Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection

Abstract

Cells interpret mechanical stimuli from their environments and neighbors, but the ability to engineer customized mechanosensing capabilities has remained a synthetic and mechanobiology challenge. Here we introduce tension-tuned synthetic Notch (SynNotch) receptors to convert extracellular and intercellular forces into specifiable gene expression changes. By elevating the tension requirements of SynNotch activation, in combination with structure-guided mutagenesis, we designed a set of receptors with mechanical sensitivities spanning the physiologically relevant picoNewton range. Cells expressing these receptors can distinguish between varying tensile forces and respond by enacting customizable transcriptional programs. We applied these tools to design a decision-making circuit, through which fibroblasts differentiate into myoblasts upon stimulation with distinct tension magnitudes. We also characterize cell-generated forces transmitted between cells during Notch signaling. Overall, this work provides insight into how mechanically induced changes in protein structure can be used to transduce physical forces into biochemical signals. The system should facilitate the further programming and dissection of force-related phenomena in biological systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of customized mechanosensation.
Fig. 2: Tuning the tensile strength of sNRR domains.
Fig. 3: Band-pass filtering in mechanogenetic circuits.
Fig. 4: Intercellular mechanotransduction via cell-generated, ubiquitination-dependent endocytic forces.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Schoen, I., Pruitt, B. L. & Vogel, V. The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Annu. Rev. Mater. Res. 43, 589–618 (2013).

    Article  CAS  Google Scholar 

  2. Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832, 884–890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mammoto, T., Mammoto, A. & Ingber, D. E. Mechanobiology and developmental control. Annu. Rev. Cell Dev. Biol. 29, 27–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Trylinski, M. & Schweisguth, F. Activation of Arp2/3 by WASp is essential for the endocytosis of δ only during cytokinesis in Drosophila. Cell Rep. 28, 1–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Bertolio, R. et al. Sterol regulatory element binding protein one couples mechanical cues and lipid metabolism. Nat. Commun. 10, 1326 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Helvert, S., Storm, C. & Friedl, P. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20, 8–20 (2018).

    Article  PubMed  Google Scholar 

  8. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Das, D. K. et al. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc. Natl Acad. Sci. USA 112, 1517–1522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Sharma, D. et al. Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability. Proc. Natl Acad. Sci. USA 104, 9278–9283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bornschlögl, T., Christof, J., Gebhardt, M. & Rief, M. Designing the folding mechanics of coiled coils. ChemPhysChem 10, 2800–2804 (2009).

    Article  PubMed  Google Scholar 

  13. Ng, S. P. et al. Designing an extracellular matrix protein with enhanced mechanical stability. Proc. Natl Acad. Sci. USA 104, 9633–9637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadler, D. P. et al. Identification of a mechanical rheostat in the hydrophobic core of protein L. J. Mol. Biol. 393, 237–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, Y., Yoo, T., Zhuang, S. & Li, H. Protein–protein interaction regulates proteins’ mechanical stability. J. Mol. Biol. 378, 1132–1141 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Cao, Y., Yoo, T. & Li, H. Single molecule force spectroscopy reveals engineered metal chelation is a general approach to enhance mechanical stability of proteins. Proc. Natl Acad. Sci. USA 105, 11152–11157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ringer, P. et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14, 1090–1096 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Hughes, J. H. & Kumar, S. Synthetic mechanobiology: engineering cellular force generation and signaling. Curr. Opin. Biotechnol. 40, 82–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl. Acad. Sci. USA 115, 992–997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, L. N. et al. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci. Transl. Med. 9, eaan2966 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, X. & Ha, T. Defining single molecular forces required to activate integrin and Notch signaling. Science 340, 991–994 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chowdhury, F. et al. Defining single molecular forces required for Notch activation using Nano Yoyo. Nano Lett. 16, 1–20 (2016).

    Article  Google Scholar 

  24. Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507–1518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verdorfer, T. & Gaub, H. E. Ligand binding stabilizes cellulosomal cohesins as revealed by AFM-based single-molecule force spectroscopy. Sci. Rep. 8, 9634 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tiyanont, K. et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure 19, 546–554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Aste-Amézaga, M. et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS ONE 5, e9094 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fortini, M. E. & Bilder, D. Endocytic regulation of Notch signaling. Curr. Opin. Genet. Dev. 19, 323–328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwesinger, F. et al. Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc. Natl. Acad. Sci. USA 97, 9972–9977 (2000).

  32. Varnum-Finney, B. et al. Immobilization of Notch ligand, δ-1, is required for induction of Notch signaling. J. Cell Sci. 113 Pt 23, 4313–4318 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. De Odrowa̧z Piramowicz, M., Czuba, P., Targosz, M., Burda, K. & Szymoński, M. Dynamic force measurements of avidin-biotin and streptavdin-biotin interactions using AFM. Acta Biochim. Polym. 53, 93–100 (2006).

    Article  Google Scholar 

  34. Weisel, J. W., Shuman, H. & Litvinov, R. I. Protein–protein unbinding induced by force: single-molecule studies. Curr. Opin. Struct. Biol. 13, 227–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Falk, R. et al. Generation of anti-Notch antibodies and their application in blocking Notch signalling in neural stem cells. Methods 58, 69–78 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chopra, M. L. et al. Force generation via β-cardiac myosin, titin, and α-actinin drives cardiac sarcomere assembly from cell-matrix adhesions. Dev. Cell 44, 87–96 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakar, M. S. et al. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat. Commun. 7, 11036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kabadi, A. M. et al. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain. ACS Synth. Biol. 4, 689–699 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Balcioglu, H. E., van Hoorn, H., Donato, D. M., Schmidt, T. & Danen, E. H. J. The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions. J. Cell Sci. 128, 1316–1326 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Marszalek, P. E. & Fernandez, J. M. Point mutations alter the mechanical stability of immunoglobulin modules. Nat. Struct. Biol. 7, 1117–1120 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, Z., Yu, Z., Cai, Y., Du, R. & Cai, L. Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Commun. Biol. 3, 116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gordon, W. R. et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood 113, 4381–4390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rand, M. D. et al. Calcium depletion dissociates and activates heterodimeric Notch receptors. Mol. Cell. Biol. 20, 1825–1835 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frith, J. E. et al. Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling. Nat. Commun. 9, 257 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greber, D. & Fussenegger, M. An engineered mammalian band-pass network. Nucleic Acids Res. 38, e174 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fridy, P. C. et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11, 1253–1260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Langridge, P. D. & Struhl, G. Epsin-dependent ligand endocytosis activates Notch by force. Cell 171, 1383–1396 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo, B., McMillan, B. J. & Blacklow, S. C. Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Curr. Opin. Struct. Biol. 41, 38–45 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Messa, M. et al. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife 3, e03311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Serwas, D. et al. Mechanistic insights into actin force generation during vesicle formation from cryo-electron tomography. Dev. Cell 57, 1132–1145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seib, E. & Klein, T. The role of ligand endocytosis in Notch signalling. Biol. Cell 113, 401–418 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. McMillan, B. J. et al. A tail of two sites: a bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases. Mol. Cell 57, 912–924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dengl, S. et al. Hapten-directed spontaneous disulfide shuffling: a universal technology for site-directed covalent coupling of payloads to antibodies. FASEB J. 29, 1763–1779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McMahan, J. B., Ngo, J. T. A Genetically encodable and chemically disruptable system for synthetic post-translational modification dependent signaling. Preprint at bioRxiv https://doi.org/10.1101/2022.05.29.493928 (2022).

  59. Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E. & Weinmaster, G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 12, 22 (2012).

    Google Scholar 

  60. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. & Lu, T. K. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54, 698–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun, P., Enslen, H., Myung, P. S. & Maurer, R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527–2539 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X. et al. Constructing modular and universal single molecule tension sensor using protein G to study mechano-sensitive receptors. Sci. Rep. 6, 21584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, C. K., Wang, Y. M., Huang, L. S. & Lin, S. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein–ligand interaction. Micron 38, 446–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Johnson, K. C. & Thomas, W. E. How do we know when single-molecule force spectroscopy really tests single bonds? Biophys. J. 114, 2032–2039 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.C.S. and A.M.M. were supported through Graduate Research Fellowship awards from the National Science Foundation. J.C.T was supported through a Cross-Disciplinary Fellowship awarded through BUnano (Boston University Nanotechnology Innovation Center). D.C.S and J.C.T. received support through the Boston University training program in Quantitative Biology and Physiology (QBP, NIH grant T32GM008764). D.C.S. was a recipient of a Kilachand Fellowship through the Multicellular Design Program (Boston University). Support for this work was provided through a seed grant from the Center for Multiscale & Translational Mechanobiology (Boston University) and through NIH research grants R35 GM128859 (to J.T.N.) and R01 HL147585 (to J.T.N.). Additional support was provided through the Reidy Family Career Development Professorship at Boston University (to J.T.N.). The schematics in Fig. 4 were created using biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

D.C.S, J.C.T., A.M.M. and J.T.N. designed and performed experiments and analyzed the data. D.C.S. and J.T.N. wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to John T. Ngo.

Ethics declarations

Competing interests

J.T.N. and D.C.S. are inventors on an issued patent (U.S. Patent, 10,858,443) held by the Trustees of Boston University. J.C.T. and A.M.M. declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Sanjay Kumar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Figs. 1–15.

Reporting Summary

Supplementary Video 1

Time-lapse imaging of biotin-FITC induced trans-cellular activation. HEK293-FT reporter cells (UAS-H2B-mCherry) expressing anti-FITC receptors with the indicated mechanosensitive domains were cocultured with HEK293-FT antibiotin-TMD-DLL1 sender cells. trans-cellular coupling was induced by treatment with 2 nM biotin-FITC. Cells were imaged live for 24 h. Fluorescence emissions from T2A-BFP (blue, to identify receiver cells) and H2B-mCherry (red, to monitor reporter activity) were captured every 1.5 h. Sender cells were not fluorescently marked (that is, lacked BFP). Top row: merged images from detection of T2A-BFP (blue), H2B-mCherry (red) and transmitted light. Bottom row: emission from H2B-mCherry detection shown in grayscale.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sloas, D.C., Tran, J.C., Marzilli, A.M. et al. Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nat Biotechnol 41, 1287–1295 (2023). https://doi.org/10.1038/s41587-022-01638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01638-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing