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Deconvolution of clinical variance in 
CAR-T cell pharmacology and response

Daniel C. Kirouac    1 , Cole Zmurchok1,3, Avisek Deyati1,3, Jordan Sicherman    1, 
Chris Bond1 & Peter W. Zandstra1,2

Chimeric antigen receptor T cell (CAR-T) expansion and persistence vary 
widely among patients and predict both efficacy and toxicity. However, the 
mechanisms underlying clinical outcomes and patient variability are poorly 
defined. In this study, we developed a mathematical description of T cell 
responses wherein transitions among memory, effector and exhausted 
T cell states are coordinately regulated by tumor antigen engagement. 
The model is trained using clinical data from CAR-T products in different 
hematological malignancies and identifies cell-intrinsic differences in 
the turnover rate of memory cells and cytotoxic potency of effectors as 
the primary determinants of clinical response. Using a machine learning 
workflow, we demonstrate that product-intrinsic differences can accurately 
predict patient outcomes based on pre-infusion transcriptomes, and 
additional pharmacological variance arises from cellular interactions with 
patient tumors. We found that transcriptional signatures outperform 
T cell immunophenotyping as predictive of clinical response for two 
CD19-targeted CAR-T products in three indications, enabling a new phase of 
predictive CAR-T product development.

Chimeric antigen receptor T cells (CAR-Ts) have shown remarkable 
activity in the treatment of B cell malignancies1. With six approved 
therapies and hundreds in clinical development for other hemato-
logical and solid tumors, genetically engineered T cells represent a 
therapeutic modality changing the drug development landscape2. 
However, T cells bring unique challenges to therapeutic development. 
These so-called ‘living drugs’ proliferate, differentiate, actively traffic 
between tissues and engage in two-way communication with the patient 
immune system. The resultant pharmacology is different from that 
of small molecules or biologics, as there is little relationship between 
administered dose and exposure2.

The cellular kinetics (pharmacokinetics) of circulating CAR-Ts are 
characterized by three distinct phases: initial expansion, followed by 
a rapid contraction and then slow, long-term decay3. The degree of 
cell expansion (Cmax) and long-term exposure (area under the curve 
(AUC)) vary widely among patients (approximtely three orders of 
magnitude) and are predictive of both efficacy (tumor size reduction) 
and toxicity4. However, the product-intrinsic and host-intrinsic factors 

mediating this pharmacology remain poorly defined. An empirical, 
non-linear mixed-effects model was developed to quantify the phar-
macokinetics of Kymriah (tisagenlecleul, CTL019)5 and provided as 
part of the biologics license application (BLA)4. This formulation has 
proven applicable to multiple other CAR-T therapies in a variety of 
indications6 and has been adopted by the FDA for benchmarking7,8. 
Although a useful tool for quantifying clinical data, the empirical 
equations do not account for the underlying biology and, thus, are 
of limited value in simulating the effects of alternate CAR-T designs, 
cell sources or treatment regimens. A mathematical model capable 
of quantitatively describing clinical data that is also based on sound 
biological mechanisms would be useful for the development of novel 
CAR-T products, as systems pharmacology modeling has proven for 
other therapeutic modalities9.

Mathematical models of T cell–tumor interactions have a long his-
tory7 and have been adapted to describe various aspects of CAR-T phar-
macology, such as antigen binding8,10, intercellular signaling11 cytokine 
release12, tissue distribution13 and competition with host T cells for 
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were estimated 12 times per patient group. Although parameters are 
non-identifiable (Supplementary Information), the clinical data were 
captured with good accuracy (Supplementary Fig. 5).

Biological mechanisms differentiating CR, PR and NR 
populations
To decipher the biological mechanisms underlying the differing patient 
response profiles, parameter estimates from the three patient popula-
tions were first decomposed into principal components (PCs) (Fig. 1c).  
Note that the three populations form relatively distinct clusters in 
parameter space, wherein the x axis depicting PC1 (accounting for 
35.3% of the variance) separates virtual patients by response, and 
the y axis depicting PC2 (accounting for 21.7% of the variance) sepa-
rates CR and NR groups from PRs. Examining the coefficients of PC1  
(Fig. 1d), the lowest value (associated with NR) is TK50 (cytotoxic 
potency of effectors), and the largest positive contributions (associated 
with CR) is memory and effector cell turnover (proliferation and death 
rates; μM, dM and dE2). That is, in responding patients, CAR-T effectors 
lyse target tumor cells much more efficiently, and both memory and 
effector cells cycle at a higher rate. These findings are consistent with 
local parameter sensitivity analysis (Supplementary Fig. 6).

It is established that frequency of memory cells in CAR-T infusion 
products, as assessed by standard T cell immunophenotyping, is pre-
dictive of clinical response19,20. This was one of the primary conclusions 
of Fraietta et. al.18. However, the PC1 loadings (Fig. 1d) suggest that 
cell-intrinsic differences in memory cell function (μM and dM) rather 
than frequency (fTm) are more important determinants of response. To 
discern the importance of memory cell frequency versus function, we 
preformed two experiments. First, we attempted to fit the data under 
the hypothesis that the only difference between CR/PR/NR popula-
tions was the composition of the product (frequency of TM, TE and TX 
cells), whereas the cell-intrinsic kinetic parameters are conserved 
(Supplementary Fig. 7). The model does capture differences in phar-
macokinetics and tumor dynamics between the populations, and the 
inferred CAR-T product composition is consistent with that reported 
by Fraietta et al.18. However, the magnitude of differences between 
the populations cannot be fully explained by this hypothesis. That is, 
CAR-T cell composition as defined by memory and exhausted cell fre-
quencies alone is insufficient to explain the variance in clinical activity.

To directly compare the inferred differences in memory cell func-
tion among CR/PR/NR groups, we simulated a dose-ranging study 
using purified memory cell populations from CR/PR/NR archetypes 
(Supplementary Fig. 8). The CR memory cells produced robust and 
dose-dependent CAR-T expansion, persistence and tumor reduction, 
whereas the NR cells showed very little expansion or anti-tumor activ-
ity, and the PR memory cells display somewhat intermediate function. 
In sum, these results imply that, although memory cell frequency 
in CAR-T infusion products contributes to exposure and response, 
cell-intrinsic features, such as proliferative capacity, are necessary to 
account for the variance clinical outcomes. We next sought to identify 
molecular signatures that underly these cell-intrinsic features and 
resultant clinical variance.

Molecular and cellular features differentiating CR, PR and NR 
populations
To examine the molecular and cellular features underlying these func-
tional differences, we used bulk RNA-seq data from the same trial18 
wherein pre-infusion CAR-T products were sequenced and annotated 
by response category. Differential expression analysis on the CR versus 
NR populations revealed biological features (gene signatures) consist-
ent with inferred functional differences (Supplementary Figs. 9 and 
10). We confirmed findings from the original report and additionally 
found that the CR population is enriched in CD4+ and CD8+ memory cell 
gene signatures (defined by single-cell sequencing of thymic tissue21) 
and display heightened expression of signatures characterizing T cell 

immune system reconstitution14. However, none of the above models 
adequately defines what limits cell expansion nor what underlies the wide 
variability in exposure and tumor response observed among patients15.

Insights can be gleaned by examining T cell dynamics in response 
to viral infection. Upon viral antigen encounter, antigen-specific T cells 
clonally expand and differentiate into cytotoxic effectors, which clear 
infected cells. After elimination of the pathogen, effector cells undergo 
a precipitous contraction phase, and a small percentage survive to 
form long-term memory T cells capable of self-renewal and recall 
responses. However, if the infection fails to resolve, chronic antigen 
stimulation leads to T cell exhaustion, wherein remnant T cells lose the 
ability to produce cytokines, kill target cells or proliferate in response 
to antigen16,17. We hypothesize that an analogous process underlies the 
pharmacology of CAR-Ts.

We tested this hypothesis using a conceptually simple mathemati-
cal model of T cell differentiation control, wherein an antigen-driven 
toggle switch regulates cell fate transitions among memory, effector 
and exhausted T cells. We found that the model is capable of quanti-
tatively describing CAR-T pharmacokinetic and tumor dynamic data 
from multiple clinical trials and deconvolutes biological mechanisms 
underlying clinical variance. Specifically, we identified cell-intrinsic dif-
ferences in the proliferation rate of memory cells and cytotoxic potency 
of effectors as the primary determinants of exposure and response, and 
we confirmed these mathematical inferences via analysis of bulk and 
single-cell RNA sequencing (scRNA-seq) data. Population exposure 
and response predictions were validated against registrational data 
from Kymriah and Yescarta. Furthermore, we demonstrate that these 
cell-intrinsic response-mediating differences originate in the CAR-T 
product using a machine learning workflow that accurately predicts 
patient outcomes using pre-infusion product transcriptomes. We 
found that functional gene signatures outperform standard T cell 
immunophenotyping in predictive accuracy for two CD19-targeted 
CAR-T products in three indications, and we summarize the relative 
expression of these signatures across datasets via a CAR-T response 
scorecard. In summary, the model predicts, de novo, clinical variance 
in exposure, covariates of response and the biological mechanisms 
underlying the pharmacology of CAR-Ts.

Results
Model structure
We consider T cells (and CAR-T products) to comprise three function-
ally distinct cell populations: T memory cells (TM), capable of long-term 
self-renewal and immunological memory; T effectors (TE), responsible 
for target-mediated cell killing; and exhausted T cells (TX), lacking both 
killing potential and proliferative capacity. An antigen-sensing toggle 
switch coordinately regulates the decision of memory cells to self-renew 
versus differentiate, the rate of effector proliferation, exhaustion and 
the rate of memory cell regeneration from effectors (Methods). This 
represents a conceptually simple yet biologically sound description 
of T cell function and regulatory control in response to immunological 
need, as determined by systemic antigen burden (Fig. 1a).

Model parameterization: patients with CLL treated with 
Kymriah and grouped by response
We first sought to determine whether the mathematical description 
of T cell regulatory control could quantitatively capture characteris-
tic CAR-T pharmacokinetic and tumor dynamic profiles and whether 
parameter estimates reveal anything about biological underpinnings 
of clinical variability. Fraietta et al.18 reported mean pharmacokinetic 
and tumor dynamic profiles of patients with chronic lymphocytic lym-
phoma (CLL) treated with Kymriah (CTL019, a CD19-targeted CAR-T), 
grouped by complete responders (CRs), partial responders (PRs) and 
non-responders (NRs). We digitized the data (mean ± s.d.) and used 
particle swarm optimization (PSO) to estimate model parameters 
characterizing the three population archetypes (Fig. 1b). Parameters 
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proliferation, effector cytokine (interferon) signaling and IL2RB, IL7 
and JAK/STAT signaling (defined by curated pathway databases22–24). 
CAR-T cells from NR patients show heightened p53 (ref. 25) and DNA 
damage26 signaling, pathways that may underly the proliferative deficit.

Single-sample gene set enrichment analysis (ssGSEA) was subse-
quently used to examine distribution of the pathway and cell signatures 
in individual samples. The CR population is significantly enriched in 
the ‘non-exhausted T cell’ signature (Fig. 2a), consistent with simula-
tions, wherein the fraction of non-exhausted cells at day 60 (peak of 
anti-tumor effects) is significantly higher in the CR group (Fig. 2b), 
whereas cells from the NR patients rapidly progress to exhaustion (Sup-
plementary Fig. 11). The simulations also align with clinical reports that 
CAR-T products that fail to expand in vivo show heightened expression 
of exhaustion markers LAG3 and PD1 (ref. 27).

We found that CRs are differentially enriched in both CD8+ and CD4+ 
memory T cell signatures (Fig. 2c,d), consistent with the necessity of 
memory cells for mediating sustained responses28. Note, however, that 
bulk sequencing data cannot resolve cell population frequencies nor 

discern between transcriptionally similar versus co-varying cell types 
(Supplementary Fig. 12). That is, CR products may have higher frequen-
cies of CD4+ and CD8+ memory cells or may contain cells with more 
‘memory-like’ transcriptomes at similar frequencies. The CR population 
also shows heightened IL2RB and IL7R signaling (Fig. 2e,f), indicating 
that the CR cell products may show heightened sensitivity to the cor-
respondent cytokines. Notably, IL2 and IL7 are common components of 
CAR-T expansion media29, and peak serum IL7 concentration is predictive 
of CD19 CAR-T exposure and progression-free survival30. Although the 
results shown in Fig. 2 are statistically significant, the ssGSEA distribu-
tions overlap between response categories. Thus, in addition to the 
limitations of bulk sequencing data, none of the gene signatures assessed 
could serve as univariable predictors of patient response.

Cell-intrinsic functional differences mediating CAR-T clinical 
response
To deconvolute the role of cell frequency versus function in mediat-
ing response, we leveraged two recently published clinical studies 
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Fig. 1 | An antigen toggle switch model of T cell regulation quantitatively 
describes pharmacokinetics/pharmacodynamics behavior of CR, PR and 
NR patient population response to Kymriah in CLL. a, Cartoon depiction of 
the model structure, comprising three populations of T cells—T memory cells 
(TM), T effector cells (TE1 and TE2) and exhausted T cells (TX)—and B cell tumors (B). 
Tumor cells express B cell antigen (BA), which stimulates T cell proliferation and 
differentiation and inhibits the formation of T memory cells. b, We fit the model 
to published pharmacokinetics/pharmacodynamics profiles separated  
by response category (CR/PR/NR) from Fraietta et al.18 using PSO. Model fits 

(curves: mean of 12 parameter sets; dark shaded areas: middle 90%) agree with 
both CAR-T and B cell tumor dynamics over time (dots: mean data; light shaded 
areas: range of data) for each of the three prototypic populations. c, PCA plot of 
the logarithm of the best-fitting parameters colored by population. PC1  
captures 35.3% of the variability, and PC2 captures 21.7% of the variability.  
d, Sorted PC1 coefficients suggest that TK50 (highlighted pink bar) and kkill, μM 
and dM (highlighted blue bars) are the largest sources of variation between CR 
and NR populations. These parameters correspond to cytotoxic potency, tumor 
cell lysis rate, memory cell proliferation and death rates, respectively.
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containing scRNA-seq data of pre-infusion, autologous CD19 CAR-T 
products matched with clinical outcomes. Bai et al.31 reported data 
for 12 patients with acute lymphoblastic leukemia (ALL) treated with 
a CD19 CAR-T product analogous to Kymriah—five CRs, two NRs and 
five patients who relapsed (RL). Haradhvala et al.32 reported data for 32 
patients with large B cell lymphoma (LBCL) treated with either Kymriah 
(n = 13) or Yescarta (n = 19). For the Kymriah-treated group, there were 
six CRs and seven NRs; for the Yescarta-treated group, there were 11 
CRs, one PR and seven NRs.

Examination of uniform manifold approximation and projection 
(UMAP) projections of the three datasets (Kymriah in ALL, Kymriah 
in LBCL and Yescarta in LBCL) reveals some separation of response 
categories in transcriptome space, particularly in ALL (Fig. 3a,d,g). 
To assess whether response separation is attributable to differences 
in T cell composition, we assigned cell type labels by mapping expres-
sion profiles of the individual cells to annotated tumor-infiltrating 
lymphocyte populations via ProjecTILs33. Most CD8+ cells in all three 
datasets are classified as T effector memory (Tem) or T exhausted (Tex), 
but there are no consistent differences in composition by response 

category (Supplementary Fig. 13a–c). For example, the frequency 
of cells annotated as exhausted is significantly higher in the NR/RL 
categories as compared to CR in the ALL data (P < 0.05, mean 4.4% 
versus 8.7%, respectively; Fig. 3b,e,h). However, this pattern does not 
hold for the LBCL data, and the modest effect size is insufficient to 
account for the vast disparity in clinical outcomes. We used the cellular 
indexing of transcriptomes and epitopes by sequencing (CITE-seq) anti-
body tag data provided by Bai et al.34 to assign early memory (Tmem: 
CD8+CD45RO−CD27+) and exhausted (CD8+PD1+) cell annotations by 
immunophenotype, reported to be predictive of response in CLL18. 
Although exhausted cell annotations by ProjecTILs and immunophe-
notype were notably concordant (6.7% versus 5.9% of total cells), cell 
frequencies did not differ by response category in ALL (Supplementary 
Fig. 13d,e).

To probe cell-intrinsic function, we annotated cells using a ‘CAR-T 
dysfunction’ signature, characteristic of functionally exhausted 
CAR-T cells with reduced proliferative and cytotoxic capacity35. Visually, 
the dysfunction signature is dispersed throughout response categories 
and not restricted to exhausted regions (Fig. 3g,h,i). Interrogating 
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cell-intrinsic functional differences at a deeper resolution, we per-
formed differential gene expression analysis on T sub-cell popula-
tions (annotated both by transcriptome and immunophenotype), 

followed by pathway enrichment for select gene signatures (Fig. 3j). 
As a control, we first assessed differences between cells annotated 
as exhausted versus non-exhausted. Exhausted cells are consistently 
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enriched in the CAR-T dysfunction signature across datasets, whereas 
the ‘exhausted T cell’ and ‘P53 signaling’ signatures appear specific 
to the ALL-exhausted cells. Conversely, non-exhausted cells show 
disparate enrichment for the ‘early memory T cell’ signature as well as 
cytokine production and inflammatory response signatures, hallmarks 
of T cell functional potency.

Comparing cell populations from the CR versus NR/PR/RL cat-
egories reveals a consistent pattern across datasets. Focusing either 
on effector memory or early memory (CD8+CD45RA−CD27+) subsets, 
the NR/PR/RL groups display characteristic features of exhaustion. In 
particular, the CAR-T dysfunction signature is consistently heightened. 
The CR cell populations conversely show increased expression of early 
memory and/or T cell functional signatures (cytokine production and 
inflammatory response). That is, memory and effector cell popula-
tions from CAR-T products resulting in CR appear more functional 
or ‘memory-like’, whereas the same cell populations from NR/PR/RL 
categories appear more exhausted. The single-cell data, thus, confirm 
inferences from the model in separate indications (ALL and LBCL): 
CAR-T infusion products associated with non-durable response display 
deficits in proliferative and functional capacity intrinsic to memory 
and effector cell populations.

Cell-intrinsic attributes predictive of CAR-T response can be 
inferred from pre-infusion product transcriptomes
If CAR-T response is product-intrinsic rather than host-intrinsic, we 
reasoned that the differences in pre-infusion product transcriptomes 
could be predictive of response. Moreover, comparing response 
classifiers based on cell-intrinsic function (transcriptome) versus 
cell composition (T cell phenotype) could help elucidate which 
product-intrinsic feature is more clinically relevant. We used the bulk 
RNA-seq data from Fraietta et al.18 to develop a multivariate transcrip-
tome classifier. Starting with the 28 pathways that were differentially 
expressed between the CR versus NR groups (false discovery rate 
(FDR)-adjusted P < 0.05; Supplementary Information), we trained 
a logistic regression-based classifier using a genetic algorithm for 
feature selection (Methods).

The resultant model was able to predictively distinguish CAR-T 
products from CR versus NR patients, with a median cross-validated 
accuracy of 90% based on a train:test split of 60:40 (Fig. 4a). As com-
parison, we trained and assessed classifiers using the early memory 
(CD8+CD45RO−CD27+) and exhausted (CD8+PD1+LAG3+) cell frequen-
cies as reported18 (Supplementary Fig. 13d). The resulting accuracies 
(80% and 83%, respectively) are significantly better than chance but 
less so than that achieved using functional transcriptomes (P < 10−15 
and P = 6 × 10−11, respectively). The gene signature panel thus reveals 
clinical functionality to an extent not apparent from immunotyping, 
implying that transcriptomes yield more value as CAR-T product char-
acterization assays than current best-practice flow cytometry panels.

To assess whether these findings translated across datasets and 
indications, we applied the same workflow to pseudo-bulked single-cell 
data from Bai et al.34 (Kymriah in ALL) and Haradhvala et al.32 (Kymriah 
and Yescarta in LBCL). For the Bai et al.34 data (Kymriah in ALL), we com-
pared accuracy of classifying CR versus NR/RL groups using the 28-gene 
signature panel to a bivariate classifier trained using the early memory 
(CD8+CD45RO−CD27+) and exhausted (CD8+PD1+) immunophenotype 
frequencies calculated from CITE-seq antibody tags (Supplementary 
Fig. 13d). Median accuracy of the transcriptome classifier was 80%, less 
(as expected) than before but better than that achieved by T cell immu-
nophenotyping (47%, P < 10−15; Fig. 4b). We similarly assessed predictive 
accuracy using the LBCL data from Haradhvala et al.32 separately for 
Kymriah and Yescarta. As no immunophenotype data were provided, 
we compared the transcriptome classifier to bivariate classifiers based 
on estimated T effector memory (Tem) and exhausted cell (Tex) fre-
quencies from ProjecTILs33 annotations (Supplementary Fig. 13b,c). 
Median predictive accuracy of the transcriptome classifier was 80% 

and 71% for Kymriah and Yescarta, respectively, outperforming T cell 
phenotype-based classification in both cases (60% and 67%, P < 10−15; 
Fig. 4c,d). As an additional control, we seeded the classifier with ‘ran-
dom’ pathways by sampling from the compendium of gene signatures 
that were not differentially expressed between CR versus NR groups 
in the CLL data (FDR-adjusted P > 0.05; Methods and Supplementary 
Fig. 14). The resulting accuracies were either slightly better or indistin-
guishable from chance (the ‘null’ model), and all were significantly less 
accurate than predictions arising from the 28-gene signature panel.

Machine learning models are notoriously difficult to interpret. 
To condense the inner workings of the transcriptome classifier into 
interpretable patterns, we created a CAR-T response scorecard  
(Fig. 4e). This summarizes GSEA on the 28 select pathways and fre-
quency of inclusion in the 2,500 trained models across each of the 
four datasets. There is variance in the directionality and statistical 
significance of the signatures between datasets, as would be expected. 
These represent different diseases, CAR-T products and platforms, 
and the data were generated by independent groups. However, the 
overlap is far greater than would be expected by chance (P < 10−5 for all; 
Methods). Notably, the Yescarta LBCL scorecard is visually distinct from 
the three Kymriah scorecards, and the resulting model predictions are 
correspondingly less accurate. This suggests distinct yet overlapping 
biology underlying response between the two products.

In summary, response to two separate CD19 CAR-T therapy prod-
ucts (Kymriah and Yescarta) in three indications (CLL, ALL and LBCL) is 
at least partially predetermined by functional attributes of the CAR-T 
infusion product. These functional attributes are shared across the 
four datasets to varying extents, revealed through gene signatures, 
and not fully apparent from T cell immunophenotyping.

Explaining inter-patient variability in Kymriah 
pharmacokinetics
The pharmacokinetics of Kymriah and other CAR-T products tested in 
clinical trials show high inter-patient variability, with AUCs spanning 
three orders of magnitude4,36,37. Although the transcriptome classifier 
can predictively distinguish response categories, we assessed whether 
our mechanism-based model is explanatory of the additional phar-
macological variability—specifically, whether a mixture of the three 
patient archetypes (CR/PR/NR), combined with reported variation in 
administered dose and initial tumor burden, is sufficient to quantita-
tively account for the observed variance in exposure.

We first overlaid simulations of the CR/PR/NR pharmacokinetic 
profiles with registrational data for Kymriah5. Although these are dif-
ferent patient populations (CLL versus B cell ALL (B-ALL)), the phar-
macokinetics are highly conserved between these two indications6. 
Visually, the CR/PR/NR profiles correspond roughly to the top quartile, 
median and bottom 5% of exposure (Fig. 5a). Thus, the CR/PR/NR 
population archetypes cover much of the pharmacokinetic variation 
but do not fully account for individual patient variability as they were 
fit to population means.

We next assessed the effect of variability in dose and tumor burden 
using a virtual population approach9. We created virtual populations 
(n = 1,000) by Monte Carlo sampling across the parameter sets while 
randomizing dose and tumor burden within reported ranges, either 
alone or in combination, by log-uniform sampling.

The simulated exposures (AUC) for these virtual populations 
span the inter-individual variability of Kymriah (101–104 cells × day / μl; 
Fig. 5b). Variance in either dose or tumor burden is sufficient to cover 
and roughly match the reported variance of exposure within the CR/
PR/NR populations. That is, although the model was fit to population 
mean data assuming fixed tumor burden and dose, relaxing either of 
these input assumptions is sufficient to account for reported variance. 
Similar results are produced by examining the Cmax (Fig. 5c). Grid 
simulations were used to assess how tumor burden and dose drive 
exposure and tumor response (Supplementary Fig. 15), revealing a 
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Fig. 4 | CD19 CAR-T response can be predicted from infusion products using 
an ssGSEA-based transcriptome classifier with better accuracy than T cell 
immunophenotypes. Distribution of predictive accuracies are shown for 
2,500 iterations using 60:40 train:test split cross-validation. Results from the 
transcriptome-based ssGSEA classifier are compared to classifiers (a) based 
on reported T memory (CD8+CD45RO−CD27+) and T exhausted (CD8+PD1+) cell 
frequencies from Fraietta et al.18. b, A bivariate classifier based on calculated  
T memory (CD8+CD45RO−CD27+) and T exhausted (CD8+PD1+) cell frequencies 
from Bai et al.34. c,d, Bivariate classifiers based on T effector memory and 
exhausted cell frequencies from ProjecTILs annotations of Haradhvala et al.32. 

Accuracy distribution resulting from null models (random classification)  
is shown as controls. *** indicates P < 10−15, two-sided rank-sum test.  
e, CAR-T response scorecard, representing the 28 gene signatures fed into the 
transcriptome classifier, ordered by differential GSEA in Fraietta et al.18. Bubble 
size indicates frequency of inclusion in the 2,500 trained models after feature 
selection; color indicates differential enrichment between response groups by 
dataset, based on pseudo-bulked GSEA (score = −1 × sign(NES) × log10P value). 
Red, CR enriched; blue, NR/PR/RL enriched. Gene signatures are annotated by 
source. NES, normalized enrichment score.
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non-linear relationship that likely contributes to the clinical variance. 
Given that the model recapitulates observed variance in exposure, we 
next assessed whether these simulations predict clinical covariates of 
tumor response.

Predicted covariates of response: Cmax and tumor burden
We examined whether the virtual populations could predict a priori 
the reported statistical relationships among cell expansion, tumor bur-
den and clinical response. A thorough analysis of response covariates 
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Fig. 5 | Clinical variability in dose, tumor burden and CR/PR/NR 
pharmacological archetype account for population variance in Kymriah 
exposure and predict clinical covariates of response to Yescarta. a, Shaded 
areas show the clinical variability of exposure to Kymriah5 with median 
model simulations overlaid for the CR, PR and NR populations. b, CAR-T AUC 
distributions. The box plot labeled Kymriah shows the distribution in AUC 
obtained from 1,000 simulations of the clinical pharmacokinetics model (each 
dot corresponds to a percentile of the AUC distribution). The group of box 
plots labeled Model shows the AUC distribution obtained for the 12 best-fitting 
parameter sets for each population (CR, blue; PR, gray; NR, pink) with the colored 
background the range of AUCs obtained from the clinical pharmacokinetics 
data. The group of box plots labeled +Dose shows the AUC distributions for each 
population when doses are randomized within reported ranges in the virtual 
population (n = 1,000); +B0 shows the distributions when initial tumor burdens 
are randomized; and +Dose/B0 shows the distribution when both dose and initial 

tumor burdens are randomized. Box plots represent median ±25th percentiles 
and whiskers the min/max value or an additional 1.5-fold quartile distance.  
c, Cmax distributions plotted as in a. d–f, We defined response to treatment as 
tumor AUC less than 10,000 cells × day / μl and evaluated whether each patient in 
the virtual CR population with randomized doses and tumor burdens (+Dose/B0) 
exhibited a response (black binary data points). Logistic regression with respect 
to the tumor burden (d), Cmax (e) or the quotient of Cmax and tumor burden (f) 
reveals how each predicts response (blue curve indicates model estimate with 
95% confidence intervals). As a control, uniform random sampling of parameter 
space (1,000 parameter sets) does not exhibit these response relationships (gray 
dashed line indicates model estimate with 95% confidence intervals). The clinical 
covariates of response calculated using the virtual population have the same 
trends as published covariates of response to Yescarta (red dotted curves). Note 
that the covariates of response for Yescarta have been linearly scaled to match 
the ranges in the virtual population for plotting.
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to Yescarta in large cell B cell lymphoma (LCBCL) identified the ratio 
of CAR-T expansion to initial tumor burden (that is, Cmax/B0) as the 
strongest correlate of durable response20. The same result was reported 
for overall survival in B-ALL38, indicating that this is a conserved feature 
across indications. The median pharmacokinetics and population 
variance of Yescarta are similar to Kyrmiah (Supplementary Fig. 16).

Focusing on the virtual CR population, we defined response by 
the B cell AUC, set to 104 cells × day / μl (the minimum observed for 
the virtual PR population). We used a logistic regression model linking 
response to initial tumor burden (B0), Cmax or the ratio as predictors 
(Fig. 5d–f). The equivalent logistic curves from Yescarta were digitized 
and overlaid by normalizing the x axes. The results are qualitatively 
consistent with the clinical data, in that these covariates are predic-
tive of response.

To assess whether these predictions emanate directly from the 
model structure or necessitate model training, we created a ‘con-
trol’ virtual population by random sampling of parameter space 
(n = 1,000). This control population did not reproduce the same find-
ings, emphasizing the need for appropriate training data to make 
accurate predictions.

Dose–response implications: patients with multiple myeloma 
treated with Abecma (BCMA-CAR-T)
To better understand the relationship among dose, Cmax and 
tumor response, we applied the modeling framework to a phase 1/2 
dose-escalation study of Abecma (BB2121, idecabtagene vicleucel), 
a BCMA-targeted CAR-T approved for the treatment of multiple mye-
loma39. We again used PSO to estimate model parameters characterizing 
the pharmacokinetics and tumor dynamics (Fig. 6a,b). Although param-
eters are non-identifiable, both were captured with good accuracy 
(Supplementary Fig. 17), and simulations recapitulate the relationship 
between Cmax/Bo and tumor response identified in Fig. 5f for Kyrmiah 
and Yescarta (Supplementary Fig. 18).

The simulations yield insight into the effects of CAR-T dose on 
T cell population dynamics (Fig. 6c–e). The lowest dose (50 million 
cells) was incapable of tumor reduction and resulted in a predom-
inance of exhausted T cells and gradual loss of memory cells. The 
highest dose, for which the greatest degree of tumor reduction was 
observed, produced the opposite response, with minimal exhaustion 
and a high fraction of memory cells. This is analogous to changes in 
T cell composition after acute versus chronic infection and provides 
mechanistic underpinning to the covariates identified above. That is, 
at an insufficient Cmax:tumor burden ratio, due either to low dose or 
expansion capacity, the infused CAR-T population will exhaust before 
clearing tumor.

To assess the predictivity of the model, we compared simulations 
against data from the phase 2 study, wherein patients were treated at 
doses of 150, 300 and 450 million cells and tumor dynamics (BCMA 
levels) were monitored out to 1 year (Fig. 6f,g). Although the pharma-
cokinetics are moderately under-predicted, the tumor dynamics are 
predicted with reasonable accuracy. That is, the phase 2 data (150–450 
million cell doses) fall between the simulated 150 million and 450 mil-
lion cell doses with similar dynamics. This is particularly notable, given 
that the model was trained on data going out to 2 months, whereas 
predictions are extrapolated out to 1 year.

Discussion
Multiple clinical studies have confirmed that robust cell expansion 
after CAR-T infusion is a prerequisite for clinical efficacy3,20,27,38,40,41. 
However, inability to predictively control this pharmacology limits 
their clinical utility. Mechanism-based mathematical models present 
a path forward. When trained using appropriate datasets, such mod-
els enable the inference of underlying biological principles govern-
ing response, enable the ability to generate quantitative predictions 
and ultimately guide therapeutic design. We hypothesized that the 

principles governing T cell dynamics during infection also govern the 
pharmacology of CAR-Ts, and we tested this using a mathematical 
model of T cell regulatory control, conceptually based on an analogy 
to a toggle switch. The model was trained using available clinical phar-
macokinetic and tumor dynamic data, yielding biological insights and 
clinical predictions, some of which have been confirmed and some of 
which remain untested.

First, CAR-T expansion, persistence and anti-tumor response are 
driven by cell-intrinsic rates of turnover of memory T cell populations 
and cytotoxic potency of effectors. Using bulk gene expression data, 
we found that enrichment of memory cell signatures, heightened pro-
liferative and inflammatory signaling and lack of exhaustion markers in 
pre-infusion CAR-T products correlate with response, consistent with 
previous work and model-predicted functional differences. Single-cell 
sequencing data from two additional disease indications and an addi-
tional CD19 CAR-T product confirmed that these differences between 
CR and NR archetypes are intrinsic to memory cell function rather 
than frequency in the infusion products. CAR-T products resulting 
in non-durable response show deficits in proliferative and functional 
capacity characteristic of T cell exhaustion and terminal differentia-
tion, even within immunophenotypically indistinguishable memory 
and effector cell populations. These functional differences were 
inferred from the mathematical model and confirmed via expression 
of a ‘CAR-T dysfunction’ gene signature. We think that CAR-T expansion 
after infusion (that is, Cmax) represents an in vivo readout of memory 
T cell proliferative capacity.

We found that response categories can be accurately predicted 
using pre-infusion product transcriptomes in three indications (CLL, 
ALL and LBCL) and two CD19-targeted products (Kymriah and Yes-
carta). Moreover, transcriptome profiles reveal functional attributes 
not apparent from standard immunophenotyping, and these attributes 
are shared to varying extents among the datasets examined. Nota-
bly, the memory/exhaustion phenotypes identified as predictive of 
response in CLL did not translate to ALL, whereas the gene signature 
panel did. Moreover, if pre-infusion product transcriptomes are predic-
tive of response, this implies that these pharmacological archetypes 
are intrinsic to the infusion product, and, thus, CAR-T efficacy could 
be improved through product design.

A simple, easily implemented molecular signature for effica-
cious (CR-like) CAR-T products would be highly valuable for guid-
ing optimization studies. However, such a product-agnostic and 
indication-agnostic signature remains elusive. Our CAR-T response 
scorecard reveals transcriptional features that are shared to vary-
ing extents among the four datasets. Although there are statistically 
significant similarities, disparate molecular mechanisms appear to 
coordinately mediate clinical outcomes among the three datasets and 
particularly between the two products (Yescarta versus Kymriah). This 
scorecard could serve as a useful tool for CAR-T product optimization, 
despite some caveats that are worth noting. First, the pathways selected 
are derived from the first dataset examined (Kymriah in CLL). It is, thus, 
a visual representation of the workflow rather than a comprehensive 
map of features shared consistently across datasets. Second, the colors 
represent group-level differential pathway enrichment, whereas the 
classifiers were trained on ssGSEA scores. This compression loses 
information about the variance within sample groups, which may be 
important for multivariate classification. The algorithm may, thus, 
select signatures that do not vary significantly at the group level but 
nonetheless contain information (that is, large gray bubbles). Finally, 
many of the signatures make sense biologically (for example, JAK/STAT 
signaling and exhausted T cell) while others less so (for example, EMT 
and xenobiotic metabolism). This is an expected outcome of compar-
ing gene lists against pathway databases—many of the signatures are 
manually curated with inconsistent degrees of validation, and gene lists 
will overlap between biological processes. We provide the underlying 
gene sets in the Supplementary Information.
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Although efforts are underway to improve CAR constructs and cell 
culture media, results are constrained by the autologous starting mate-
rial. Cell-intrinsic differences inferred by the model and highlighted 
in this scorecard may emanate from the variable ‘quality’ of patient 
T cells at harvest42. If this is the case, reproducible manufacturing of 
highly efficacious CAR-T products will require a shift from autologous 
to allogeneic starting material.

We found that pharmacologic archetype, combined with vari-
ability in CAR-T cell dose and initial tumor burden, fully accounts 
for the inter-patient variability in exposure observed in clinical trials 
of Kymriah. The ratio of CAR-T expansion (Cmax) to initial tumor 
burden (B0) quantifies whether the cell product infused is capable 
of clearing tumor, a de novo prediction from the model observed 
in multiple studies of Yescarta20,38. Mechanistically, we predict that 
cell doses insufficient to clear tumor result in exhaustion of the 

CAR-Ts, whereas sufficient doses lead to regeneration of memory 
populations, although no longitudinal phenotyping data are available  
to assess this.

Controlling the clinical variability in cell dose and initial tumor 
burden are more immediately tractable problems than optimizing 
CAR-T cell design. Cell dose has historically been defined by whatever 
comes out of the manufacturing process, and initial tumor burden 
as the remnant cancer cells after lymphodepleting chemotherapy, 
both of which are highly variable among patients. Given consist-
ent quality CAR-T products (for example, those displaying a CR 
class transcriptional signature), model simulations could be used  
to define patient-specific doses based on tumor burden (for 
example, B cell counts) to achieve an optimal balance between  
maximizing tumor reduction and minimizing Cmax-associated  
toxicity (Supplementary Fig. 13).
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Fig. 6 | Model extension to Abecma dose response. a,b, Model training: 
we fit the toggle switch model to phase 1 dose–response data and observed 
good fits, with Pearson correlation coefficients from the goodness-of-fit plots 
(Supplementary Fig. 15) of 0.59 for the CAR-T cells and 0.74 for the tumor.  
c–e, Model analysis: we compared the fraction of the total T cell population 
across doses in the memory, effector and exhausted groups by plotting the mean 

across parameter sets. For low doses, the T cell population becomes mostly 
exhausted, whereas, for high doses, the population of memory and effector cells 
persists. f,g, Model testing: we compared predictive simulations at two doses 
with the data reported in the phase 2 study (150–450 million cell doses)40.  
The tumor dynamics out to 1 year fall within the bounds predicted for the 
150–450 million cell doses. M, million.
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Although our results suggest that the CR versus NR archetype 
is a product-intrinsic property, delineating product-intrinsic versus 
host-intrinsic sources of variability is challenging for autologous cell 
therapies. To start, the definitions are somewhat arbitrary and circular. 
For our purposes, we define product-intrinsic to mean that clinical 
response is predictable by properties of the infusion product. These 
properties (for example, memory cell proliferative capacity) may, 
in turn, be pre-determined by the patient’s immunological state—a 
host-intrinsic property. Second, the definitions are blurred as many 
of the model parameters integrate some aspects of both. Cytotoxic 
potency (TK50), for example, appears to be a cell-intrinsic parameter. 
However, this lumps together multiple cellular processes: CAR and 
antigen expression, CAR–antigen binding kinetics, intracellular signal 
transduction and engagement of cytotoxic machinery. These processes 
are, in turn, regulated by systemic cytokines and cell–cell interactions. 
A similar case could be made for most of the model parameters. Thus, 
although variability in CAR-T dose and tumor burden is sufficient to 
explain the observed variance in exposure, the inclusion of additional 
host-intrinsic factors may extend the model’s utility. Tumor-intrinsic 
signaling43,44 and response to lymphodepletion30 are two prime exam-
ples. Both have been shown to mediate CAR-T expansion and tumor 
response, as cytokine-mediated interactions among CAR-Ts, host 
T cells and tumors14 likely mediate cell-intrinsic differences.

Additional datasets would be useful to confirm these findings and 
extend to additional CAR-T products and disease indications. Data availabil-
ity is, however, limiting. Although hundreds of CAR-T clinical studies have 
been conducted, raw data from most remain undisclosed, and transcrip-
tome profiling is not routinely implemented. Access to individual patient 
pharmacokinetics and tumor dynamics profiles, matched with pre-infusion 
product transcriptomes and well-annotated clinical attributes, would be 
an ideal starting point to further this work and advance the science.
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Methods
Clinical data: Kymriah
Mean pharmacokinetic and tumor dynamic profiles were digitized from 
a clinical study of patients with CLL treated with Kymriah, separated 
into CRs (n = 8), PRs (n = 5) and NRs (n = 25)18. Samples annotated as 
PRTD (late relapse into B cell lymphoma) were excluded as the profiles 
are highly similar to the CR patients, and the biological mechanisms 
underlying such late relapse are unclear. Patients were treated with 
CAR-T doses ranging from 0.14 × 108 to 11 × 108 cells41. For parameter 
estimation, we assume a fixed dose of 108 cells, consistent with median 
dose used in this study and other clinical trials of Kymriah. Tumor size 
data were reported as B cells per microliter and were, hence, used 
directly in model fitting (assuming an initial tumor burden of 1010 total 
cells). Pharmacokinetics were reported as CD19 CAR transgene copies 
in peripheral blood (copies per microgram of genomic DNA) and were 
converted to cell numbers for mechanistic modeling (see below).

The non-linear mixed effects model of Kymriah cellular kinetics, as 
reported in the BLA4 and described in a subsequent publication5, was 
used to simulate population pharmacokinetics in refractory B-ALL. The 
model was parameterized using data compiled from two clinical stud-
ies, treated with a median dose of 108 cells (n = 91). Pharmacokinetic 
profiles of Kymriah in patients with CLL do not to differ substantially 
from patients with B-ALL6. To compute distributions of exposure (AUC 
and Cmax), we simulated pharmacokinetic profiles for 1,000 virtual 
patients. At each timestep (0.1 days for 1 year), 1–99 percentiles were 
computed, and AUC and Cmax were calculated from these percentiles.

Clinical data: Abecma
Mean pharmacokinetic and tumor dynamic profiles were digitized from a 
phase 1 dose-escalation study of patients with refractory multiple myeloma 
(MM) treated with Abecma (n = 33), separated by dose group (50, 150, 450 
and 800 × 106 cells)39. Tumor size data were reported as % change in serum 
BCMA levels. For model fitting, we assume initial tumor burden as 1010 cells 
and linear scaling between tumor burden and reported soluble BCMA. 
Pharmacokinetic data were reported as transgene copies per microgram 
of DNA, and we applied the same scaling factor as above to convert to 
CAR-T cell counts. Mean pharmacokinetic and tumor dynamic profiles ± s.d. 
were digitized from a phase 2 study in the same patient population (n = 128), 
treated with 150 × 108 and 450 × 106 cell doses40 (data not separated by 
dose). Tumor dynamic data in this study were reported as serum BCMA 
(ng ml−1). Data were converted to % change from baseline, again assuming 
initial tumor burden of 1010 cells for comparison to model simulations.

Scaling factors and virtual population
To estimate a scaling factor between transgene counts and cell numbers, 
we used data from Kalos et al.45 wherein both counts per microgram 
and total circulating CD19+ cells were reported, estimated as ~104. For 
conversions between total cell numbers and cells per microliter for plot-
ting, we assume a total blood volume of 2 L in humans and 2 μl in mice.

Model structure and assumptions
We encoded three functionally distinct T cell populations: T memory 
cells (TM), capable of long-term regenerative capacity (self-renewal) 
and differentiation; T effector cells (TE), which arise from memory 
population and are responsible for direct killing of tumor cells; and 
T exhausted cells (TX) that lack effector function and proliferative 
capacity. T effectors can expand through N population doublings but 
lack the capacity for self-renewal. Alhough the mechanism remains a 
source of contention, T effectors can regenerate T memory cells after 
antigen clearance46. The core of the mechanism-based description of 
T cell differentiation control is a toggle switch sensor of tumor antigen, 
encoded as a Hill equation (a widely used tool in pharmacological mod-
eling47). This toggle switch coordinately regulates rates of T memory 
cell self-renewal versus differentiation, proliferation and exhaustion 
of T effectors and regeneration of T memory cells from T effectors.

Conceptually, the idea of an antigen sensing, saturable function 
regulating T cell proliferation was first described by de Boer et al.48, 
extended to differentiation control between memory and effector T cell 
fates49 and applied to CAR-T pharmacokinetics by Martinez-Rubio et al.50. 
A review of published CAR-T pharmacokinetic models in comparison to 
the below formulation is provided in the Supplementary Information.

We describe this control of T cell fates via a system of non-linear 
ordinary differential equations:

dTM
dt

= μM ⋅ (2 ⋅ fmax ⋅ (1 −
BkmA

B50km+BkmA
) − 1) ⋅ TM + rM ⋅ (1 − BkrA

B50kr+BkrA
)

⋅TE2 − dM ⋅ TM,

dTE1
dt

= 2 ⋅ μM ⋅ (1 − fmax ⋅ (1 −
BkmA

B50km+BkmA
)) ⋅ TM − μE ⋅ (

BkeA
B50ke+BkeA

)

⋅TE1 − dE1 ⋅ TE1
dTE2
dt

= μE ⋅ 2N (
BkeA

B50ke+BkeA
) ⋅ TE1 − kex (

BkxA
B50kx+BkxA

) ⋅ TE2 − rM ⋅ (1 − BkrA
B50kr+BkrA

)

⋅TE2 − dE2 ⋅ TE2
dTX
dt

= kex (
BkxA

B50kx+BkxA
) ⋅ TE2 − dX ⋅ TX

Here, the self-renewal and differentiation of memory cells occurs at 
rate μM and is regulated through Hill equation switches that depend on 
the B cell antigen BA. The parameter fmax describes the fraction of memory 
cells that self-renew versus differentiate to become effector cells. Mem-
ory cells are regenerated (with rate parameter rM) from the TE2 population. 
We divide the effector populations into two subgroups, TE1 and TE2, that 
describe the non-tumor killing and tumor killing effector populations, 
respectively. We made this division for mathematical simplicity: the 
non-tumor killing subgroup differentiates from the memory cells and 
forms the initial pool of effector cells that further differentiates (with rate 
parameter μE) to cytotoxic effector cells (TE2). For parameter estimation 
routines, we encode N population doublings in a single source term in 
the TE2 equation instead of using a hierarchy of ordinary differential 
equations (ODEs), each tracking the number of cells that have undergone 
n divisions. Because we estimate N from data, it would be exceedingly 
complicated to dynamically update the number of ODEs in the model, 
as the number of population doublings changes during parameter esti-
mation. T effector cells become exhausted with rate parameter kex, and 
all T cell populations are removed with corresponding rate parameters 
dM, dE1, dE2 and dX. Note that the toggle switch, encoded as a Hill function 
in B cell antigen BA, has the same half-maximum parameter B50 across 
all T cell populations but different exponents (km, kr, km, ke and kx) to 
account for presumed differential dose–response relationships.

We model the dynamics of B cell tumors with logistic growth with 
rate μB and carrying capacity Bmax and non-linear tumor killing through 
effectors with rate kkill, as well as the production and decay of B cell 
antigen BA:

dB
dt
= μB ⋅ (1 −

B
Bmax

) ⋅ B − kkill ⋅ (
TktE2

TK50kt+TktE2
) ⋅ B

dBA
dt

= kB1 ⋅ B − kB2 ⋅ BA

By encoding proliferation/differentiation as driven by tumor anti-
gen (BA) rather than simply tumor cell number (B), the production deg-
radation rates (kB1 and kB2) create a surrogate transient compartment. 
This allows for a time delay between changes in tumor burden and 
responsiveness of T cell fates. Transient compartments are commonly 
employed in pharmacokinetics/pharmacodynamics modeling51 to 
connect drug concentration to measured pharmacodynamic response.

To map cell dosing to initial condition, we implement two empirical, 
rapid reactions. First, a proportion of the infused cell dose is rapidly lost 
to account for discrepancy between cell dose and the initial conditions 
observed both clinically45 and in pre-clinical models51 when cells per 
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microliter are reported. Second, the initial cell dose rapidly converts into 
the four T cell subpopulations. This reaction accounts for the fact that 
CAR-T products comprise mixed populations of T cells (memory, effec-
tor and exhausted states); this composition may vary and is typically not 
specified in clinical data. Rather than pre-specifying the composition 
via initial conditions, the rapid conversion reaction allows the fractions 
to be estimated as model parameters. This is achieved via the following 
set of equations where Dose is the CAR-T dose administered and DoseX is 
the remaining dose that is fractionated into the T cell subpopulations:

dDose
dt

= − (1 + floss) ⋅ Dose,

dDoseX
dt

= Dose − (fractionTM + fractionTE1 + fractionTE2 + fractionTX) ⋅ DoseX,

dTM
dt

= fractionTM ⋅ DoseX,

dTE1
dt

= fractionTE1 ⋅ DoseX,

dTE2
dt

= fractionTE2 ⋅ DoseX,

dTX
dt

= fractionTX ⋅ DoseX.

We applied zero-limits to all cell populations to limit artificial 
regrowth. That is, if any cell population had a fractional number (<1), 
that cell population was set to 0. We encoded the model structure in 
MATLAB SimBiology (R2021a) and used PSO to estimate the model 
parameters based on minimization of the log mean squared error (MSE) 
between model simulations and data, using the ‘particleswarm’ func-
tion with 100 particles × 100 iterations and the lower limit of quantifica-
tion (LLQ) set at 106 total cells. We fit the model separately to the CR, 
PR and NR populations by running the PSO algorithm 12 times for each 
population, generating a total of 36 parameter sets for analysis (Supple-
mentary Table 1). Model variants based on alternate T cell population 
structures were also assessed for the ability to fit the data; however, 
none outperformed the above formulation (Supplementary Informa-
tion and Supplementary Figs. 1 and 2). To assess generalizability of the 
model, we also fit to two pre-clinical datasets with pharmacokinetic 
and tumor dynamic dose–response data: CD19-CAR-T-treated NALM 
xenografts52 (Supplementary Fig. 3) and BCMA-CAR-T-treated MM1.S 
xenografts51 (Supplementary Fig. 4). In both cases, the model described 
the data with good accuracy. See Table 1 for a list of model parameters, 
units and lower and upper bounds used in the PSO algorithm.

Local parameter sensitivity analysis
Local parameter sensitivity coefficients (LPSCs) were computed by 
simulating the model and computing the CAR-T AUC and tumor AUC 
in response to a 10% increase in estimated parameter values across the 
36 parameter sets characterizing CR/PR/NR populations. We calculated 
coefficients based on the median change in AUC for each population 
according to the formula:

LPSCY|X =
ΔY/Y
ΔX/X ⋅ 100

wherein Y is the specified model output (CAR-T or tumor AUC), and X 
is the specified parameter.

Virtual populations
Virtual populations were created from the CR/PR/NR population fits by 
Monte Carlo sampling underlying parameter sets while varying CAR-T 
dose (107–109 cells) and initial tumor burden (8.5 × 108–2.7 × 1010 cells) 
within reported ranges by log-uniform sampling.

Modeling workflow
Our strategy for model-based integration of the disparate data-
sets was to (1) fit the pharmacokinetics/pharmacodynamics model 

independently to the Fraietta et al.18 CR, PR and NR profiles; (2) create 
virtual populations from this model and compare the predicted popula-
tion pharmacokinetic variance against Kymriah data from Stein et al.5 
and covariates of response against Yescarta data from Locke et al.20; 
and (3) fit the pharmacokinetics/pharmacodynamics model to Abecma 
dose–response data from Raje et al.39 to understand mechanisms 
underlying the response covariates.

RNA-seq analysis
Analysis of bulk RNA-seq data was implemented within R version 4.1.1. 
In brief, read count data were downloaded from the supplement pro-
vided by Fraietta et al.18. Trimmed mean of M-values (TMM) normaliza-
tion was implemented with edgeR (3.34.1), and normalized data were 
converted to log(counts per million) by applying Voom transformation. 

Table 1 | Model parameters, units and PSO bounds

Parameter Description Units Lower 
bound

Upper 
bound

B50 Antigen toggle switch 
half-maximum

Number 
of antigen 
molecules

106 1010

μB B cell proliferation rate 1/day 0.001 0.1

kkill Rate of B cell killing by T 
effectors

1/day 0.001 1

floss Fraction of dose lost 1/day 1 1000

TK50 B cell killing half-maximum Cells 105 109

kt B cell killing Hill exponent Dimensionless 0.2 3

kB1 Antigen generation rate Number of 
antigen/
(day×cell)

0.001 1

kB2 Antigen clearance rate 1/day 0.001 1

μM T memory proliferation rate 1/day 0.001 1

km T memory self-renewal Hill 
exponent

Dimensionless 0.2 3

fmax T memory maximum 
fraction of self-renewal

Dimensionless 0.5 0.99

ke T effector proliferation Hill 
exponent

Dimensionless 0.2 3

μE T effector proliferation rate 1/day 0.001 1

N Number of population 
doublings in TE2

Dimensionless 4 12

kex T effector exhaustion rate 1/day 0.001 1

dM T memory death rate 1/day 0.001 1

dE1 T effector (TE1) death rate 1/day 0.001 1

dE2 T effector (TE2) death rate 1/day 0.001 1

dX T exhausted death rate 1/day 0.001 1

Bmax B cell tumor carrying 
capacity

Cells 108 1012

kx T exhaustion Hill exponent Dimensionless 0.2 3

kr T memory regeneration Hill 
exponent

Dimensionless 0.2 3

rM T memory regeneration 
from T effectors

1/day 0.001 1

fractionTM T memory fraction of dose 1/day 1 10

fractionTE1 T effector (TE1) fraction of 
dose

1/day 1 10

fractionTE2 T effector (TE2) fraction of 
dose

1/day 30 70

fractionTX T exhausted fraction of dose 1/day 5 30

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01687-x

Differential gene expression analysis was implemented with limma 
(3.50.3)53 and gene signature analysis with ssGSEA54. Normalized 
ssGSEA scores were calculated as:

Nij = Aij −MIN (A)
MAX (A) −MIN (A)

wherein A is the matrix of ssGSEA signature scores (i) × samples (j). Gene 
signatures for cell signaling pathways were compiled from PROGENy25 
(10), BioCarta22 (217), Reactome24 (674), Hallmark23 (50) and DAVID26 
(6,577). Cell population signatures were derived from those published 
in Fraietta et al.18 (7), a single-cell atlas of thymic development21 (13) and 
individual signatures for CAR-T dysfunction35 and CD28z tonic signal-
ing55 and are provided in the Supplementary Information.

scRNA-seq and CITE-seq analysis
scRNA-seq counts and associated metadata for Bai et al.31 and Harad-
hvala et al.32 were retrieved from the Gene Expression Omnibus 
(GSE197215 and GSE197268, respectively). Gene counts were normal-
ized using Seurat (4.1.0), and cell type labels were assigned using Pro-
jecTILs33 (2.2.0) with the default scRNA-seq-based reference atlas of 
tumor-infiltrating lymphocytes. Differential expression analysis was 
implemented with Seurat using a Wilcoxon rank-sum test, followed by 
GSEA. ssGSEA scores were calculated using GSVA (1.40.1) and used with-
out normalization as input features to the classifier. For CITE-seq-based 
immunophenotyping, we called each cell as positive/negative based 
on reference to the associated control antibody tag.

ssGSEA-based response classifier
ssGSEA scores corresponding to all gene signatures that were dif-
ferentially enriched between CR and NR groups in Fraietta et al.18 
(28, based on an FDR-adjusted P < 0.05) were used to build a logistic 
regression-based classifier of response status:

log ( p (CR)
1 − p (CR) ) = β0 + β1 ⋅ ssGSEA1 + β2 ⋅ ssGSEA2 +…+ βN ⋅ ssGSEAN

wherein p(CR) is the probability of complete response (versus 
non-response), and βi are regression coefficients. A genetic algorithm, 
implemented in R with the glmulti package (1.0.8), was used for feature 
selection on the 60% training split of the data, using the Akaike infor-
mation criterion (AIC) with model accuracy as the objective function. 
Model accuracy is defined as:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

wherein TP, TN, FP and FN refer to true positive, true negative, false posi-
tive and false negative. For the genetic algorithm, we used a population 
size of 100 with a mutation rate of 0.001, an immigration rate of 0.3 and 
a reproduction rate of 0.1. Owing to the stochastic nature of genetic 
algorithms, this was repeated 2,500 times, wherein each iteration pro-
duced a list of N pathways to be used as features for logistic regression. 
For randomized control models, we randomly selected 2≤N≤6 pathways 
from the remnant pathway compendium (7,520, FDR-adjusted P > 0.05) 
as input features, using an N distribution based on observed frequen-
cies in the trained models. Predictive accuracy was assessed using the 
40% test split of the data and model accuracy distributions compared 
via Wilcoxon rank-sum tests and visualized as kernel density estimates 
with manually chosen bandwidths. Immunophenotype classifiers were 
developed using the same workflow excluding feature selection, with 
input features being either reported cell frequencies from Fraietta et al.18 
computed cell frequencies from Bai et al. CITE-seq data34 or computed 
cell frequencies from ProjecTILs33 annotation of Haradhvala et al.32 data.

Binomial tests were used to assess GSEA overlap in CR versus NR/
PR/RL comparisons among datasets. Starting with the top 28 gene 

signatures identified as differentially expressed in Fraietta et al.18 and 
used to seed the transcriptome classifier, 13/28, 13/28 and 15/28 are 
significant at a level of P < 0.05 in the Bai et al.34 and Haradhvala et al.32 
Kyrmiah and Yescarta datasets, respectively. Of the 7,548 signatures 
in our compendium, 1,123, 742 and 751 met this level of significance, 
corresponding to P values of 6 × 10−5, 7 × 10−7 and 10−8.

Software
Model simulations and analysis were performed using MATLAB R2021a 
and the SimBiology toolbox (6.1). All bioinformatics analysis was done 
on Ubuntu 20.04.3 LTS running R 4.1.1 (‘Kick Things’). Key packages 
were GSVA (1.40.1) for ssGSEA, fgsea (1.21.2) for GSEA, celldex (1.2.0) 
for obtaining reference datasets for SingleR (1.6.1), Seurat (4.1.0), data.
table (1.14.2), limma (3.50.3), edgeR (3.34.1), Matrix (1.4.3) and ggplot2 
(3.3.6) for data wrangling and visualization.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Single-cell RNA sequencing counts and associated metadata for Bai 
et al.31 and Haradhvala et al.32 were retrieved from the Gene Expression 
Omnibus (GSE197215 and GSE197268, respectively). Bulk RNA sequenc-
ing and associated metadata from Fraietta et al.18 were downloaded 
from the supplement, and all additional data were digitized from pub-
lished figures using Graph Grabber version 2 (Quintessa).

Code availability
The MATLAB and R code used in this study is provided for 
non-commercial use via a Zenodo repository: https://doi.org/10.5281/
zenodo.6886414 (ref. 56).
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