Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing

Abstract

The expanding applications of nonviral genomic medicines in the lung remain restricted by delivery challenges. Here, leveraging a high-throughput platform, we synthesize and screen a combinatorial library of biodegradable ionizable lipids to build inhalable delivery vehicles for messenger RNA and CRISPR–Cas9 gene editors. Lead lipid nanoparticles are amenable for repeated intratracheal dosing and could achieve efficient gene editing in lung epithelium, providing avenues for gene therapy of congenital lung diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of LNP synthesis and screening.
Fig. 2: Gene editing in mouse lung with RCB-4-8 LNP-mRNA.

Similar content being viewed by others

Data availability

Illumina Sequencing data have been submitted to the Sequence Read Archive; these datasets are available under BioProject Accession no. PRJNA918691 (ref. 37). The authors declare that all other data supporting the findings of this study are available within the paper and its Supplementary Information files or on reasonable request. Plasmids are available from Addgene.

References

  1. Rudnick, D. A. & Perlmutter, D. H. Alpha-1-antitrypsin deficiency: a new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology 42, 514–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Kwok, A. J., Mentzer, A. & Knight, J. C. Host genetics and infectious disease: new tools, insights and translational opportunities. Nat. Rev. Genet. 22, 137–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Bisserier, M. et al. Novel insights into the therapeutic potential of lung-targeted gene transfer in the most common respiratory diseases. Cells 11, 984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wan, T. & Ping, Y. Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders. Adv. Drug Deliv. Rev. 168, 196–216 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Da Silva Sanchez, A. Treating cystic fibrosis with mRNA and CRISPR. Hum. Gene Ther. 31, 940–955 (2020).

  7. Lau, C. & Suh, Y. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res. 6, 2153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uddin, F., Rudin, C. M. & Sen, T. CRISPR gene therapy: applications, limitations, and implications for the future. Front. Oncol. 10, 1387 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Han, H. A., Pang, J. K. S. & Soh, B.-S. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J. Mol. Med. 98, 615–632 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berical, A., Lee, R. E., Randell, S. H. & Hawkins, F. Challenges facing airway epithelial cell-based therapy for cystic fibrosis. Front. Pharmacol. 10, 74 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl Acad. Sci. USA 118, e2020401118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gillmore, J. D., Maitland, M. L. & Lebwohl, D. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. reply. N. Engl. J. Med. 385, 1722–1723 (2021).

  17. Alapati, D. & Morrisey, E. E. Gene editing and genetic lung disease. Basic research meets therapeutic application. Am. J. Respir. Cell Mol. Biol. 56, 283–290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Kauffman, K. J. et al. Rapid, single-cell analysis and discovery of vectored mRNA transfection in vivo with a loxP-Flanked tdTomato reporter mouse. Mol. Ther. Nucleic Acids 10, 55–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, e1805116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thebaud, B. Angiogenesis in lung development, injury and repair: implications for chronic lung disease of prematurity. Neonatology 91, 291–297 (2007).

    Article  PubMed  Google Scholar 

  27. Kotton, D. N. & Morrisey, E. E. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat. Med. 20, 822–832 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development 141, 502–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown, D. et al. Deep parallel characterization of AAV Tropism and AAV-mediated transcriptional changes via single-cell RNA sequencing. Front. Immunol. 12, 730825 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang, S. Q. et al. AAV5 delivery of CRISPR-Cas9 supports effective genome editing in mouse lung airway. Mol. Ther. 30, 238–243 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 6, eabc2315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. NCBI Bioproject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA918691 (2023).

Download references

Acknowledgements

This work was supported by Translate Bio and the National Institutes of Health (grant no. UG3HL147367). B.L., R.S.M., A.G. and A.J. were supported by Translate Bio. B.L. was supported by the Leslie Dan Faculty of Pharmacy startup fund, the Connaught Fund (no. 514681), the J. P. Bickell Foundation (grant no. 515159), the Canada Research Chairs Program (no. CRC-2022-00575), Canadian Institutes of Health Research (no. PJH-185722) and the Canada Foundation for Innovation John R. Evans Leaders Fund (no. 43711). A.V. was supported by the PRiME Postdoctoral Fellowship from the University of Toronto. S.P.L., G.G., W.X. and D.A. were supported by grants from the National Institutes of Health (nos. UG3HL147367 and UH3HL147367). W.X. was supported by grants from the National Institutes of Health (nos. DP2HL137167 and P01HL131471), the American Cancer Society (grant no. 129056-RSG-16-093) and the Cystic Fibrosis Foundation. We thank the Koch Institute Swanson Biotechnology Center for technical support, specifically the Animal Imaging & Preclinical Testing, Histology, Nanotechnology Materials and Microscopy core facilities.

Author information

Authors and Affiliations

Authors

Contributions

B.L., R.S.M. and S.Q.L. conceived the project and wrote the paper, with input from all authors. B.L. and R.S.M. designed the combinatorial lipid library. B.L., R.S.M., S.Q.L., A.G. and A.J. performed experiments and analyzed data. B.L., R.S.M. and S.Q.L. wrote the paper. B.L., S.Q.L., A.V., W.X. and D.G.A. discussed the results and edited the paper. G.G., R.L., W.X. and D.A. acquired funding and supervised the project.

Corresponding authors

Correspondence to Wen Xue or Daniel Anderson.

Ethics declarations

Competing interests

B.L., R.S.M., A.G. and D.A. have filed a patent (PCT/US2022/052314) for development of the described lipids. D.A. receives research funding from Translate Bio and is a Founder of Orna Therapeutics. R.L. is a cofounder of Moderna; he also serves on the board and has equity in Particles for Humanity. For a list of entities with which R.L. is, or has been, recently involved, compensated or uncompensated, see https://www.dropbox.com/s/yc3xqb5s8s94v7x/Rev%20Langer%20COI.pdf?dl=0. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks H. L. Wong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes and Figs. 1–12.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Manan, R.S., Liang, SQ. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat Biotechnol 41, 1410–1415 (2023). https://doi.org/10.1038/s41587-023-01679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-023-01679-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research