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Three-dimensional structured illumination 
microscopy with enhanced axial resolution

Xuesong Li    1,14 , Yicong Wu    1,2 , Yijun Su1,2,3,4,14, Ivan Rey-Suarez5, 
Claudia Matthaeus6, Taylor B. Updegrove7, Zhuang Wei8, Lixia Zhang2, 
Hideki Sasaki    3,4, Yue Li    9, Min Guo    1,15, John P. Giannini1, 
Harshad D. Vishwasrao2, Jiji Chen    2, Shih-Jong J. Lee3,4, Lin Shao10, 
Huafeng Liu9, Kumaran S. Ramamurthi7, Justin W. Taraska    6, 
Arpita Upadhyaya5,11, Patrick La Riviere    12,13 & Hari Shroff1,2,13,14

The axial resolution of three-dimensional structured illumination 
microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, 
complementary methods to improve axial resolution in 3D SIM with minimal 
or no modification to the optical system. We show that placing a mirror 
directly opposite the sample enables four-beam interference with higher 
spatial frequency content than 3D SIM illumination, offering near-isotropic 
imaging with ∼120-nm lateral and 160-nm axial resolution. We also 
developed a deep learning method achieving ∼120-nm isotropic resolution. 
This method can be combined with denoising to facilitate volumetric 
imaging spanning dozens of timepoints. We demonstrate the potential of 
these advances by imaging a variety of cellular samples, delineating the 
nanoscale distribution of vimentin and microtubule filaments, observing 
the relative positions of caveolar coat proteins and lysosomal markers 
and visualizing cytoskeletal dynamics within T cells in the early stages of 
immune synapse formation.

Three-dimensional structured illumination microscopy (3D SIM1) 
excites the sample with non-uniform illumination, providing infor-
mation outside the diffraction-limited passband that is encoded in 
the fluorescence captured by diffraction-limited images. Decoding 
this extra information mathematically yields a super-resolution recon-
struction with doubled resolution compared to wide-field microscopy. 

Although a more modest gain than other methods2, in thin samples 
3D SIM offers advantages including good optical sectioning, low illu-
mination dose and high acquisition speed (enabling ‘4D’ volumetric 
time-lapse imaging in living cells3,4) and compatibility with arbitrary 
fluorophores (facilitating multi-color super-resolution imaging5). 
These attributes have provided a plethora of biological insights6–19.
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4D super-resolution imaging over dozens of volumes. We demonstrate 
these methods on a variety of fixed and live cellular samples. In vegeta-
tive and sporulating bacteria, we visualized membranes, cell division 
proteins and core components of the spore coat. In eukaryotic cells, we 
inspected membrane-encased actin filaments and pores that traversed 
thin membrane extensions; delineated the nanoscale positioning 
of vimentin and microtubules; observed the spatial distribution of 
caveolar coat proteins; and performed time-lapse volumetric imaging 
of mitochondrial, lysosomal and cytoskeletal dynamics.

Results
Four-beam interference for higher axial resolution
Spatial resolution and optical sectioning in 3D SIM are determined 
by the convolution of the structured illumination pattern’s spatial 
frequency components with the wide-field detection optical transfer 
function (OTF; Extended Data Fig. 1a,b)1. Anisotropic spatial resolution 

Although superior to wide-field microscopy, 3D SIM’s axial resolu-
tion is still limited to ∼300 nm, considerably worse than its ∼120-nm 
lateral resolution. Thus, 3D SIM reconstructions are anisotropic, dis-
torting and obscuring fine features along the axial dimension. Rela-
tively few solutions exist20,21 for reducing this anisotropy, and none 
has been widely adopted.

Here we demonstrate two complementary methods for improving 
axial resolution, with minimal or no modification to the 3D SIM optical 
path. First, we show that placing a mirror directly opposite the sample 
enables four-beam interference, producing higher axial spatial fre-
quency components in the illumination pattern. This enables an axial 
resolution of ∼160 nm, producing nearly isotropic reconstructions. 
Second, we developed improved deep learning algorithms that operate 
on 3D SIM data (without the mirror), producing reconstructions with 
isotropic ∼120-nm spatial resolution. This computational method may 
be further combined with denoising, enabling high-quality, isotropic, 
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Fig. 1 | Improving axial resolution in 3D SIM. a–c, Schematic representations 
of beam illumination at objective back focal plane (BFP) and sample planes 
for wide-field microscopy (single-beam illumination, a), 3D SIM (three-beam 
illumination, b) and four-beam SIM (a mirror opposite the sample is used to 
back-reflect the central beam, producing four-beam interference, c). Higher 
magnification illumination views at right show fine axial structure in four-beam 
SIM pattern, absent in 3D SIM or wide-field microscopy. d, Axial cross-sectional 
views of 100-nm beads, as imaged in wide-field microscopy (top), 3D SIM 
(middle) and four-beam SIM (bottom). e, Higher magnification views of bead 

highlighted by colored arrowheads in d, illustrating progressive improvement 
in axial resolution. Insets show magnitude of OTFs (kx/kz plane) derived from 
images. f, Line profiles corresponding to bead images shown in e, taken along 
vertical green line in e. g, Quantification of lateral (blue) and axial (orange) 
FWHM for n = 102, 100 and 99 beads for wide-field microscopy, 3D SIM and four-
beam SIM, respectively. See also Supplementary Table 1. Whiskers: maximum 
and minimum; center lines: medians; bounds of box: 75th and 25th percentiles; 
cross symbols: mean markers. Scale bars, 2 µm (d) and 500 nm (e); 1/200 nm−1 for 
Fourier transform insets in e. a.u., arbitrary units.
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Fig. 2 | Four-beam SIM enables near-isotropic imaging of biological samples. 
a, Maximum intensity projection of live vegetative B. subtilis stained with 
CellBrite Fix 488, marking membranes, imaged in four-beam SIM. b,c, Axial 
views along yellow (b) and orange (c) dashed lines in a, comparing wide-field 
microscopy (top), 3D SIM (middle) and four-beam SIM (bottom). Yellow 
arrowheads in b highlight upper and lower cell membranes (numbered values 
indicate apparent membrane thickness); red arrowheads highlight membrane 
invaginations. See also Supplementary Video 2. d, Line profiles corresponding 
to vertical orange line in c. e, Maximum intensity projection of fixed U2OS cells 
labeled with Tomm20 primary and rabbit Alexa Fluor 488 secondary antibodies, 
marking outer mitochondrial membrane. Image is depth coded as indicated. 
Higher magnification lateral views (single planes) (f) corresponding to white 

dashed rectangle in e are shown, comparing wide-field microscopy (left), 3D SIM 
(middle) and four-beam SIM (right), in addition to corresponding axial views 
(g) taken across vertical yellow dashed line in f. Red arrowheads highlight void 
regions obscured in 3D SIM and wide-field microscopy. See also Supplementary 
Video 3. h, Overview (inset) and higher magnification view of single lateral 
plane of mitochondria labeled with MitoTracker Green FM in live U2OS cells, 
highlighting inner mitochondrial substructure. i, Axial cross-sections taken 
along green, orange and yellow dashed lines in h highlight fine substructure 
within mitochondria (red arrowheads). See also Supplementary Video 4. All data 
were acquired with 1.35 NA silicone immersion objective, with samples index-
matched in 45.6% iodixanol. Scale bars, 2 µm (a); 500 nm (b,c,i); 4 µm (e,h); and 
1 µm (f,g). a.u., arbitrary units.
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is a consequence of limited angular aperture: (1) the three wave vectors 
whose interference produces the illumination pattern lie on a spherical 
cap with limited angular extent; and (2) the limited angular range over 
which fluorescence is collected produces an OTF with greater lateral 
than axial extent. We, thus, considered strategies to increase angular 
aperture to improve axial resolution in 3D SIM.

If the angle between illumination beams is increased beyond the 
limit imposed by the numerical aperture (NA) of the objective lens22,23, 
the resulting interference may contain higher axial frequency com-
ponents up to 2n/λ, where n is the refractive index (RI) and λ is the 
wavelength of illumination. Such ‘standing-wave microscopes’23—for 
very thin samples—indeed unveil axial detail obscured in 3D SIM. For 
thicker samples, however, gaps in the OTF support (Extended Data 
Fig. 1c) preclude optical sectioning and generate severe axial ‘ringing’ 
in the resulting images.

These problems are resolved in I5S (ref. 20), wherein two opposed 
objectives introduce six coherent illumination wave vectors, yielding 
more frequency components than in 3D SIM. The same objectives are 
used to collect fluorescence, which is also coherently interfered. The 
combination of coherent illumination and detection (Extended Data 
Fig. 1d) produces ∼100-nm isotropic spatial resolution. However, I5S 
also presents severe practical challenges. (1) The illumination and 
fluorescence paths require more optics than 3D SIM, adding com-
plexity and diminishing sensitivity. (2) Due to the short fluorescence 
coherence length, emission paths must be aligned to near-zero path 
length difference and maintained to much better than λ. In practice, 
this requires active feedback, further adding to instrument complex-
ity. (3) Small RI mismatches introduce substantial aberrations. These 
reasons might explain why the only demonstration of I5S on biological 
samples20 was limited to small imaging fields, fixed cells with special 
mounting protocols and single-color applications.

An intriguing alternative to I5S was recently proposed21, whereby 
the 3D SIM central illumination beam is isolated, re-imaged to a mirror 
and reflected back toward the sample, yielding a four-beam interfer-
ence pattern with finer axial structure than in 3D SIM (Extended Data 
Fig. 1e). If a high NA objective lens is used to collect the fluorescence, 
the theoretically predicted axial resolution is worse than I5S but sub-
stantially better than 3D SIM.

Although much simpler than I5S, notable challenges still exist. 
First, additional optics are still required, adding considerable complex-
ity relative to the 3D SIM optical path. Second, the reflected beam must 
traverse these optics, air, sample and buffer, introducing RI mismatches 
that add undesirable wavefront distortion. Third, the additional optical 
path length would span almost a meter, implying that the illumination 
source must have a coherence length of at least this length, so that 
interference between direct and reflected beams is possible. This 
requirement rules out common laser sources used in microscopy.

We reasoned that placing a mirror directly opposite the sample 
by immersing it in the sample fluid would facilitate four-beam SIM  

(Fig. 1a–c), offering advantages over the previously proposed design21. 
(1) The mirror can be placed close (within 100 µm) to the sample, 
enabling the use of commonly available, short-coherence-length 
diode lasers. (2) The short optical path length from coverslip to mir-
ror and back to coverslip implies that interferometric stability needs 
to be maintained only over this length scale. (3) Aberrations due to RI 
mismatch can be minimized. To demonstrate this method, we veri-
fied that commercially available 1.35 NA silicone oil or 1.27 NA water 
immersion objectives support four-beam SIM imaging (Supplementary  
Fig. 1); constructed a 3D SIM system that served as the base for our 
method, confirming the quality of our illumination pattern and raw 
data24,25 (Supplementary Figs. 2–7); and mounted and immersed a 
piezoelectrically controlled mirror directly over the sample, enabling 
four-beam SIM (Extended Data Fig. 2 and Supplementary Video 1).

We initially characterized our four-beam SIM by imaging 100-nm 
yellow-green beads using the 1.35 NA objective (Fig. 1d,e). Using 45.6% 
iodixanol26 to match the silicone oil RI, thereby minimizing spherical 
aberration27 and focal shift28, we collected 15 images (5 phases per ori-
entation × 3 orientations) per plane and reconstructed image stacks 
similarly to 3D SIM (Methods). As expected, four-beam SIM maintained 
the ∼2-fold lateral resolution enhancement of 3D SIM over wide-field 
microscopy while offering ∼2-fold-better axial resolution than 3D 
SIM (Fig. 1f,g and Supplementary Table 1). We obtained similar results 
using the 1.27 NA water lens (Extended Data Fig. 3 and Supplementary 
Table 1). Bead imaging also highlighted the importance of keeping the 
illumination pattern maxima centered on the detection focal plane, 
as even a ∼40-nm shift resulted in axial ringing in the reconstructions 
(Supplementary Fig. 8a). We, thus, developed a bead-based feedback 
scheme that kept both focal plane and mirror stable to within 10–20 nm 
(Supplementary Figs. 8b,c and 9 and Methods).

Near-isotropic super-resolution imaging
We next applied four-beam SIM to biological samples, first using 
the silicone oil lens on iodixanol RI-matched samples (Fig. 2). On 
∼1-µm-thick, live, vegetative Bacillus subtilis stained with CellBrite 
Fix 488, four-beam SIM provided crisp lateral (Fig. 2a) and axial  
(Fig. 2b and Supplementary Video 2) views of cell membranes. 
Wide-field microscopy barely resolved cell membranes in axial views, 
which were better visualized in 3D SIM. However, four-beam SIM pro-
vided even more clarity (Fig. 2b), as seen visually and quantified from 
the apparent membrane thickness (∼160–175 nm). We observed fine 
membrane invaginations that appeared indistinct or badly blurred in 
3D SIM (Fig. 2c,d), underscoring the ability of four-beam SIM to unveil 
axial detail otherwise masked by diffraction.

Next, we examined thicker eukaryotic samples spanning tens 
of microns in each lateral dimension (Fig. 2e–i). When performing 
wide-field imaging of fixed U2OS cells immunolabeled for Tomm20 
(Fig. 2e), marking the outer mitochondrial membrane, diffraction 
obscured the inner mitochondrial space. By contrast, 3D SIM and 

Fig. 3 | Near-isotropic imaging in two colors via four-beam SIM. a, Single 
lateral plane of live, sporulating B. subtilis with SpoVM-GFP label, marking 
spores (cyan), and CellBrite Fix 555 label, marking membrane (magenta). b, 
Axial view (single plane) along white dashed line in a. Images to the left of orange 
dashed line in a and b show wide-field images for comparison. c, Maximum 
intensity projection of fixed U2OS cells with Alexa Fluor 488-immunolabeled 
microtubules (cyan) and Alexa Fluor 594-immunolabeled labeled vimentin 
(magenta). d, Axial view corresponding to white dashed line in c. e, Higher 
magnification view of white dashed rectangular region in d, indicating apparent 
alternating stratification of microtubules and vimentin filaments (yellow 
arrowheads). Image is a maximum intensity projection over ten planes. f, Axial 
view corresponding to dashed orange line in c. Image is a maximum intensity 
projection over five planes. g, Higher magnification view of white dashed 
rectangular region in f, highlighting apparent ‘filling’ of inter-microtubule gaps 
by vimentin (arrows). Microtubule (left), vimentin (middle) and merged (right) 

images are shown. h, Maximum intensity projection image of fixed mouse LSECs 
with CellBrite Fix 488 label, marking membrane (cyan), and Alexa Fluor 568 
phalloidin, marking actin filaments (magenta). See also Supplementary Video 
6. i, Axial view corresponding to white dashed line in h, highlighting membrane 
signal encapsulating actin. Image is a maximum intensity projection over three 
planes. j, Higher magnification view of white dashed rectangular region in h with 
membrane pores highlighted (white arrows). k,l, Corresponding axial views to j, 
again highlighting the same pores (white arrows). Red arrows: actin encapsulated 
within membrane; blue arrows: void areas enclosed by membrane; yellow arrows: 
non-specific labeling of coverslip with membrane dye. m, Higher magnification 
view of dashed rectangular region in h, with accompanying cross-sectional view 
(n) corresponding to white dashed line in m, highlighting membrane-bound 
organelles (white arrows). Scale bars, 2 µm (a,f); 1 µm (b,e,g,i–n); 10 µm (c,h); and 
5 µm (d). All images were acquired with four-beam SIM unless otherwise noted.
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four-beam SIM produced lateral views where such regions void of label 
were easily discerned (Fig. 2f). In axial views, however, only four-beam 
SIM could reliably resolve the void regions, as the poorer axial resolu-
tion of wide-field or 3D SIM artificially ‘filled in’ and distorted the inner 
mitochondrial space (Fig. 2g and Supplementary Video 3). We next 
stained living U2OS cells with MitoTracker Green FM, marking the 
internal mitochondrial space (Fig. 2h–i and Supplementary Video 4). 
Unlike 3D SIM3, four-beam SIM enabled visualization of fine mitochon-
drial substructure in both axial (Fig. 2i) and lateral views.

When using the 1.35 NA lens, we noticed that samples immersed 
in the RI-matched iodixanol solution displayed substantially more 

bleaching than in PBS (Supplementary Fig. 10). This fact, combined 
with the unknown effect of iodixanol on living samples at 45.6% com-
position and the awkward sample handling associated with such a 
viscous buffer, prompted us to abandon the silicone oil lens in favor 
of the 1.27 NA water lens.

Using this lens, we first verified that the resolution enhancement 
obtained on beads (Extended Data Fig. 3) extended to biological sam-
ples by imaging live, vegetative B. subtilis labeled with DivIVA-GFP (Sup-
plementary Fig. 11a). DivIVA is known to assemble at nascent division 
sites29 and is thought to spatially regulate cell division. Both 3D SIM 
and four-beam SIM resolved the ‘double-ring’ DivIVA arrangement at 
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the site of active division. However, the near-isotropic resolution of the 
latter also provided clearer axial views of the circularly shaped rings 
(Supplementary Fig. 11b and Supplementary Video 5), which otherwise 
assume a distorted ovoid appearance29.

We next pursued dual-color imaging (Fig. 3). Illuminating the 
sample with distinct wavelengths (for example, 488 nm and 561 nm) 
produces different axial offsets between the illumination pattern 
maxima and detection focal plane. Ideally, this offset would be mini-
mized for each illumination wavelength24, maximizing pattern contrast, 
optical sectioning and axial resolution. For four-beam SIM, minimizing 
this offset proved mandatory to minimize axial ringing in the recon-
structions (Supplementary Fig. 12). We, thus, determined the optimal 
position of our camera for each illumination wavelength, translating 
it when switching color channels (Methods).

We first imaged live, sporulating B. subtilis cells expressing 
GFP-tagged SpoVM and additionally labeled with CellBrite Fix 555  
(Fig. 3a). SpoVM preferentially binds to micron-scale convex mem-
branes30, marking these surfaces to direct assembly of the proteina-
ceous ‘coat’ surrounding the developing spore31. Dual-color four-beam 
SIM enabled crisp visualization of SpoVM localized to mature spores 
within the surrounding membrane of the mother cell. Such detail was 
lost in wide-field imaging (Fig. 3b).

Second, we immunolabeled and imaged vimentin intermediate 
filaments and microtubules in fixed U2OS cells (Fig. 3c–g). Instead of 
co-localization (Fig. 3d), we observed an apparent ‘stratification’ of 
vimentin and microtubule fibers in the perinuclear area, underscoring 
the axial resolution of four-beam SIM (Fig. 3d,e). Intriguingly, we also 
observed examples in which local enrichments of vimentin appeared 
to fill the ‘gaps’ between microtubules (Fig. 3f,g), consistent with recent 
work showing that vimentin filaments can ‘template’ the microtubule 
network to stabilize cell polarity during migration32.

Finally, we imaged Alexa Fluor 568 phalloidin-labeled actin fila-
ments and CellBrite Fix 488-labeled membranes in fixed mouse liver 
sinusoidal endothelial cells (LSECs) (Fig. 3h–n and Supplementary 
Video 6). Axial views revealed actin filaments encapsulated within 
fine membrane protrusions (likely filopodia; Fig. 3i) and smaller actin 
enrichments within the lamellar region (Fig. 3j–l). LSECs contain 
nanoscale pores (‘fenestra’) that filter material passing between blood 
and hepatocytes. Similarly to studies using 3D SIM17, we resolved verti-
cally oriented pores traversing the extent of thin membrane regions 
as well as hollow regions fully encapsulated within the membrane  
(Fig. 3j–l). Elsewhere, in thicker cell regions, we observed many vari-
ably sized void regions, some just larger than our resolution limit and, 
others, microns in diameter (Fig. 3m,n). In almost all, the CellBrite 
marker was enriched around voids, suggesting that they represent 
membrane-bound organelles.

Isotropic super-resolution imaging based on deep learning
When validating our four-beam SIM system, we imaged hundreds 
of cells. Two persistent challenges motivated us to consider alter-
nate means of enhancing axial resolution. First, even though careful 

adjustment and stabilization of the instrument reliably yielded high 
quality reconstructions (Figs. 1–3, Extended Data Fig. 3 and Supple-
mentary Fig. 11a,b), we occasionally observed ringing artifacts when 
imaging fine structures smaller than our resolution limit. Indeed, given 
that we mostly observed such artifacts when imaging microtubules at 
nuclear boundaries (Supplementary Fig. 11c–f), we suspect that slight 
variations in RI within the cell cause localized wavefront distortions 
that produce reconstruction artifacts.

Second, although we successfully imaged whole living cells  
(Figs. 2a–d,h–i and 3a,b and Supplementary Fig. 11a,b), volumetric 
time-lapse (‘4D’) imaging proved challenging. Even when using the 
bright and photostable dye Potomac Gold33 to ubiquitously label cell 
membranes, we found that phototoxicity34 limited experiment dura-
tion (Supplementary Fig. 11g,h and Supplementary Video 7). In hind-
sight, this is unsurprising: imaging even a modestly sized 4-µm-thick 
volume with four-beam SIM entails 1,000 raw images (assuming 15 
images per plane and our 60-nm axial sampling interval) with each raw 
image capture illuminating most of the cell volume.

Given that 3D SIM introduces less dose than four-beam SIM, is 
more robust to wavefront distortions (Supplementary Fig. 11d) and can 
enable sustained 4D imaging3, we considered computational strategies 
for improving the axial resolution of 3D SIM without introducing addi-
tional illumination dose. As deep learning can enhance spatial resolu-
tion35–39, we evaluated a method that improves axial resolution by (1) 
blurring and downsampling lateral views to resemble lower-resolution 
axial views and (2) learning to reverse this degradation based on the 
higher-resolution lateral view ground truth35,40. The strength of this 
approach is that the training data itself contain the ground truth, 
although a key assumption is that the structures of interest appear 
similar regardless of viewing direction.

When evaluating the method on randomly oriented simulated 
structures that had been blurred with an anisotropic point spread func-
tion (PSF), we were able to restore the structures to isotropic resolution 
(Supplementary Fig. 13a,b). However, when we attempted to restore 
3D SIM data, although the network improved axial resolution for some 
structures (Supplementary Fig. 13c), it also artificially distorted the 
shape of others or even lost them (Supplementary Fig. 13d–h), likely 
because axial specimen views looked quite different than the lateral 
specimen views that the network was trained on. We reasoned that 
performance would improve if the network was directly exposed to 
axial information during the training process. We, thus, presented 
the network with axial (x–z) 3D SIM views that had been blurred and 
downsampled to yield data with isotropic resolution equivalent to the 
axial resolution of 3D SIM, and then we trained the network to reverse 
the degradation along the lateral direction (Supplementary Fig. 14 and 
Methods). Motivated by a related pipeline41, we applied the trained 
network to six digitally rotated views of unseen, similarly degraded 
3D SIM data, enabling the improvement of 1D resolution along arbi-
trary directions. Subsequent fusion of all six resolution-enhanced 
views42 yielded a final prediction with isotropic resolution (Fig. 4a  
and Methods).

Fig. 4 | Deep learning for axial resolution enhancement. a, Schematic of 
deep learning process. 3D SIM image volumes are blurred, downsampled and 
upsampled (each along the lateral x direction) to render isotropic, low-resolution 
input data (resolution equivalent to axial resolution in 3D SIM). This input (1) is 
rotated in 30° increments; (2) each rotation is passed through a deep learning 
model to improve resolution along the x direction, (3) rotated back to the 
original frame and (4) Fourier transformed; (5) the maximum value, taken over all 
rotations, at each spatial frequency was recorded and, finally, (6) inverse Fourier 
transformed to yield an output prediction with improved isotropic resolution. 
See also Supplementary Fig. 14 and Methods. b, Alexa Fluor 488-immunolabeled 
microtubules in a fixed U2OS cell. Maximum intensity projection of deep learning 
prediction is shown. c, Left: higher magnification axial view indicated by yellow 
dashed line in b, comparing 3D SIM (top), four-beam SIM (middle) and deep 

learning prediction (bottom). Images are generated by computing maximum 
intensity projection over 20 pixels in the y direction. Right: magnitudes of Fourier 
transforms corresponding to images at left, with indicated spatial frequencies 
bounding the major and minor ellipse axes. d, Line profiles corresponding to 
yellow solid line in c. e,f, Fixed MEF with caveolin-1 EGFP with GFP booster (cyan) 
and Alexa Fluor 568-immunolabeled cavin-1 (magenta). Axial (e) and lateral (f) 
maximum intensity projections of deep learning predictions are shown. Yellow 
dashed line in e has been added to better delineate the cell boundary. g,h, Higher 
magnification views of dashed rectangular regions in e and f with lateral (top) 
and axial (bottom) projections indicated. i–k, Higher magnification axial views of 
regions indicated in e, comparing 3D SIM input (left) to deep learning prediction 
(right). See also Supplementary Fig. 15. Scale bars, 5 µm (b,e,f); 1 µm (c); 500 nm 
(g,h); and 200 nm (i–k). a.u., arbitrary units; DL, deep learning.
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Comparing images of the same sample produced by 3D SIM, 
four-beam SIM and our deep learning prediction (Fig. 4b–d) facilitated 
validation of the method. For example, when inspecting immunola-
beled microtubules in fixed U2OS cells (Fig. 4b), although all three 
methods offered similar lateral resolution (Fig. 4c), fine axial features 
blurred in 3D SIM were resolved with four-beam SIM and the network 
prediction, which showed close visual and quantitative (Fig. 4c,d) 
agreement. We obtained similar results on membrane-stained, live B. 
subtilis and immunolabeled Tomm20 in fixed U2OS cells (Extended 
Data Fig. 4) and verified the resolution improvement on additional 
samples using a modified decorrelation analysis method (Supple-
mentary Table 2)37,43.

Next, we performed two-color imaging of caveolin-1 and cavin-1, 
components of the caveolar coat. Caveolae are 70–100-nm-diameter 
membrane invaginations that can detach from the plasma membrane 
and move through the cytoplasm, playing key roles in lipid metabo-
lism and trafficking44. We fixed mouse embryonic fibroblasts (MEFs) 
expressing caveolin-1-EGFP and additionally immunolabeled cavin-1 
with Alexa Fluor 568, performed 3D SIM imaging and then applied 
our network to the 3D SIM images (Fig. 4e–k). Caveolin-1 and cavin-1 
labels mostly marked distinct caveolae pools (Fig. 4e,f), although we 
also observed a smaller pool of caveolae puncta with co-localized 
signal (Fig. 4g,h). Unlike the cavin-1 signal, which mostly decorated 
structures sized at or below our resolution limit, caveolin-1 labeled 
a more heterogenous pool of caveolae (Fig. 4i–k). Hints of such het-
erogeneity existed in the input 3D SIM data but were obscured by 
diffraction. By contrast, the network prediction appeared to resolve 
ring-shaped structures (Fig. 4i), partial rings (Fig. 4j) and spherical 
puncta (Fig. 4k). We also found that caveolin-1 localized to larger 
ring-shaped structures of varying size, possibly lipid droplets  
(Supplementary Fig. 15).

Using an inappropriate deep learning model can introduce arti-
facts and/or reduce axial resolution. We investigated this point by using 
‘mismatched’ training data—for example, a model with training data 
derived from microtubule samples and applied to Tomm20 mitochon-
drial data and a model trained on Tomm20 mitochondrial samples and 
applied to microtubule data (Supplementary Fig. 16). Although the 
gross morphology of the samples is maintained, closer examination 
revealed that such mismatches produce suboptimal predictions.

Multi-step deep learning enables 4D super-resolution imaging
One of the easiest ways to extend imaging duration in fluorescence 
microscopy is to lower the illumination intensity. This approach is 
ultimately limited by signal-to-noise ratio (SNR) in the raw data, a par-
ticularly important constraint in conventional 3D SIM reconstruction, 
which is highly susceptible to noise45. In response to this challenge, sev-
eral recent studies employed deep learning to denoise SIM data38,46–48. 
Motivated by this work, we developed a multi-step denoising approach 
(Fig. 5a, Supplementary Fig. 17a and Methods). First, we gathered 

matched pairs of low and high SNR volumes (∼10-fold difference in 
illumination intensity), training a residual channel attention network 
(3D RCAN37) to denoise low SNR volumes that would otherwise produce 
unacceptably noisy 3D SIM reconstructions. Next, we applied a general-
ized Wiener filter to produce an intermediate 3D SIM reconstruction 
from the denoised low SNR volumes. Finally, we trained a second 3D 
RCAN to additionally denoise the intermediate reconstruction, fur-
ther reducing patterned noise artifacts (Fig. 5b–d and Supplementary  
Fig. 17b,c). This procedure provided reconstructions that were visually 
and quantitatively superior to those produced by all other strategies 
that we tested (Supplementary Figs. 18 and 19 and Supplementary 
Tables 3 and 4), including using only the first 3D RCAN and subsequent 
Wiener filter; modifying the RCAN to incorporate all 15 low SNR input 
volumes to directly (without a Wiener filter) predict the 3D SIM recon-
struction; using DenseDeconNet49, a different type of network; or elimi-
nating the Wiener filter between the sequential 3D RCAN networks. In 
this work, we built multi-step denoising models for outer mitochondrial 
membranes (Tomm20), lysosomal membranes (LAMP1), interior lyso-
somal markers (LysoTracker Red) and microtubules.

Our multi-step denoising pipeline produced high-quality 3D SIM 
predictions that could be input to our axial resolution enhancement 
method (Fig. 5a), thereby producing high SNR reconstructions with 
∼120-nm isotropic resolution from low SNR input. The improvement 
in SNR and resolution offered by deep learning was particularly strik-
ing when visualizing subcellular organelles and their dynamics. For 
example, by lowering the illumination intensity to ∼0.5 W/cm2, we 
could perform 3D SIM imaging of EGFP-Tomm20 in live U2OS cells  
(Fig. 5b and Supplementary Video 8) for 50 volumes without substan-
tial photobleaching or obvious phototoxicity. Performing the direct 
3D SIM reconstruction on the low SNR raw data revealed the expected 
Tomm20 signal at the outer mitochondrial membrane in lateral views, 
although the signal was contaminated with patterned noise (Fig. 5c) 
and obscured in axial views (Fig. 5d). Denoising through successive 
3D RCANs progressively improved SNR, although only the final step 
provided an axial clarity commensurate with lateral views (Fig. 5d and 
Supplementary Video 8). We observed similar improvements when 
imaging lysosomal dynamics with an EGFP-LAMP1 marker in live U2OS 
cells (Supplementary Video 9).

To demonstrate the potential of our deep learning pipeline for 
live dual-color imaging, we performed volumetric imaging over 60 
timepoints of U2OS cells expressing EGFP-LAMP1, marking lysoso-
mal membranes, and additionally labeled with LysoTracker Red dye, 
which labeled the interior of lysosomes (Fig. 5e–k and Supplementary 
Videos 10 and 11). Although some lysosomes appeared as ‘textbook’ 
discrete vesicular structures (Fig. 5i,j), our reconstructions revealed 
considerable structural heterogeneity, with some lysosomes assum-
ing a ‘multi-bud’ structure (Fig. 5f,g) and others appearing tubular 
(Fig. 5k). LysoTracker Red localized to the interior of many, but not all, 
lysosomes. In some cases, LysoTracker Red preferentially localized to 

Fig. 5 | Denoising and axial resolution enhancement facilitate 4D super-
resolution imaging with isotropic resolution. a, Schematic illustrating 
workflow for applying deep learning to raw input data. Sets of raw images (5 
phases × 3 orientations) are denoised and combined with a generalized Wiener 
filter; and the resulting 3D SIM reconstruction is denoised and passed through 
our axial resolution enhancement workflow (Fig. 4a) to yield an isotropic, 
denoised, super-resolution prediction. See also Fig. 4a and Supplementary  
Figs. 14 and 17. b, Maximum intensity projection of final prediction for Tomm20-
GFP label in a live U2OS cell, 25th timepoint from a 50-timepoint volumetric 
series. See also Supplementary Video 8. c, Single lateral plane corresponding 
to yellow dashed rectangular region in b, illustrating progressive improvement 
from 3D SIM reconstruction based on raw input data; after the first denoising 
model and Wiener filter; after applying the second denoising model; and after 
the isotropization model. Double-headed red arrows show corresponding 

steps in schematic a. d, As in b but for axial plane indicated by yellow dashed 
line in c. e, Maximum intensity projection of final prediction for live U2OS cells 
expressing lysosomal marker LAMP1-GFP (cyan) and additionally labeled with 
LysoTracker Red to mark the lysosome interior (magenta). First timepoint from 
a 60-timepoint volumetric series is shown. See also Supplementary Video 10. f–j, 
Higher magnification views of white dashed rectangular regions in e, illustrating 
lateral views (top), axial views along white dashed lines in lateral views (middle) 
and comparative axial views from 3D SIM reconstructions (bottom, ‘Raw’). k, 
Higher magnification view of yellow dashed rectangular region, emphasizing 
dynamics at selected timepoints. See also Supplementary Video 12. Top: lateral 
views, red arrow emphasizes lysosomal subregion filled by LysoTracker Red dye 
versus white arrow, indicating unfilled region; middle: axial view corresponding 
to white dashed lines; bottom: comparative 3D SIM axial view. Scale bars, 5 µm 
(b,e); 1 µm (c,d,k); and 500 nm (f–j). DL, deep learning; s, seconds.
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different membrane-bound regions even within a single lysosomal 
structure (Fig. 5f,g,k). Such compartmentalized staining appeared 
stable over our ∼25-minute recording, suggesting limited turnover 
of the dye despite rapid dynamics of the parent structure (Fig. 5k and 
Supplementary Video 12). Given that LysoTracker Red is known to 
stain acidic organelles, perhaps this result reflects underlying pH 
differences between and even within lysosomes. Such fine structural 

details were obscured in axial views of 3D SIM reconstructions derived 
from the raw data.

Finally, we investigated microtubule dynamics in Jurkat T cells 
as they were activated and spread on anti-CD3 coverslips (Fig. 6 and 
Supplementary Videos 13–16). This system has been used extensively 
to study the cytoskeletal remodeling that takes place during the early 
stages of immunological synapse formation, including actin ring 
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formation and centrosome polarization50–52. By lowering the illumi-
nation intensity sufficiently, we recorded a 3D SIM time series span-
ning 100 volumes (1 volume every 12.8 seconds) without substantially 
bleaching our EMTB 3× GFP microtubule marker or introducing notice-
able phototoxicity. This ∼21-minute-duration recording proved long 
enough to observe substantial cytoskeletal remodeling, particularly 
after applying our denoising and axial resolution enhancement pipe-
line (Fig. 6a,b). The deep learning prediction revealed finer detail 
and many more filaments than 3D SIM reconstructions based on the 
raw data, which were degraded by noise and poor axial resolution  
(Fig. 6c,d). The improvement in image quality facilitated inspection 
of the rapidly remodeling microtubule network, proving particularly 
helpful in elucidating the interplay of distinct cytoskeletal elements 
occurring perpendicular to the coverslip surface. For example, we 
segmented two microtubule filaments (Fig. 6b) that appeared to grow 
toward each other, merging and encircling the nucleus before disas-
sociating (Fig. 6e and Supplementary Video 13). We also identified 
the microtubule organizing center (MTOC), tracking its ‘downward 
and inward’ movement from its original peripheral location toward 
the coverslip. Centrosome polarization in T cells has been described 
as biphasic and driven by the association of microtubule bundles with 
molecular motors (dynein) at the synapse52,53. Intriguingly, MTOC 
repositioning correlated closely with the inward movement of one 
of the segmented microtubule bundles (Fig. 6f and Supplementary 
Video 14), suggesting close physical coupling between different parts 
of the network, perhaps resulting from the coordinated action of 
microtubule-associated motors. We also observed numerous ‘buckling’ 
events of individual microtubule filaments (Fig. 6g, Supplementary  
Fig. 20 and Supplementary Videos 15 and 16), presumably also the result 
of active force generation by molecular motors50.

Discussion
Improving the axial resolution of fluorescence microscopy can 
directly translate into new biological insights, yet most methods have 
focused on improving lateral resolution. In this study, we addressed 
this issue by improving the axial resolution of 3D SIM1, a broadly used 
super-resolution method well suited for studying single cells. First, we 
showed that adding a mirror to a 3D SIM system enables near-isotropic 
spatial resolution. The main advantage of this ‘physics-based’ four-beam 
SIM method is that it does not require information about the sample. By 
contrast, the second computational method can be applied to 3D SIM 
systems without hardware modification, instead embedding informa-
tion about the sample into a series of neural networks, which can predict 
a denoised image reconstruction with isotropic spatial resolution. 
Although these techniques provide distinct means for axial resolution 
enhancement, they could be combined—for example, denoising the 
input to four-beam SIM so that illumination intensity may be lowered, 
thereby reducing phototoxicity and improving the potential for 4D 
imaging.

Both methods can be further improved. The four-beam SIM 
requires active drift correction and precise alignment of the illumina-
tion pattern. Although our bead-based algorithm (Supplementary  

Fig. 9) met both requirements, hardware-based correction54 would 
provide faster feedback, possibly obviating the need to image beads 
and, thus, lowering the total illumination dose imparted to the sample. 
For applications in which the axial view alone is sufficient, collecting 
only five phases (that is, one orientation) would provide optical section-
ing and axial resolution enhancement, improving speed (and reducing 
dose) by three-fold. Also, for multi-color applications, the technique 
could benefit by implementing independent detection paths for each 
color, bypassing the time-consuming need to realign the detection path 
as manually implemented here.

The multi-step deep learning pipeline is currently time-consuming, 
requiring the collection of ∼50 volumetric pairs per network and 
∼12 hours for training all networks. Once trained, application of 
the networks is faster, requiring ∼5 minutes per volume (each 
∼500 × 500 × 80 voxels). Given continued progress in deep learning, 
improved networks with fewer parameters55 are likely to substantially 
shrink these times in the future. In our multi-step approach, we used the 
15 raw image volumes required for traditional 3D SIM reconstruction as 
input to our networks. One route to faster and more gentle imaging is to 
use fewer input images (for example, fewer phases or coarser axial sam-
pling), although the quality of such reconstructions is currently worse 
than obtained using the entire dataset48. Perhaps the largest caveats 
with any deep learning method are that the quality of the prediction is 
tied to the quality of the training data and that generalizability to data 
unlike that of the training set remains questionable. Finally, we note 
that the spatial resolution of both the four-beam and deep learning 
approaches may be improved by incorporating photoswitching56, albeit 
with accompanying reduction in temporal resolution and increase in 
illumination dose.

Nevertheless, in their current form, the methods we present outper-
form recent state-of-the-art SIM implementations. Relative to a recent 
implementation of lattice light-sheet microscopy (LLSM) employing 
structured illumination for lateral resolution enhancement and coher-
ent detection for improved axial resolution (3D-iLLS)57, our techniques 
offer a 2–3-fold improvement in acquisition speed, a 2–3-fold improve-
ment in volumetric resolution, a ∼40-fold improvement in imaging vol-
ume size, an order of magnitude more timepoints (using deep learning) 
and less susceptibility to reconstruction artifacts. Relative to live cell 
PA-NL SIM LLSM58, our techniques offer similar speed and resolution, 
∼1.5-fold improvement in imaging volume size and 2.5–5-fold more 
timepoints (using deep learning) and do not require a photoswitch-
able fluorophore or a multi-objective imaging system. In addition to 
the gains on conventionally prepared samples illustrated here, our 
methods may improve SIM reconstructions on samples prepared for 
correlative super-resolution fluorescence and electron microscopy59, 
which currently suffer from poor axial resolution. Finally, although we 
focused here on improving the performance of 3D SIM, our deep learn-
ing methods may also prove useful in improving the axial resolution 
of other 3D imaging techniques (for example, confocal microscopy, 
stimulated emission depletion (STED) microscopy and instant SIM60), 
with the caveat that current neural networks37,38,41 appear able to pro-
duce 2–3× resolution enhancement at best.

Fig. 6 | Denoising and axial resolution enhancement unveil rich microtubule 
dynamics within a living immune cell. a,b, Selected volumetric reconstructions 
of Jurkat T cells expressing EMTB 3× GFP are shown from 100-timepoint series 
(volumes recorded every 12.8 seconds) in perspective views. In b, the MTOC 
(cyan sphere), overlapping microtubules (red, yellow, green) and buckling 
microtubules (red and yellow spheres) are shown. c,d, Comparative axial 
views (maximum intensity projections over 2-µm thickness in y) of 3D SIM 
reconstructions (‘Raw’, upper row) and deep learning output (‘DL’, bottom row) 
corresponding to planes in a. Position of MTOC is indicated (cyan sphere). e, 
Selected timepoints corresponding to subregion marked in b, emphasizing 
two microtubule filaments that are initially separated (t = 512 seconds and 

550 seconds), merge over the nucleus (t = 627 seconds) and separate again 
(t = 755 seconds and 896 seconds). See also Supplementary Video 13. f, Axial 
views (projections over 8-µm thickness) that emphasize correlated, inward 
movement of MTOC (cyan sphere; previous trajectory temporally coded as 
indicated in color bar) and microtubule filament (red; the same filament shown 
in b and e). See also Supplementary Video 14. g, Lateral (g1) and axial (g2) views 
emphasizing buckling of two microtubule filaments (red and yellow spheres, as 
shown in b). Pre-buckling: left columns; post-buckling: right columns. Both g1 
and g2 are projections over 8-µm thickness. See also Supplementary Video 15. 
Scale bars, 2 µm (a–d) and 1 µm (e–g). DL, deep learning; s, seconds.
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Methods
Simulations of OTF support
The simulated 2D OTF supports (Extended Data Fig. 1 and Supplemen-
tary Fig. 1) were assembled based on imaging parameters and geometric 
considerations. The 3D OTF support of the wide-field microscope is a 
toroidal solid, whose 2D analog in the kr, kz plane consists of the area 
enclosed by four arcs (Extended Data Fig. 1a). The position and extent 
of these arcs in the spatial frequency domain were computed by con-
sidering the detection NA and emission wavelength of the wide-field 
imaging system. The lateral and axial toroidal extents of the OTFs were 
determined as 2NA

λ
 and (1−cosα)⋅n

λ
, respectively, where NA is the numerical 

aperture of the objective lens for emission wavelength λ; α is the 
light-gathering half-angle of the objective lens; and n is the RI of the 
sample medium. The 3D SIM OTF was created by placing wide-field 
OTFs at each 3D SIM illumination frequency component (Extended 
Data Fig. 1b). The standing-wave microscope OTF support consists of 
the wide-field OTF and two duplicates along the kz axis, positioned at 
the spatial frequencies of the standing wave determined by the excita-
tion wavelength and RI (Extended Data Fig. 1c). The OTF support for 
four-beam SIM can be similarly derived by considering the area 
enclosed by wide-field OTFs placed at the seven 3D SIM illumination 
frequency components, the standing-wave spatial frequencies and 
four additional frequency components determined by interference of 
the reflected beam with the two side beams (Extended Data Fig. 1e). 
Finally, as previously described20, the I5S OTF support is determined 
by considering the area enclosed by the placing the I2M OTF61 at each 
of the 19 illumination components produced in I5S (Extended Data  
Fig. 1d). 3D OTF supports were simulated by converting each 2D coor-
dinate in the kr, kz plane to a corresponding set of 3D spherical coordi-
nates (Supplementary Fig. 1).

Home-built 3D SIM system
Our 3D SIM optical layout (Supplementary Fig. 2) was inspired by 
previous designs1,3,4. Two linearly polarized lasers (488 nm and 
561 nm, Coherent, Sapphire 488 LP-300 mW and Sapphire 561 
LP-200 mW) were combined via a 3-mm-thick dichroic mirror 
(DM1: Semrock, Di03-R405/488/532/635-t3-25×36) and passed 
through an acousto-optic tunable filter (AOTF, AA Opto-Electronic, 
AOTFnC-400.650-TN) for rapid shuttering and intensity control. Illu-
mination power was measured after the objective, and the computed 
intensity at the sample plane varied between 0.5 W/cm2 and 25 W/cm2 
based on a circularly illuminated area with diameter of 90 µm. The 
first-order beam exiting the AOTF was selected (the zero-order beam 
was blocked by a beam dump (BD)), expanded (L1 and L2; Thorlabs, 
TRH127-020-A-ML and ACT508-400-A-ML) and spatially filtered by 
a pinhole (P; Thorlabs, P30K), resulting in a beam with 15-mm 1/e2 
diameter. The excitation beams were then redirected onto a phase-only 
nematic spatial light modulator (SLM; Meadowlark Optics, MSP1920-
400-800-HSP8) at near-normal incidence (<6°). A half-wave plate 
(HWP; Thorlabs, AHWP10M-600) positioned before the spatial filter 
was used to adjust the direction of linear polarization, aligning it for 
maximum phase modulation by the SLM, thereby ensuring high con-
trast for the 15 patterns used in 3D SIM. An adjustable iris (Thorlabs, 
SM1D12) between the beam expander and the SLM was set to 10-mm 
diameter, slightly shorter than the short edge of the SLM active area 
(10.6 mm). Expanding the beam while underfilling the SLM improves 
illumination uniformity while avoiding diffraction effects from the 
SLM boundary.

Lens L3 was positioned at one focal length after the SLM, producing 
a Fourier image of the illumination pattern at its focus. A pinhole mask 
(PM) placed at this plane served to filter out unwanted illumination 
orders due to SLM pitch and pattern pixelization. The spatially filtered 
beams emerging from the PM were imaged via another pair of relay 
lenses (lens pair L4 and L5 placed in 4f configuration) onto the back 
focal plane (BFP) of the objective lens. For each pattern orientation, the 

coherent 0th and ±1st order beams were collimated by the objective 
and interfered at the sample plane to form the 3D SIM illumination pat-
tern. A liquid crystal polarization rotator (LCPR; Meadowlark Optics, 
LPR-200-0525-ACHR, achromatic) was used for rapid rotation of the 
polarization state after SLM, producing s-polarized illumination at the 
sample and, thus, high illumination pattern contrast there. If using a 
silicone oil objective lens (Olympus, UPLSAPO ×100/1.35 NA), we used 
f3 = 250 mm, f4 = 300 mm and f5 = 250 mm (Thorlabs, AC508-250-A-ML 
and AC508-300-A-ML), producing a demagnification of 115.7 from the 
SLM to the sample plane, given that fobj = 1.8 mm. When using a water 
objective lens (Nikon, CFI SR Plan Apo ×60/1.27 NA), we use f3 = 300 mm, 
f4 = 250 mm and f5 = 250 mm, producing a demagnification of 90.1 from 
the SLM to the sample plane given that fobj = 3.33 mm. In both cases, 
the usable field of view (FOV) was at least 90 µm × 90 µm. In addition 
to FOV, several other design criteria informed our choice of f4–f5. First, 
we picked f3 to be sufficiently large (>200 mm) to (1) ensure sufficient 
room for near-normal incidence of the illumination beam at the SLM 
and (2) clearly separate the Fourier components of the illumination at 
the PM, allowing clean filtering of these components relative to back-
ground orders. Similarly, we picked f5 to be long enough (>200 mm) to 
accommodate a turning mirror and the dichroic mirror.

Fluorescence was isolated post-objective via a dichroic mirror 
(DM2; Semrock, Di03-R488/561-t3-25×36) and imaged to a scientific 
complementary metal-oxide semiconductor (sCMOS) detector (PCO, 
Edge 4.2HQ) mounted on a multi-axis translation stage (Thorlabs, 
XR25P-K1) and a vertical travel platform (Thorlabs, L490) via tube 
lens L6. Emission filters mounted in a filter wheel (FW; Applied Scien-
tific Instrumentation, FW-1000) served to further reject illumination 
light and select appropriate spectral bands. In this work, two band-
pass emission filters (Semrock, FF03-525/50-25 and FF02-617/73-25) 
and one notch emission filter (Semrock, NF03-405/488/561/635E-25) 
were used, depending on the sample. Bandpass filters were used when 
imaging yellow-green beads, red beads and all biological samples to 
avoid crosstalk between spectral bands. The notch filter was used only 
when imaging orange beads to align the four-beam SIM system for 
two-color applications. When using the 1.35 NA silicone oil objective 
lens, we chose f6 = 165 mm (Thorlabs, TTL165-A). When using the 1.27 
NA water objective, we chose f6 = 265 mm (Applied Scientific Instru-
mentation, C60-TUBE-265D). The resulting image pixel sizes for the 
silicone oil lens were 70.9 nm (×91.7 magnification from sample to 
camera) and 81.8 nm (×79.5 magnification from sample to camera) for 
the water lens. In both cases, the image pixel sizes were smaller than the  
Nyquist limit.

Sample and objective were held in a modular microscope frame 
with a motorized x–y stage (Applied Scientific Instrumentation, RAMM 
and MS-2000 XYZ Automated Stage) used for lateral sample position-
ing and coarse focusing. A z piezo stage (Applied Scientific Instrumen-
tation, PZ-2150, 150-µm axial travel) attached to the stage was used to 
provide precise axial sample positioning (125-nm step size for 3D SIM 
and 60-nm step size for four-beam SIM to ensure Nyquist sampling in z). 
Samples were deposited on high-precision 25-mm coverslips (Thorlabs, 
CG15XH) that were mounted in a magnetic imaging chamber (Warner 
Instruments, QR-40LP) filled with imaging medium. The chamber was 
placed into a stage insert (Applied Scientific Instrumentation, I-3091 
universal insert) mounted to the piezo stage (Extended Data Fig. 2a).

3D SIM pattern generation
As in previous 3D SIM systems, we used the SLM as a binary phase 
grating (each pixel producing a phase retardance of 0 or π radians) to 
generate periodic illumination patterns at the sample plane. To gener-
ate appropriate patterns, we carefully considered how to implement (1) 
the desired pattern orientations, (2) the desired line spacing (grating 
period) in each pattern, (3) the duty cycle appropriate for each pattern 
and (4) the relative 2π/5 phase shifts between each of the five patterns 
required at each orientation.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01651-1

First, 3D SIM typically uses patterns with three orientations spaced 
60° apart to (1) achieve near-isotropic lateral resolution and (2) fill in 
the ‘missing cone’ of axial spatial frequencies, thereby providing optical 
sectioning. In the pixelated coordinate system of the SLM (Supplemen-
tary Fig. 3a), we found it convenient to define a vector A⃗, described by 
integer components (Ax, Ay), to specify pattern orientation. In this work, 
we chose A⃗ = (2, −11), (14,−5) and (13,11) as the three pattern orientations, 
which correspond to 10.3°, 70.3° and 130.2°. This choice allowed us to 
pick a grating period with a non-integer value, unlike orientations at 
0° or 90°, which would restrict the grating period to integer values. We 
also found that 45° and 135° orientations should be avoided, as they 
caused many additional orders between the zero and first orders at the 
Fourier plane, making the filtering at the PM less efficient.

Second, 3D SIM uses three tightly focused beams at the BFP of the 
objective lens to produce the illumination pattern. The positions of 
the two side beams are typically located at 90–95% of the pupil radius. 
Using a higher radius (>95% of the pupil) decreases the amplitude of 
the highest lateral illumination spatial frequency to the point that it 
is difficult to detect, complicating conventional SIM reconstruction 
algorithms that rely on precise estimation of this parameter. On the 
other hand, using a substantially lower radius (<90% of the pupil) 
needlessly decreases resolution, especially along the axial dimension. 
In this work, we sought to position our side beams at 92% of the pupil 
radius, thereby achieving easily detectable pattern modulation while 
maintaining high resolution.

After the ratio of the side beam position to pupil radius of BFP r and 
system demagnification factor M from the SLM to the sample plane are 
determined, the corresponding SLM pattern period can be computed 
as P = Mλex / rNA, in which λex is the excitation wavelength and NA is the 
numerical aperture of the objective. Taking λex = 488 nm, for example, 
the pattern period is 45.5 µm for the 1.35 NA silicone oil lens (M = 115.7) 
and 37.6 µm for the 1.27 NA (M = 90.1) water lens. Considering the 
9.2-µm pixel size of the SLM, these periods correspond to 4.95 pixels 
and 4.09 pixels, respectively. In practice, the period was fine-tuned 
for each of the three pattern orientations and different wavelengths, 
with the goal of achieving r = 0.92. The positions of the first-order 
components of the illumination pattern at the PM are given by f3λex / p. 
We machined the PM from a 1-inch-diameter, ∼1-mm-thick aluminum 
disk, creating seven holes in the disk to selectively transmit only the 
zero-order and first-order components of the illumination pattern 
(each hole 0.5–1 mm in diameter, one centered and six spaced at 60° 
intervals surrounding the central spot). The PM was finely rotated 
using a mount (Thorlabs, CRM1) to ensure maximal throughput of the 
illumination pattern.

Third, 3D SIM and four-beam SIM both require the central, 
zero-order illumination beam to generate the interference pattern 
at the sample. The relative intensity of the zero-order beam can be 
controlled by modifying the duty cycle of the SLM pattern, defined 
by the fraction of pixels in the on-state (π phase retardance) in each 
period. We set the duty cycle of the SLM pattern to ∼30%, resulting 
in a zero-order intensity that was 70–75% of the first-order intensity. 
This ratio was chosen to emphasize the relatively weak amplitudes of 
the highest lateral spatial frequencies in the illumination pattern, as 
inspired by previous work1,3. In practice, the duty cycle was fine-tuned 
for each pattern orientation and laser wavelength to maintain the 
desired intensity ratio (33% and 31% duty cycle for 488-nm and 561-nm 
lasers, respectively).

With these considerations in mind, to generate SLM patterns with 
the appropriate orientation, period, duty cycle and relative phase as 
required for 3D SIM, we adopted the following pattern-finding algo-
rithm (Supplementary Fig. 3). (1) Pick a vector A⃗ parallel to the desired 
pattern, where the pattern consists of stripes separated by periodicity 
p. A⃗ defines the direction (orientation) of the pattern. (2) Obtain the 
vector B⃗ perpendicular to A⃗ with length p. (3) For any pixel coordinate 
(x, y) on the SLM, compute the scalar projection ((x, y)⋅ B⃗

‖
‖B⃗
‖
‖
) of vector  

(x, y) onto vector B⃗. (4) Compute the modulo (MATLAB function ‘mod’) 
after dividing the projection by p. If the modulo is greater than the duty 
cycle multiplied with p, a gray level corresponding to 0 phase retard-
ance is assigned to the current pixel. If the modulo is less than the duty 
cycle multiplied with p, a gray level corresponding to π phase retard-
ance is assigned. (5) Repeat the above procedure to find the patterns 
corresponding to the other phase steps simply by moving the origin 
of vector (x, y) along B⃗ by the length of the desired phase step. The 
advantage of this method is that period and duty cycle may be inde-
pendently tuned without affecting the pattern orientation. We, thus, 
found it very useful in fine-tuning the pattern parameters for, for exam-
ple, multi-color imaging, without needing to change the physical prop-
erties of the PM.

Previous 3D SIM work3,4 used a binary ferroelectric SLM in which 
each pixel is set to a binary state, resulting in either 0 or π phase retard-
ance. Here we used a nematic SLM, which allows a greater range of 
phase values. However, nematic SLMs must be calibrated to generate 
a look-up table (LUT) that maps the input 0–255 values to the grayscale 
value that results in a linear 0–2π phase retardance. Before use, we 
calibrated the SLM for 488-nm and 561-nm wavelengths, following  
the manufacturer’s guidelines, subsequently selecting the LUT appro-
priate for the experiment at hand.

To ensure that the illumination pattern has maximum contrast at 
the sample plane (s-polarization), the LCPR’s state was dynamically 
adjusted to keep the polarization of illumination beams parallel to 
vector A⃗ (orthogonal to vector B⃗) for each of the three pattern orienta-
tions. Fine alignment of the LCPR optical axis was accomplished using 
the following procedure. (1) Place the LCPR in a rotation mount (Thor-
labs, RSP2D) with one of its input axes roughly aligned with the polari-
zation vector of the illumination post-SLM. (2) Place a linear polarizer 
after the LCPR with transmission axis in the same direction of vector 
B⃗. (3) Slowly rotate the LCPR until the transmitted intensity is mini-
mized. Then, fine-tune the control voltage to the LCPR to further reduce 
the transmitted intensity. (4) Repeat step (3) several times to ensure 
that the LCPR is properly aligned for the current pattern orientation 
and repeat step (2) with polarizer axis rotated appropriately to match 
B⃗ for the other two orientations. (5) Remove the polarizer and record 
the LCPR input voltages for three pattern orientations and then apply 
the appropriate voltages to the LCPR during 3D SIM and four-beam 
SIM experiments (Supplementary Figs. 5 and 6a).

3D SIM system alignment
We implemented a series of checks to verify the alignment of our 3D 
SIM system. First, we minimized aberrations in the wide-field PSF. We 
used the SLM to produce wide-field illumination by setting all pixels 
to 0 phase, before acquiring a stack of a single 100-nm bead placed 
in the center of the FOV. The stack was acquired with near-isotropic 
voxel size. When projecting the stack to visualize the axial views (x–z 
and y–z), we checked for symmetry of the PSF along each direction. 
By adjusting the four screws of the Applied Scientific Instrumentation 
stage insert and the correction collar, we minimized tilt and spherical 
aberrations, respectively.

Second, we checked the conjugation of the SLM plane to the sam-
ple, which is important to achieve imaging with high axial pattern mod-
ulation. To optimize this, we acquired a 4-µm 3D SIM stack on a single 
layer of 100-nm fluorescent beads with axial step size 20–40 nm, which 
is much smaller than the Nyquist sampling employed when taking bio-
logical data. We then used the ‘Illumination Pattern Focus’ calibration 
tool in SIMcheck24 to produce a projection of the axial cross-section of 
the beads layer along each direction (Supplementary Fig. 12). When the 
SLM surface is well aligned to the sample plane, axial views of beads at 
each direction appear symmetric, with approximately equal energy 
appearing above and below the central intensity maxima. Otherwise, 
axially projected images appear as a ‘zipper-like’ double layer, which 
indicates that the detection camera is imperfectly positioned and 
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should be translated axially. For our system, the SLM position and its 
corresponding axial interference pattern can be optimized only for 
a single illumination wavelength at once. We prioritized the 488-nm 
illumination wavelength and corresponding GFP emission band, leav-
ing the camera position unchanged during two-color 3D SIM imaging. 
However, as indicated below, we did translate the camera for four-beam 
SIM, two-color acquisition.

Finally, we evaluated the overall performance of the 3D SIM system 
by imaging 100-nm yellow-green beads and passing the images through 
SIMcheck (Supplementary Fig. 7). The ‘Raw Fourier Projection’ output 
was used to check that the first-order illumination pattern components 
were evident in the frequency domain (Supplementary Fig. 7a). The 
‘Motion & Illumination Variation’ output was used to verify that the sys-
tem remained stable to within the tolerance required for 3D SIM imag-
ing (Supplementary Fig. 7b). A high ‘Modulation Contrast-to-Noise’ 
value demonstrated good modulation contrast of the illumination 
pattern (Supplementary Fig. 7c). Statistics from the ‘Reconstructed 
Intensity Histogram’ indicated a good SNR of the reconstructed image 
(Supplementary Fig. 7e). Finally, fast Fourier transforms (FFTs) cor-
responding to the lateral and axial dimensions of the reconstructed 
image, given by the ‘Reconstructed Fourier Plots’ (Supplementary  
Fig. 7f), indicated that imaging performance approached the theoreti-
cal resolution limit.

Mirror for four-beam SIM, four-beam SIM illumination pattern
A half-inch dielectric mirror (Thorlabs, BB05-E02) was glued to a lens 
tube (Thorlabs, SM05L05) with optical cement (Norland Products), and 
the entire assembly was mounted to a home-made adaptor. A piezo tip/
tilt scanner (Physik Instrumente, S316.10H) connected to the adaptor 
via set screws was used to precisely control the axial position of the 
mirror. In this work, only the z axis of the piezo scanner was controlled, 
resulting in pure axial motion. This ‘piezo mirror’ assembly was then 
mounted on a kinematic mirror mount (Thorlabs, POLARIS-K2T) and 
a manual translation stage (Newport, 9067) to coarsely adjust the 
horizontal tilt angle and axial position of the mirror. Finally, the entire 
setup (Extended Data Fig. 2a) was bolted to the microscope stage and 
mounted opposite the sample, via half-inch posts, post holders and 90° 
right-angle clamps (Thorlabs, TR series, PH2 and RA90). By loosening 
the thumbscrews of the two post holders to remove the assembly, 
we switched between 3D SIM and four-beam SIM mode. We required 
an imaging chamber with sufficient clear aperture to accommodate 
the half-inch diameter of the mirror. This motivated our choice of 
the magnetic imaging chamber (Warner Instruments, QR-40LP) with 
19.7-mm aperture.

In creating the four-beam SIM illumination pattern, we considered 
two key constraints. (1) The mirror should be close enough (<500 µm) 
to the coverslip to maintain high coherence between incoming and 
reflected beams, thereby producing high axial modulation depth. (2) 
The mirror surface should be perpendicular to the zero-order beam 
for a purely axial modulation. Fine alignment of the mirror and the 
reflected beam, necessary to satisfy these constraints, was accom-
plished using the following protocol. (1) Set the SLM to wide-field mode 
(all pixels to 0 phase) and focus on a dense single layer of 100-nm beads 
(or autofluorescence from a dirty coverslip). (2) Attach the mirror setup 
to the microscope stage with the piezo scanner set at its mid-point 
voltage. (3) Move the translation stage to lower the mirror toward 
the sample until it is submerged in the imaging medium. (4) Carefully 
fine-tune the manual translation stage attached to the mirror (move 
in ∼10-µm increments) and check the image of the beads layer. When 
the mirror hits the cover glass, the image of the beads will become 
out of focus. At this point, move the mirror in the opposite direction 
(toward the ceiling) by 300 µm. Now the mirror is coarsely positioned 
in the correct axial position. (5) Acquire a 3D stack of images extending 
axially over 2 µm, with 20-nm step size. We found that multiple images 
in the stack provided valuable contextual information, helping us to 

finely align the system. Manually adjust the knobs on the kinematic 
mirror mount while monitoring the width and direction of the inter-
ference fringes. The closer the mirror is to the correct angle, the wider 
the fringes become. Perfect two-beam interference with purely axial 
modulation is achieved when seeing a flat intensity profile (Extended 
Data Fig. 2c and Supplementary Video 1). (6) Repeat steps (4) and (5) as 
necessary to ensure that the mirror is properly aligned. Finally, lock the 
position of the translation stage; at this point, only small adjustments 
to step (5) are required for same-day alignment when using the same 
imaging chamber. We note that the ‘side beams’ are also reflected from 
the mirror but illuminate areas well outside the four-beam imaging 
field at the illumination angles and mirror-to-coverslip distance used 
in this work. Although we cleaned the mirror with ethanol between 
experiments, we found that we never had to replace it during this study.

Four-beam SIM alignment
A successful SIM reconstruction requires that the axial phase of the 
illumination (relative position of the illumination pattern with respect 
to the detection focal plane) is the same for both PSF/OTF measure-
ment and image acquisition. This is usually not a challenge in 3D SIM. 
However, in four-beam SIM, the axial phase depends not only on the 
input illumination but also sensitively on the relative position of the 
mirror with respect to the detection focal plane. The maxima in the 
axial direction of the interference pattern should ideally coincide with 
the detection focal plane20 (and be maintained at this position), typi-
cally requiring the position of piezo scanner (mirror) to be adjusted 
(and maintained) before commencing four-beam SIM acquisition. 
We invented a bead-based alignment method to correct phase and 
drift by using the axial profile of a single 100-nm bead deposited on 
the coverslip (Supplementary Fig. 9). (1) In wide-field mode, obtain a 
single image of the sample. It is important that the beads are relatively 
sparse (for example, 2 µl of methanol solution with 1:20,000 dilution 
of beads). (2) Select one fiducial bead as an approximation to the PSF, 
ensuring that there are no other beads within 50 pixels of it. Record 
its highest intensity coordinate (x0, y0). (3) If performing the phase 
alignment for the first time, acquire a 2-µm stack with 20-nm step 
size. Otherwise, record a 1-µm stack to reduce photobleaching and 
improve acquisition speed. (4) Crop the stack’s lateral dimensions to 
50 × 50 pixels centered at (x0, y0) and apply a 2D Gaussian fit on the 
maximum intensity projection to estimate the PSF center (x1, y1) with 
subpixel precision. (5) Apply 2D Gaussian fits to each lateral plane in the 
cropped stack with predefined center (x1, y1). Compute the full width 
at half maximum (FWHM) along the x direction FWHM(x), the y direc-
tion FWHM(y) and their average FWHM(average) at each axial position 
in the stack. Interpolate FWHM(average) values within appropriate 
intervals (for example, 300–500 nm for the yellow-green channel 
and 400–600 nm for the red channel) with 100 evenly spaced points 
and then compute the averaged axial positions from the 100 points, 
yielding ‘PSF offset’. (6) Derive the axial intensity profile of the bead 
by summing the intensity in each plane over a circular area centered 
at (x1, y1) with a radius of 3 pixels. Fit the axial intensity profile with a 1D 
Gaussian function to obtain the peak position of the axial interference 
pattern closest to the ‘PSF offset’—that is, ‘SW peak’. (7) Compute the 
difference in position between ‘PSF offset’ and ‘SW peak’. If the differ-
ence is larger than a set tolerance (for example, 10 nm), the difference 
is minimized using feedback, by adding ‘PSF offset’ and ‘SW peak’ to 
the current position of the piezo stage (moving the sample) and piezo 
scanner (moving the mirror), respectively. Steps (3) to (7) are repeated 
until the desired tolerance is achieved. Once the difference between 
‘PSF offset’ and ‘SW peak’ is within the set tolerance, the axial intensity 
profile should exhibit side lobes of equal height above and below focus 
(Supplementary Fig. 8b), and four-beam SIM imaging can commence 
using the current piezo scanner and piezo stage settings. After mov-
ing the stage to image another FOV, we usually waited ∼5 minutes 
before commencing imaging, finding that this settling time helped to 
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stabilize the system. For all the single-timepoint imaging in this work, 
we applied this bead-based alignment protocol only once, before 
performing four-beam SIM acquisition. If time-lapse four-beam SIM 
imaging is required, the frequency of fiducial-based correction may 
be adjusted as desired.

As discussed above, the axial interference pattern of 3D SIM can be 
optimized only for a single illumination wavelength. If the camera posi-
tion (detector plane) is adjusted correctly for the 488-nm illumination, 
the corresponding order 1 OTF fully overlaps in four-beam SIM, which 
is sufficient for reconstruction (Supplementary Fig. 12a). However, 
when imaging red fluorescent beads excited with 561-nm illumination, 
gaps appear in the order 1 OTF if the detector plane is not moved (Sup-
plementary Fig. 12b). Such missing frequency components cannot be 
restored during Wiener reconstruction. After translating the camera to 
the optimal position for 561-nm illumination, OTF overlap is restored 
(Supplementary Fig. 12c). Thus, to achieve acceptable two-color 
four-beam SIM reconstructions, we recorded the optimal positions for 
488-nm and 561-nm illumination wavelengths and switched the camera 
positions between color acquisitions. We found that the minimum 
distance the camera needs to move between each color acquisition 
is 1.74 mm. Over this distance, we could discern no obvious spherical 
aberration when imaging red beads with 561-nm illumination. Moving 
the translation stage seating the camera takes ∼10 seconds between 
colors. We note that this temporal offset can be eliminated by adding 
a second emission path—that is, a dichroic mirror and another camera 
whose axial position is optimized specifically for 561 nm.

3D SIM and four-beam SIM data acquisition and OTF 
generation
Raw 3D SIM and four-beam SIM data were collected by applying pat-
terned illumination with 5 phases (2π/5 relative spacing) and 3 orienta-
tions (60° apart) for a total of 15 images per plane before changing focus 
(125-nm step size for 3D SIM and 60-nm step size for four-beam SIM). 
Each image stack was, thus, saved in XYPAZ format, where ‘XY’, ‘P’, ‘A’ 
and ‘Z’ denote lateral plane, phase, orientation and depth, respectively.

PSF data were acquired similarly except that only one pattern 
orientation (the first orientation) was acquired when imaging a single 
100-nm fluorescent bead. For four-beam SIM PSF measurement, phase 
alignment and drift correction were also applied immediately before 
acquisition. The axial range of the acquired PSF was 8 µm (4 µm below 
and above the bead center), and the image was cropped to a 
256 × 256-pixel region centered on the bead. The OTFs required for 
parameter estimation and Wiener reconstruction were derived using 
the following procedure. (1) Sum all five image volumes (corresponding 
to the five phases) to obtain an estimate of the wide-field PSF. Use 
three-point parabolic fitting around the pixel with maximum intensity 
to estimate the lateral center of the PSF more precisely. To estimate the 
axial center of the PSF, apply another three-point (3D SIM) or five-point 
(four-beam SIM) parabolic fitting on the axial view. (2) Subtract camera 
background, soften edges by multiplying each of the five image vol-
umes with a squared sine function and convert them to the frequency 
domain by computing the 3D FFT. Multiply the FFT results with a sepa-
ration matrix to obtain the real and imaginary parts of the five informa-
tion bands. Multiply the bands with a phase factor determined by the 
PSF center to shift the PSF to the origin. (3) Divide the bands with the 
Fourier transform of a solid sphere with a diameter of the bead (100 nm) 
to compensate for the finite bead size. (4) Rotationally average along 
kz axis to reduce noise, converting the bands into 2D data (kr/kz view). 
(5) The OTF support of the wide-field microscope is a toroid with extent 
determined by the detection NA and emission wavelength. All values 
outside the OTF support were set to 0 to eliminate noise. In 3D SIM, 
order 0 and 2 OTFs are identical to the wide-field OTF, but the order 1 
OTF is composed of two overlapping wide-field OTFs. In four-beam 
SIM, only the order 2 OTF is equivalent to the wide-field OTF, as the 
order 0 OTF consists of three separated wide-field OTFs, and the order 

1 OTF consists of four overlapping wide-field OTFs (Supplementary 
Fig. 12). (6) Normalize all OTFs to the maximum value (DC coordinate) 
of the order 0 OTF, setting this value to 1. OTFs must be measured for 
each objective and each laser wavelength and can be subsequently 
applied to reconstruct SIM data acquired under the same conditions. 
When performing SIM reconstruction (see the following section), the 
2D OTFs must be converted back into a 3D form. We established this 
correspondence by assigning each voxel coordinate (kx, ky, kz) in the 
desired 3D OTF to a 2D coordinate (kr, kz) = (√k2x + k2y , kz), obtaining the 
value at each 2D coordinate by interpolating the values from the four 
nearest pixels.

3D SIM and four-beam SIM image reconstruction
Raw 3D SIM and four-beam SIM data were processed with 
custom-developed MATLAB (MathWorks, R2021b) software. We note 
that four-beam SIM reconstruction is fundamentally no different than 
3D SIM. Although additional axial information is present in four-beam 
SIM data, such data contain the same number of lateral illumination 
frequency components and, thus, lateral information bands as in 3D 
SIM. The reconstruction algorithm we use is, thus, based on tradi-
tional 3D SIM reconstruction1 and can be subdivided as follows. (1) 
Pre-processing. A constant camera background was first subtracted 
from the raw data, and the resulting image edges were softened by 
multiplying the images with a squared sine function. All images were 
normalized to have the same total intensity to compensate for fluctua-
tions in illumination or bleaching between the different illumination 
phases, illumination orientations or sample depths. (2) Frequency 
unmixing. For each orientation, five information bands (correspond-
ing to m = 0, ±1 and ±2 lateral illumination frequency components) can 
be estimated and separated based on the 3D FFTs of the five input vol-
umes. (3) Parameter estimation. The precise position of the frequency 
components (corresponding to pattern line spacing and angle), the 
initial phase and the corresponding modulation depth of order 2 (the 
highest order) were determined by computing the cross-correlation 
between the shifted order 2 and order 0 (DC) bands. The modulation 
depth is a useful indicator of cross-correlation performance as line 
spacing and angle are finely varied to find their optimal values. Good 
parameter estimation occurs when the modulation depth reaches 
a local maximum, maximizing the overlap between order 0 and the 
shifted order 2 information bands. Half the value of the order 2 illumina-
tion frequency component position was used for positioning order 1. 
The estimated illumination frequency component of order 1 was then 
used to determine the initial phase and modulation depth of order 1. 
(4) Wiener reconstruction. A generalized Wiener filter incorporating 
all estimated parameters shifted the bands to their correct positions in 
frequency space and combined all three orientations to fill in the ‘miss-
ing cone’ and enhance resolution. Using a Wiener parameter that is too 
high reduces resolution, whereas using a Wiener parameter that is too 
low artificially increases noise. A value of 0.001, used throughout this 
work, was empirically found to give a good balance between resolution 
and noise. After multiplying the generalized Wiener filter result with 
a triangular apodization function to suppress high-frequency edge 
artifacts, the final SIM images were derived by computing the inverse 
FFT and keeping non-negative real values.

Hardware control
A PC computer (@Xi workstation, Intel Xeon CPU E5-1660 v4 @ 
3.20 GHz, 16 threads, 64 GB memory and 1 TB M.2 NVME SSD) was 
used to issue commands (waveforms) to a NI-DAQ card (National Instru-
ments, PXI 6733, BNC 2110) housed in an external data acquisition (DAQ) 
card chassis (National Instruments, PXIe-1073), the internal pco.edge 
camera acquisition card and the internal SLM control card (Supple-
mentary Fig. 4). A schematic describing the main waveforms (and their 
relative timing) is shown in Supplementary Fig. 5. The camera was set to 
external trigger with rolling shutter mode, receiving rising edges from 
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a digital output (DO) on the DAQ card. The SLM was also set to external 
trigger mode, receiving falling edges from another DO port to change 
patterns in a predefined sequence. Stepwise waveforms from an analog 
output (AO) were used to drive the piezo stage for volumetric acquisi-
tion. Three AO ports (488 nm, 561 nm and blanking) drove the AOTF 
to individually control the intensity of each illumination wavelength. 
Three different voltages from an AO port were supplied to the LCPR 
to maximize modulation depth for the three pattern orientations. In 
four-beam SIM, the piezo mirror position was controlled by an addi-
tional AO port during phase alignment and remained unchanged during 
subsequent four-beam SIM acquisition. The x and y positions of the 
Applied Scientific Instrumentation stage, the z position of the Applied 
Scientific Instrumentation objective stepper motor (for coarse axial 
objective positioning) and the filter wheel selection were controlled 
through serial port commands.

Control software (Python 3.7.1) was based on our previous iSIM 
control software60 but modified substantially to control the SLM, 
LCPR and piezo scanner necessary for 3D SIM and four-beam SIM. 
Timing diagrams (Supplementary Figs. 5 and 6) show key use cases, 
including PSF/OTF data acquisition (Supplementary Fig. 5a), 3D SIM 
and four-beam SIM acquisition at one lateral plane (Supplementary 
Fig. 5b), volumetric acquisition (Supplementary Fig. 6a) and axial 
alignment between illumination pattern and the detection focal plane 
(Supplementary Fig. 6b).

Volumetric acquisition time was determined by the laser exposure 
time per image, number of rows of pixels in the image, camera readout 
time (delay time between external trigger and laser exposure), SLM 
loading time, LCPR switching time and the number of z slices. The laser 
exposure time was set to 20 ms (50 ms in Fig. 4e–k and Supplementary 
Fig. 15); the raw image size was 1,280 × 1,080 pixels; the camera read-
out time was 5.27 ms; the SLM loading time was 5 ms; and the LCPR 
switching time was 10 ms. Thus, ∼25 ms is required per phase (single 
image), ∼130 ms for one orientation (five images) and ∼390 ms for 
one plane (3 orientations × 5 phases = 15 images). For example, in the 
fixed U2OS cell imaging shown in Fig. 2e–g, when setting the z step size 
at 0.125 µm for 3D SIM and 0.06-µm z step size for four-beam SIM, we 
collected a volume spanning 90 µm × 76 µm × 4 µm in ∼12.7 seconds 
and ∼26.5 seconds, respectively. We also employed a technique based 
on the ‘Transient Nematic Effect’ to shorten the temporal response of 
the LCPR by ∼2-fold. When changing the LCPR polarization state from 
low to high voltage, a very short duration (2 ms) high-voltage spike is 
used to accelerate the molecular alignment parallel to the applied field. 
Voltage is then reduced to achieve the desired polarization (Supple-
mentary Fig. 5b) in the remaining 8 ms of the 10-ms total switching time. 
Similarly, when changing from high to low voltage, a zero-voltage spike 
(2 ms) is applied before targeting the desired voltage (Supplementary 
Fig. 6a). For two-color imaging with only one timepoint, 561 nm always 
preceded 488 nm to reduce photobleaching. Time-lapse imaging 
consisted of a series of repetitions of single-volume imaging with or 
without a delay between timepoints. Supplementary Table 5 details 
the volume size and corresponding acquisition time for all the data 
presented in the paper.

Registration and bleach correction of volumetric time-lapse 
data
The output values after deep learning are floating-point numbers 
between 0 and 1. To guarantee that all volumes have similar back-
ground intensity values for supplementary videos, outputs were con-
verted to 16-bit unsigned integers and then bleach-corrected using the 
ImageJ plugin Bleach Correction (Image → Adjust → Bleach Correction 
→ Histogram Matching). This plugin is available at https://imagej.net/
plugins/bleach-correction. Adjacent timepoints were registered using 
a GPU-based 3D affine registration method49, available at https://github.
com/eguomin/regDeconProject/tree/master/RegistrationFusion. 
This registration method is written in C++/CUDA to generate a DLL 

file, which is then called in MATLAB. The ‘translation only’ registration 
mode was used.

Segmentation and tracking in live microtubule data
To track filaments, raw image data were first manually segmented in 
Aivia 10.2 (Leica Microsystems) to create mask channels. Mask chan-
nels were incorporated as a separate channel in Imaris 9.8.2 (Bitplane) 
and then converted to surface objects and overlaid over the input data. 
Microtubule buckling and MTOC movements were manually tracked in 
Imaris by placing spots at the desired locations, with the position of the 
MTOC identified as the point of convergence of microtubule filaments.

Simulation of mixed structures for axial resolution 
enhancement
We simulated 3D images (50 pairs for training and ten for testing) with 
mixed structures of dots, lines and hollow spheres for validating the 
six-direction deep learning method that yields isotropic resolution 
from raw 3D SIM input (Supplementary Fig. 13a). Simulated structures 
were created in MATLAB (MathWorks, R2019b, with the Imaging Pro-
cessing Toolbox). Each volume was composed of 3,000 dots, 1,800 
lines and 600 hollow spheres, randomly located in a 300 × 300 × 300 
grid (assuming a pixel size of 40 nm). Dots were generated with random 
intensity (2,000–7,000 counts); lines were generated with random 
angles in 3D (1–360° relative to axial axis and 1–360° in lateral planes), 
random lengths (1–72 pixels) and a random intensity (100–500 counts); 
and hollow spheres were generated with random inner diameter (2–20 
pixels), random thickness (1–2 pixels) and random intensity (10–200 
counts). Structures were blurred with different 3D Gaussian functions. 
In the first dataset, sigma values were 1.3, 1.3 and 3.7 pixels in x, y and z 
dimensions, respectively, which represented the raw 3D SIM volumes 
with a resolution of 125 × 125 × 350 nm3 (FWHM value), assuming a 
pixel size of 40 nm. In the second set, sigma values were all 1.3 pixels, 
serving as the ground truth dataset with an isotropic resolution of 
125 × 125 × 125 nm3 for the calculation of SSIM and PSNR.

For the six-direction deep learning method, we generated two 
sets of volumes based on the first dataset (that is, the simulated raw 3D 
SIM input), one blurred with a 2D Gaussian function at each x–z slice 
(sigma = 3.6 pixels in x dimension and 0.5 pixels in z dimension), serving 
as the ‘input’ in the training; the other blurred with a 1D Gaussian func-
tion (sigma = 0.5 pixels) along the z dimension, serving as the ‘ground 
truth’ in the training. To study the effects of axial downsampling factors 
(Supplementary Fig. 13b), we extracted x–y planes from the first dataset 
with an axial interval of 2, 4, 6 and 8 (that is, downsampling factor) to 
create new volumes with 300 × 300 × 150 voxels, 300 × 300 × 75 vox-
els, 300 × 300 × 50 voxels and 300 × 300 × 37 voxels, respectively. 
For each downsampling factor, we interpolated the volumes back 
to 300 × 300 × 300 voxels and repeated the same Gaussian blurring 
process as for the first dataset (that is, without any downsampling) to 
generate ‘input’ and ‘ground truth’ datasets in the training.

For the prior isotropization method35, we created a 2D PSF by 
Gaussian blurring a dot along the y dimension (sigma = 3.6 pixels) 
and fed this into the content aware image restoration (CARE35) net-
work pipeline, blurring the lateral views to resemble the lower resolu-
tion axial views and learning to reverse this blur to achieve isotropic 
resolution.

Quantitative analysis
For the simulated datasets (Supplementary Fig. 13a), we selected 10 
volumes to evaluate the structural similarity index measure (SSIM) and 
peak signal-to-noise ratio (PSNR) of the results that we obtained using 
our six-direction deep learning method versus the ground truth with 
MATLAB (MathWorks, R2019b), and then we computed the mean value 
and standard deviation of these volumes (Supplementary Fig. 13b).

Lateral and axial resolution measures derived from fluorescent 
beads (Fig. 1g and Extended Data Fig. 3d) were estimated by computing 
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the FWHM of line intensity profiles along x–y and x–z views. Statistical 
results (mean ± s.d.) were obtained from n = 102, 100 and 99 beads (1.35 
NA) and 85, 81 and 78 beads (1.27 NA) for wide-field microscopy, 3D SIM 
and four-beam SIM, respectively. For rough resolution comparisons, 
we plotted the Fourier transforms of the images (Fig. 1e, insets, and 
Extended Data Fig. 3b, insets).

Neural networks for denoising and axial resolution 
improvement
We adapted and developed five neural networks including (1) CARE35 
network that provides isotropic output (that is, prior isotropic 
method); (2) six-direction deep learning method that improves 
axial resolution, which was implemented with the CARE network; 
(3) two-step 3D RCAN37—that is, first denoising raw, low SNR 3D SIM 
volumes and then predicting 3D SIM from the Wiener reconstruction 
of the denoised 3D SIM volumes (Fig. 5a and Supplementary Fig. 17a); 
(4) 15-input 3D RCAN that can directly predict a 3D SIM reconstruction 
from 15 raw low SNR 3D SIM volumes (Supplementary Fig. 18b); and (5) 
15-input DenseDeconNet for predicting 3D SIM reconstructions from 15 
low SNR 3D SIM volumes (Supplementary Fig. 18b). Most model training 
and applications were performed on an NVIDIA TITAN RTX GPU (with 
24 GB memory) installed on a local workstation. We also performed 
some CARE and RCAN training and model applications with Amazon 
Web Services, using a virtual machine with four NVIDIA Tesla V100 
GPUs (each with 16 GB memory). We used Python version 3.7.1 for all 
neural networks and TensorFlow framework versions 2.4.1, 1.13.1 and 
1.14.0 for CARE, RCAN and DenseDeconNet, respectively.

CARE software was installed from GitHub (https://github.com/
CSBDeep/CSBDeep). For simulated data training (Supplementary  
Fig. 13a), patches of size 64 × 64 × 64 voxels were randomly cropped 
from 50 3D volumes with size 300 × 300 × 300 voxels. For other 3D data-
sets (Figs. 4–6, Extended Data Fig. 4 and Supplementary Figs. 13–20), 
3D SIM volumes were first interpolated to 50-nm pixel size in all three 
dimensions. When using the prior method (Supplementary Fig. 13),  
the interpolated volumes, a 2D PSF (consisting of a point blurred with a 
1D Gaussian function, sigma = 2.8 pixels along the y dimension) and the 
axial downsampling factor were fed into the isotropic CARE network 
using a patch size of 64 × 64 to create training pairs.

For the six-direction deep learning method, interpolated vol-
umes were (1) blurred with a 1D Gaussian function (sigma = 1.0 pixel) 
along the z dimension to remove spurious sidelobes in the Fourier 
domain due to axial interpolation, serving as the ‘ground truth’ in the 
training or (2) blurred with a 2D Gaussian function at each x–z plane 
(sigma = 2.8 pixels in the x dimension, degrading lateral resolution to 
the extent of the axial resolution, and 1.0 pixel in the z dimension as for 
the ground truth); downsampled along the x dimension to mimic the 
coarse axial sampling in real experiments; and, finally, upsampled to 
recover an isotropic pixel size, serving as the ‘input’ for training (Sup-
plementary Fig. 14a). Both downsampling and upsampling use bilinear 
interpolation. Patches of size 64 × 64 × nz (nz is the number of planes) 
were randomly cropped from the data, and 10% of the patches were set 
aside for validation.

The trained network can recover resolution along the x axis from 
unseen ‘test’ data (Supplementary Fig. 14b), which were degraded with 
the same procedure (that is, blurring, downsampling and upsampling) 
as the ‘input’ data used to train the network. Digitally rotating the 
degraded data about the y axis and passing the data through the trained 
network results in improved resolution along the lateral direction in the 
rotated space. By rotating the data back to the original frame, resolu-
tion can, thus, be improved along an arbitrary axis (Supplementary  
Fig. 14c). Finally, by recording the maximum value at each spatial fre-
quency taken over all rotations, a final prediction with isotropic resolu-
tion is obtained (Supplementary Fig. 14d).

Naive rotation and interpolation in the x–z plane will markedly 
enlarge the size of each volume. For example, for raw input data with 

large x–z aspect ratio spanning 800 × 800 × 80 voxels, as is typical 
for imaging single cells, a 60° rotation in the x–z plane will produce 
a volume 800 × 800 × 733 voxels in size. This large size results in 
inefficient network prediction (for this example, the prediction is 
useless over a region spanning 800 × 800 × 653 voxels). We, thus, 
cropped the input data into multiple subvolumes (for example, 10 
subvolumes of 80 × 800 × 80 voxels) before application of the CARE 
network. After rotation and interpolation, each subvolume spanned 
only 110 × 800 × 110 voxels, resulting in useless prediction over only 
30 × 800 × 30 voxels, a 65-fold improvement in efficiency compared 
to the non-cropped case. This processing pipeline was implemented 
in Python version 3.7.1: (1) automatically cropping raw input data to 
multiple subvolumes with identical x and z dimensions, with 10-pixel 
overlap along the x axis; (2) rotating and bilinearly interpolating each 
subvolume with the built-in SciPy function ndimage.rotate; (3) apply-
ing the neural network model to each subvolume; (4) rotating back 
the subvolume predictions and cropping them to their original sizes; 
(5) stitching the subvolumes by averaging the overlap regions; (6) 
Fourier transforming the stitched volume for each rotation angle; (7) 
calculating the maximum value at each spatial frequency taken over 
all rotations; and (8) inverse Fourier transforming the result and taking 
the absolute values as the final output.

All training for the prior method and the six-direction method used 
50 volumes without data augmentation (rotation and translation), and 
testing varied from 10 to 100 volumes (Figs. 4–6, Extended Data Fig. 4 
and Supplementary Figs. 13, 15–17 and 20). The training learning rate 
was 2 × 104; the number of epochs was 100; the number of steps per 
epoch was 200; and the mean absolute error (MAE) was used as loss 
function. The training time for each model varied from ∼3 hours to 
7 hours. For example, it took ∼3 hours for training the Jurkat T cells 
expressing EMTB 3× GFP datasets (Fig. 6 and Supplementary Videos. 
13–16) and ∼5.5 hours to apply the model to recover a 100-timepoint 
dataset with size 420 × 420 × 80 voxels and six directions (total 600 
volumes), including the processing time for cropping, image rota-
tion, network prediction, rotation back, stitching, combination with 
maximum frequency method and file reading/writing.

For the two-step denoising studies employing RCAN (Figs. 5 and 
6 and Supplementary Figs. 17–20), we used our recently developed 
3D RCAN model, appropriate for restoring image volumes (https://
github.com/AiviaCommunity/3D-RCAN)37. For all 3D data, training 
patches of size 128 × 128 × nz (nz is the number of acquisition planes 
without axial interpolation) were randomly cropped from the data. To 
train the first denoising network, we used patches derived from 750 
matched volumes (50 acquisitions × 3 orientations × 5 phases) acquired 
at low and high illumination intensity (for example, ∼0.8 W/cm2 versus 
8 W/cm2 for Supplementary Fig. 17). The trained network was used to 
denoise raw, low SNR data (5 phases × 3 orientations) and the denoised 
output used for 3D SIM reconstructions as described above. To train the 
second denoising network, we used patches derived from 50 matched 
volumes (3D SIM reconstructions derived from high SNR raw data as 
high SNR ‘ground truth’ and the 3D SIM reconstructions derived from 
the denoised data as the matched ‘input’ data). The output of this sec-
ond model may then be axially interpolated, blurred, downsampled, 
upsampled and fed into the six-direction model that enhances axial 
resolution, generating a final denoised reconstruction with isotropic 
resolution (Figs. 5 and 6 and Supplementary Figs. 17 and 20). For train-
ing the RCAN networks, the learning rate was 2 × 10−4; the number of 
epochs for training was 200; the number of residual blocks was five; 
the number of residual groups was five; the number of channels was 
32; the number of steps per epoch was 400; and the MAE was used as 
the loss function.

For some studies (Supplementary Figs. 18 and 19), we extended 
our 3D RCAN method to handle 15 input volumes. Multiple volumetric 
inputs with the same shape were concatenated into a single volume 
with multiple channels and fed to the model. We followed ref. 62 and 
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used subpixel convolution63 to generate upsampled super-resolution 
outputs. A fixed number of volumetric inputs is paired with one ground 
truth volume for model training, and the same number of volumetric 
inputs is expected for prediction. For this multiple input training, we 
used the same network parameters as in single-input RCAN training.

For the studies using DenseDeconNet (Supplementary Fig. 18), 
we similarly extended our previously published single-input neural 
network (https://github.com/eguomin/regDeconProject/tree/master/
DeepLearning) for 15 inputs. The input data were 15 raw low SNR 3D SIM 
volumes, and the ground truth data consisted of high SNR 3D SIM recon-
structions. For all 3D data, patches of size 64 × 64 × 64 were randomly 
cropped from the data. All 15 low SNR data were concatenated along the 
channel axis to form the input. The percentile-based normalization was 
adopted to normalize the input and ground truth (the low percentile 
was 1.0, and the high percentile was 99.8). In the training, the objective 
function incorporated three terms: the mean square error (MSE), the 
structural similarity (SSIM) index and the minimum value of the output 
(MIN); the parameter to control the MIN term was set to 1. The training 
epoch was 200 with 400 steps per epoch; the learning rate was 0.01; 
the decay rate was 0.985; and the decay step was 400.

Sample preparation
General considerations. Coverslips were cleaned and coated with 
poly-l-lysine and (particularly for four-beam SIM) fluorescent beads. 
Unless otherwise noted, we used the following protocol. High-precision 
#1.5 coverslips (Thorlabs, CG15XH) were cleaned by immersion in 75% 
ethanol overnight and air dried before use. Approximately 50 µl of 
poly-l-lysine solution (Sigma-Aldrich, P8920) was applied to the center 
of the coverslips in a biosafety cabinet. After air drying for 15 minutes at 
room temperature, coverslips were rinsed in pure ethanol and air dried 
until use. Orange, red or yellow-green FluoSpheres (Invitrogen, F8800, 
F8801 and F8803, all 0.1-µm diameter) were selected depending on the 
application and dissolved in pure methanol at 1:20,000 dilution, and 
2 µl of the solution was applied to the center of a poly-l-lysine-coated 
coverslip.

For four-beam SIM experiments using the 1.35 NA silicone oil 
lens, we performed imaging in an iodixanol solution index-matched 
to the RI of the silicone oil (1.406) to minimize aberrations. Iodixanol 
solution (Sigma-Aldrich, D1556) consisted of 45.6% iodixanol in water. 
We verified its RI as 1.406 using a refractometer (American Optical).

Bacteria. Vegetatively growing B. subtilis strain PY79 (ref. 64) was 
grown in LB broth (KD Medical, BLE-3030) for 2 hours at 37 °C, shak-
ing at 250 r.p.m. To visualize localization of DivIVA-GFP, strain KR541 
(amyE::Phyperspank-divIVA-gfp cat)65 was grown in casein hydrolysate 
media66 (KD Medical, CUS-0803) containing 1 mM final concentration 
of IPTG to induce DivIVA-GFP production for 2 hours at 37 °C, shaking 
at 250 r.p.m. To induce sporulation by the resuspension method, an 
overnight culture of strain CVO1000 (amyE::spoVM-gfp cat)67 grown at 
22 °C was first subcultured to a final OD600nm of 0.1 in casein hydrolysate 
media for 2 hours at 37 °C, shaking at 250 r.p.m. Cells were harvested by 
centrifugation at 14,000g, resuspended in an equal volume of Sterlini–
Mandelstam media66 (KD Medical, CUS-0822) and grown for 4 hours at 
37 °C, shaking at 250 r.p.m. Before imaging, 1 ml of culture was removed 
and centrifuged at 14,000g, and the cell pellet was resuspended  
in PBS.

For some experiments, we stained bacterial membranes. Bacteria 
were diluted in 1 ml of PBS and stained with CellBrite Fix 488 (Biotium, 
30090-T) or CellBrite Fix 555 (Biotium, 30088-T) for 5 minutes at room 
temperature at 1× working concentration according to the manufac-
turer’s guidelines. Stained bacteria were washed three times with 1× 
PBS, each time centrifuging the solution at 3,000 r.p.m. for 3 minutes. 
Finally, bacteria were concentrated in 100 µl of 1× PBS, and 2 µl was 
placed on the center of a poly-l-lysine and beaded coated coverslip 
for imaging.

Mouse LSECs. C57BL/6 mouse primary LSECs (Cell Biologics, C57-
6017) were cultured in culture medium (Complete Mouse Endothelial 
Cell Medium, containing 10% FBS and Endothelial Cell Growth Supple-
ment (Cell Biologics, M1168, 6912 and 1166, respectively)) according 
to the manufacturer’s instructions. Before cell deposition, glass cover-
slips (Thorlabs, CG15XH) were sequentially washed with 0.1 M sodium 
hydroxide, 0.1 M hydrochloric acid and acetone, coated with 200 µl 
of poly-l-lysine solution (Sigma-Aldrich, P8920), allowed to dry for 
5 minutes and washed once with pure methanol. Equal volumes of red 
(Invitrogen, F8801) and yellow-green (Invitrogen, F8803) fluorescent 
microspheres were diluted 1:20,000 in methanol, and 2 µl of the bead 
dilution was added to the center of the coverslip. After the methanol 
dried, the coverslips were placed in an aqueous solution containing 1% 
rat tail collagen (Cell Biologics, 6953) for 1 hour and placed in culture 
medium. After counting, 50,000 cells were seeded per 3.5-cm dish and 
incubated at 37 °C in 5% CO2 for 16 hours. Cultured cells were fixed with 
4% paraformaldehyde in PBS for 20 minutes, washed in PBS, incubated 
with Alexa Fluor 568 phalloidin (Thermo Fisher Scientific, A12380, 
7 U ml−1) in PBS for 2 hours at room temperature, washed in PBS, fixed 
again in 4% paraformaldehyde, washed with water, stained with Cell-
Brite Fix 488 (Biotium, 30090-T, 1:250 dilution) in PBS for 10 minutes 
at room temperature and, finally, washed and stored in PBS before 
imaging. Imaging was performed within 6 hours of staining.

MEFs. MEFs (gift of Oliver Daumke’s laboratory) were cultivated in 
DMEM (Gibco, 119950409) supplemented with 10% FBS (Atlanta Bio-
logicals, S10350) and 1% penicillin–streptomycin (Gibco, 15070063) 
at 37 °C in 5% CO2. For imaging experiments, the cells were seeded on 
fibronectin (Sigma-Aldrich, F1141) coated glass coverslips (Thorlabs, 
CG15XH) and transfected with caveolin1-EGFP plasmid (gift of Richard 
Lundmark) using Lipofectamine 3000 (Invitrogen, L3000-001). After 
48 hours, the cells were washed with PBS (Gibco, 10010023), followed 
by fixation with 4% paraformaldehyde/PBS (Electron Microscopy Sci-
ences, 15700) for 20 minutes. Next, the cells were washed three times 
with PBS, treated with 3% BSA (Sigma-Aldrich, A9418)/0.1% Triton X-100 
(Sigma-Aldrich, X100)/PBS for 30 minutes, followed by incubation 
with 3% BSA/PBS for 45 minutes. Caveolae were stained with rabbit 
polyclonal antibody against cavin1 (Abcam, 76919, 1:100 in 3% BSA/PBS) 
for 1 hour. Afterwards, MEFs were washed extensively, and GFP-booster 
(tagged with Alexa Fluor 488, ChromoTek, gb2AF488-50, 1:500 in 
3%BSA/PBS) and anti-rabbit Alexa Fluor 568 (Invitrogen, A11011, 1:500) 
were applied for 1 hour. To remove any unbound antibodies, cells were 
washed five times with PBS and stored at 4 °C in PBS until imaging.

Jurkat T cells. E6-1 Jurkat cells were cultured in RPMI 1640 supple-
mented with 10% FBS and 1% penicillin–streptomycin antibiotics. For 
transient transfections, we used the Neon (Thermo Fisher Scientific) 
electroporation system 2 days before the experiment. In total, 2 × 105 
cells were resuspended in 10 µl of R-buffer with 0.5–2 µg of the EMTB 
3× EGFP plasmid (a gift from William Bennett, Addgene plasmid 26741). 
Cells were exposed to three pulses of amplitude 1,325 V and duration 
10 ms in the electroporator. Cells were then transferred to 500 µl of 
RPMI 1640 supplemented with 10% FBS and kept in the incubator at 
37 °C.

Glass coverslips (Thorlabs, CG15XH) were incubated in 
poly-l-lysine (Sigma Aldrich, P8920-100ML) at 0.1% w/v for 10 min-
utes. Poly-l-lysine was washed with 70% ethanol, and the coverslips 
were left to dry. T-cell-activating antibody coating was performed by 
incubating the coverslips in a 10 µg ml−1 solution of anti-CD3 antibody 
(Hit-3a, Thermo Fisher Scientific, 16-0039-85, 1:100 dilution in 1× PBS) 
for 2 hours at 37 °C. Excess anti-CD3 was removed by washing with L-15 
imaging media (Thermo Fisher Scientific, 21-083-027) immediately 
before cell plating.

For fixed cell experiments, EMTB 3× EGFP-expressing Jurkat cells 
were plated on anti-CD3-coated coverslips for 7 minutes in L-15 media. 
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Cells were rinsed with 1× PBS three times at room temperature, covered 
with 100% methanol cooled to −20 C for 3 minutes and, finally, washed 
three times with 1× PBS.

For experiments with live cells, a small volume (typically 500 µl) 
containing 3 × 105 cells were centrifuged for 5 minutes at 250g. The 
supernatant was removed; the cells were resuspended in 120 µl of L-15 
imaging media; and approximately 40 µl (equivalently 1 × 105 cells) of 
L-15 media with cells was added to the anti-CD3-coated coverslip. Cells 
were allowed to settle for 2 minutes before commencing imaging.

U2OS cells. U2OS cells (American Type Culture Collection, HTB-96) 
were cultured in DMEM media (Lonza, 12-604F) supplemented with 
10% FBS (Thermo Fisher Scientific, A4766801) at 37 °C and 5% CO2 on 
poly-l-lysine and optionally beaded (for four-beam SIM) coverslips 
placed in six-well plates (Corning, 3506).

We used the following buffers for immunolabeling vimentin 
and microtubules. (1) PEM buffer (in 1× PBS): 80 mM PIPES sodium 
salt (Sigma-Aldrich, P2949), 5 mM EGTA (Sigma-Aldrich, E3889) and 
2 mM MgCl2 (Quality Biological, 351-033-721), adjusted with sodium 
hydroxide to pH 6.8. (2) Pre-extraction solution: PEM buffer supple-
mented with 0.3% Triton X-100 (Sigma-Aldrich, 93443) and 0.125% glu-
taraldehyde (Sigma-Aldrich, G5882). (3) Microtubule fixation buffer: 
pre-extraction solution supplemented with 2% paraformaldehyde 
(Electron Microscopy Sciences, 15710).

To immunolabel microtubules, U2OS cells were treated with 
pre-extraction buffer at 37 °C for 30 seconds, and then the buffer was 
quickly replaced with microtubule fixation buffer at 37 °C for 15 min-
utes. Fixed cells were rinsed three times with 1 ml of 1× PBS (Gibco, 
10010-023), quenched in 1 ml of 0.1% sodium borohydride/PBS solu-
tion (Sigma-Aldrich, 213462) for 7 minutes at room temperature and 
blocked in 100% FBS (Sigma-Aldrich, 12103 C) at 37 °C for 1 hour. Micro-
tubules were incubated with primary mouse-α-tubulin antibody (Invit-
rogen, 32-2500, 1:100) in 1× PBS supplemented with 10% FBS overnight 
at 4 °C, washed three times (1-minute incubation each time) in 1× PBS 
and labeled with secondary donkey-α-mouse Alexa Fluor 488 antibody 
( Jackson ImmunoResearch, 715-547-003, 1:200 dilution) in 1× PBS sup-
plemented with 10% FBS for 1 hour at room temperature.

Vimentin was immunolabeled with primary rabbit-α-vimentin 
(Abcam, 92547, 1:100) in 1× PBS supplemented with 10% FBS overnight 
at 4 °C, washed three times (1-minute incubation each time) and labeled 
with secondary donkey-α-mouse Alexa Fluor 594 ( Jackson ImmunoRe-
search, 711-587-003, 1:200 dilution) in 1× PBS supplemented with 10% 
FBS for 1 hour at room temperature. Samples were rinsed three times 
in 1× PBS before imaging. For dual-color samples, we performed micro-
tubule and vimentin immunolabeling in parallel on the same sample.

For immunolabeling Tomm20, U2OS cells were fixed with 2% 
paraformaldehyde and 0.125% glutaraldehyde in 1× PBS for 15 min-
utes at room temperature. Cells were rinsed three times with 1× PBS, 
permeabilized by 0.1% Triton X-100/PBS (Sigma-Aldrich, 93443) for 
1 minute at room temperature, rinsed three times with 1× PBS, incu-
bated with primary rabbit-α-Tomm20 (Abcam, ab186735, 1:100 dilution 
in 1× PBS) for 1 hour at room temperature, washed in 1× PBS (1-minute 
incubation each time) three times, stained with secondary antibody 
donkey-α-rabbit Alexa Fluor 488 ( Jackson ImmunoResearch, 711-
547-003, 1:200 in 1× PBS) for 1 hour at room temperature and, finally, 
washed three times (1-minute incubation each time) before imaging.

To label actin, U2OS cells were similarly fixed, permeabilized and 
washed and then incubated with phalloidin Alexa Fluor 488 (Invitro-
gen, 2090563, 1:50 dilution in 1× PBS) or phalloidin Alexa Fluor 568 
(Invitrogen, 1800130, 1:50 dilution) for 1 hour at room temperature, 
rinsed three times with 1× PBS and incubated in 1× PBS or iodixanol 
solution before imaging.

We stained mitochondria and internal membranes with synthetic 
dyes for live cell imaging. In the former case, U2OS cells were incubated 
with MitoTracker Green FM (Invitrogen, M7514, 100 nM in 1× PBS) for 

15 minutes at 37 °C and rinsed three times with 1× PBS immediately 
before imaging. In the latter case, U2OS cells were incubated in DMEM 
media with Potomac Gold (kindly provided by Luke Lavis; 200 nM in 
DMEM media supplemented with 10% FBS) for 30 minutes at 37 °C. 
Immediately before imaging, cells were rinsed three times with 1× PBS.

We also transfected cells with plasmids to mark organelles 
for live imaging experiments. Cell cultures were transfected using 
X-tremeGENE HP DNA Transfection Reagent (Sigma-Aldrich, 
6366236001). The transfection mixture contained 100 µl of 1× PBS, 
2 µl of transfection reagent and 1 µg of plasmid DNA. To label outer 
mitochondrial membranes, cell cultures were transfected at 50% con-
fluency with mEmerald-Tomm20-C-10 plasmid DNA (Addgene, 54281) 
and imaged 1 day after transfection. We also created a stable cell line 
to mark lysosomes. Cells were transfected with LAMP1-EGFP plasmid 
DNA (gift of George Patterson’s laboratorry) at 80–85% confluency. The 
next day, cells were incubated with fresh media for another 24 hours. 
Transfected cell cultures were screened by G418 selection agent (Corn-
ing, 30-234-CR, 750 µg ml−1) for 2 weeks. After screening, GFP+ cells 
were sorted into a 48-well plate automatically (BD, FACSAria III) so 
that each well contained only one cell. Sorted cells were cultured with 
750 µg ml−1 of G418 for further selection. Clones that managed to sur-
vive and expand were transferred to another dish for further expansion, 
and a small aliquot was used to check GFP signal and cell morphology.

For some dual-color experiments, U2OS cells expressing 
LAMP1-EGFP were incubated in 1× PBS with LysoTracker DND99 (Inv-
itrogen, L7528, 50 nM) for 5 minutes at 37 °C. Before imaging, cells were 
rinsed three times with 1× PBS.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Disclaimer
The NIH and its staff do not recommend or endorse any company, 
product or service.

Data availability
The data that support the findings of this study are included in Extended 
Data Figs. 1–4, Supplementary Figs. 1–20 and Supplementary Videos 
1–16. Some representative raw images from the figures (Figs. 1d, 2a,e,h, 
3a–c,e,h, 4b,e, 5b,e and 6) and 3D SIM and four-beam SIM raw datasets 
(bacterial membranes and Tomm20 staining) are publicly available at 
https://zenodo.org/record/6727773. Other datasets (training data and 
intermediate data for deep learning) are available from the correspond-
ing author upon reasonable request due to their large file size. Source 
data are provided with this paper.

Code availability
The microscope acquisition software used in this study was written 
in Python 3.7.1 and is available upon reasonable request. Code for the 
simulations of 2D and 3D OTF support, derivation of OTF from PSF, 
finding algorithm of SLM pattern and raw 3D SIM and four-beam SIM 
data reconstruction are available at https://github.com/eexuesong/
SIMreconProject. CARE, RCAN and DenseDeconNet software were 
installed from https://github.com/CSBDeep/CSBDeep, https://github.
com/AiviaCommunity/3D-RCAN and https://github.com/eguomin/
regDeconProject/tree/master/DeepLearning.
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Extended Data Fig. 1 | Support of optical transfer functions assuming a 
silicone oil objective lens. Axial cross sections through support are shown 
for a) wide-field, b) 3D SIM, c) standing wave, d) I5S, and e) four-beam, mirror-
based SIM systems. Dots indicate illumination spatial frequency components, 
with green dots in d, e) indicating additional frequency components that are 

not present in 3D SIM. Supports were simulated with the following parameters: 
emission NA = 1.35; refractive index of immersion medium = 1.406; excitation 
wavelength: 488 nm; emission wavelength: 525 nm; side beams in b, d, e) at 92% 
of pupil radius.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01651-1

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Mounting and aligning reflective mirror for four-beam 
SIM. a) Photograph of mounting scheme, indicating hardware mounts with 
vendor information. PI: Physik Instrumente. b) Schematic to accompany a), 
showing kinematic mirror mount, Piezo Z scanner, mirror, sample, and objective 
lens. Schematic is not to scale. c) Alignment of the reflected beam is achieved 
by manually adjusting the knobs on the kinematic mirror mount until tilt is 
minimized. This can be achieved by monitoring the autofluorescence from a 

dirty coverslip immersed in liquid; tilt is minimized when a flat intensity profile 
is achieved when translating the sample through focus, yielding a purely axial 
modulation. Top images show reflected beam at different tilts of mirror; bottom 
images show corresponding planar images of autofluorescence when lateral 
modulation is present (left, middle) versus mostly axial modulation (right). See 
also Supplementary Video 1 and Methods for more information.
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Extended Data Fig. 3 | Estimating spatial resolution for 1.27 NA water lens. a) 
x-z cross sectional views of 100 nm yellow-green beads, as viewed with wide-field 
microscopy (top), 3D SIM (middle), and four-beam SIM (bottom). Scale bar: 2 µm. b) 
Higher magnification views of bead marked by green, blue, and red arrowheads in 
a). Insets show magnitude of corresponding Fourier transform. Scale bar: 500 nm, 

200 nm−1 (inset). c) Line profiles taken along vertical line shown in b). d) Full width 
at half maximum (FWHM) analysis from n = 85, 81, 78 beads, showing lateral (blue) 
and axial (orange) values for the three methods. See also Fig. 1, Supplementary 
Table 1. Whiskers: maximum and minimum; centerlines: medians; bounds of box: 
75th and 25th percentiles; cross symbols: mean markers. a.u., arbitrary units.
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Extended Data Fig. 4 | Images of additional samples, comparing deep 
learning isotropization output to 3D SIM and four-beam SIM. a) DL prediction 
images of live B. subtilis stained for membrane (CellBrite Fix 488). b) Axial views 
along dashed yellow line shown in a), comparing 3D SIM (top), four-beam SIM 
(middle), and deep learning (DL) prediction based on 3D SIM input. c) Line 
profiles corresponding to yellow vertical line in b). Full width at half maximum 
(FWHM) values under each peak are indicated. d) Depth-color coded images of 

immunolabeled Tomm20 in fixed U2OS cells. Maximum intensity projection of 
DL prediction is shown. e) Higher magnification views of dashed region in d), 
with lateral (top) and corresponding axial views f) (corresponding to dashed 
yellow line in lateral view) comparing 3D SIM (left), four-beam SIM (middle) and 
DL prediction (right). g) Line profiles along yellow vertical line in f). Scale bars: 
2 µm a, e, f), 1 µm b), 4 µm d). a.u., arbitrary units.
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Software and code
Policy information about availability of computer code

Data collection The simulated OTF support images (Extended Data Fig. 1 and SI Fig. 1) were generated with MATLAB 2021b. The code is publicly available at 
(https://github.com/eexuesong/SIMreconProject/tree/main/OTF_simulation). The synthetic images (SI Fig. 13a) were generated with MATLAB 
2019b. The code is publicly available at (https://github.com/MeatyPlus/Richardson-Lucy-Net/tree/main/Phantom_generate). Experimental 
images were collected with the home-built super-resolution structured illumination microscope (SIM) described in the Methods section of our 
paper. Microscope acquisition software was written in Python 3.7.1 and is available upon request.

Data analysis CARE, RCAN and DenseDeconNet software was installed from GitHub (https://github.com/CSBDeep/CSBDeep; https://github.com/
AiviaCommunity/3D-RCAN; https://github.com/eguomin/regDeconProject/tree/master/DeepLearning). No version numbers are defined for 
CARE, RCAN and DenseDeconNet. We used Python version 3.7.1 for all neural networks, and Tensorflow framework version 2.4.1, 1.13.1, 
1.14.0 for CARE, RCAN and DenseDeconNet, respectively. Wiener reconstruction of SIM images was processed with MATLAB 2021b. The code 
is publicly available at (https://github.com/eexuesong/SIMreconProject/tree/main/Sirecon). Image analysis (e.g., calculation of SSIM, PSNR) 
code used in this study was written in MATLAB 2019a,  and is available upon request. Aivia 10.2 and Imaris 9.8.2 were used to segment and 
track microtubule filaments in live Jurkat T cells.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data that support the findings of this study are included in Extended Data Figs. 1–4, Supplementary Figs. 1–20 and Supplementary Videos 1–16. Some 
representative raw images from the figures (Figs. 1d, 2a, 2e, 2h, 3a, 3c, 3h, 3b, 3e, 4b, 4e, 5b, 5e, 6) and 3D and 4-beam SIM raw datasets (bacterial membranes and 
Tomm20 staining) are publicly available at https://zenodo.org/record/6727773. Other datasets (training data and intermediate data for deep learning) are available 
from the corresponding author upon reasonable request due to their large file size. Source data are provided with this paper.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For resolution characterization, statistical results (mean +/- standard deviation) of FWHMs were obtained from N = 102, 100, 99 beads 
acquired with a 1.35 NA silicone oil immersion objective, and N = 85, 81, 78 beads acquired with a 1.27 NA water immersion objective, which 
are sufficient sample sizes for microscope resolution analysis (Fig. 1g, Extended Data Fig. 3d, SI Table 1) [1, 2]. Statistical results (mean +/- 
standard deviation) of spatial resolution comparisons using modified decorrelation analysis of 3D SIM, 4-beam SIM and DL isotropization were 
obtained from N = 50-100 lateral and axial images (SI Table 2), which are typical sample sized for imaging analysis [1, 2]. Statistical results 
(mean +/- standard deviation) of SSIM and PSNR were obtained from N = 11 lateral slices to compare the SSIM/PSNR between ground truth 
(GT) and predictions from different denoising methods (SI Fig. 18, SI Table 3). Statistical results (mean +/- standard deviation) of SSIM and 
PSNR were obtained from N = 14 lateral slices to compare the SSIM/PSNR between GT and predictions from two-step RCAN with and without 
an intermediate Wiener filter (SI Fig. 19, SI Table 4). With this sample size, the denoising improvement of two-step RCAN performance over 
other networks is obvious. For training the neural networks, the multi-step deep learning pipeline required a collection of ~50 volumetric pairs 
per network, and validated that the sample size is appropriate as the trained neural network models are not overfitting or underfitting [3]. 
 
[1] Tomer, Raju, et al. "Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy." 
Nature methods 9.7 (2012): 755-763. 
[2] Wu, Yicong, et al. "Multiview confocal super-resolution microscopy." Nature 600.7888 (2021): 279-284. 
[3] https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

Data exclusions No data were excluded from the analysis.

Replication The reproducibility of the experimental findings was verified by imaging distinct fixed and live samples with sample size N=10-100. Time-lapse 
imaging experiments were repeated at least 4 times, with similar results obtained each time. All attempts at replication were successful.

Randomization In this study, samples were not allocated into different experimental groups.

Blinding The investigators were not blinded to group allocation during data collection and data analysis. We don't think blinding is relevant in this study 
and we demonstrated the technique on distinct samples by collaborating with different research groups inside and outside NIH.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used (1) Microtubules (Figs. 3c-g, 4b-c, SI Figs. 11c-d, 13c, 19c) were labeled by mouse-α-alpha tubulin (Invitrogen, 32-2500, 1:100, 

B-5-1-2) and α-mouse Alexa Fluor 488 (Jackson Immuno Research, 715-547-003, 1:200, polyclonal). 
(2) Mitochondria (Fig. 2e-g, SI Figs. 13d, Extended Data Fig. 4d-f, 17b-c, 18c) were labeled by rabbit-α-Tomm20 (Abcam, ab186735, 
1:100, EPR15581-54) and α-Rabbit Alexa Fluor 488 (Jackson Immuno Research, 711-547-003, 1:200, polyclonal). 
(3) T cell (Fig. 6, SI Fig. 20) activating antibody coating was performed by incubating slides in a 10 μg/mL solution of α-CD3 antibody 
(Thermo Fisher Scientific, 16-0039-85, Hit-3a, 1:100 dilution in 1X PBS). 
(4) Vimentin (Fig. 3c-g) was labeled using rabbit-α-vimentin (Abcam, ab92547, 1:100, EPR3776) and α-Rabbit Alexa Fluor 594 (Jackson 
Immuno Research, 711-587-003, 1:200, polyclonal). 
(5) Caveolae (Fig. 4e-k) were labeled with rabbit-α-PTRF (Abcam, 76919, 1:100, polyclonal) and α-Rabbit Alexa Fluor 568 (Invitrogen, 
A11011, polyclonal). 
(6) Caveolin-1 EGFP (Fig. 4e-k, SI Fig. 15) was labeled using GFP-booster (ChromoTek, gb2AF488-50, 1:500, monoclonal, raised in 
alpaca, LOT 90917037AF1-02).

Validation (1) Mouse-α-alpha tubulin (Invitrogen, 32-2500, 1:100, B-5-1-2) 
(a) Vendor website: https://www.thermofisher.com/antibody/product/alpha-Tubulin-Antibody-clone-B-5-1-2-Monoclonal/32-2500 
(b) Reference: A. York. Resolution Doubling in Live, Multicellular Organisms via Multifocal Structured Illumination Microscopy. Nat. 
Method (2013) 
 
(2) Rabbit-α-Tomm20 (Abcam, ab186735, EPR15581-54) 
(a) Vendor website: https://www.abcam.com/tomm20-antibody-epr15581-54-mitochondrial-marker-ab186735.html 
(b) Vendor statement: Recombinant fragment. This information is proprietary to Abcam and/or its suppliers. Positive control: WB: 
HepG2, HeLa, SH-SY5Y, PC-12 and NIH 3T3 cell lysates; IHC-P: Human ovarian carcinoma and mouse cardiac muscle tissues; ICC/IF: 
HeLa cells; Flow Cyt (intra): HeLa cells; IHC-Fr: Mouse cardiac and small intestine tissues. 
(c) Reference: Kuang W. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male 
fertility. Cell Rep (2021) 
 
(3) α-mouse Alexa Fluor 488 (Jackson Immuno Research, 715-547-003, polyclonal) 
(a) Vendor website: https://www.jacksonimmuno.com/catalog/products/715-547-003 
(b) Reference: C. Liu. The Role of Bone Morphogenetic Protein 4 in Microglial Polarization in the Process of Neuropathic Pain. Journal 
of Inflammation Research (2022) 
 
(4) α-Rabbit Alexa Fluor 488 (Jackson Immuno Research, 711-547-003, polyclonal) 
(a) Vendor website: https://www.jacksonimmuno.com/catalog/products/711-547-003 
(b) Reference: X. Han. A polymer index-matched to water enables diverse applications in fluorescence microscopy. Lab on a chip 
(2021) 
 
(5) α-CD3 (Thermo Fisher Scientific, 16-0039-85, Hit-3a) 
(a) Vendor website: https://www.thermofisher.com/antibody/product/CD3-Antibody-clone-HIT3a-Monoclonal/16-0039-85 
(b) Vendor statement: The HIT3a monoclonal antibody reacts with human CD3e, a 20 kDa subunit of the TCR complex. Along with the 
other CD3 subunits gamma and delta, the epsilon chain is required for proper assembly, trafficking and surface expression of the TCR 
complex. CD3 is expressed by thymocytes in a developmentally regulated manner and by all mature T cells. Crosslinking of TCR with 
HIT3a initiates an intracellular biochemical pathway resulting in cellular activation and proliferation. 
(c) Reference: B. Senechal. Expansion of regulatory T cells in patients with Langerhans cell histiocytosis. Plos Medecine (2007) 
 
(6) rabbit-α-vimentin (Abcam, ab92547, EPR3776) 
(a) Vendor website: https://www.abcam.com/vimentin-antibody-epr3776-cytoskeleton-marker-ab92547.html 
(b) Vendor statement: Synthetic peptide. This information is proprietary to Abcam and/or its suppliers. 
(c) Reference: Y. Li Single-cell transcriptome profiling of the vaginal wall in women with severe anterior vaginal prolapse. Nat 
Commun (2021) 
 
(7) α-Rabbit Alexa Fluor 594 (Jackson Immuno Research, 711-587-003, 1:200, polyclonal) 
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(a) Vendor website: https://www.jacksonimmuno.com/catalog/products/711-587-003 
(b) Reference: D. Bradshaw. Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after 
experimental traumatic brain injury based on pathological, radiological, and functional measures. Acta Neuropathologica 
Communications 
 
(8) rabbit-α-PTRF (Abcam, 76919, 1:100, polyclonal) 
(a) Vendor website: https://www.abcam.com/ptrf-antibody-ab76919.html 
(b) Vendor statement: Synthetic peptide corresponding to a region between residue 125 and 175 of human PTRF (NP_036364.2) 
(c) Reference: F. Wu. Development and Verification of a Hypoxic Gene Signature for Predicting Prognosis, Immune 
Microenvironment, and Chemosensitivity for Osteosarcoma. Front Mol Biosci (2021) 
 
(9) α-Rabbit Alexa Fluor 568 (Invitrogen, A11011, polyclonal) 
(a) Vendor website: https://www.thermofisher.com/antibody/product/Goat-anti-Rabbit-IgG-H-L-Cross-Adsorbed-Secondary-
Antibody-Polyclonal/A-11011 
(b) Reference: I. Ribeiro. Spatial and temporal control of expression with light-gated LOV-LexA. G3 (2022) 
 
(10) GFP-booster (ChromoTek, gb2AF488-50, 1:500) 
(a) Vendor website: https://www.ptglab.com/products/GFP-Booster-Alexa-Fluor-488-gb2AF488.htm 
(b) Reference: B. Hubner. Correlative microscopy of individual cells: sequential application of microscopic systems with increasing 
resolution to study the nuclear landscape. Methods Mol Biol (2013)

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) C57BL/6 mouse primary liver sinusoidal endothelial cells (LSECs, commercial products purchased from Cell Biologics, cat: 
C57-6017), C57BL/6N mouse embryonic fibroblasts (MEFs, gift from Oliver Daumke’s lab), human T lymphocyte (Jurkat E6-1, 
ATCC TIB-152, gift from Dr Lawrence E. Samelson, NIH), and human osteosarcoma (U2OS, ATCC HTB-96) cell lines were used 
in this study.

Authentication None of the cell lines used were authenticated. 

Mycoplasma contamination The cell lines were not tested for mycoplasma contamination. 

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in the study.
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