Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Massively parallel knock-in engineering of human T cells

Abstract

The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishment of CLASH system for massively parallel knock-in engineering.
Fig. 2: Timecourse in vitro CD8 and CD4 CLASH experiments identified genetic mutations that promote CAR-T cell persistence in long-term co-culture.
Fig. 3: In vivo CLASH in a mouse model of cancer with adoptive transfer of CAR-T pool.
Fig. 4: Individual functional analysis of immune genes scored in CLASH.
Fig. 5: PRDM1 Δexon3 CAR-Ts showed enhanced in vivo therapeutic efficacy in multiple mouse models of cancer.
Fig. 6: Molecular characterization of PRDM1 Δexon3 mutant CAR-T cells and genome-wide AAV integration.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its supplementary information files. Specifically, source data and statistics for non-high-throughput experiments, such as flow cytometry, qPCR, protein experiments and other molecular or cellular assays, are provided in an Excel file of source data and statistics. Processed data for genomic sequencing (for example, CLASH, RNA-seq, amplicon sequencing, MIPS and AAV off-target) and other forms of high-throughput experiments are provided as processed quantifications in Supplementary Datasets. Genomic sequencing raw data are being deposited to the Gene Expression Omnibus (GEO), with the following accession numbers: GSE207143 for all CLASH screens; GSE219061 for MIPS, Nextera and AAV integration off-target; GSE207404 for RNA-seq; and GSE201997 for CUT&RUN107,108,109,110. CLASH vectors and libraries are available via material transfer agreements. All other data and materials that support the findings of this research are available either via public repositories or from the corresponding author upon reasonable request to the academic community. Source data are provided with this paper.

Code availability

Analytic codes used to generate figures that support the findings of this study will be available from the corresponding author upon reasonable request.

References

  1. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang, J., Pearce, L., O’Donnell-Tormey, J. & Hubbard-Lucey, V. M. Trends in the global immuno-oncology landscape. Nat. Rev. Drug Discov. 17, 783–784 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kosti, P. et al. Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors. Cell Rep. Med. 2, 100227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 25, 947–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneider, D. et al. Trispecific CD19-CD20-CD22–targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models. Sci. Transl. Med. 13, eabc6401 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma, L. et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525–529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ting, P. Y. et al. Guide Swap enables genome-scale pooled CRISPR–Cas9 screening in human primary cells. Nat. Methods 15, 941–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Henriksson, J. et al. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. Cell 176, 882–896 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye, L. et al. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37, 1302–1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Long, L. et al. CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity. Nature 600, 308–313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell. 181, 728–744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Torikai, H. et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119, 5697–5705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, H. K. et al. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Shin, H. & Wherry, E. J. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19, 408–415 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bodapati, S., Daley, T. P., Lin, X., Zou, J. & Qi, L. S. A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol 21, 62 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Renauer, P. SAMBA: CRISPR Screen analysis with moderated Bayesian statistics and adaptive gene aggregation scoring. R package version 1.1.0. https://github.com/Prenauer/SAMBA (2022).

  40. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 171, 1221–1223 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Nelms, K., Keegan, A. D., Zamorano, J., Ryan, J. J. & Paul, W. E. The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Gray-Owen, S. D. & Blumberg, R. S. CEACAM1: contact-dependent control of immunity. Nat. Rev. Immunol. 6, 433–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Bandala-Sanchez, E. et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat. Immunol. 14, 741–748 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Tosa, N. et al. Critical function of T cell death-associated gene 8 in glucocorticoid-induced thymocyte apoptosis. Int. Immunol. 15, 741–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, J. et al. Enhanced CD4+ T cell proliferation and Th2 cytokine production in DR6-deficient mice. Immunity 15, 23–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Rutishauser, R. L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang, M. et al. The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nat. Immunol. 12, 1002–1009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vacca, M. et al. NLRP10 enhances CD4+ T-cell-mediated IFNγ response via regulation of dendritic cell-derived IL-12 release. Front. Immunol. 8, 1462 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Joshi, N. S. & Kaech, S. M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309–1315 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gyory, I., Fejer, G., Ghosh, N., Seto, E. & Wright, K. L. Identification of a functionally impaired positive regulatory domain I binding factor 1 transcription repressor in myeloma cell lines. J. Immunol. 170, 3125–3133 (2003).

    Article  PubMed  Google Scholar 

  53. Yoshikawa, T. et al. Genetic ablation of PRDM1 in antitumor T cells enhances therapeutic efficacy of adoptive immunotherapy. Blood 139, 2156–2172 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Morgan, M. A., Mould, A. W., Li, L., Robertson, E. J. & Bikoff, E. K. Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions. Mol. Cell. Biol. 32, 3403–3413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11, 114–120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shin, H. M. et al. Epigenetic modifications induced by Blimp-1 regulate CD8+ T cell memory progression during acute virus infection. Immunity 39, 661–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Xin, A. et al. A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 17, 422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fu, S.-H., Yeh, L.-T., Chu, C.-C., Yen, B. L.-J. & Sytwu, H.-K. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function. J. Biomed. Sci. 24, 49 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Z. et al. Hypermethylation of PRDM1/Blimp‐1 promoter in extranodal NK/T‐cell lymphoma, nasal type: an evidence of predominant role in its downregulation. Hematol. Oncol. 35, 645–654 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Zhu, L. et al. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J. Hematol. Oncol. 10, 124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huang, S. Histone methyltransferases, diet nutrients and tumour suppressors. Nat. Rev. Cancer 2, 469–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Győry, I., Wu, J., Fejér, G., Seto, E. & Wright, K. L. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat. Immunol. 5, 299–308 (2004).

    Article  PubMed  Google Scholar 

  65. Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat. Cell Biol. 8, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Magnúsdóttir, E. et al. Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc. Natl Acad. Sci. USA 104, 14988–14993 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat. Immunol. 14, 1054–1063 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Agresta, L., Hoebe, K. H. & Janssen, E. M. The emerging role of CD244 signaling in immune cells of the tumor microenvironment. Front. Immunol. 9, 2809 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR–Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863–868 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Yan, W. X. et al. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat. Commun. 8, 1–9 (2017).

    Article  Google Scholar 

  73. Canaj, H. et al. Deep profiling reveals substantial heterogeneity of integration outcomes in CRISPR knock-in experiments. Preprint at https://www.biorxiv.org/content/10.1101/841098v1 (2019).

  74. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Mullard, A. FDA approves second BCMA-targeted CAR-T cell therapy. Nat. Rev. Drug Discov. 21, 249 (2022).

    PubMed  Google Scholar 

  77. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6, 261ra151 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ahmed, N. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 3, 1094–1101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Posey, A. D. Jr et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44, 1444–1454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, M. Y. et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173, 1439–1453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y. et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Oncoimmunology 7, e1440169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Weiss, T., Weller, M., Guckenberger, M., Sentman, C. L. & Roth, P. NKG2D-based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res. 78, 1031–1043 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Wei, J., Han, X., Bo, J. & Han, W. Target selection for CAR-T therapy. J. Hematol. Oncol. 12, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dai, X. et al. One-step generation of modular CAR-T cells with AAV-Cpf1. Nat. Methods 16, 247–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Francois, A. et al. Accurate titration of infectious AAV particles requires measurement of biologically active vector genomes and suitable controls. Mol. Ther. Methods Clin. Dev. 10, 223–236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. O’Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang, G. et al. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. Sci. Adv. 4, eaao5508 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Boyle, E. A., O’Roak, B. J., Martin, B. K., Kumar, A. & Shendure, J. MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics 30, 2670–2672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kong, N. R., Chai, L., Tenen, D. G. & Bassal, M. A. A modified CUT&RUN protocol and analysis pipeline to identify transcription factor binding sites in human cell lines. STAR Protoc. 2, 100750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu, Q., Liu, N., Orkin, S. H. & Yuan, G. C. CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis. Genome Biol 20, 192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  98. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hahne, F. & Ivanek, R. Visualizing genomic data using Gviz and Bioconductor. Methods Mol. Biol. 1418, 335–351 (2016).

    Article  PubMed  Google Scholar 

  103. Wang, G. G. et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459, 847–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44 (2009).

    Article  PubMed  Google Scholar 

  107. Dai, X. et al. Massively parallel knock-in engineering of persistent CAR-Ts [CLASH]. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207143 (2022).

  108. Dai, X., Park, J., Du, Y. & Chen, S. Massively parallel knock-in engineering of persistent CAR-Ts. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE219061 (2022).

  109. Dai, X., Park, J. & Chen, S. Massively parallel knock-in engineering of persistent CAR-Ts [XDRNA]. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207404 (2022).

  110. Dai, X., Chow, R., Gu, J., Chen, S. Massively parallel knock-in engineering of persistent CAR-Ts. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE201997 (2022).

Download references

Acknowledgements

We thank M. Sznol, A. Bersenev, S. Seropian, I. Isufi, M. Müschen and D. Krause for discussions. We thank all members of the Chen laboratory as well as various colleagues in Yale Genetics, SBI, CSBC, MCGD, Immunobiology, BBS, YCC, YSCC and CBDS for assistance and/or discussions. We thank various Yale Core Facilities, such as YCGA, HPC, WCAC and KBRL, for technical support. S.C. is supported by NIH/NCI/NIDA (DP2CA238295, R01CA231112, U54CA209992-8697, R33CA225498 and 1RF1DA048811); DoD (W81XWH-20-1-0072 and W81XWH-21-1-0514); the Alliance for Cancer Gene Therapy; the Sontag Foundation (Distinguished Scientist Award); Pershing Square Sohn Cancer Research Alliance; Dexter Lu; the Ludwig Family Foundation; the Blavatnik Family Foundation; and the Chenevert Family Foundation. X.D. is supported by the Charles H. Revson Senior Postdoctoral Fellowship. J.J.P. is supported by an NIH Medical Scientist Training Program grant (T32GM136651). R.C. is supported by an NIH Medical Scientist Training Program grant (T32GM136651) and the National Research Service Award fellowship (F30CA250249). P.A.R. is supported by an NIH training grant (T32GM007499), the Lo Fellowship and NIH/NCI Diversity Supplement. S.S. is supported by a Mark Foundation for Cancer Research Emerging Leader Award, a Paul G. Allen Frontiers Group Distinguished Investigator Award and NIH/NIGMS R01GM122984.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: X.D. and S.C. Library design: J.J.P. and S.C. Experiment lead: X.D., Y.D. and Z.N. Analytic lead: J.J.P. and S.L. Additional data analysis: R.C., P.A.R. and J.G. Additional experiment support: S.X., Z.C., C.L. and P.C. Manuscript preparation: X.D., J.J.P., S.L., Z.N., Y.D. and S.C. Supervision: S.C., S.S. and H.Z. Research funding: S.C., S.S. and H.Z. Overall organization: S.C. and X.D.

Corresponding author

Correspondence to Sidi Chen.

Ethics declarations

Competing interests

A patent application has been filed by Yale University on CLASH (S.C., X.D., J.J.P. and Y.D. as inventors). S.C. is a founder of Cellinfinity Bio, which licensed the CLASH patent. S.C. is also a founder of EvolveImmune Tx, Chen Consulting and Chen Tech, unrelated to this study.

Peer review

Peer review information

Nature Biotechnology thanks Li Tang, Hyongbum Henry Kim and Joseph Fraietta for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 of supplementary datasets and tables

Reporting Summary

Supplementary Data

This zip file contains six datasets. (1) CLASH library, in vitro and in vivo screening experiments and analyses. (2) All CLASH-MIPS processed data and correlation analyses, with metadata. (3) All Nextera amplicon sequencing indel variant frequencies, with metadata. (4) PRDM1 Δexon3 CD22 CAR-T timecourse mRNA-seq. (5) Genome-wide chromatin binding of PRDM1 WT and exon3 skip mutant via CUT&RUN in human CD22 CAR-T cells. (6) All genome-wide AAV on-target and off-target integration processed data, with metadata.

Supplementary Table

Oligo sequences used in this study are listed in an Excel file.

Source data

Source Data

Statistical source data for Figs. 1 and 3–6 and Extended Data Figs. 1, 5–9 and 12.

Source Data Fig. 4

Unprocessed western blots

Source Data Fig. 6

Unprocessed western blots

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Park, J.J., Du, Y. et al. Massively parallel knock-in engineering of human T cells. Nat Biotechnol 41, 1239–1255 (2023). https://doi.org/10.1038/s41587-022-01639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01639-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer