. 1g and Extended Data Fig. 1), conferring tight blocks 
along the diagonal of the cell–cell similarity matrix that represent 
distinct cell states (Fig. 1h).

SEACells metacells represent accurate and robust cell states
We first evaluated the performance of SEACells on a public multiome 
(simultaneous scRNA-seq and ATAC-seq) dataset of peripheral blood 
mononuclear cells (PBMCs)17 from 10x Genomics, as a well-studied 
system with distinct cell populations. We found that SEACells metacells 
are comprehensive, well distributed among cell types and exhibit a 
high degree of cell type purity in both RNA and ATAC data (Fig. 2a,b 
and Methods). Furthermore, reciprocal projections of RNA and ATAC 
metacells demonstrate that metacells of different modalities are highly 
concordant (Supplementary Fig. 3a,b and Methods).

Metacells help overcome sparsity, which is extreme in scATAC-seq 
data. We found that each SEACells metacell provides a more complete 
molecular characterization than individual cells—for example, by 
revealing accessibility at known marker genes for major cell types. 
Accessibility and expression from metacells, but not most individual 
cells, can accurately distinguish between lymphoid subsets (Fig. 2c and 
Supplementary Fig. 3c,d). Metacells, thus, comprise pure cell types; 
they are granular enough to distinguish states within cell types; and 
they can be queried with classical immune markers.

To test SEACells in a trajectory setting, we collected a multiome 
dataset of 6,800 hematopoietic stem and progenitor cells (HSPCs) 
from healthy bone marrow sorted for pan-HSPC marker CD34 (Meth-
ods). Similar to PBMCs, metacells are well distributed across all cell 
types and span the RNA and ATAC phenotypic manifolds (Fig. 2d). To 
determine whether metacell resolution is sufficient to recover gene 
expression dynamics that are lost in clustering, we applied the Palantir 
trajectory algorithm4 directly to metacells. Palantir recovered the 
known expression and accessibility dynamics of key hematopoietic 
genes (Supplementary Fig. 4). As a further challenge, we ran Palantir 
on aggregated RNA from metacells computed on the ATAC modality 
(Fig. 2e and Supplementary Fig. 4). The fidelity of captured gene trends 
reinforces that SEACells metacells overcome sparsity while retaining 
dynamics in systems with continuous state transitions.

We used the CD34+ bone marrow and PBMC datasets to assess the 
robustness of SEACells (Methods). SEACells results in high-confidence 
partitioning of cells into distinct metacells (Supplementary Fig. 5), 
which are consistent across different initializations (Supplementary 
Fig. 6a) and numbers of SEACells (Supplementary Fig. 6b), for both 
RNA and ATAC modalities, based on normalized mutual information 
(NMI) score18. Another key performance metric is the ability to capture 
rare cell states. SEACells was able to accurately recover rare cell types, 
such as plasmacytoid dendritic cells (pDCs) and B cell precursors, in 
the PBMC RNA and ATAC modalities (Fig. 2a,b). To further test the abil-
ity of SEACells to identify rare intermediate cell states in continuous 
trajectories, we generated a second multiome dataset representing the 
full span of human hematopoiesis and found that SEACells can identify 
metacells in the diverse low-density regions that represent rare inter-
mediate cells (Methods and Supplementary Fig. 7). As an additional 
assessment of the ability of SEACells to identify rare cell states, we 
systematically downsampled the mouse gastrulation atlas19 (Extended 
Data Fig. 2a) and recovered metacells that are exclusively composed of 
cell types comprising less than 0.2% of the total population (Extended 
Data Fig. 2b), demonstrating the sensitivity of SEACells.

state changes within each bin (Fig. 1c). The accessibility landscape of 
the GATA2 locus suggests that its expression dynamics are enabled by 
gradual opening of regulatory elements (Fig. 1d). Such dynamics are 
lost in discrete cluster-level analysis.

The concept of metacells8—groups of cells that represent distinct 
cell states, whereby within-metacell variation is due to technical rather 
than biological sources—was proposed as a way of maintaining statisti-
cal utility while maximizing effective data resolution8. Metacells are 
far more granular than clusters and are optimized for homogeneity 
within cell groups rather than for separation between clusters. How-
ever, existing approaches8–10 fail on scATAC-seq data; aggressively cull 
outliers (particularly inappropriate for disease studies, which are often 
driven by rare cell populations); and are poorly distributed across the 
phenotypic space. Consequently, metacells are not routinely used in 
single-cell analysis, and scATAC-seq data have remained underused.

Here we present single-cell aggregation of cell states (SEACells), a 
graph-based algorithm that uses kernel archetypal analysis to compute 
metacells. We demonstrate that SEACells metacells provide robust, 
comprehensive characterizations of scRNA-seq cell states and that they 
successfully describe chromatin cell states at resolutions that enable 
the inference of regulatory elements underlying gene expression. Our 
metacells achieve a sweet spot between signal aggregation and cellular 
resolution, and they capture cell states across the phenotypic spec-
trum, including rare states. We further show that our metacells retain 
subtle biological differences between samples that are removed as 
batch effects by alternative methods and, thus, provide a better starting 
point than sparse individual cells for data integration. SEACells pro-
vides a toolkit for gene regulatory inference from scATAC-seq data and 
an effective statistic for integrating single-cell data from large cohorts.

Results
SEACells identifies metacells across the phenotypic manifold
SEACells seeks to aggregate single cells into metacells that represent 
distinct cellular states, in a manner agnostic to data modality. Using 
a count matrix as input, it provides per-cell weights for each meta-
cell, per-cell hard assignments to each metacell and the aggregated 
counts for each metacell as output. Notably, our approach captures 
the full spectrum of cell states in the data, including rarer states. We 
base SEACells on a few key assumptions: (1) single-cell profiling data 
can be approximated by a lower-dimensional manifold (phenotypic 
manifold); (2) much of the observed variability across cells is due to 
incomplete sampling; and (3) most cells can be assigned to a finite set 
of cell states, each characterized by a distinct combination of active 
gene regulatory programs.

SEACells takes advantage of graph-based algorithms for manifold 
learning that have been proven to capture the cell state landscape in 
single-cell genomics data faithfully and robustly3,5,6,11–13. The algorithm 
first constructs a nearest neighbor graph representing the phenotypic 
manifold. It then applies archetypal analysis14,15 to iteratively refine 
metacells. Finally, it aggregates counts into a set of output metacells. 
Manifold construction is tailored to each data modality, after which the 
algorithm can proceed in a data-type-agnostic fashion (Supplementary 
Fig. 2). We use CD34+ cells from early human hematopoiesis to demon-
strate our method (Fig. 1). We use minimum–maximum sampling4 for 
initialization, which identifies a set of representative cell states that are 
distributed uniformly across the phenotypic manifold (Fig. 1e) and is 
particularly adept at dealing with density differences, thus ensuring the 
capture of rare states. These sampled cells are waypoints (multiple per 
cell type) that define clear structure in the neighbor graph; however, 
the cell states themselves remain somewhat diffuse (Fig. 1f).

To refine metacells, we employ kernel archetypal analysis (Fig. 1g,  
Extended Data Fig. 1a and Methods). Archetypal analysis16 is a robust 
matrix decomposition technique that has been applied to the data 
matrix to identify extreme cell states at the boundaries of cellular 
phenotypic space14. Instead, we apply archetypal analysis to the 
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SEACells empowers gene regulatory inference
Gene regulation can be inferred by identifying putative transcription 
factor (TF) binding motifs within ATAC-seq read count peaks, which 
represent open or accessible chromatin regions. scATAC-seq provides 
many observations (cells) with the potential to infer more complex gene 
regulatory models at fine resolution20–22, but data sparsity has severely 
restricted its utility by restricting most analyses to cluster resolution. 
We surmised that SEACells metacells provide an ideal tradeoff between 
fine resolution and sufficient coverage to overcome sparsity for diverse 
gene regulatory inference tasks.

A typical SEACells metacell contains 1.2 million reads, a substantial 
improvement over the 25,000 reads in an individual cell, but still far 
fewer than the 50 million reads in a typical bulk sample. To improve 
the signal-to-noise ratio in ATAC peak calling, we took advantage of 
the characteristic ATAC-seq fragment length distribution (Supple-
mentary Fig. 8a)23, in which the first and second modes represent 
nucleosome-free (NFR) fragments (likely enriched for TF binding 
events) and nucleosomes, respectively. Peaks called using all fragments 
tend to resolve regulatory elements poorly (Supplementary Fig. 8b). 
In contrast, we found that using NFR fragments alone identifies fewer 
peaks overall, but these are enriched for potentially TF-bound open 
chromatin and include many peaks that are obscured when considering 
all fragments (Supplementary Fig. 8b,c). Regulatory element identifica-
tion, thus, benefits from using NFR fragments rather than all fragments.

The next task in regulatory inference is to associate each gene with 
the elements that regulate it. The correlation between accessibility 
and expression across cells has been used to predict the peak set that 

regulates each gene using either multiome20 or integrated scRNA-seq 
and scATAC-seq data24, but data sparsity precludes robust correlation 
at the single-cell level. Using SEACells metacells from the CD34+ bone 
marrow ATAC data, we computed correlations between gene expres-
sion and accessibility of each NFR peak within ±100 kb of each gene in 
a core hematopoietic gene set5. Accessibility of the most correlated 
peak using ATAC metacells faithfully tracks with gene expression, 
representing a substantial improvement over single-cell correlation  
(Fig. 3a and Supplementary Fig. 9). For example, the correlation 
between peak accessibility and expression in metacells for key eryth-
roid lineage regulator TAL1 is 0.82, and cells on the erythroid trajec-
tory exhibit the highest values, whereas the correlation is 0.03 at the 
single-cell level, with no distinction among erythroid cells (Fig. 3a).

To build a comprehensive map of regulatory elements, we 
identified all peaks significantly correlated with a gene compared 
to GC-content-matched peaks sampled from the data20 (Methods). 
For the key erythroid factor GATA2, single-cell data recover only two 
of 11 associations detected using metacells (Fig. 3b). To systemati-
cally explore the accuracy of predicted peak–gene associations, we 
computed gene scores24 by aggregating the accessibility of all sig-
nificantly correlated peaks and comparing them to gene expression 
(Methods). SEACells gene scores are substantially better correlated 
than scores derived using the aggregate of all correlated peaks for 
both unimputed (Extended Data Fig. 3a–c) and imputed (Extended 
Data Fig. 3d) single-cell data25. SEACells metacells, thus, clearly identify 
cis-regulatory elements that are significantly correlated with expres-
sion and likely regulate the corresponding gene.
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Fig. 1 | Overview of the SEACells algorithm for cell state identification from 
single-cell data. a, scRNA-seq UMAP of 6,800 CD34+ sorted hematopoietic 
stem and progenitor cells (HSPCs). Cells are colored by cluster. b, Contour 
plots of each cluster highlight density and indicate the presence of multiple 
cell states within each cluster. Inset: gene–gene covariance matrices reveal that 
each state includes multiple distinct gene expression programs. c, Left: UMAP 
indicating the MEP (megakaryocyte-erythroid progenitor) cluster. Right: when 
the MEP cluster is divided into three equal-sized bins based on developmental 
progression (top, G1 to G3), it reflects imputed expression of GATA2 (known 
driver of MEP lineage) (bottom). d, Coverage plots showing GATA2 accessibility 
in all MEPs (top), in a single MEP cell (bottom) and in the three bins in c. Right: 
expression of GATA2 in corresponding cells. Highlighted peaks demonstrate 
how accessibility dynamics track with expression dynamics. Information about 
dynamics is masked at the cluster level, whereas peak identification in single 

cells is too noisy. e, UMAP as in a, colored by cell type. The SEACells algorithm for 
metacell identification is initialized by waypoints (large red circles), a subset of 
cells sampled to uniformly cover the phenotypic landscape. f, Cell-to-cell affinity 
matrix computed using an adaptive Gaussian kernel. Cells are sorted by cell types 
(top annotation row). Second annotation row shows the SEACells initialization. 
g, Schematic of kernel archetypal analysis. The kernel matrix is decomposed 
into the archetype matrix B and embedding matrix A. Metacell membership 
is identified based on column-wise maximal values across the matrix A. Inset: 
Kernel archetypal analysis partitions cells into clusters of highly similar cells, 
making it ideally suited to the identification of robust cell states. h, Left: cell–cell 
affinity matrix from f but ordered by metacell assignment. Right: contour plot 
overlying UMAP from e, highlighting the distribution of metacells; cells and 
contours are colored by metacell assignment.
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As a proof of principle for regulatory network inference using 
SEACells, we devised a simple procedure to infer TF activities. We first 
determined the enriched motifs present in each peak and summarized 
the motif scores in peaks associated with each gene to construct a TF–
gene target matrix (Fig. 3c and Methods). We then predicted expression 
in each metacell as a function of this matrix using lasso regression26 and 
employed a feature ranking procedure27 to determine the TF subset that 
best explains the expression profile of each metacell. We applied this 
procedure to our CD34+ multiome data to identify the key TFs along the 
erythroid lineage (Fig. 3d,e and Extended Data Fig. 4a). TF–target matri-
ces constructed using single-cell associations are extremely sparse and 
unreliable compared to matrices constructed using ATAC metacells 
(Extended Data Fig. 4b,c). Using metacell TF–target matrices to predict 
expression in each metacell and infer the regulatory activity of each 
TF (Extended Data Fig. 4d), we successfully recovered activation by 
known erythroid regulators, such as GATA1 (ref. 28), GATA2 (ref. 4) and 

KLF1 (ref. 7), and downregulation of stem cell regulators, such as FLI1 
(ref. 29) and ELF1 (ref. 29) (Fig. 3e). In contrast, the common approach 
of creating TF–target matrices using pseudobulk profiles of cell type 
clusters failed to accurately recover well-known erythroid regula-
tors (Fig. 3e and Extended Data Fig. 4e). Furthermore, our approach 
generalizes to other major hematopoietic lineages (Supplementary 
Fig. 10) and successfully identifies top regulators, demonstrating that 
the peak–gene associations identified using SEACells provide a robust 
input for regulatory network inference.

Another common strategy for overcoming sparsity is to compute 
a TF activity score by aggregating all peaks associated with a particular 
TF (for example, chromVAR30). To demonstrate that metacells can 
improve TF activity inference, we determined chromVAR scores for 
all T cell subsets (CD4, CD8 naive and memory) using the PBMC mul-
tiome dataset (Extended Data Fig. 5a). chromVAR scores provide an 
alternate data representation, useful for all downstream analyses, 
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Fig. 2 | SEACells metacells accurately identify cell states and outperform 
alternative approaches. a, (i) UMAP of human PBMCs in a 10x Genomics 
multiome dataset17, derived using RNA data, highlighting cell types and SEACells 
metacells. (ii) Distribution of metacells per cell type for the RNA modality.  
(iii) Distribution of cell type purity (frequency of the most represented cell type 
in each metacell). High purity represents a more accurate metacell. Boxes and 
line represent interquartile range (IQR) and median, respectively; whiskers 
represent ±1.5× IQR. b, UMAP, metacell and cell type purity distributions of 
human PBMCs as in a, using ATAC data from the multiome dataset. c, Metacell 
accessibility (i) and expression (iii) of CD4 and CD8A accurately distinguish CD8 

(green) and CD4 (orange) T cell compartments. Metacell accessibility (ii) and 
expression (iv) of TYROBP and CD8A distinguish NK (brown) and CD8 (green) 
T cells. Insets: Corresponding single-cell accessibility is too sparse to achieve 
the same distinction. d, UMAPs of CD34+ HSPCs highlighting cell types and the 
SEACells metacells independently constructed from RNA (left) and ATAC (right) 
data. e, Accessibility (left) and expression (right) of GATA1 (erythroid factor) 
and MPO (myeloid factor) along the Palantir pseudotime axis representing 
hematopoietic differentiation. Palantir was run on RNA aggregates using ATAC 
metacells and accurately recapitulates dynamics.
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including clustering and visualization. Indeed, chromVAR scores using 
metacells accurately distinguish all T cell subsets, whereas single-cell 
chromVAR scores fail to distinguish CD8 and CD4 (Extended Data 
Fig. 5b). We identified several known compartment-specific TFs that 
likely drive cell states within these T cell subsets, including JUNB31, LEF1  
(ref. 32), EOMES33 and RELA34, whereas single-cell chromVAR scores for 
these factors do not distinguish the same populations (Extended Data  
Fig. 5c,d). Our results show that SEACells substantially improves the 
regulatory toolkit for analyzing and interpreting scATAC-seq data, 
including widely used tools such as chromVAR.

SEACells outperforms metacell approaches for RNA and ATAC
Baran et al.8 introduced and effectively articulated the metacell con-
cept. Their MetaCell algorithm was demonstrated on healthy systems 
and designed around massively parallel single-cell RNA sequencing 
(MARS-seq) data, which has a high instance of extreme values35, so it 
culls outliers aggressively. However, rare cells often drive disease and 
regeneration. We found that MetaCell8 discards more than one-third 

of all cells in lung adenocarcinoma scRNA-seq data36 (Supplementary 
Fig. 11a,b), and MetaCell-2 (ref. 10) behaves similarly. Another approach, 
SuperCell9, is effectively a very fine clustering strategy that adapts 
widely used community detection algorithms to generate many small 
clusters.

We benchmarked these algorithms using ATAC and RNA modali-
ties from the CD34+ bone marrow and PBMC datasets. Because both 
MetaCell and SuperCell require a gene count matrix, we aggregated 
peaks in the gene body to derive a count matrix for ATAC-seq data. 
SEACells was the only algorithm to identify metacells that cover the 
entire phenotypic landscape (Fig. 4a and Supplementary Fig. 12), likely 
due to its minimum–maximum sampling strategy. For ATAC, all other 
approaches neglected the majority of cell states by focusing metacells 
on cell-dense regions; they failed to represent important lymphoid and 
myeloid subpopulations in bone marrow and to identify coherent cell 
states in PBMCs (Fig. 4a). SuperCell severely undersampled metacells 
in low-density regions (Supplementary Fig. 12a) and did not accurately 
recover the distinction between different T cell states.
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Fig. 3 | SEACells empowers a gene regulatory toolkit. a, Spearman correlation 
between ATAC metacell-aggregated (top) or single-cell (bottom) gene expression 
and accessibility of the most correlated peak in TAL1 (erythroid), MPO (myeloid) 
and IRF (dendritic) marker genes, computed on CD34 multiome data. Each 
metacell and single cell is colored based on cell type. b, Accessibility landscape 
of erythroid factor GATA2 in HSCs, MEPs and erythroid cells (Ery) using NFR (top) 
or all ATAC (bottom) fragments. Restricting chromatin accessibility analysis 
to NFR fragments improves peak resolution and the association of regulatory 
elements with genes. Arcs are colored by peak–gene Spearman correlation (color 
values between 0 and 1 at right), determined using SEACells ATAC metacells. 

Highlighted peaks correlate significantly with GATA2 expression (two-sided 
nominal P < 0.1, empirical null distribution). c, Left: To construct a TF–target 
matrix for TF activity inference, motif scores of motifs within peaks are weighted 
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cell-type-specific TF–target matrix derived from pseudobulk ATAC profiles.
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We evaluated the purity of well-separated cell types in PMBC data 
and found that metacells of both modalities show substantially greater 
purity from SEACells than other methods (Extended Data Fig. 6a). We 
observed similar differences in PBMC cellular indexing of transcrip-
tomes and epitopes by sequencing (CITE-seq) data37, using surface 
protein measurements as ground truth (Extended Data Fig. 6b,c). 
Notably, peak accessibility and gene expression are also much better 

correlated in metacells from SEACells (Supplementary Fig. 9a) than 
other methods (Fig. 4b and Supplementary Fig. 13).

An ideal metacell is also compact (it exhibits low variance among 
constituent cells) and well separated (it remains distant from cells of 
a neighboring metacell). We defined metrics for compactness and 
separation and found that SEACells exhibits superior performance in 
both modalities, for the two benchmarking datasets (Supplementary 
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Note 3, Fig. 4c, Extended Data Fig. 7 and Supplementary Fig. 14). Col-
lectively, our results show that metacells generated by SEACells better 
represent the catalog of cell states present in the data and are more 
homogenous, compact and well separated than alternative methods 
across both RNA and ATAC modalities.

SEACells reveals accessibility dynamics in differentiation
Hematopoietic differentiation is characterized by the upregulation 
of lineage-defining genes and the downregulation of stemness genes, 
driven by changes in chromatin accessibility that enable or impede 
TF binding (Fig. 5a). Stem cells exhibit extensive priming of lineage 
gene regulatory elements, whereby enhancers are accessible for 
lineage-specific expression18,33,34. We used SEACells to better eluci-
date how the permissive epigenomic landscape of hematopoietic 
stem cells (HSCs) dynamically reconfigures to a sharply restricted 
landscape in differentiated cells. We identified open elements in each 
ATAC metacell (Extended Data Fig. 8) and then defined the fraction 
of gene-associated peaks (Methods) that are open in each metacell, 
from 0 (all peaks closed) to 1 (all peaks open), as a metric of gene acces-
sibility. Our accessibility scores track with gene expression for key 
lineage-specific genes (Supplementary Fig. 15a,b).

We next examined the accessibility of all highly regulated genes 
across cell types. HSCs follow a unimodal distribution centered at 
0.5, whereas, for differentiating cells, genes that define the cell’s line-
age gain peaks, and those defining alternative lineages lose peaks  
(Fig. 5b,c). The resulting bimodality of differentiated cells is most 
clearly observed in the erythroid lineage (Fig. 5b). All other lineages 
exhibit long-tailed distributions (Supplementary Fig. 16a,b), but a 
similar analysis on unsorted bone marrow mononuclear cells21 revealed 
more pronounced bimodality (Supplementary Fig. 16c,d), indicat-
ing that the lack of clear bimodality in other lineages was due to our 
CD34-sorted data retaining too few mature cells.

We focused on accessibility dynamics in the erythroid lineage. We 
first applied Palantir5 to SEACells metacells using the RNA modality 
to determine a pseudotime ordering and then examined the acces-
sibility dynamics of highly regulated genes in each metacell along the 
pseudotemporal order (Fig. 5d and Methods). This analysis reveals that 
epigenomic reconfiguration is itself gradual and continuous—an obser-
vation that is not apparent using single-cell pseudotime bins (Fig. 5d).  
Moreover, the gradual opening and closing of regulatory elements 
diverge at lineage-specific loci; genes with increasing accessibility in the 
erythroid lineage establish erythroid cell identity and function, whereas 
those with decreasing accessibility are enriched for HSC and diverse 
other lineage genes, in further support of epigenomic poising in HSCs 
(Fig. 5e). Finally, the enrichment of TF motifs in peaks gained and lost in 
erythroid differentiation predicts a role for GATA2 and PU.1, respectively 
(Fig. 5e and Methods), consistent with the known mutual antagonism of 
these factors in the decision between erythroid and myeloid lineages38.

Our results demonstrate that SEACells metacells enable the mod-
eling of gene accessibility dynamics during differentiation, including 
the reconfiguration of the hematopoietic chromatin landscape.

SEACells facilitates single-cell cohort integration
Large consortia are generating single-cell datasets of up to tens of 
millions of cells and hundreds of individuals39–44, which harbor  
substantial batch effects related to sample and collection site. Despite 
enormous progress in data integration approaches45–48, biological 
variation between individuals is often impossible to distinguish from 
technical noise, due in large part to the sparsity of single-cell data.  
By aggregating highly similar cells into robust, well-defined bio-
logical states, metacells provide per-sample summary statistics that  
better preserve subtle biological differences and distinguish them  
from batch effects. We used a dataset of over 175,000 PBMC cells  
from 23 healthy donors and 17 patients with critical Coronavirus Dis-
ease 2019 (COVID-19)49 to demonstrate how using SEACells metacells 
as input to data integration offers marked improvements over using 
single cells.

We first identified metacells in each sample (Fig. 6a and Sup-
plementary Fig. 17) and verified that metacell states are consistent 
across healthy donors and across patients with COVID-19 (Supple-
mentary Fig. 18 and Methods). We used metacell gene expression 
counts for downstream data integration45, clustering50 and uni-
form manifold approximation and projection (UMAP) visualization  
(Fig. 6b). Sample-level batch effects are severe before integration but 
substantially lower in metacells compared to single cells (Extended 
Data Fig. 9). Although data integration eliminated sample-level 
batch effects in both single cells and metacells (Extended Data  
Fig. 9c), the site of sample collection, originally noted as a severe tech-
nical artifact49, remained a strong confounding variable in metacells, 
particularly in CD4+ T cells (Extended Data Fig. 9b). To investigate, we 
examined differential expression between CD4+ T cell metacells col-
lected at different sites and observed coherent biological responses 
relevant for these cell types, supporting the existence of meaning-
ful biological differences between sites that should not be removed 
(Extended Data Fig. 9d and Methods). We note that each site collected 
samples at different timepoints in disease progression, providing a 
likely explanation for the observed biological differences and dem-
onstrating that SEACells preserves biological signal in the presence 
of substantial technical noise.

Metacells also improve the computational efficiency of analyses,  
such as dimensionality reduction and clustering, which are rapidly 
becoming infeasible for very large single-cell datasets. We applied 
SEACells across the entire COVID-19 atlas49, spanning 119 samples and 
more than 600,000 cells from healthy controls and diverse COVID-19  
stages (Supplementary Fig. 19 and Methods). This dataset was sum-
marized by ~8,000 metacells, which exhibit high cell type purity  
(Supplementary Fig. 19b,c), and required orders of magnitude less 
compute time than computation at the single-cell level. Scalability 
is particularly important when existing analyses need to be rerun to  
incorporate new data; a one-time investment in metacell assignment 
avoids compounding the near-exponential increases in runtime  
associated with adding cells, for each single-cell-level analysis  
(Supplementary Fig. 20).

Fig. 5 | Charting chromatin accessibility of hematopoietic differentiation 
using SEACells metacells. a, Differentiation along a particular lineage involves 
upregulation of lineage-defining genes and downregulation of stemness genes 
or genes that define alternative lineages. Left: RNA modality UMAP of CD34 bone 
marrow, with erythroid lineage cells highlighted. Middle: UMAPs colored by 
expression of erythroid gene KLF1 and stem gene LPCAT2, which are upregulated 
and downregulated, respectively, during erythroid differentiation. Right: 
accessibility landscapes of KLF1 (top) and LPCAT2 (bottom), aggregated by cell 
type, during erythroid differentiation. b, Distribution of gene accessibility for 
all highly regulated genes, for HSCs and for erythroid cells (Ery). Unimodal gene 
accessibility in HSCs is reconfigured to a bimodal distribution during erythroid 
differentiation. c, Schematic representation of observed peak dynamics. 
Bimodally distributed gene accessibility results from a subset of genes losing 

open peaks (top) and another subset gaining open peaks (bottom). d, Chromatin 
accessibility distribution of highly regulated genes in all metacells along the 
erythroid lineage (left, middle). Each line represents a metacell, colored by 
its stage (top) and pseudotime (bottom). The emergence of bimodality is 
gradual and continuous. Right: Signal is poorly defined when using single-cell 
pseudotime bins rather than metacells. e, Accessibility dynamics of genes that 
gain (orange) and lose (blue) open peaks during differentiation from HSCs 
to erythroid cells. Trajectory was computed using Palantir, with each line 
representing a fit gene trend and circles at bottom depicting pseudotime values 
of each respective metacell. Middle: results of Gene Ontology analysis using 
immune cell gene signatures. Right: Opening peaks are enriched for GATA motifs, 
and closing peaks are enriched for PU.1, master regulators of erythroid and 
myeloid fates, respectively.
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SEACells identifies T cell response dynamics in COVID-19
We next examined whether SEACells can help identify state changes 
between healthy donors and patients with severe COVID-19. We pooled 
metacells from all donors and re-applied SEACells to derive metacell 

aggregates, or ‘meta2cells’, representing states across all samples 
(Extended Data Fig. 10a–c). Each meta2cell is a combination of healthy 
and COVID-19 metacells, such that the fraction of COVID-19 cells can 
be visualized for each state. Our results reveal a spectrum of metacell 
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states, from those specific to healthy donors to those exclusive to 
COVID-19 (Extended Data Fig. 10c), prompting us to develop a per-
mutation test to identify cell states that differ significantly between 
conditions (Fig. 6c and Methods). Analysis at the cell type level, by con-
trast, masks the extensive heterogeneity in individual states (Fig. 6c).

We focused on CD4+ T cells, which differentiate into distinct sub-
sets upon activation and differentiation51,52, using differential gene 
expression analysis at the metacell level to identify cell-state-defining 
genes. Within CD4+ T cell meta2cells, this analysis revealed a 
fine-grained trajectory of phenotypes enriched in patients with critical 
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COVID-19, with T cell phenotypes that correspond meaningfully with 
disease stage (Fig. 6d,e). For example, a meta2cell enriched in patients 
soon after infection (metacell A) contains cells in an early activation 
state distinguished by the expression of NF-κB response genes, IFN-α 
receptor subunit IFNAR2 and downstream interferon-stimulated genes 
(IRF7, IRF9, ISG15 and IFITM1), reflecting T cell responsiveness to type 
I IFN, a cytokine associated with viral infections and severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) pathology53 (Fig. 6e). 
A meta2cell enriched in patients with COVID-19 approximately 10 days 
after symptom onset (metacell B) comprises Foxp3+ Treg cells express-
ing the chemokine receptor gene CCR10, suggesting recruitment 
to the inflamed lung or mucosal epithelium and a role in regulating 
inflammation54 (Fig. 6e). Finally, a meta2cell enriched in patients with 
persistent severe COVID-19 at day 13 (metacell C) contains cells that 
express hallmark TH17 genes (RORC and CCR6), reflecting a shift toward 
type III inflammation. Aggregated metacell states are, thus, highly con-
sistent with the known temporal dynamics of gene expression during 
T cell response to infection.

By contrast, single-cell data integration did not preserve neigh-
borhoods that constitute CD4+ T cell metacells or recover the signal 
for disease progression (Extended Data Fig. 10d,e). Furthermore, 
aggregating cells in batch-corrected low-dimensional embeddings 
(Methods) did not produce the characteristic expression patterns of 
disease-associated CD4+ T cell metacells (Fig. 6f and Extended Data 
Fig. 10f). Differential abundance testing55 at the single-cell level also 
failed to recover these dynamics (Extended Data Fig. 10g,h). Our results 
demonstrate that SEACells can capture biologically meaningful CD4+ 
T cell subsets, highlighting the transition from the spectrum of active 
to quiescent differentiated states during a multi-day viral infection. 
We postulate that, although data integration methods aim to make 
samples more similar without distinguishing batch from biological 
signal, aggregating data into metacells on the per-sample level provides 
robust capture of true biological variation between samples. SEACells 
can facilitate the development of integration approaches that use the 
summary statistics encoded in metacells to better distinguish biologi-
cal signal from technical noise.

Discussion
SEACells identifies robust, reproducible metacells that overcome spar-
sity while retaining the rich heterogeneity of single-cell data. SEACells 
metacells are more compact, better separated and more evenly distrib-
uted across the full cell state landscape than metacells generated by 
existing methods. They greatly improve integration across samples 
and scaling analysis to large cohort-based datasets. Critically, only 
SEACells is currently able to derive cell states from scATAC-seq data 
in an accurate and comprehensive manner, greatly empowering gene 
regulatory inference.

SEACells performance is due to (1) its representation of single-cell 
phenotypes using an adaptive Gaussian kernel to accurately capture 
the major sources of variation in the data; (2) its use of maximum–
minimum sampling for initialization to ensure even representation 
of cell states across phenotypic space, regardless of cell densities; and 
(3) its application of kernel archetypal analysis for identifying highly 

interpretable metacells. The adaptive kernel and maximum–minimum 
sampling make SEACells particularly adept at robustly identifying 
rare cell states, which often represent critical populations that drive 
biology or disease.

Whereas gene scores, open regulatory elements and correla-
tions between gene expression and chromatin accessibility cannot 
be determined robustly at the single-cell level, they can be computed 
for individual metacells. Such improvements in fundamental ATAC 
analysis, which currently occurs at the cluster level due to extreme 
sparsity, greatly empower our ability to infer top regulators driving 
differentiation and enable more sophisticated regulatory network 
inference, promising wide utility for SEACells metacells in single-cell 
chromatin profiling data.

SEACells provides a scalable solution for integrating large datasets 
from cohorts. Metacells can be computed separately for each sample, 
rendering the integration of additional cohort members resource effi-
cient. Despite considerable progress, current integration approaches 
are not equipped to distinguish batch effects from subtle biological 
differences between individuals. Computing metacells at the sample 
level provides a more robust representation of sample-specific biology, 
thus serving as better input for data integration. The development of 
approaches to estimate gene–gene covariances of the dozens of cells 
within each metacell will help to define metacells as parameterized dis-
tributions and spur the development of data integration methods that 
use this information. As the COVID-19 data demonstrate, sample-level 
sufficient statistics provided by SEACells are well suited to compare dis-
ease states between healthy and normal as well as more nuanced disease 
states, such as progression. SEACells identified COVID-19-enriched CD4+ 
T cell states that are removed by typical batch correction and undetected 
at the single-cell level. SEACells metacells serve as robust cell state inputs 
that facilitate the distinction of biological signal from batch effect—fea-
tures that enabled our discovery of the T cell state continuum.
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Methods
SEACells algorithm
SEACells is an algorithm for defining metacells—groups of cells that 
represent singular cell states—from single-cell data. The SEACells 
algorithm assumes that biological systems consist of well-defined and 
finite sets of cell states defined by covarying patterns of gene expres-
sion. Observed single-cell data are assumed to be sparse and noisy 
measurements of these cell states (current state-of-the-art single-cell 
measurement technologies can capture only <10% of transcripts or 
<5% of open chromatin regions). Despite the high degree of noise, cells 
sampled from the same states are assumed to have closely related phe-
notypes, due to gene expression patterns and regulatory mechanisms 
that define the cell states. SEACells aims to aggregate closely related 
cells into metacells that represent them, thereby overcoming single-cell 
data sparsity. scATAC-seq data are particularly limited in utility due to 
sparsity. SEACells metacells also provide a scalable representation that 
efficiently handles large-scale single-cell data. Although clustering is 
widely used to overcome sparsity, clustering masks the substantial het-
erogeneity present in the data (Fig. 1a–d). SEACells metacells achieve 
a resolution that retains heterogeneity while overcoming the sparsity 
of single-cell data.

The inputs to SEACells are (1) raw count matrices (for example, 
transcript counts for RNA, peak or bin counts for ATAC); (2) a low- 
dimensional representation of the data derived using modality- 
appropriate pre-processing, such as principal component analysis 
(PCA) for RNA; and (3) the number of metacells to be identified. As 
output for downstream analyses, SEACells produces groupings of 
cells that represent metacells, aggregated metacells-by-feature raw 
counts matrices and soft assignments representing groups of highly 
related cells.

The algorithm is freely available at https://github.com/dpeerlab/
SEACells, in a repository that includes documentation and tutorials 
for computing metacells and gene expression—peak accessibility 
correlations, ATAC gene scores, open peaks in metacells, gene acces-
sibility scores and TF activity inference using multiome or integrated 
RNA and ATAC data.

SEACells comprises five main steps, which are summarized below 
and elaborated in the following sections.

 (1) Construct a k-nearest neighbor (KNN) graph using Euclidean 
distances between cells, computed in the lower-dimensional 
embedded space, to represent the phenotypic manifold.

 (2) Derive an affinity matrix of cell-to-cell similarities using the 
nearest neighbor graph. Distances in the graph are transformed 
to similarities using an adaptive Gaussian kernel to account for 
the considerable cell density differences in a typical phenotypic 
manifold56. The affinity or kernel matrix (Fig. 1f) encodes the 
non-linear relationships between cells.

 (3) Use the kernel matrix as the input for archetypal analysis  
(Fig. 1g and Extended Data Fig. 1a). Whereas archetypal analysis 
has typically been applied to the data matrix, we apply it to our 
kernel matrix, which partitions cells into clusters of highly simi-
lar cells and enables the characterization of the entire pheno-
typic manifold, making it ideally suited to identify robust  
cell states (Extended Data Fig. 1b–e). Archetypal analysis  
decomposes the data into an archetype matrix comprising 
linear combinations of cells that represent cell states on the 
phenotypic manifold and a membership matrix that recon-
structs single cells as linear combinations of archetypes  
(Fig. 1g and Extended Data Fig. 1a). This procedure partitions 
the data in such a way that the cell–cell similarity matrix has 
tight block structure along the diagonal; each partition is a 
group of cells that best represents a cell state and defines a 
metacell. The number of metacells is specified as an input to 
archetypal analysis.

 (4) Label groupings identified through archetypal analysis as 
SEACells metacells and aggregate single-cell raw counts accord-
ingly to derive a metacell-by-feature count matrix.

 (5) Normalize count matrices, which can be used for all down-
stream single-cell analytical tasks, such as clustering, visualiza-
tion, data integration, trajectory inference and ATAC-seq-based 
regulatory inference.

Nearest neighbor graph construction. Low-dimensional embedding. 
SEACells requires a low-dimensional representation of single-cell data 
and uses the Euclidean distance between cells in this embedding to 
construct the KNN graph. Neighbor graphs are typically computed 
in lower-dimensional embeddings of single-cell data owing to their 
extreme sparsity and noise, which results from low molecule capture 
rates. We recommend the use of PCA for scRNA-seq and singular value 
decomposition (SVD) for scATAC-seq, as is standard in the field. More 
generally, a low-dimensional embedding can be derived by using appro-
priate pre-processing and normalization steps for the data modality 
of interest (Supplementary Fig. 2). This allows us to be both flexible to 
data type and robust to the extensive degree of sparsity and noise in 
data types, such as scRNA-seq and scATAC-seq. We used the following 
pre-processing steps adapted to the characteristics of each technology.

PCA for scRNA-seq. Following standard practice, we perform three 
main pre-processing steps using the scanpy57 package: (1) normal-
ize library size by dividing raw counts by total molecules per cell; (2) 
log-transform with a pseudocount of 0.1; and (3) select highly variable 
genes. Based on our previous observations for PBMCs and CD34+ bone 
marrow datasets, we chose 2,500 highly variable genes for analysis. 
This number should be adapted to ensure that all the heterogeneity 
is captured in the dataset of interest. Principal components (PCs) are 
computed from these highly variable genes, with the number of PCs 
being selected based on proportion of variance explained (typically 50).

SVD for scATAC-seq. We used the ArchR package24 to pre-process 
scATAC-seq data. Fragment counts for each cell were computed in 500 
base genome bins and normalized using TF-IDF58, and SVD was applied 
to normalized counts to derive a low-dimensional embedding. Like 
PCA, the number of components was selected based on the proportion 
of variance explained (typically 30). As previously observed24, despite 
normalization, the first SVD component shows high correlation with 
number of fragments per cell (correlation > 0.97) and is excluded from 
downstream analysis.

Nearest neighbor graph. A KNN graph is constructed using Euclidean 
distance in the low-dimensional embedding (PCA or SVD), with single 
cells represented by nodes that are each connected to their most similar 
neighbors. The nearest neighbor graph can be represented as a matrix 
D ∈ Rn X n, where n is the number of cells. Dij represents distance between 
cells i and j if they are neighbors and Dij = 0 otherwise. The graph serves 
as input for constructing the cell–cell kernel matrix. As default, 50 
neighbors are used for the KNN graph, and we previously demonstrated 
that the kernel matrix construction is robust to a reasonable range of 
number of nearest neighbors4.

Other single-cell data types, including multimodal data. The 
procedures for computing peak–gene associations, gene scores and 
gene accessibility assume the availability of either multimodal data 
or integrated RNA and ATAC modalities. Several approaches have 
been developed for data integration across modalities12,59, and the 
low-dimensional representations derived using multimodal data can be 
used to compute SEACells metacells. Given the kernel representation, 
SEACells can also be applied to other modalities, such as CUT&Tag60,61, 
or other single-cell chromatin modification measurements62 with 
appropriate pre-processing. All that is required is a reliable distance 
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metric between cells, which can be Euclidean distance in alternative 
embeddings.

Construction of the affinity kernel matrix. We transform the distances 
in the neighbor graph to similarities between neighboring cells. Gauss-
ian kernels provide a typical approach for this transformation but 
assume that densities in underlying data are approximately uniform. 
Single-cell data, however, show remarkable variability in data densi-
ties (Supplementary Fig. 7), and low-density regions or rare cell types, 
such as stem cells, often represent the most meaningful biology. We 
previously demonstrated that an adaptive kernel using neighbor dis-
tance as the scaling factor for each cell, rather than a fixed parameter, 
represents phenotypic similarities very faithfully15,16 and, thus, employ 
an adaptive (width) Gaussian kernel to determine similarities between 
cells in SEACells (Fig. 1f). The adaptive kernel corrects for densities 
using the distance to the l-th (l < k) nearest neighbor as a scaling fac-
tor—that is, the scaling factor of cell i is given by σi = distance to l-th 
nearest neighbor.

The adaptive Gaussian kernel is then given by

M (xi, xj) =
1

√2π (σi + σj)
exp(− 1

2
(xi − xj)

T (xi − xj)
σi + σj

)

where xi is the low-dimensional embedding corresponding to cell 
i—that is, PCA for scRNA-seq and SVD for scATAC-seq. M ∈ Rn X n is the 
affinity matrix. Mij represents the similarity between cells i and j if 
they are mutual neighbors and Mij = 0 otherwise, and n is the number 
of cells. In other words, the Gaussian kernel transforms the cells from 
low-dimensional space (dimension = n × p) to a kernel space (dimen-
sion = n × n) such that cells are both observations and features, and the 
‘phenotype’ of an observation (cell) is defined by the neighborhood 
similarity structure of that cell in the original low-dimensional space.

In this kernel space, two cells (x and y) are embedded close to each 
other if they satisfy two conditions:

 1. x and y share neighbors in the PCA space
 2. the similarity scores among the neighbors of x and y are similar

Two cells in this transformed dimensional space will be similar 
to each other only if they share neighbors and the distances to the 
shared neighbors are similar, imposing stricter similarity conditions 
between cells.

Kernel archetypal analysis. Overview and optimization function. The 
adaptive Gaussian kernel matrix, M ∈ Rn X n, serves as input to archetypal 
analysis. Archetypal analysis16 performs a linear decomposition of the 
kernel matrix. The goal is to identify a specified number of archetypes, 
each of which is a linear combination of the data points represented 
by the archetype matrix (matrix B in Fig. 1g and Extended Data Fig. 1a). 
The data points themselves are represented as a linear combination of 
the archetypes in a membership matrix (matrix A in Fig. 1g and 
Extended Data Fig. 1a) to reconstruct the kernel matrix. The number 
of archetypes is substantially lower than the number of data points, 
and the lower dimensionality of the archetype and membership matri-
ces creates an information bottleneck, ensuring an optimal decomposi-
tion of the data15. The weighted assignments of cells to archetypes are 
contained in the membership matrix, which can be used to derive cell 
partitions that are aggregated to metacells (Fig. 1h). The linear nature 
of archetypal analysis ensures maximal interpretability and identifica-
tion of metacells.

Archetypal analysis decomposes the kernel matrix as M ≈ ZA—that 
is, the kernel matrix M is represented as a convex combination of a 
latent archetype matrix Z ∈ Rn×s and cell membership matrix A ∈ Rs×n, 
where s ≪ n is the number of archetypes. As these latent archetypes 
are unknown a priori, they are themselves defined as convex 

combinations Z = MB of the kernel matrix, M and archetype weight 
matrix B ∈ Rn×s. To ensure that data points are convex combinations of 
archetypes, and vice versa, weight matrices A and B must be 
column-stochastic, such that their entries are non-zero and columns 
sum to 1.

Formally, for entries aij ∈ A and bij ∈ B,

aij ≥ 0, ∀ j = 1...n
s
∑
i=1

aij = 1

bij ≥ 0, ∀ i = 1...n
s
∑
j=1

bij = 1

Taken together, the objective of archetypal analysis is to find 
matrices A, B, such that product MBA forms a faithful reconstruction 
of the original kernel matrix M.

The objective of kernel archetypal analysis is to minimize squared 
reconstruction error (SRE) as follows:

min
A,B

SRE = ‖M −MBA‖2 = tr [MTM − 2MTMBA + ATBTMTM]

The number of archetypes, s, representing the number of meta-
cells, is a parameter. See Supplementary Note 1.1 for intuition on why 
kernel archetypal analysis best is suited for metacells.

Optimization algorithm for metacell identification. Archetypes are 
an approximation of the convex hull—that is, they represent the vertices 
of a convex polytope that encapsulates most of the data (Extended 
Data Fig. 1e). As a linear combination of data points, archetypes do not 
necessarily represent measured data points themselves, and each cell 
is expressed as a linear combination of the inferred archetypes (Fig. 1g). 
To aid interpretability and facilitate downstream analysis, metacells 
are constructed by (1) computing binarized assignments of cells to 
archetypes (of the A matrix) and (2) aggregating single cells assigned to 
each metacell by summing over raw counts (Fig. 1g). This summarized 
metacell matrix is significantly less sparse and noisy and can be used 
for more robust downstream analysis.

The objective function for kernel archetypal analysis involves opti-
mizing the non-convex product AB and, thus, has many local minima. 
The objective function is, however, convex in A given a fixed B matrix 
and vice versa. Therefore, alternating minimization of weight matrices 
A and B is used to make the problem of solving archetypal analysis more 
tractable. Given this, we use the Frank–Wolfe updates to optimize each 
weight matrix in turn, as described in ref. 15.

Initialization. As archetypal analysis is a non-convex problem, solu-
tions depend on the initialization of archetype and cell assignments16. 
Given the density differences in the phenotypic manifold, random 
sampling of cells will lead to significant overrepresentation of initial 
points in the high-density regions and severe underrepresentation 
of cells in the biologically critical low-density regions. Therefore, we 
employ maximum–minimum sampling of waypoints, as previously 
described and implemented4, to initialize archetypal analysis. Given a 
set of waypoints, each additional waypoint is chosen to maximize the 
distance to the current set—that is, maximize the minimum distance 
to any of the points in the current set. This ensures that waypoints are 
uniformly distributed across the phenotypic manifold irrespective 
of density (Fig. 1e). We first derive a diffusion map embedding using 
the adaptive Gaussian kernel M. As previously demonstrated4, each 
diffusion component (DC) represents an axis of biological variation 
in the data. Waypoints are sampled from each component and pooled 
for initialization. The number of components can be chosen by the 
eigengap statistic, although, in practice, we observed that the first ten 
DCs typically account for biological variability in the data.
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Because maximum–minimum sampling is performed using each 
DC, there can be redundancy in the cells sampled (that is, the same cell 
may be sampled for multiple components). Therefore, a pre-specified 
proportion of waypoints (less than or equal to 1) is selected by maxi-
mum–minimum sampling, and the remaining are computed using a 
greedy column subset selection approach63. The column subset selec-
tion is a fast and greedy algorithm that seeks to identify representative 
columns from a large dataset by minimizing an objective function, 
which measures reconstruction error of the data matrix. Thus, SEACells 
is initialized by selecting cells that are more likely to be representative 
of other cells in the dataset.

Waypoints are used to initialize the matrix B, after which matrix 
A is updated, and the process is repeated until convergence (see Sup-
plementary Note 1.2 for convergence criteria).

Metacell construction. Analysis of metacell assignment certainty. 
Metacells are identified by binarizing the assignment matrix A. Cell 
assignment weights are determined by first zero-ing out ‘trivial’ assign-
ment weights (< 0.05) as a form of regularization and then normalizing 
the weights for each cell. The proportion of cells with maximal assign-
ment weight less than 0.5 (gray), between 0.5 and 0.8 (red), between 
0.8 and 0.9 (yellow) and, finally, greater than 0.9 (green) are shown in 
Supplementary Fig. 5. The overwhelming majority of cells have highs 
confidence assignments.

Metacell annotation and normalization. Metacells are annotated 
as belonging to the most frequent cell type among the constituent 
cells. Metacell raw counts can be normalized in a manner analogous 
to single-cell data normalization. Metacell counts are divided by the 
total counts per metacell and then multiplied by the median of the 
total metacell counts to avoid numerical issues. The data are then 
log-transformed using a pseudocount of 0.1.

Note about number of metacells. The number of metacells is specified 
as a SEACells parameter. We have determined that SEACells is robust 
to a wide range of number of metacells (Supplementary Fig. 6a,b). We 
currently use a heuristic default of one metacell per 75 single cells in 
the dataset under consideration. However, the appropriate number 
is largely dependent on biological structure in the data. For example, 
a dataset profiling 10,000 cells from a homogeneous cell line will 
be expected to encode less biological structure than a similar-sized 
dataset from a more complex biological system, such as a tumor or 
differentiating tissue. Thus, we recommend examining initialization 
to ensure that cell states span the entire phenotypic manifold. An 
additional heuristic, which can be used after optimization, is the num-
ber of metacells associated with each cell (with non-trivial weight). 
Ideally, each cell should be strongly associated with only one or two 
others, except in the case of highly continuous cell state trajectories. 
When a surplus of metacells is specified, the number of cells partially 
assigned to multiple metacells increases (Supplementary Fig. 6c–f). 
This distribution can be examined for a possible need to reduce the 
number of metacells and has been implemented as a function in the 
SEACells GitHub package.

Toolkit for scATAC-seq analysis
A broad array of powerful tools has been developed for interpreting 
open chromatin data from bulk ATAC-seq data. However, these tools 
cannot be applied directly to single-cell data because of their sparsity. 
SEACells metacells are aggregates of tightly related cells and are, thus, 
substantially less sparse while faithfully retaining the heterogene-
ity and structure of the data. Here we describe a robust toolkit for 
scATAC-seq data adapted from bulk data analysis tools.

Peak calling. Peak calling was performed using ArchR24. ArchR first 
clusters single-cell data and uses the MACS2 peak caller64 to identify 

peaks separately for each cluster. Each peak is then resized to 500 
bases with the peak summit at the center, and overlapping peaks across 
different clusters are merged. The merged peaks are again resized to 
500 bases.

ATAC-seq data provide a profile of open chromatin regions span-
ning TF binding regions and nucleosomes in non-repressed regions. 
The fragment size distribution of ATAC-seq data contains characteristic 
modes that reflect the diversity of this information (Supplementary 
Fig. 8a). Because the first mode represents NFRs, we altered the ArchR 
pipeline to identify peaks using only the NFR fragments (fragment 
length < 147) rather than use the default of all fragments. This change 
leads to substantially more sensitive identification of regulatory ele-
ments (Supplementary Fig. 8b,c).

The modified ArchR pipeline is available at https://github.com/
peerlab/ArchR.

Peak–gene associations and gene scores. Although the use of NFR 
fragments improves the sensitivity of called peaks, not all identified 
peaks represent TF binding events that regulate gene expression (for 
example, structural factors such as CTCF also contribute to ATAC-seq 
signal). Studies have proposed using the correlation of peak acces-
sibility and gene expression from multiome or integrated ATAC and 
RNA data to identify peaks that likely regulate the expression of the 
gene20. SEACells metacells provide an ideal resolution to compute 
these associations, which are unreliable when computed using sparse 
single-cell data. We use metacells identified using the ATAC modality 
for building the peak–gene associations.

We adopted the procedure outlined by Ma et al.20 to identify sig-
nificant peak–gene associations. For each gene, Pearson correlations 
were computed for each peak within 100 kb upstream and 100 kb 
downstream of the gene, using the normalized metacell expression 
and normalized ATAC accessibility. To assess the significance of the 
peak–gene correlation, an empirical background of 100 peaks was 
sampled that matched the GC content and accessibility of the peak 
under consideration. Peaks were binned into 100 bins separately based 
on GC content and accessibility to sample the empirical background. 
Any peak with nominal P < 1 × 10−1 was considered a significant peak–
gene association. Peaks identified using NFR fragments were used for 
this analysis. The aggregate accessibility of all peaks associated with 
a gene was used to determine the metacell gene score.

For single-cell comparisons, normalized single-cell expression 
and normalized single-cell accessibility were used for determining 
peak–gene associations. Gene scores for single-cell ATAC were com-
puted using the ArchR defaults.

Inference of TF activity using metacells. To use the peak–gene  
associations, we provide a simple gene regulatory network (GRN) 
approach for TF activity inference, used to identify key TFs that relate 
to different cell types (Fig. 3c,d, Extended Data Fig. 4 and Supplemen-
tary Fig. 10).

FIMO65 was used for motif identification in all peaks, based on  
the cisBP human v2 motif set66. For each gene g, we identified the  
subset of peaks, Sg, whose accessibility correlates with expression of 
a proximal gene (P < 0.1, correlation > 0.1), using SEACells metacells. 
We then constructed a TF–target matrix G ∈ Rn X m, where n is the num-
ber of genes, and m is the number of TFs using the FIMO scores within 
gene–peak correlations (Fig. 3c). Specifically for a gene g and TF t, we 
define

Ggt =
∑k∈Sg ckg ∗ Fkt
∑k∈Sg ckg

,

where ckg is the Pearson correlation between accessibility of peak k and 
gene g across all metacells, and Fkt is the FIMO score for transcription t in 
peak k. The TF–target matrix G is used to infer TF activities using lasso 
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regression (Fig. 3c). Specifically, we use lasso regression26 to predict the 
expression profile of each metacell along the lineage as a function of G:

minws ∑g (yg −ws ⋅ Gg)
2 + λ∑t

|wst|,

where yg ∈ RnX1 is the expression profile of a metacell; ws ∈ R1Xm is the 
inferred vector of TF weights for metacells s; and λ is the regularization 
parameter. The regularization parameter is chosen by ten-fold 
cross-validation. The L1 penalty of lasso regression pushes most of the 
TF coefficients to 0 and has been extensively used in previous studies 
to identify regulators of gene expression27,67,68.

We then computed TF activities using the lasso regression coef-
ficients. Specifically, we computed a TF activity matrix M ∈ Rm X s, where 
s is the number of metacells, as follows:

Mts = (∑g (yg −∑i=1..m (wsi ∗ Ggi))
2

−∑g (yg −∑i=1..m s.t i<>m (wsi ∗ Ggi))
2
) ∗ sign (wst)

In other words, TF activity is measured as the increase in the mean 
prediction error when the TF is excluded from the inferred model. The 
activity is weighted by the sign of the coefficient to indicate direction-
ality of regulation (positive means upregulation and negative means 
downregulation of targets). Our previous studies demonstrated that 
the scores inferred using prediction error are more representative of 
TF activities than the regression coefficients themselves because each 
TF has a variable number of targets27.

chromVAR using SEACells metacells and single cells. chromVAR30 
is a widely used tool for predicting TF activity from scATAC-seq data. It 
provides a per-cell deviation score for a TF by computing whether the 
peaks predicted to contain its binding motif have greater accessibility 
compared to a GC-matched background peak set. The algorithm was 
run using default parameters and the chromVAR ‘human_pwms_v2’ 
motif database. chromVAR scores were computed using aggregated 
fragment counts for metacells and single-cell fragment counts for 
single-cell data. Similarly to the single-cell data analysis, chromVAR 
scores were first reduced to 50 PCs using knee-point analysis. PCs then 
served as input to UMAPs for visualization.

Metacell peak calling. Identification of the set of open regulatory 
elements is practically implausible at single-cell level due to noise and 
sparsity. SEACells metacells, however, provide enough fragments per 
cell state to enable the identification of open regulatory elements in 
each state. We observed that de novo peak calling in each metacell 
results in loss of sensitivity (Extended Data Fig. 8). Therefore, we use 
the peaks identified by ArchR across all cells as an atlas to determine 
the subset of peaks open in each metacell.

A procedure inspired by MACS2 is used to identify open regula-
tory elements in metacells because the peaks themselves were called 
by MACS2. The fragments mapping to peaks are modeled as a Poisson 
distribution. The mean of the Poisson distribution for a metacell s is 
estimated using64

λ =
Width (peaks) ∗ Total fragments in s

Effective genome length

Because all the widths are identical, the first term of the numerator 
is set to 500. Rather than use the whole genome length as the denomi-
nator, effective genome length was set to be num. of peaks × 5,000, 
a more stringent local estimate of the mean as proposed in MACS2. 
For a peak p in metacell s with n fragments, λ is used to estimate the  
P value of observing more than n fragments, and p is considered open 
in s if P < 1 × 10−2.

We noticed that some of the ATAC metacells had low overall frag-
ment counts; therefore, we computed fragments per peak and total 
fragments from the two nearest metacells. We apply this procedure 
for all metacells to avoid any biases.

Gene accessibility scores. Gene accessibility scores for a gene and 
metacell are defined as the fraction of gene-associated peaks that are 
open (Fig. 4b). Gene accessibility scores range from 0 (all correlated 
peaks closed) to 1 (all correlated peaks open).

Gene Accessibility (Gene g, Metacell m)

= No. of open peaks in s correlated with expression of gene g
No. of peaks correlated with expression of gene g

Multiome data generation
CD34+ bone marrow cells. Cryopreserved bone marrow stem/pro-
genitor CD34+ cells from a healthy donor were purchased from AllCells 
(ABM022F) and stored in vapor phase nitrogen. The sample was imme-
diately thawed at 37 °C in a water bath for 2 minutes with gentle shaking, 
and vial contents (1 ml) were transferred to a 50-ml conical tube. To 
prevent osmotic lysis and ensure gradual loss of cryoprotectant, 1 ml of 
warm medium (IMDM with 10% FBS supplement) was added dropwise 
after washing the storage vial while gently shaking the tube. Then, the 
cell suspension was serially diluted five times with 1:1 volume additions 
of warm complete growth medium with 2-minute wait between addi-
tions. The final ~32-ml volume of cell suspension was pelleted at 300g 
for 5 minutes. After removing the supernatant, cells were washed once 
with 10 ml of warm media and twice in ice-cold 1× PBS with 0.04% (w/v) 
BSA supplement to remove traces of medium. Cell concentration and 
viability were determined with a Countess II Automatic Cell Counter 
using the 0.4% trypan blue staining method.

Single Cell Multiome ATAC + Gene Expression was performed with 
a 10x Genomics system using Chromium Next GEM Single Cell Multi-
ome Reagent Kit A (cat. no. 1000282) and ATAC Kit A (cat. no. 1000280) 
following the Chromium Next GEM Single Cell Multiome ATAC + Gene 
Expression Reagent Kit user guide and demonstrated protocol—Nuclei 
Isolation for Single Cell Multiome ATAC + Gene Expression Sequenc-
ing. In brief, 200,000 cells (viability 95%) were lysed for 4 minutes and 
resuspended in diluted nuclei buffer (10x Genomics, PN-2000207). 
Lysis efficiency and nuclei concentration were evaluated on a Countess 
II Automatic Cell Counter by trypan blue staining. In total, 9,660 nuclei 
were loaded per transposition reaction, targeting recovery of 6,000 
nuclei after encapsulation. After transposition, reaction nuclei were 
encapsulated and barcoded. Next-generation sequencing libraries 
were constructed following the user guide, which were sequenced on 
an Illumina NovaSeq 6000 system.

T-cell-depleted bone marrow cells. Cryopreserved bone marrow 
cells from a healthy donor were purchased from AllCells (ABM007F) 
and stored in vapor phase nitrogen. The sample was immediately 
thawed at 37 °C in a water bath for 2 minutes with gentle shaking, and 
vial contents (1 ml) were transferred to a 50-ml conical tube. To prevent 
osmotic lysis and ensure gradual loss of cryoprotectant, 1 ml of warm 
medium (IMDM with 10% FBS supplement) was added dropwise after 
washing the storage vial while gently shaking the tube. Then, the cell 
suspension was dropwise diluted to 15 ml by the addition of warm 
complete growth medium. The final 15-ml volume of cell suspension 
was pelleted at room temperature, 400g for 5 minutes. After removing 
the supernatant, cells were washed once with 1 ml of Cell Staining Buffer 
(CSB) (BioLegend, 420201), centrifuged again at 400g for 5 minutes 
at 4 °C and resuspended in 100 µl of CSB. Concentration and viability 
were determined with a Countess II Automated Cell Counter using the 
0.4% trypan blue staining method. Cells were incubated with Human 
TruStain FcX (Fc Receptor Blocking Solution) (BioLegend, 422301) 
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for 10 minutes at 4 °C. After blocking, cells were stained with CD3 
monoclonal antibody (UCHT1) (PE-Cyanine7, eBioscience, 25-0038-42) 
1:100 for 20 minutes at 4 °C. Cells were washed twice with CSB before 
fluorescence-activated cell sorting (FACSymphony S6, BD Biosciences) 
where CD3− cells were collected. Sorted cells were concentrated, and 
count and viability were determined with a Countess II Automated Cell 
Counter using trypan blue staining.

Single Cell Multiome ATAC + Gene Expression was performed with 
a 10x Genomics system as described above. In total, 300,000 cells 
(viability 95%) were used, and 16,100 nuclei were loaded per transposi-
tion reaction, targeting recovery of 10,000 nuclei after encapsulation.

We applied standard data processing procedures for both the 
newly generated data and the publicly available datasets. Further 
details are available in Supplementary Note 2.

Application of SEACells
Metacell identification. SEACells was applied with default parameters 
to PBMC and CD34+ bone marrow datasets. The numbers of metacells 
were chosen as outlined in the ‘Note about number of metacells’ sub-
section, resulting in (1) 100 PBMC multiome, (2) 85 CD34 bone marrow 
multiome, (3) 100 T-cell-depleted bone marrow multiome and (4) 270 
bone marrow mononuclear cell scATAC-seq metacells. SEACells was 
applied separately for the RNA and ATAC modalities of each multiome 
dataset using the PCA and SVD representations, respectively. Metacell 
raw counts for different datasets were determined as described in the 
‘Metacell construction’ subsection. Metacell counts were normalized 
as described in the ‘Metacell annotation and normalization’ subsection.

Comparison of metacells from two modalities using PBMC multi-
ome data. We used the paired nature of multiome data to determine 
how consistently metacells were identified between the two modali-
ties. The clearly separated cell types in the PBMC multiome dataset 
were used for this analysis to verify whether relationships between 
metacells within and across cell types were consistent between the 
two data modalities. We checked whether single-cell groups derived 
using the ATAC modality could be applied to the RNA modality and 
retain cell type consistency.

We first computed the aggregated RNA metacell matrix and then a 
second aggregated gene expression using the single-cell groups from 
the ATAC modality instead of the RNA modality. We jointly normal-
ized the two aggregated matrices, identified highly variable genes, 
computed PCs and visualized data using UMAPs (Supplementary  
Fig. 3a). No batch correction was used for this analysis. We repeated 
the same procedure using aggregated peak counts from ATAC and RNA 
metacells (Supplementary Fig. 3b).

Peak calling, gene scores and gene accessibility in the CD34+ 
bone marrow dataset. Peak calling, peak–gene associations, gene 
score computation and gene accessibility scores were determined as 
described in the ‘Toolkit for scATAC analysis’ subsection.

Because only scATAC is available for the bone marrow mononu-
clear cell dataset, peak–gene associations identified using the CD34 
multiome dataset were used for the gene accessibility analysis.

Robustness of SEACells algorithm
Owing to its more challenging continuous nature, we used the CD34 
bone marrow data to assess the robustness of the SEACells algorithm.

Robustness to different initializations. Because the maximum–mini-
mum sampling procedure relies on a random seed, we first tested the 
robustness of SEACells to different initializations. We compared the 
consistency of cluster labels across runs using the NMI score18, which is 
widely used to quantitatively evaluate the accuracy of clustering algo-
rithms. We computed the NMI score (using the sklearn implementation 
sklearn.metrics.normalized_mutual_info_score) across five random 

initializations and found that the NMI score is generally 0.8 or higher 
(1 is best) across all datasets (Supplementary Fig. 6a).

Robustness to different numbers of metacells. The robustness to 
number of metacells was determined using the CD34+ RNA modality 
and NMI score, according to the same procedures outlined above 
(Supplementary Fig. 6b). We generally find strong reproducibility in 
SEACells assignment across varying numbers of SEACells.

Sensitivity of SEACells to detect rare cell types. To systematically 
assess the sensitivity of SEACells to capture rare cell states, we per-
formed a downsampling experiment using the mouse gastrulation 
dataset from ref. 19. We subsampled different fractions of endothe-
lial cells from the data while retaining all other cells and applied our 
SEACells algorithm to compute metacells. Specifically, we retained 
all endothelial cells (1,084, or 0.7% of total cells) or subsampled the 
endothelial cells such that they are 0.5% or 0.2% of total cells.

After the application of SEACells, we examined all metacells in 
which endothelial cells constituted at least 50% of the cells that define 
that metacell (Extended Data Fig. 2b). The recovery of the rare cell type 
is contingent on specifying the appropriate number of metacells to 
be recovered. To ensure that we detect rare populations at frequency 
0.002, for example, we run SEACells with the parameter that each 
metacell contains, on average, 0.002 of the total cells in the popula-
tion. Therefore, for the rarest population that contains approximately 
230 cells, we search for at least 500 SEACells, or one metacell for every 
230 cells.

Comparison of RNA metacells surface protein cell states. After 
application of SEACells, cell type purity was measured for each meta-
cell using annotations from antibody-derived tag (ADT) data. Cell 
type purity is defined as the frequency of the most represented cell 
type in the metacell. SEACells metacell purities were compared to the 
metacells derived from the updated MetaCell-2 (ref. 10) algorithm for 
both coarse and fine resolution cell types using the Wilcoxon rank-sum 
test (Extended Data Fig. 6).

Comparison of different metacell approaches using benchmark-
ing metrics. We developed several metrics to evaluate the quality of 
identified metacells and quantify the differences between alterna-
tive metacell approaches. Given that metacells represent distinct cell 
states of the biological system under consideration, inferred metacells 
should (1) be compact, meaning that they exhibit low variability among 
aggregated cells, and that most of this variability is a result of measure-
ment noise, and (2) be well separated from neighboring metacells. 
Metrics that we developed to quantify these features are described in 
Supplementary Note 3.1.

We benchmarked SEACells against MetaCell8, MetaCell-2 (ref. 10)  
and SuperCell69, in addition to data imputation as an alternative 
approach to overcome data sparsity. For each dataset, MetaCell auto-
matically infers the number of metacells and discards outliers. To 
compare faithfully across methods, we used the same number of par-
titions as input to SEACells and SuperCell on the same subset of data. 
MetaCell-2 also automatically determines the number of metacells, 
and we, therefore, used this number, which differed markedly from 
the number determined by MetaCell, to run a separate comparison 
to MetaCell-2. Details about the different metacell methods and their 
benchmarking are available in Supplementary Notes 3.2 and 3.3.

Benchmarking metrics were computed for each metacell for all 
combinations of data modality, dataset and method. Cell type purity 
was used to assess the quality of PBMC metacells. Methods were com-
pared using the Wilcoxon rank-sum test. We note that this test might 
possibly inflate significance due to the dependency between metacells, 
but it nonetheless provides an estimate of the direction of difference. 
Top-performing metacell approaches should have scores that are 
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low on compactness, high on separation and high on cell type purity  
(Fig. 4c, Extended Data Fig. 7 and Supplementary Fig. 14).

We compared the metacell approaches using all metacells and 
separately for metacells in low-density and high-density regions to 
verify that all biologically relevant states are uniformly assessed. We 
once again used diffusion components to quantify the density of cells. 
Distance to the 150th neighbor in a single-cell nearest neighbor graph 
has been demonstrated to be a reasonable approximation for the den-
sity in the high-dimensional space7. We computed the distance to the 
150th neighbor for each single cell using diffusion components. Single 
cells with densities in the upper quartile of distances were designated 
as ‘low-density cells’, and, similarly, those in the lower quartile of dis-
tances were designated as ‘high-density cells’. Analogously, metacells 
containing these low-density cells were designated as low-density 
metacells and vice versa for high-density metacells. The proportion 
of all metacells designated as either low density or high density were 
each capped at 30% of all metacells, and these were used as low-density 
and high-density regions, respectively, for comparisons (Extended 
Data Fig. 7).

Transcriptional regulators of hematopoietic differentiation
Application of Palantir on CD34+ bone marrow data. Palantir4 with 
default parameters was applied to the RNA modality of CD34 bone mar-
row multiome data at single-cell level, with the number of informative 
DCs (n = 7) identified using the eigengap statistic. A CD34-high hemat-
opoietic stem cell was selected as the start cell, and terminal states 
for erythroid, lymphoid, megakaryocyte, monocyte, conventional 
dendritic cell (cDC) and pDC lineages were all set manually. The pseu-
dotime ordering of metacells was computed as the average pseudotime 
ordering of the constituent single cells. The metacells annotated as 
HSC, MEP and erythroid in the CD34+ bone marrow dataset were used 
for TF activity inference.

Gene expression trends. We used scanpy to identify the sets of genes 
that were differentially expressed among cell types in HSC, MEP or 
erythroid (adjusted P < 1 × 10−2, fold change > 1.5), using the union of 
gene sets from these cell types for TF activity inference (Extended 
Data Fig. 4a).

For each gene, expression trends were determined using gener-
alized additive models (GAMs)70. A GAM was fit for gene accessibility 
trend as a function of the Palantir pseudotime for each gene. Expression 
of g in metacell i, ygi, is fit as

ygi = βo + f (τi) ,

where i is a metacell along the relevant lineage, and τi is the Palantir 
pseudotime ordering of metacell i. Cubic splines are used as the 
smoothing functions because they are effective in capturing non-linear 
relationships. The fitted expression for each metacell is z-scored and 
used as input for TF activity inference.

TF activity inference. The TF–target matrix was constructed using 
the subset of peaks that are significantly correlated with the set of 
genes under consideration using metacells (Extended Data Fig. 4b). 
The TF–target matrix using single-cell data was too sparse to pro-
vide meaningful inputs (Extended Data Fig. 4c). Lasso regression was 
performed on a metacell-by-metacell basis to infer the TF activities 
(Extended Data Fig. 4d). Total activities across all erythroid metacells 
were used to rank the TFs.

The results of TF activity inference based on metacells was 
compared to the results based on the TF–target matrix using cell- 
type-specific peaks. DESeq2 (ref. 71) was used to identify cell-type- 
specific peaks (adjusted P < 0.01, fold change > 1.5) by compar-
ing metacells of one cell type with all other metacells. We used the  
procedure in the ‘Inference of transcription factor activity using 

metacells’ subsection to construct a cell-type-specific TF–target 
matrix, which was used to predict gene expression per metacell 
(Extended Data Fig. 4e).

Application to T-cell-depleted bone marrow data. The procedure 
used for the CD34 bone marrow dataset was also used to identify TF 
activities in the T-cell-depleted bone marrow dataset by selecting the 
subset of metacells belonging to erythroid, B cell and monocyte line-
ages (Supplementary Fig. 10). The characterization of hematopoietic 
dynamics is described in Supplementary Note 4.

SEACells application to COVID-19 samples and data 
integration

Comparison of healthy individuals and patients with critical 
COVID-19. SEACells. SEACells metacells were computed separately 
for each sample using approximately one metacell for every 75 single 
cells, following the procedure described in the ‘Note about number 
of metacells’ subsection. After metacell identification, an aggregated 
metacell-by-gene expression matrix was computed for each sample.

Mapping of SEACells metacells between individuals. We mapped 
metacells across patients to determine consistency. For each pair of 
patients, Harmony45-corrected metacell PCs were used to compute 
the top ten DCs, which were used for downstream analysis. For each 
metacell in a patient, nearest metacell neighbors from the second 
patient were computed. Two metacells from different patients were 
considered equivalent if they were mutually in each other’s top two 
nearest neighbors (Supplementary Fig. 18a,b). We quantified the 
comparison for each pair of samples by computing the proportion of 
mapped metacells with matching cell types (Supplementary Fig. 18c).

Batch correction with metacells. Combining metacells across all 
samples highlighted the batch effects (Extended Data Fig. 9b). Har-
mony45 was used to perform batch correction of metacells across the 
40 samples using metacell-aggregated gene expression matrices with 
default parameters. Harmony (scanpy.external.pp.harmony_integrate) 
was applied to the PCs derived from the top 1,500 highly variable genes 
using the sample as the batch covariate.

GSEA to characterize differences between collection sites. After 
batch correction of metacells, we observed that CD4+ T cells continued 
to be separated by collection site. We performed differential expression 
between CD4+ T metacells collected at different sites and applied gene 
set analysis72 using curated T-cell-relevant gene sets to explore whether 
the observed differences reflect differences in underlying biology 
(Supplementary Table 1). The normalized enrichment scores were calcu-
lated for each T-cell-relevant pathway across collection sites (Extended 
Data Fig. 9d). In particular, samples from Cambridge are significantly 
enriched (P < 0.05) for genes implicated in SASP signaling (top genes 
include Il1B, CCL2 and IIFNG) and TCR activation pathway (top genes 
include GADD45G and EGR1); samples from the Sanger site are uniquely 
enriched (P < 0.05) for hypoxia response (top genes include SIAH2 and 
PNRC1), NOD-like receptor signaling (top genes include NFKB1, MAPK14 
and CHUK) and glutathione metabolism (top genes include HAGH, GGT1 
and PRDX1); and samples from the Newcastle site are enriched (P < 0.05) 
for genes implicated in JAK-STAT signaling (top genes include IFNAR2, 
IL2RG, IRF9, JAK3 and STAT3), mitophagy (top genes include CDC37 and 
SQSTM1) and oxidative phosphorylation (top genes include NDUFB8, 
ATP5PO, FXN and NDUFA7), among others (Extended Data Fig. 9d). These 
pathways are critical determinants of T cell state and demonstrate that 
samples across batches encode biological differences.

Single-cell batch correction. Single-cell batch correction was per-
formed using Harmony45 with default parameters for the analysis in 
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Extended Data Fig. 9 and Extended Data Fig. 10d–f. In total, 1,500 highly 
variable genes were used for all the analyses, and the sample was used 
as the batch covariate.

Differential abundance testing of cell states between healthy indi-
viduals and patients with COVID-19. By aggregating single cells that 
most likely differ due to technical noise, metacells provide a robust 
segmentation of the data. Metacells are, thus, more robust entities 
compared to single cells and provide a concrete baseline to infer altered 
cell state abundances across conditions (Extended Data Fig. 9).

Generation of aggregated meta2cells in COVID data. Although map-
ping metacells demonstrates consistency between pairs of individuals, 
the approach does not provide a path to identify similarities and dif-
ferences between healthy individuals and patients with COVID-19. We, 
therefore, devised a procedure for comparison across any number of 
patients to identify enriched and depleted metacells in different condi-
tions (Extended Data Fig. 10a).

We re-computed SEACells metacells using the aggregated and 
batch-corrected metacell count matrices for each sample. These 
second-level metacells, or meta2cells, therefore contain metacells 
across healthy and critical patient samples. To compute meta2cells, we 
ran the algorithm asking for approximately one meta2cell for every ten 
metacells, because the dataset was already highly summarized in the 
first round of aggregation.

To summarize the cell type annotations of cells in a constituent 
meta2cell, the modal cell type of constituent cells was chosen if the purity 
was greater than 80%; otherwise, the cell type was denoted as ‘Mixed’.

Differential abundance of cell states in patients with COVID-19. 
The meta2cells computed across healthy individuals and patients 
with critical disease define cell states, each of which may be more 
strongly associated with health or disease. We computed the propor-
tion of COVID-19 metacells in each meta2cell, providing a measure 
of differential abundance of cell state in patients with COVID-19. We 
then devised a permutation test to assess the significance of these 
differential abundances.

First, the metacell-to-meta2cell assignments were randomly per-
muted. The number of metacells assigned to each meta2cell did not 
change, but the constituent metacells and their associated healthy/
COVID-19 labels were permuted, providing a representative back-
ground distribution. Next, the proportion of metacells derived from 
COVID-19 samples assigned to each meta2cell was computed. This 
procedure was repeated for 5,000 permutation trials, and a null dis-
tribution on COVID-19-enriched metacell proportions was derived 
for each meta2cell. The null distribution was then used to compute a  
P value, and a significant enrichment threshold for cell states in  
COVID-19 was set at P < 0.1.

Gene signatures of enriched cell states. To assess the biological 
distinctions between healthy and diseased meta2cell states, we iden-
tified the differentially expressed genes for each meta2cell by com-
paring against other meta2cells of the same cell type using scanpy.
tl.rank_genes_groups.

Comparison to single-cell data integration approaches. To com-
pare whether the correspondence between T cell phenotypes and 
temporal stages of disease can be recovered using single-cell data 
integration, we applied Harmony45 and scVI46 batch correction at the 
single-cell level using sample as the batch covariate (Extended Data 
Fig. 10d,e). We next computed UMAPs using the batch-corrected PCA 
space (latent space for scVI) and highlighted the cells that constitute 
the three aggregated SEACells (Fig. 6) that show correspondence 
between T cell activation phenotypes and temporal stages of disease 
(Extended Data Fig. 10d,e). ‘Pseudo-metacells’ were defined using 

batch-corrected single-cell data to enable comparison against the 
metacells highlighted in Fig. 6d. We first used the Harmony-corrected 
PCA space (or scVI latent space) to identify the median cell among 
the single cells that constitute each metacell and then computed the 
median cell’s neighborhood (containing 1,078, 1,161 or 1,119 cells, cor-
responding to metacells A, B and C, respectively) and aggregated cells 
within the neighborhood to define pseudo-metacells. Aggregated 
expression of these pseudo-metacells were compared against the 
meta2cell gene expression patterns (Extended Data Fig. 10f).

Comparison to single-cell differential abundance testing. We 
employed the extensively used Milo55 algorithm to perform differential 
abundance testing at the single-cell level and compared the results to 
differential abundance testing using metacells. MiloR typically accepts 
a SingleCellExperiment object as input. However, owing to memory 
constraints in passing raw counts for all 177,242 cells, we provided 
MiloR with the pre-computed batch-corrected PCs, annotated with the 
sample of origin and sample condition. Default parameters as specified 
in the Milo vignettes were then used to compute neighborhoods as well 
as their differential abundances. All neighborhoods with at least 80% 
CD4+ cell type purity were selected for downstream analysis, yielding 
276 neighborhoods.

Gene signatures identified in the SEACells metacells of interest 
were used to compute a gene signature score for each MiloR neigh-
borhood. The gene signature score was computed for each cell by 
summing across the expression z-scores of the signature genes. Gene 
signature scores at the neighborhood level were computed by averag-
ing the scores of single cells that constitute the neighborhood. To assess 
whether the cell states highlighted in Fig. 6d could be identified using 
differential abundance testing at single-cell level, we compared the 
Milo neighborhood gene signature scores with the gene scores derived 
using SEACells meta2cell (Extended Data Fig. 10g,h).

SEACells application to the full COVID-19 atlas. As with the healthy 
and critical COVID-19 sample analyses, SEACells was applied to each 
sample separately by requesting a metacell for every 75 cells, resulting 
in a total of 8,092 metacells. Harmony batch correction was applied at 
the metacell level using the site as the batch covariate. We wanted to 
evaluate cell type purity and the mixing of cell types in each metacell 
neighborhood to assess the effectiveness of batch correction. For 
cell type purity, we employed the same steps as described in the ‘Met-
rics for metacell benchmarking’ subsection. For cell type mixing, we 
computed the distribution of different cell types within each of the 
metacell neighborhoods (defined as the ten nearest neighbors on the 
Harmony-corrected PCA space) to compute Shannon’s entropy for each 
cell, similar to the technique used in ref. 73. The higher the entropy, the 
more mixed the neighborhood of the metacell is, indicating that cell 
types are not grouped together after batch correction.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The CD34 bone marrow and T-cell-depleted bone marrow multiome 
datasets are available on the Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200046). Filtered and 
processed count matrices, including cell type annotations and ATAC 
fragment files, are available on Zenodo at https://doi.org/10.5281/
zenodo.6383269 (ref. 74). The following publicly available data-
sets were used in the manuscript: 10x PBMC Multiome17, 10x PBMC 
CITE-seq37, scRNA-seq of lung adenocarcinoma (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE123904)36 and mouse gas-
trulation atlas (https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-6967)19.
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Code availability
SEACells is available as a Python module at https://github.com/
dpeerlab/SEACells (ref. 75). Jupyter notebooks detailing the use of 
SEACells, including metacell identification, aggregation and the ATAC 
pre-processing, and the gene regulatory toolkit are available at https://
github.com/dpeerlab/SEACells/tree/main/notebooks. Jupyter note-
books to reproduce figures in the manuscript are available at https://
github.com/dpeerlab/SEACellsReproducibility. Modified ArchR pipe-
line for peak calling using NFR fragments is available at https://github.
com/dpeerlab/ArchR.
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Extended Data Fig. 1 | Kernel archetypal analysis to identify metacells.  
A. The kernel matrix (left) is decomposed into two the archetype matrix B and 
embedding matrix A. Metacell membership is identified based on column-wise 
maximal values across the matrix A. Right: The kernel matrix but ordered by 
metacell assignment. B. Standard archetypal analysis which uses linear convex 
hull approximation leads to identification of archetypes at the boundaries with 
no archetypes in internal regions of the manifold (highlighted region). C. The use 

of cell-cell similarity kernels to describe single-cell data casts highly similar cells 
into tiny clusters along a cone emanating from the origin. D. Kernel archetypal 
analysis opens up the interior regions and thus archetypes are identified across 
the manifold. E. The greater number of archetypes that result from kernel 
archetypal analysis, in addition to the use of a Gaussian kernel, creates a large 
number of highly similar cell ‘pockets’, each representing a unique biological 
state.
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B. Bar plots showing the cell-type composition of metacells containing at least 50% endothelial cells with various subsampling of endothelial cells from the mouse 
gastrulation data.
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Extended Data Fig. 3 | Comparison of ATAC gene scores using SEACells 
metacells and single cells. A. Relationship between metacell-aggregated gene 
expression and ATAC gene scores for a selection of key hematopoietic genes, 
computed on the CD34+ multiome data (Metacells computed on ATAC modality). 
Gene scores for metacells were computed by aggregating peaks that correlate 
significantly with expression. Spearman correlations appear next to the gene 

symbol. B. Same as in (A), but at single-cell level. Gene scores for single-cell data 
were computed using ArchR. C. Spearman correlations between gene expression 
and ATAC gene scores, plotted for metacells against single cells. Genes are 
colored by density. D. Correlation between scVI2-imputed gene expression and 
gene scores derived following peakVI3 imputation of peak accessibility for the 
genes in (A).
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Extended Data Fig. 4 | Inference of TF activities along erythroid lineage.  
A. z-scored expression of erythroid lineage metacells. The gene set was 
determined using differential expression between cell-types at the single-cell 
level. Each column represents a metacell along the erythroid lineage. B. TF-target 
matrix for SPI, SPIB, GATA1 and GATA2 for the same set of genes in (A). C. Same as 

(B), using the peak-gene associations derived using single cells. D. TF activities 
derived by applying the lasso regression approach (Methods) to the metacell 
derived TF-target matrix. E. TF activities derived by applying the lasso regression 
approach (Methods) to a TF-target matrix derived using cell-type-specific peaks.
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Extended Data Fig. 5 | Single-cell chromVAR scores for T-cell subsets.  
A. RNA and ATAC UMAPs of the T-cell subset from the PBMC multiome dataset.  
B. UMAPs derived from chromVAR scores computed using single cells or metacell 
aggregates. All peaks were used for chromVAR analysis. Metacell chromVAR 
scores accurately recapitulate differences between T-cell subsets, whereas single-
cell chromVAR scores fail to distinguish CD4+ and CD8+ T-cells. C. chromVAR 

score distributions can be used to identify key TFs that define different T-cell 
compartments. Each dot represents a TF. X-axis shows the difference between 
SEACells metacell chromVAR scores between the two CD8+ compartments. Y-axis 
shows the difference between SEACells metacell chromVAR scores between the 
two CD4+ compartments. D. UMAPs of T-cell subsets from PBMC multiome data 
(as in B) colored by single-cell chromVAR scores of key T-cell factors.
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Extended Data Fig. 6 | Comparison of RNA metacells to surface protein 
defined cell-types. A. Metacell cell-type purity (fraction of the maximally 
represented cell-type amongst the cells assigned to a metacell) computed by 
different methods on PBMC data. Wilcoxon rank-sum test was used to assess  
the significance of differences (** 0.001 < P < 0.01, *** 0.0001 < P < 0.0001,  
**** P < 0.0001). B. Left: UMAPs of 10x Genomics PBMC CITE-seq dataset5,  
colored by coarse cell-types. Right: Comparison of cell-type purity between 

SEACells and MetaCell-2 metacells. Metacells were identified using the RNA 
modality whereas cell types were determined using cell-surface protein profiles. 
C. Same as (A), for finer resolution cell-types. Box plots display median, 25th(Q1) 
and 75th (Q3) percentiles; whiskers extend to the furthest datapoint within 
the range 1.5 *(Q3-Q1); points beyond that are denoted as outliers. Number of 
metacells = 109.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Performance of different approaches in achieving 
metacell compactness and separation. A. Metacell compactness (average 
diffusion component standard deviation; Methods) measured in the ATAC 
modality of CD34+ and PBMC multiome data. A lower score indicates more 
compact metacells. Number of metacells = 86 (CD34), 98 (PBMC). B. Metacell 
separation (distance between nearest metacell neighbor in diffusion space; 
Methods) measured in the ATAC modality of CD34+ and PBMC multiome data. 
Larger separation indicates better performance. Number of metacells = 86 
(CD34), 98 (PBMC). C. Metacell compactness measured in the RNA modality of 

CD34+ and PBMC multiome data. Number of metacells = 65 (CD34), 98 (PBMC).  
D. Metacell separation measured in the RNA modality of CD34+ and PBMC 
multiome data. Larger separation indicates better performance. Number of 
metacells = 65 (CD34), 98 (PBMC). Comparisons were carried out on all metacells, 
or metacells in low-density or high-density regions. Two-sided Wilcoxon rank-
sum test; ns: P > 0.05, * 0.01 < P < 0.05, ** 0.001 < P < 0.01, *** 0.0001 < P < 0.0001, 
**** P < 0.0001. Box plots display median, 25th(Q1) and 75th (Q3) percentiles; 
whiskers extend to the furthest datapoint within the range 1.5 *(Q3-Q1); points 
beyond that are denoted as outliers.
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metacell ATAC fragments (green), open peaks called using Poisson statistics on ATAC fragments from all cells in the sample (red), and the intersection set (orange). 
 De novo peak calling always leads to fewer peaks.
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Extended Data Fig. 9 | Large-scale data integration using SEACells. A. UMAPs 
of single-cell data from healthy donors and critical COVID-19 patients before 
(left) and after (right) batch correction and data integration using Harmony4. 
B. Same as (A) for SEACells metacells instead of single cells. C. Cumulative 

distribution showing the entropy of samples among 10 nearest neighbors before 
integration (left) and after integration (right). D. GSEA normalized enrichment 
scores for each T-cell pathway (Supplementary Table 1) for differentially 
expressed genes among CD4+ T cells from different sites of sample collection.
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Extended Data Fig. 10 | Metacell aggregates enable comparison across 
conditions. A. Workflow used to generate metacell aggregates, or meta2cells, 
that span across healthy and COVID-19 samples. B. UMAPs showing meta2cells, 
colored by cell type. C. Same as (B), colored by percentage of cells derived from 
COVID-19 patients. D. Left: Single-cell UMAPs of the healthy and COVID-19 
samples following Harmony4 integration. UMAPs on the right illustrate the UMAP 
region with the T-cell subsets and the cells constituting meta2cells highlighted in 
Fig. 6D. E. Same as (D), with UMAPs derived using scVI5 latent space. F. Expression 
patterns of key T-cell defining genes in meta2cells from Fig. 6D, pseudo-metacells 
derived using Harmony and scVI. Pseudo-metacells were derived using a 

neighborhood of 1078, 1161, and 1119 cells for metacells A, B and C respectively 
from the median position of batch-corrected low-dimensional space (see 
Methods). G, H. Gene signature scores for the CD4+ metacells in Fig. 6D. Violin 
plots represent signature scores for Milo neighborhoods, solid dots represent 
scores for the SEACells metacells. Scores are computed for all CD4+ T-cell Milo 
neighborhoods (G) and for the subset of neighborhoods enriched in COVID-19 
(H). Number of metacells = 276. Violin plots display median, 25th(Q1) and 75th (Q3) 
percentiles; whiskers extend to the furthest datapoint within the range 1.5 *(Q3-
Q1); points beyond that are denoted as outliers.
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