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Current methods for epigenomic profiling are limited in their ability to obtain

genome-wide information with spatial resolution. We introduce spatial
ATAC, amethod that integrates transposase-accessible chromatin profiling
intissue sections with barcoded solid-phase capture to perform spatially
resolved epigenomics. We show that spatial ATAC enables the discovery of
the regulatory programs underlying spatial gene expression during mouse
organogenesis, lineage differentiation and in human pathology.

Inmulticellular organisms, cells progressively acquire specialized gene
expression programs according to their position within a tissue’. Cell
type-specific gene expression patternsresultin part fromtheinterac-
tionbetween the transcriptional machinery and regulatory elementsin
the chromatin®?, aprocess dysregulated in disease*’. Several methods
havebeen developedtointegrate gene expression and chromatin acces-
sibility measurements in single cells®®. Single-cell methods typically
require tissue dissociation, and a wealth of spatial profiling methods
has recently been developed to overcome this limitation, particularly
at the transcriptome level’. However, we remain limited in our ability
tointerrogate chromatin accessibility with spatial resolution atacom-
parablescale because current spatial chromatin profiling approaches
require custom microfluidics or microbiopsies'*".

We developed spatial ATAC to perform spatially resolved chro-
matin accessibility profiling in tissue sections. Spatial ATAC com-
binesthe assay for transposase-accessible chromatin and sequencing
(ATAC-seq") with tagmented DNA capture onasolid surface containing
barcoded oligonucleotides, using an experimental platform analogous
toour previous spatial transcriptomics approach®. First, we immobilize
fresh frozentissue sections onto barcoded slides and crosslink them to
preserve chromatin structure duringimmunostaining. Immunostained
sections are then imaged to register tissue coordinates and protein
expression data. In the next step, Tn5 transposition is performed
directly in permeabilized sections to tagment open chromatin. With
the help of a chimeric splint oligonucleotide, DNA tagments are hybrid-
izedtospatially barcoded surface oligonucleotides during gentle tissue
digestion. Ligation to the splint and subsequent polymerase gap fill

and extension generate open chromatin fragments carrying a spatial
barcode and PCR handles that are used for generating a sequencing
library (Fig.1a).

We performed spatial ATAC onreplicate tissue sections from three
stages of mouse gestational development (embryonic days E12.5,E13.5
and E15.5). Spatially barcoded open chromatin fragments showed high
enrichmentaround transcriptional startsites (TSS), as well as nucleo-
some periodicity, hallmarks of ATAC-seq (Fig. 1b and Extended Data
Fig. 1). We captured a median of 6,100, 3,100 and 7,100 unique frag-
ments per 55 pm spot, with 14,15and 18% overlapping TSSin E12.5, E13.5
and E15.5 sections, respectively. These metrics are comparable with
published single-nucleus and microfluidics-based spatial ATAC-seq
data from the developing mouse (Extended Data Fig. 1a-c). Addition-
ally, the aggregate distribution of fragments across the genome showed
a very high concordance with reference single-nucleus ATAC-seq
(snATAC-seq) datasets from the Encyclopedia of DNA Elements
(ENCODE)" (Extended Data Fig. 1d,e). We next created a peak-spatial
barcode count matrix using acommon reference peak set across sec-
tions that were analyzed by latent semanticindexing (LSI) and uniform
manifold approximation and projection (UMAP) for dimensionality
reduction®. Unsupervised clustering identified 11 main clusters, which
revealed high concordance with anatomical landmarks when projected
onto their original spatial coordinates and were consistent, not only
across replicate sections, but also across developmental stages and
analytical strategies (Fig. 1c,d and Extended Data Figs. 2 and 3). This
clustering further agreed with spatially aware non-negative matrix fac-
torization dimensionality reduction and clustering'®, suggesting that
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a Spatial ATAC workflow
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Fig.1| Workflow and spatial mapping of chromatin accessibility in

mouse embryos. a, Schematic workflow of spatial ATAC. Transposition with
Tn5is performed onimmunostained tissue cryosectionsimmobilized ona
barcoded slide (55 pm spot diameter; 100 pminterspot distance). Transposed
fragments are surface-captured using a splint oligonucleotide, which s ligated
and extended to allow the generation of aspatially barcoded DNA library. b,
Enrichment of ATAC-seq fragments around the TSS in spatial ATAC performed on
mouse embryos (E12.5, E13.5, E15.5) in comparison with spatial ATAC-seq E13 data
fromref. 11. ¢, Clustering of spatial ATAC open chromatin fragments projected on
their spatial location. d, UMAP of all spots from mouse embryo sections colored

e F12.5 ® Myocytes

© Primitive erythroid lineage
Definitive erythroid lineage

® White blood cells

by cluster asinc. e, Cluster-wise correlation of the accessibility of the top 25%
variable promoter (+1,000, -100 bp around the TSS) and distal peaks. f, Heatmap
showing scaled accessibility of the top differentially accessible peaks per cluster.
g, Genome tracks showing normalized spatial ATAC-seq fragment density for
peaks showing cluster-specific accessibility. Cluster colors are consistent from
c-g.h-j, UMAP showing the integration of spatial ATAC with snATAC-seq profiles
from the same developmental stages colored by technology (h), developmental
age (i) or clustering (j). k, Individual clusters fromj projected onto their original
spatial location in an E15.5 spatial ATAC section. Scale bars, 500 pm.

spatial location is a major source of variation in chromatin accessibil-
ity across and within developing tissues (Extended Data Fig. 4a-d). As
expected, the dataset structure reflected variationin the accessibility
of promoters and alarger set of distal peaks (Fig. 1e). Using differential
accessibility analyses we found 18,000 differentially accessible peaks
that showed specific patterns of accessibility across developing tis-
sues (Fig. 1f, g).

We next computed gene activities (that is, accessibility at gene
locus and promoter), which revealed 2,000 differentially accessible
genes between clusters that were enriched for gene ontology terms
characteristic of therespective tissue region (Extended DataFig. 4e, f).
Forexample, central nervous system clusters showed increased acces-
sibility in genes known to be involved in neurogenesis (for example,
Sox1, Foxgl, Notchl). Bone and muscle mesenchyme clusters showed

increased accessibility in myofiber, collagen and TGF-b signaling genes
(for example, Myh9, Collal, Smad3), while the fetal liver cluster was
characterized by accessibility of genes involved in erythropoiesis
(forexample, Hba-al, Tall, Sptb). We next generated snATAC-seq pro-
files from matched developing embryos for direct comparison. Spa-
tial ATAC spots integrated well with snATAC-seq data, which further
increased clustering granularity within tissue structures (Fig. 1h-k).
Genome-wide chromatin accessibility correlationacross cell types was
highbetween technologies, which allowed us to accurately predict the
spatial location of individual cells (Extended Data Fig. 5).

Next, we sought tointegrate spatial ATAC with Visium spatial tran-
scriptomics. We performed Visium on tissue sections from the same
developmental stages, which showed regionally consistent clustering
and genes found as differentially accessible using spatial ATAC showed
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Fig.2|Spatial ATAC uncovers spatiotemporal patterns of regulatory element
accessibility underlying gene expression. a, Visium gene expression signature
scores for differentially accessible genes in spatial ATAC (SATAC) clusters. Visium
clusters (left) on an E12.5 section for reference. CNS, central nervous system;
Men./PNS, meninges/peripheral nervous system; and Mesen., mesenchyme.b,
Pou3f2 expression (top, cyan), gene activity and accessibility of a co-accessible
distal regulatory element (magenta). ¢, Genomic track and co-accessibility scores
for peaks around the Pou3f2locus. The distal element shownin b is highlighted
ingray and tracks are colored according to spatial ATAC clusters. d, Inset of
aSOX2-immunostained E15.5 spatial ATAC section (n = 2) with highlighted

SOX2+ (progenitor, pink) and SOX2- (neuronal, purple) regions. e, Top 500
differentially accessible peaks by fold change in SOX2+and SOX2-regions.

Avg. acc., average accessibility. f, Motif enrichment analysis of peaks from e.
Selected motifs for transcription factors expressed in the region are highlighted.
Pvalues by a one-sided hypergeometric test. g, Accessibility (Acc.) (spatial ATAC;
magenta) and expression (expr.) of the nearest gene (Visium; cyan) for loci
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from the E15.5 developing cortex colored by pseudotime and split by technology.
Pvalues by Wilcoxon test (***<0.001).j, Pseudotime scores projected onto their
spatial locations in a spatial ATAC E15.5 section. k, Hematoxylin and eosin image
ofabreast cancer section processed using Visium (n =1) with overlaid pathologist
annotations. Expression of ERBB2 (HER2) and myeloid cell marker CIQBin the
boxed inset. 1, Annotated hematoxylin and eosin image of an adjacent (200 um)
section processed using spatial ATAC (n = 3). On the right, accessibility of the
ERBB2locus, C1IQBlocus and two associated regulatory regions in the boxed inset
(right). m, Spatial interaction between tumor cell and myeloid cell clusters at

the tumor interface. Pathology is denoted as follows: red, invasive cancer; blue,
tumor infiltrating lymphocytes; green, intravascular cancer and yellow, normal
gland. Scale bars, 500 pm.

higher expressioninthe corresponding Visium cluster (Fig. 2a). Unsu-
pervised denoising and imputation methods have been developed to
account for the intrinsic sparsity of single-cell transcriptomics and
ATAC-seq datathatimprove visualization and feature-to-feature corre-
lation'”"®, We applied a denoising deep count autoencoder (DCA) to our
spatial ATAC and Visium datasets'®, which increased the signal-to-noise
ratio in feature visualizations while preserving clustering structure
(Extended DataFig. 6). Accessibility at gene loci correlated with gene
expression across anatomical structures (Extended Data Fig. 7). To
identify putative regulatory elements underlying spatial patterns of
gene expression, we performed peak co-accessibility analyses for dif-
ferentially accessible geneloci. With this strategy, we identified 6,000
individual distal regulatory elements whose accessibility correlated to
gene expressionacross tissues (Extended DataFig. 8) and agreed with
enhancer reporter assays (Extended Data Fig. 7c-e). To gain further

insight into regulatory programs underlying gene expression, we
performed motif enrichment analysis on these cluster-specific distal
peaks. We found that the most enriched motifs in central nervous
system clusters corresponded to well-characterized proneural tran-
scription factors (for example, Neurogl, Neurodl, Ascll). Conversely,
motifs enriched in mesenchymal regulatory elements corresponded
tofactorsknowntobeinvolved inbone and muscle development (for
example, Smad3, Twistl, Myog), while liver-specific distal regulatory
elements were highly enriched in binding sites for Tall and Gata tran-
scriptionfactors, consistent with their rolein hematopoiesis (Extended
DataFig. 8d).

To evaluate whether spatial ATAC could identify regulatory pro-
grams underlying lineage differentiation within a developing tissue, we
focused onthe cerebral cortex at E15.5, awell-characterized structurein
which SOX2+ progenitorsinthe subventricular zone generate neurons
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that migrate to upper cortical layers”. Based on SOX2 immunostaining,
we selected progenitor- and neuron-rich spots and performed motif
enrichment on the top differentially accessible peaks (Fig. 2d-f). We
identified cortical progenitor (for example, Sox2, Lhx2, Emx1) and
neuronal (for example, Neurogl, Cux2) transcription factors among
the top enriched motifsin the respective clusters (Fig. 2f). Further, we
could link regulatory elements to the nearest genes that showed the
corresponding patterns of layer-specific gene expression, and gene
accessibility correlated with expressionin the respective cortical layer
(Fig. 2g,h). Next, we integrated the cortical spatial ATAC spots with
single-cell RNA-sequencing (scRNA-seq) data from the same develop-
mental stage®. Using the integrated dataset, we calculated pseudotime
scores along the neuronal differentiation trajectory, which aligned
single cells and spatial ATAC spots and recapitulated the inside-out
differentiation trajectory of the developing cortex (Fig. 2i-j).

Finally, we applied spatial ATAC to human breast cancer, a tumor
type of widespread public health concern in which pathological clas-
sification informs therapy decisions. We profiled adjacent sections
using Visium and spatial ATAC. Spatial ATAC clustering and marker
expression aligned with pathologist annotations, agreed with Visium
clustering and could readily identify HER2-positive regions, their asso-
ciated non-coding region accessibility and the presence of myeloid cells
in the immediate tumor microenvironment (Fig. 2k-m and Extended
DataFigs. 9 and 10).

Our spatial ATAC platformis readily implementable through com-
mon laboratory workflows and offers the possibility for integration
with other existing and future ‘omics’ modalities. We envision that
spatial ATAC will enable spatial non-coding functional genomics, while
being instrumental in the identification of regulatory elements for
specific celltargeting in gene therapy and the study of gene regulatory
networks in development and disease.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-022-01603-9.
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Methods

Animal tissue processing

Time pregnant C57BL/6 mice were purchased from Janvier and were
euthanized by cervical dislocation at embryonic day 12.5, 13.5 or 15.5
forembryo harvesting. All experimental procedures were carried out
in accordance with the Swedish and European Union guidelines and
approved by the local committee for ethical experiments on laboratory
animalsinSweden (Stockholms Norra DjurforsoksetiskaNamnd) under
ethical permit numbers N155/16 and 20785/2020.

The tissues were harvested on ice-cold PBS and snap frozen in
optimal cutting temperature compound (Tissue-Tek, 4583) blocks in
adry ice-isopentane bath at -60 °C and stored at —80 °C until being
sectioned.

Collection of tumor samples from patients with breast cancer
Breast cancer tissues were obtained from the Department of Clinical
Pathology and Cancer Diagnostics at Karolinska University Hospital,
Stockholm, Sweden. Experimental procedures and protocols were
approved by the regional ethics review board (Etikprovningsndmnden)
inStockholm (2016/957-31, amendments 2017/742-32 and 2021-00795),
and informed consent was obtained from the participating patient.

The samples were obtained from a breast tumor removed from
apatient with treatment-naive invasive ductal carcinoma. The tumor
was divided into several regions and collected freshly by a patholo-
gist depending on the size of the tumor. From each region, tissue was
isolated for direct embedding in optimal cutting temperature com-
pound, followed by immediate freezing and storage at —80 °C until
further analysis. Histological evaluations of the patient’s tumor were
performed by pathologists for diagnostic purposes: tumor character-
istics, including grade, size, hormone receptor, HER2 and K167 status
are presented in Supplementary Table 3.

Spatial ATAC

Cryosections were cutonacryostat (Leica, NX70) atal0 pm thickness
and placed onspatially barcoded OMNI glass slides (10X Genomics). In
brief, each OMNI array slide contained eight capture areas, each cov-
ered by 5,000 barcoded spots with diameters of 55and 100 um between
spots. Each spot contained millions of DNA oligonucleotides encoding
alé ntspatial barcode, serving asxandycoordinates, a PCR handle for
library amplification, a 12-nt unique molecular identifier and a 7-nt
generic capture sequence used for splint oligonucleotide hybridiza-
tion (Supplementary Table1). Slides were first heated at 37 °C for 1 min
to adhere the tissue to the slide. Then, the sections were crosslinked
in freshly prepared methanol-free 0.5% formaldehyde (Polysciences,
18814) diluted in Dulbecco’s PBS (DPBS) for 10 min at room tempera-
ture, followed by rinsingin 500 mM Tris-HCIpH 8 (Thermo, AM9856) to
quenchthe formaldehyde. After dipping the slidein DPBS three times,
the sections were immunostained as follows: the tissue sections were
blocked by incubation for 5 min with staining buffer (DPBS containing
5% Donkey serum, 0.1% NP-40 (Thermo 28324) and 0.005% Digitonin
(Promega G9441)). The staining buffer was then removed, and the pri-
mary antibody dilution added (antibodies used were: rabbit anti-SOX2
Merck 5603, 1:100; goat anti-SOX9 R&D 3075, 1:300 and antinuclear
antigen Novus 235-1, 1:100) and incubated at room temperature for
30 min. Then, washing was performed twice with staining buffer for
3 min each, followed by addition of donkey anti-rabbit or anti-goat
Alexa 647-conjugated IgG secondary antibodies (Thermo 31573 or
21447;1:500), and incubation at room temperature for 15 min. Then,
washing was performed three times with staining buffer for 3 min each
and finally pipette-washed with DPBS once. The slides were then spin
dried, covered with 85% glycerol, mounted with a coverslip and imaged
inaZeiss LSM 700 (x10 magpnification) confocal orina Metafer VSlide
system (x20 magnification) epifluorescence microscope torecord tis-
sue coordinates and capture areafiducials. The images were processed
with the VSlide software (v.1.0.0) or with Fiji (v.2.3.0)%.

After image acquisition, the glycerol was removed by dipping in
DPBS andalayer ofisopropanol was then added to the arrays, decanted
and air-dried. The slide was then rehydrated in DPBS followed by
ATAC permeabilization (0.01% digitonin, 0.1% Tween-20, 0.1% NP-40,
10 mM Tris-HCI pH 7.4,10 mM NaCl, 3 mM MgCl,) at room temperature
for 10 min.

Custom Tn5 transposomes (30 pM) were assembled using Nextera
adapter oligonucleotides A and B (Supplementary Table 1) according
toref.23. Tagmentation was performed according to OMNIATAC-seq**
at 37 °C for 1 h under gentle shaking (300 rpm every 5 min) using 2 pl
TnS in tagmentation mix (25 pl 2x TD buffer, 16.5 pl DPBS, 0.5 pl 1%
digitonin, 0.5 pl 10% Tween-20). To stop the tagmentation and strip
thetransposase from DNA, sections were incubated with 50 mM EDTA
while ramping down to 30 °C for 10 min. To hybridize the tagments to
the barcoded surface oligonucleotides, we thenincubated the sections
witha2 pMsolution of splint oligonucleotide (in 3x SSC buffer contain-
ing 0.01% Triton-X100, 0.8 pg pl™ Proteinase K and 2.5% PEG8000)
overnightat 30 °C. Next, the sections were rinsed in 2x NEB 2.1 buffer,
and subsequently incubated with ligation and polymerization solution
(1x NEB 2.1 containing 3 U of T4 DNA polymerase, 2,000 U of T4 DNA
ligase, 100 uM dNTPs,1 mM ATP, all from NEB) and incubated at 18 °C
for 4 h. Tissue removal was then performed using 2 mg ml™ Proteinase
K in PKD-buffer (Qiagen), and incubated at 56 °C for 30 min (shaking
at300 rpm). The slides were then sequentially washed in 2x SSC 0.1%
SDS, 0.2x SSC and 0.1x SSC and finally spin dried.

Library preparation and sequencing

Spatially barcoded single-stranded DNA fragments were released from
the surface by denaturation with 0.08 M KOH at room temperature
for 10 min and then quenched in 10 pl of 1M Tris pH 7. The denatured
fragments were pH adjusted with sodium acetate and cleaned with
MinElute Reaction Cleanup Kit (Qiagen, 28204). The eluted DNA was
then amplified using PCR using Partial.R1and Ad2.short oligonucleo-
tides for 15 cycles using PrimeSTAR Max DNA Polymerase mix (Takara,
R045B). The amplified products were purified using 0.9x SPRI beads
and i7-indexed in a second PCR (four cycles) using PE1.0 and Ad2.X
(where X is the sample index from ref. 12) oligonucleotides and KAPA
HiFi HotStart Mix (Roche, KK2602). The final indexed libraries were
cleaned up using 0.8x SPRIbeads and adjusted to the desired molarity
based onthe concentrations measured using Qubit HS double-stranded
DNA Assay Kit (Thermo, Q32854) and the average fragment size from
HS DNA Bioanalyzer kit (Agilent, 5067-4626).

Pooled libraries were then sequenced on Illumina Nextseq 550
or 2000 instrument using custom sequencing oligonucleotides for
Read1 and Index2 (CustomR1 and CustomlI2). We sequenced 65 bases
for reads1and 2 (genomic sequence), 28 bases for i5 (spatial barcode
and unique molecularidentifier) and eight bases fori7 (sample index).
AlIDNA oligonucleotides are listed in Supplementary Table 1.

H&E staining

Tissue sections from breast cancer specimens were first dried with
isopropanol (Fisher Scientific, A461-1) before staining. The sections
were thenstained with Mayer’s hematoxylin (Agilent, S3309) for 4 min,
washed in ultrapure water, incubated in bluing buffer (Agilent, CS702)
for 2 min, washed in Milli-Q water and further incubated for 1 min in
1:20 eosin solution (Sigma-Aldrich, HT110216) in Tris-buffer (pH 6).
The tissue sections were dried for 5 min at 37 °Cand then mounted with
85%glycerol (Merck,104094) and acoverslip. Imaging was performed
using the Metafer VSlide system at x20 magnification.

Data preprocessing

Raw reads were preprocessed using 10X Genomics’ CellRanger ATAC
pipeline (v.2.0.0). We used a custom ‘barcode_whitelist’ specifying posi-
tional barcodes from the spatial arrays and default reference genomes
(mm10, v.2.0.0 for the mouse data and hg38, v.2.0.0 for the human
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data). All other parameters for ‘mkfastq’and ‘count’ functions were set
todefault. Sequencing data from each section was processed separately
and subsequently integrated with Seurat (v.4.1.0, ref. 25) and Harmony
(v.0.1.0, ref. 26) R packages (below).

Analysis and visualization
For theembryos, we assayed sections across different developmental
stages and integrated them for downstream analysis. To do so, we first
obtained age-specific fragment files from ENCODE?” and merged them
using GenomicRanges’s (v.1.46.1, ref. 28) ‘reduce()’ function. We then
used these to create new accessibility matrices with acommon set of
269,767 peaks. For comparison, we also called peaks on the merged
dataset using MACS2 (v.2.2.6), as well as constructed feature matri-
ces from 5 kb genomic bins, and inspected the clustering concord-
anceacross pre-processing strategies. Peak-barcode matrices for the
human breast cancer sample were constructed using a set of 215,978
peaks from ref. 4. We next subset the matrices to only include spots
overlaying tissue, which were manually identified in Loupe Browser
(v.6.0.0) after aligning immunofluorescence pictures with capture
area fiducials. Loupe browser was also used to select SOX2+ and
SOX2- cortical spotsintwo mouse E15.5 sections. The spatial object
was created using STutility R package (v.0.1.0, ref. 16), using tissue
spot coordinates adjusted for the dimensions of the microscope
images. STutility was used to produce the spatial plots using ‘ST.
FeaturePlot()’ function for quantitative variables. TSS enrichment
plots and FragmentHistograms were generated using ArchR (v.1.0.1)”.
For each tissue type, we merged sections and performed nor-
malization and dimensionality reduction on all peaks using Signac’s
(v.1.6.0, ref.15) ‘RunTFIDF()" and ‘RunSVD()’ functions with default set-
tings. We calculated gene activity using Ensembl annotations (EnsDb.
Mmusculus.v79,v.2.99.0 and EnsDb.Hsapiens.v86, v.2.99.0), followed
by log-normalization and principal component analysis. Genes from
the Pcdh and Ugt gene clusters were removed from the gene activity
assay before downstream analysis. For the embryos, graph clustering
and UMAP were then performed on the peaks assay after integrat-
ing section-wise with Harmony on the top seven dimensions and
at aresolution of 0.7, which enabled identification of clusters that
reflect the underlying anatomical structures. Human breast cancer
sections, which were obtained from the same tissue specimen, were
merged directly using Seurat’s ‘merge()’ function followed by UMAP
and graph clustering on dimensions 2 to 7, and at aresolution of 0.5.
Cluster-wise Spearman’s correlation of the chromatin accessibility
profile was calculated for peaks around the transcription start site
(that is, between -1,000 bp and +100 bp from TSS position) and for
distal elements, using GenomicRanges’s GetTSSPositions() followed
by Signac’s ClosestFeature() functions to annotate the peaks, and
Seurat’s ‘AverageExpression()’ to obtain cluster-wise average acces-
sibility levels for each peak. Differential accessibility analysis was
carried out on peaks using Seurat’s FindAlIMarkers() function with
method = ‘LR’ and unique fragments as the latent variable, and with
logfc.threshold = 0.2 and min.pct = 0.01to account for the sparsity of
ATAC-seqdata. FindAlIMarkers() was also ranon the gene activity data
with Wilcoxon’s Rank Sum test and followed by Gene Ontology analysis
using gprofiler2 R package (v.0.2.1). Differentially accessible features
were retained at an adjusted Pvalue of 0.05 after Bonferroni’s correc-
tion. Co-accessible peaks were identified after running LinkPeaks() on
differentially accessible genes with a correlation cut-off, as well as a
minimum 1kb distance from the TSS. Motif enrichment analysis was
carried out using FindMotifs() function and a set of clustered motifs
fromref.30 onall linked peaks. Non-redundant top motifs were high-
lighted. For motif enrichment analyses in the developing mouse cor-
tex, we firstran FoldChange() on peaks from SOX2+and SOX2- cortical
spotsand thenselected the top 500 peaks for motif analyses as above.
Full lists of enriched motifs are provided in Supplementary Table 2.
Vista enhancers were downloaded from https://enhancer.lbl.gov/

and genome coordinates were lifted to mm10 using the UCSCliftover
tool beforeintersection with spatial ATAC tissue-specific peaks using
bedtools (v.2.19.0).

Denoising

Using a DCA (v.0.3.4, ref. 18), we denoised the peak-barcode matrix
of the combined objects, as well as the gene activity matrices. For
the peaks data, we specified the following parameters: -nosizefac-
tors —-nonorminput —nologinput, whereas DCA was run with default
settings on the gene activity data. Additionally, we performed DCA
with default parameters on Visium data from the mouse embryo and
humanbreast cancer (below). Dimensionality reduction and clustering
was performed on the denoised data as above to evaluate concordance
between original and denoised data. While clustering and differential
accessibility analysis were conducted on original data, denoised data
was used for visualization of accessibility levels and for multimodal
integration with single-cell data (below).

Spatial analysis

STutility’s RunNMF() function was run with ‘nfactors = 8 after order-
ing the top 25% variable features according to spatial correlation.
Harmony integration on tissue section and graph clustering was
performed using non-negative matrix factorization factorsin dimen-
sionality reduction and the groups obtained this way were com-
pared with the spatial-agnostic clusters obtained with the original
peaks assay.

SnATAC-seq

To analyze spatial ATAC datasets in conjunction with snATAC-seq, we
prepared single nuclei suspensions from fresh frozen embryos (E12.5,
E13.5 and E15.5) that were littermates to those used for spatial ATAC.
Three to five 70 pum frozen sections were obtained for each embry-
onic stage matching the anatomical landmarks from spatial ATAC
sections. Frozen sections were then dissociated according to the 10X
Chromium Single Nuclei Isolation kit (1000494) omitting the debris
removal step to avoid cell loss. Nuclei suspensions were stained with
7-AAD (Miltenyi; 1:50) and sorted on a BD Fusion flow cytometer with
a100 pm nozzle. Nuclei were then immediately processed according
to the 10X Genomics’ Single Cell ATAC Next GEM kit (v.1.1). Sequenc-
ing data were demultiplexed and mapped using CellRanger ATAC
with default parameters yielding a total of 1,879 cells. Accessibility
matrices were constructed with Signac’s FeatureMatrix() function
using the ENCODE peak set to enable direct comparison with the spa-
tial data. Single-nucleus data were subsequently integrated with the
spatial profiles using FindIntegrationAnchors() with ‘rlsi’ reduction,
followed by IntegrateEmbeddings() and RunHarmony() with sample
of origin as grouping variable, which was used to obtain UMAP visu-
alizations of the co-embedded data. The concordance of spatial and
single-nucleus chromatinaccessibility data was subsequently explored
by cluster-wise correlation analysis of all peaks and gene bodies that
were log-transformed and normalized to adjust for sequencing depth.
Differential accessibility testing for gene activities was used for cluster
annotation using ref. 17 for reference. Furthermore, we mapped the
clusters resulting from integration onto the spatial ATAC sections to
confirmthe validity of our annotations.

We further analyzed our spatial ATAC data together with published
SnATAC-seq profiles of forebrain development sampled at the same
developmental stages (thatis, E12.5, E13.5 and E15.5). For this purpose,
we constructed accessibility matrices from the snATAC-seq'® data
using the ENCODE peaks set, and using the Loupe Browser we subset
the spatial ATAC profiles to only include capture spots overlaying the
forebrain. Next, we integrated the multimodal data as above and cal-
culated prediction scores on the spatial datafor each of the clustersin
the snATAC-seq profiles (that is, by means of Signac’s TransferData()
function).
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Visium

The 10X Genomics’ Visium platform was used to obtain spatial tran-
scriptomics datafor tissue samples matching our spatial ATAC sections
(thatis, either on consecutive tissue slices from breast tumor block or
onsimilar sagittal level of embryos from the same litter).

Raw data were pre-processed using SpaceRanger’s (v.1.3.1)
mkfastq and count functions with default parameters, and the
resulting gene-barcode matrices were then analyzed with Seurat
for normalization, dimensionality reduction and clustering, and
with STUtility for plotting. Visium datawere denoised with DCA and
default parameters for visualizations and comparison with spatial
ATAC data.

Integrative multimodal analysis

We performed multimodal comparison of our spatial ATAC datausing
either spatial or single-cell transcriptomics. To measure cluster-wise
concordance between gene expression and accessibility, we analyzed
inparallel spatial ATAC and spatial RNA-seq data from the embryos and
obtained cluster markers for each modality, which we used to calcu-
late module scores (with Seurat’s AddModuleScore()) in each assay.
Furthermore, we aggregated clusters into anatomical structures and
performed correlation analysis between expression and accessibility
of allgenesinthe dataset.

Additionally, we performed multimodal integrative analysis
between spatial ATAC and single-cell RNA-seq data. For the embryos,
we obtained a developmental transcriptional atlas from ref. 20, and
subset it to include cells from E15 brains. In parallel, we restricted
our analysis of spatial chromatin data to the cortex of E15.5 mice
and manually subset spots overlaying the region of interest. Specifi-
cally, we focused our analysis to only comprise the dorsal forebrain
and specifically looked at cells in the neurogenic trajectory (that
is, radial glia, intermediate progenitors and neurons). Single-cell
data were processed according to Seurat’s standard workflow and
subset to n=1,500 cells randomly sampled across the clusters. We
integrated spatial ATAC and single-cell RNA-seq data using canoni-
cal correlation analysis and 2,000 anchor features. Co-embedded
datawere subsequently subjected to dimensionality reduction using
principal component analysis. UMAP visualizations calculated on
the top seven components were, finally, used to order cells in pseu-
dotime using monocle3 (v.1.0.0, ref. 32) and the radial glia cluster as
root cells.

For the human breast cancer data, we obtained acomprehensive
single-cell RNA-seq atlas* and processed it with Seurat’s standard
workflow. We then probed enrichment of the main cell types in our
spatial ATAC and spatial RNA-seq clusters. To do so, we adopted the
author’s classification of cells in the highest tier (that is, ‘celltype_
major’) and used Seurat’s label transfer workflow based on canonical
correlation analysis to obtain prediction scores for each cell type in
the single-cell dataset.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All raw data and processed count matrices from mouse tissues can
be obtained at Gene Expression Omnibus using the accession code
GSE214991 (ref. 33). Human sequencing data are stored in the SciLife
Data Repository at https://doi.org/10.17044/scilifelab.21378279.v1
(ref. 34). Additionally, we analyzed previously published datasets, a
list of which is provided in Supplementary Table 2.

Code availability
Allanalysis code used canbe found at https://github.com/marzamKI/
spatial_atac (ref. 35).
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Extended Data Fig. 4 | Clustering of spatial ATAC data with spatially aware
factor analysis, marker genes and gene ontology analysis. a. Spatial ATAC
clusters based on LSI (top; sections and clusters from Fig. 1c shown again for
comparison) or NMF (bottom) for dimensionality reduction. b. Heatmap

displaying the percentage of spots assigned to LSI- or NMF-computed clusters.

c.Spatial activity plots for selected factors enriched in forebrain, facial
prominence, liver, and limb. d. Examples of the most contributing peaks for

each factor represented in c. Scale bars are 500 pm. e. Heatmap showing scaled
accessibility for the top differentially accessible genes (gene body + promoter)
across clusters. Relevant markers are highlighted. f. Gene ontology enrichment
analysis of the top marker genes colored by cluster. Pvalues were determined
with hypergeometric test followed by correction for multiple testing using
g:Profiler’s g:SCS algorithm.
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Extended Data Fig. 5| Integration of spatial ATAC with single-nucleus
ATAC-seq (SnATAC-seq) during mouse development. a. Representative
spatial ATAC sections with clustering based on integration with snATAC-seq
data from the same developmental stages (clusters and colors consistent with
Fig.1j, k). b. Heatmaps showing scaled accessibility for differentially accessible
geneloci (n=2575) for all clusters across both technologies. c. Scatterplots
comparing log-normalized accessibility at ENCODE peaks across clusters and
technologies. Spearman’s correlation coefficients are shown inside the plot

and spot/cell numbers are reported in the respective axes. d. Same as in d but

for log-normalized gene activity counts. e. UMAP embedding for spatial ATAC
forebrain spots and age-matched snATAC-seq data from™ colored by technology.
f. UMAP embedding colored by cell identity according to Preissl et al. g. Heatmap
depicting z-scored correlation coefficients for accessibility at ENCODE peaks
across clusters and technologies. h. Prediction scores for snATAC-seq-defined
cell clusters in f on spatial ATAC forebrain regions across developmental stages.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Deep count autoencoder denoising of Visium and
spatial ATAC. a. Visium clusters based on original (same as in Fig. 2a) or denoised
gene counts. b. Heatmap displaying the percentage of spots being assigned

to the clusters obtained from original or denoised Visium data. c. UMAP on
denoised expression colored by cluster. d. Visualization of gene expression
normalized counts before and after denoising on E15.5 sections. e. Clusters

based on original or denoised spatial ATAC peak counts (same as in Fig. 1c,
shown for comparison). f. Heatmap displaying the percentage of spots being
assigned to the clusters obtained from original or denoised spatial ATAC data g.
UMAP on denoised peaks colored by cluster. h. Visualization of normalized peak
accessibility before and after denoising on E12.5 sections. Scale bars are 500 pum.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Correlation between accessibility and expression and
validation of spatial ATAC regulatory element accessibility. a. Spatial ATAC
and Visium with clusters grouped according to the main anatomical structures
common to the sections. b. Scatterplots showing the log-normalized counts
for Visium gene expression and spatial ATAC gene activities across anatomical
structures. Correlation coefficient is shownin the plot. c. Vistaenhancer
reporter expression for two CNS elements overlapping with differentially

accessible spatial ATAC peaks. Genome coordinates under the Vistaimage
according to mm9 genome assembly. Under spatial ATAC feature plots, mm10.
d. Vista enhancer reporter expression for two liver elements overlapping

with differentially accessible spatial ATAC peaks. e. Vista enhancer reporter
expression for two limb elements overlapping with differentially accessible
spatial ATAC peaks. Reporter images were obtained from https://enhancer.Ibl.
gov/.Scalebarsare 500 um.
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Extended Data Fig. 8 | Gene regulatory programs during mouse

organogenesis. a. Visium expression, spatial ATAC gene activity and regulatory

element accessibility at E12.5 for CNS/Forebrain markers Pax6 and Foxgl. The

respective linked regulatory element is shown in gray. b. Visium expression,
spatial ATAC gene activity and regulatory element accessibility for Mesenchyme/

Limb markers Rxraand Twist2. The respective linked regulatory element is
shownin gray. c. Visium expression, spatial ATAC gene activity and regulatory

element accessibility for liver markers Slc4al and Hba-al. The respective linked

regulatory element is shown in gray. Arrowheads point to clusters for which the

regulatory element is most accessible. d. Motif enrichment rank plots for cluster-
specific distal elements. Selected top non-redundant transcription factor motifs

Scalebarsare 500 pum.

are highlighted. Pvalues were determined by a one-sided hypergeometric test.
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Extended Data Fig. 9| See next page for caption.
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Extended Data Fig. 9 | Spatial ATAC on human HER2-positive breast cancer.

a.Ontheleft, violin plot showing unique fragments per spot and percentage
TSS fragmentsin three adjacent sections processed using spatial ATAC. On the
right, TSS enrichment and insert size distribution. b. Spatial ATAC clustering
reveals tumor, immune-rich and normal tissue regions. c. Cluster percentage

across sections. d-e. UMAP embedding on spatial ATAC peaks color-coded by
cluster or tissue section. f. Genome tracks showing normalized spatial ATAC-
seq fragment density around the HER2 (ERBB2) locus colored by cluster. The
gray area marks a previously described gene body enhancer® shown in Fig. 2I.
Scale bars are 500 pm.
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Extended Data Fig. 10 | Multimodal integration of single-cell RNA-seq with onone example section. d. Prediction scores from scRNA-seq signaturesin
spatial ATAC and Visium on breast cancer sections. a. Clusters based on spatial ATAC clusters reveal cell composition differences across clusters.
original or DCA denoised peak counts. b. Heatmap displaying the percentage of e.Prediction scores from scRNA-seq signatures in Visium clusters. Scale bars
spots being assigned to the clusters obtained from original or denoised spatial are 500 pm.

ATAC data. c. Visualization of peak accessibility scores before and after denoising
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Software and code

Policy information about availability of computer code

Data collection  Data was collected with an Illumina sequencer and software (v
Imaging data were acquired on a Metafer VSlide system and processed using VSlide software (v1.0.0)

Data analysis Data analysis was performed with a combination of published packages and custom script, all of which can be found at https://github.com/
marzamKl/spatial_atac
The softwares used in this analysis are:
CellRanger ATAC (v2.0.0)
Loupe Browser (v6.0.0)
SpaceRanger (v1.3.1)
MACS2 (v2.2.6)
DCA (v0.3.4)
R (v4.2.0)
bedtools (v2.19.0)
Fiji (v2.3.0)

The R packages used are:
Seurat (v4.1.0)

ArchR (v1.0.1)

Harmony (v0.1.0)
GenomicRanges (v1.46.1)
STutility R package (v0.1.0)
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EnsDb.Hsapiens.v86 (v2.99.0)
gprofiler2 R package (v.0.2.1)
monocle3 (v1.0.0)
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Raw data and processed count matrices generated from the mouse samples can be found using the accession code GSE214991.
Human sequencing data are stored in the Scilife Data Repository and can be accessed at 10.17044/scilifelab.21378279.
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Reference genomes used to map mouse and human data were obtained by 10X Genomics as part of their standard Cellranger ATAC pipeline (v2.0.0).
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Sample size No sample size calculations were performed. The sample size used in this study is in the same range as other studies using similar
technologies. For embryo spatial ATAC data, data for each developmental age was acquired in 2 replicates (i.e. adjacent tissue sections from
the same specimen). For the human spatial ATAC data, we processed 3 replicates. Spatial transcriptomics was performed on 1 or 2 sections
from the same tissue.

Data exclusions  Spatial ATAC and transcriptomics data were inspected on Loupe browser and filtered through manual selection of capture areas that were not
underlying the tissue slice. Gene activity matrices computed from spatial chromatin data were filtered to exclude the large genes clusters
Pcdh and Ugt.

Replication We performed different types of data processing, including producing feature-barcode matrices using an ENCODE consensus peak set or
following MACS2 peak calling, as well as denoising with DCA. Data processed in different ways were then used to assess clustering

concordance across tissues and replicates, which always showed good overlap.

Randomization  There was no randomization applied in this study. Embryos from different pregnant mice were used to acquire spatial transcriptomics and
ATAC data.

Blinding Clustering of data was performed using unsupervised approaches.
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Antibodies

Antibodies used Primary antibodies:
- rabbit anti-SOX2 Merck 5603
- goat anti-SOX9 R&D 3075
- anti-nuclear antigen Novus 235-1.
Secondary antibodies:
- Donkey anti-Rabbit 1gG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 647, Thermo 31573
- Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 647, Thermo 21447

Validation Anti-SOX2: multiple citations of use in mouse tissues in the website from the manufacturer e.g. PMID 26315499

Anti-SOX9: multiple citations of use in mouse tissues in the website from the manufacturer e.g. PMID 35294885
Novus 235-1: multiple citations of use in mouse tissues in the website from the manufacturer e.g. PMID 34912114
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Time pregnant mice were from the strain C57BL/6JRj and were obtained from Janvier. Embryos were collected at embryonic days
12.5, 13.5, and 15.5. Embryo sex was not determined.
Mice were housed with a standard light/dark cycle and availability of food and water ad libitum.

Wild animals The study did not involve wild animals

Field-collected samples  The study did not involve field-collected samples

Ethics oversight All experimental procedures were carried out in accordance to the Swedish and European Union guidelines and approved by the
institutional ethical committee in Stockholm County (Stockholms Norra Djurférsoksetiska Namnd) under ethical permit numbers
N155/16 and 20785/2020.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Breast cancer tissue from one patient was obtained from the Department of Clinical Pathology and Cancer Diagnostics at
Karolinska University Hospital, Stockholm, Sweden. Age at diagnosis: 88. Tumor subtype: HER2-positive non-luminal. NHG
grade: 3. Tumor size: 30mm. Histological subtype: invasive ductal carcinoma. Lymph node methastasis: yes. Provided in Table

S3.
Recruitment Informed consent was obtained from the participating patient.
Ethics oversight Experimental procedures and protocols were approved by the regional ethics review board (Etikprévningsnamnden) in

Stockholm (2016/957-31, amendment 2017/742-32 and 2021-00795), and informed consent was obtained from the
participating patient.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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