Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing

Abstract

‘Smart’ bandages based on multimodal wearable devices could enable real-time physiological monitoring and active intervention to promote healing of chronic wounds. However, there has been limited development in incorporation of both sensors and stimulators for the current smart bandage technologies. Additionally, while adhesive electrodes are essential for robust signal transduction, detachment of existing adhesive dressings can lead to secondary damage to delicate wound tissues without switchable adhesion. Here we overcome these issues by developing a flexible bioelectronic system consisting of wirelessly powered, closed-loop sensing and stimulation circuits with skin-interfacing hydrogel electrodes capable of on-demand adhesion and detachment. In mice, we demonstrate that our wound care system can continuously monitor skin impedance and temperature and deliver electrical stimulation in response to the wound environment. Across preclinical wound models, the treatment group healed ~25% more rapidly and with ~50% enhancement in dermal remodeling compared with control. Further, we observed activation of proregenerative genes in monocyte and macrophage cell populations, which may enhance tissue regeneration, neovascularization and dermal recovery.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overall design of the wireless smart bandage for chronic wound management.
Fig. 2: Validation of the wireless sensing and stimulation circuits.
Fig. 3: Tough and low-impedance conductive hydrogel electrode with on-demand tissue adhesion and detachment.
Fig. 4: Wireless smart bandage can continuously monitor wound physiological conditions and accelerate tissue regeneration.
Fig. 5: Molecular mechanism involved in accelerated tissue regeneration with electrical stimulation.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its supplementary information.

References

  1. Han, G. & Ceilley, R. Chronic wound healing: a review of current management and treatments. Adv. Ther. 34, 599–610 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Werdin, F., Tenenhaus, M. & Rennekampff, H.-O. Chronic wound care. Lancet 372, 1860–1862 (2008).

    Article  PubMed  Google Scholar 

  3. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Martin, P. Wound healing–aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Singer, A. J. & Clark, R. A. Cutaneous wound healing. N. Engl. J. Med. 341, 738–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Frykberg, R. G. & Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care 4, 560–582 (2015).

    Article  Google Scholar 

  7. Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. McLister, A., McHugh, J., Cundell, J. & Davis, J. New developments in smart bandage technologies for wound diagnostics. Adv. Mater. 28, 5732–5737 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Derakhshandeh, H., Kashaf, S. S., Aghabaglou, F., Ghanavati, I. O. & Tamayol, A. Smart bandages: the future of wound care. Trends Biotechnol. 36, 1259–1274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Long, Y. et al. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 12, 12533–12540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, A. et al. Accelerated complete human skin architecture restoration after wounding by nanogenerator-driven electrostimulation. J. Nanobiotechnol. 19, 280 (2021).

    Article  CAS  Google Scholar 

  12. Farahani, M. & Shafiee, A. Wound healing: from passive to smart dressings. Adv. Healthc. Mater. 10, e2100477 (2021).

    Article  PubMed  Google Scholar 

  13. Dincer, C. et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 31, e1806739 (2019).

    Article  PubMed  Google Scholar 

  14. Barros Almeida, I. et al. Smart dressings for wound healing: a review. Adv. Skin Wound Care 34, 1–8 (2021).

    Article  PubMed  Google Scholar 

  15. Kekonen, A. et al. Bioimpedance sensor array for long-term monitoring of wound healing from beneath the primary dressings and controlled formation of H2O2 using low-intensity direct current. Sensors 19, 2505 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  16. Lukaski, H. C. & Moore, M. Bioelectrical impedance assessment of wound healing. J. Diabetes Sci. Technol. 6, 209–212 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chanmugam, A. et al. Relative temperature maximum in wound infection and inflammation as compared with a control subject using long-wave infrared thermography. Adv. Skin Wound Care 30, 406–414 (2017).

    Article  PubMed  Google Scholar 

  18. Tamayol, A. et al. Flexible pH-sensing hydrogel fibers for epidermal applications. Adv. Healthc. Mater. 5, 711–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, G. et al. Battery‐free and wireless smart wound dressing for wound infection monitoring and electrically controlled on‐demand drug delivery. Adv. Funct. Mater. 31, 2100852 (2021).

    Article  CAS  Google Scholar 

  20. Trung, T. Q., Ramasundaram, S., Hwang, B. U. & Lee, N. E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Hattori, Y. et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv. Healthc. Mater. 3, 1597–1607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, X. & Wu, P. A smart patch with on-demand detachable adhesion for bioelectronics. Small 17, e2101220 (2021).

    Article  PubMed  Google Scholar 

  23. Pang, Q. et al. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 7, 1902673 (2020).

    Article  CAS  Google Scholar 

  24. Marks, H. et al. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Sci. Adv. 6, eabd1061 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Swisher, S. L. et al. Impedance sensing device enables early detection of pressure ulcers in vivo. Nat. Commun. 6, 6575 (2015).

    Article  PubMed  Google Scholar 

  26. McCaffrey, C., Flak, J., Kiri, K. & Pursula, P. Flexible bioimpedance spectroscopy system for wound care monitoring. In 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2019).

  27. Kalidasan, V. et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021).

    Article  PubMed  Google Scholar 

  28. Zhao, Y. et al. Skin‐Inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv. Funct. Mater. 29, 1901474 (2019).

    Article  Google Scholar 

  29. Ciani, I. et al. Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy. Biosens. Bioelectron. 31, 413–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thakral, G. et al. Electrical stimulation to accelerate wound healing. Diabet. Foot Ankle 4, 22081 (2013).

    Article  Google Scholar 

  32. Kloth, L. C. Electrical stimulation technologies for wound healing. Adv. Wound Care 3, 81–90 (2014).

    Article  Google Scholar 

  33. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Cohen, D. J., Nelson, W. J. & Maharbiz, M. M. Galvanotactic control of collective cell migration in epithelial monolayers. Nat. Mater. 13, 409–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Power, G., Moore, Z. & O’Connor, T. Measurement of pH, exudate composition and temperature in wound healing: a systematic review. J. Wound Care 26, 381–397 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Kelly-O’Flynn, S., Mohamud, L. & Copson, D. Medical adhesive-related skin injury. Br. J. Nurs. 29, S20–S26 (2020).

    Article  PubMed  Google Scholar 

  39. Fumarola, S. et al. Overlooked and underestimated: medical adhesive-related skin injuries. J. Wound Care 29, S1–S24 (2020).

    Article  PubMed  Google Scholar 

  40. Schild, H. G. Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992).

    Article  CAS  Google Scholar 

  41. Cao, S., Tong, X., Dai, K. & Xu, Q. A super-stretchable and tough functionalized boron nitride/PEDOT:PSS/poly(Nisopropylacrylamide)hydrogel with self-healing, adhesion, conductive and photothermal activity. J. Mater. Chem. A 7, 8204–8209 (2019).

    Article  CAS  Google Scholar 

  42. Fundueanu, G., Constantin, M. & Ascenzi, P. Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: influence of the physico-chemical characteristics of drugs on their release profiles. Acta Biomater. 5, 363–373 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Q., Weber, C., Schubert, U. S. & Hoogenboom, R. Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz. 4, 109–116 (2017).

    Article  CAS  Google Scholar 

  44. Negut, I., Grumezescu, V. & Grumezescu, A. M. Treatment strategies for infected wounds. Molecules 23, 2392 (2018).

    Article  PubMed Central  Google Scholar 

  45. Chen, H. et al. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci. Adv. 6, eaba4311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, J. & Yan, L. J. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab. Syndr. Obes. 8, 181–188 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Schutzius, G. et al. BET bromodomain inhibitors regulate keratinocyte plasticity. Nat. Chem. Biol. 17, 280–290 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Mahmoudi, S. et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 574, 553–558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, K. et al. Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nat. Commun. 12, 5256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trotsyuk, A. A. et al. Inhibiting fibroblast mechanotransduction modulates severity of idiopathic pulmonary fibrosis. Adv. Wound Care 11, 511–523 (2022).

    Article  Google Scholar 

  51. Barrera, J. A. et al. Adipose-derived stromal cells seeded in pullulan-collagen hydrogels improve healing in murine burns. Tissue Eng. Part A 27, 844–856 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H. & Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 16, 585–601 (2008).

    Article  PubMed  Google Scholar 

  53. Chen, K. et al. Mechanical strain drives myeloid cell differentiation toward proinflammatory subpopulations. Adv. Wound Care 11, 466–478 (2022).

    Article  Google Scholar 

  54. Kim, S. Y. & Nair, M. G. Macrophages in wound healing: activation and plasticity. Immunol. Cell Biol. 97, 258–267 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Duyverman, A. M., Kohno, M., Duda, D. G., Jain, R. K. & Fukumura, D. A transient parabiosis skin transplantation model in mice. Nat. Protoc. 7, 763–770 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sîrbulescu, R. F. et al. Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions. Wound Repair Regen. 25, 774–791 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hofmann, U. et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125, 1652–1663 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Wernig, G. et al. Unifying mechanism for different fibrotic diseases. Proc. Natl Acad. Sci. USA 114, 4757–4762 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, J. et al. High expression of Fibronectin 1 suppresses apoptosis through the NF-κB pathway and is associated with migration in nasopharyngeal carcinoma. Am. J. Transl. Res. 9, 4502–4511 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Farr, L., Ghosh, S. & Moonah, S. Role of MIF cytokine/CD74 receptor pathway in protecting against injury and promoting repair. Front. Immunol. 11, 1273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carlson, B. A. et al. Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression. BMC Immunol. 10, 57 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lin, J. D. et al. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 4, e124574 (2019).

  65. Huang, Z. H., Reardon, C. A. & Mazzone, T. Endogenous ApoE expression modulates adipocyte triglyceride content and turnover. Diabetes 55, 3394–3402 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Arnold, L. et al. CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nat. Commun. 6, 8972 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Y. et al. Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. eLife 9, e57438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, C., Levin, M. & Kaplan, D. L. Bioelectric modulation of macrophage polarization. Sci. Rep. 6, 21044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoare, J. I., Rajnicek, A. M., McCaig, C. D., Barker, R. N. & Wilson, H. M. Electric fields are novel determinants of human macrophage functions. J. Leukoc. Biol. 99, 1141–1151 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Duscher, D. et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci. Rep. 4, 7144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tavares Pereira, Do. S., Lima-Ribeiro, M. H., de Pontes-Filho, N. T., Carneiro-Leão, A. M. & Correia, M. T. Development of animal model for studying deep second-degree thermal burns. J. Biomed. Biotechnol. 2012, 460841 (2012).

    Article  PubMed Central  Google Scholar 

  73. Fila, G. et al. Murine model imitating chronic wound infections for evaluation of antimicrobial photodynamic therapy efficacy. Front. Microbiol. 7, 1258 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wong, V. W., Sorkin, M., Glotzbach, J. P., Longaker, M. T. & Gurtner, G. C. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol. 2011, 969618 (2011).

    Article  PubMed  Google Scholar 

  75. Walmsley, G. G. et al. Murine dermal fibroblast isolation by FACS. J. Vis. Exp. 107, e53430 (2016).

    Google Scholar 

  76. Liu, Y., Keikhosravi, A., Mehta, G. S., Drifka, C. R. & Eliceiri, K. W. Methods for quantifying fibrillar collagen alignment. Methods Mol. Biol. 1627, 429–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bredfeldt, J. S. et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. J. Biomed. Opt. 19, 16007 (2014).

    Article  PubMed  Google Scholar 

  78. Kam, Y. et al. Nest expansion assay: a cancer systems biology approach to in vitro invasion measurements. BMC Res. Notes 2, 130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen, K. et al. Role of boundary conditions in determining cell alignment in response to stretch. Proc. Natl Acad. Sci. USA 115, 986–991 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong, V. W. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148–152 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diaz-Papkovich, A., Anderson-Trocmé, L., Ben-Eghan, C. & Gravel, S. UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts. PLoS Genet. 15, e1008432 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mostafavi, S. et al. Variation and genetic control of gene expression in primary immunocytes across inbred mouse strains. J. Immunol. 193, 4485–4496 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, D. Q. et al. Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul. Surf. 20, 20–32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Stanford Clinical and Translational Science Award (CTSA) to Spectrum. The CTSA program is led by the National Center for Advancing Translational Sciences at NIH. Part of this work was performed at Stanford Nano Shared Facilities, supported by the National Science Foundation under award no. ECCS-2026822. We thank Agfa for providing PEDOT:PSS. We thank T. Carlomagno and T. Vang for administrative support. We thank Y. J. Park for tissue histology support, and D. Wu at Stanford Animal Histology Services and P. Chu at the Human Research Histology Core for help with preparation of histologic specimens. We thank S. Kananian for instrument support with VNA measurements. We also thank R. Altman for his guidance with the project.

Author information

Authors and Affiliations

Authors

Contributions

Y.J., A.A.T., S.N., G.C.G. and Z.B. designed the study. S.N. and Y.J. performed circuit design and testing. Y.J., C.-C.S., J.-C.L., D.Z. and J.T. performed material synthesis and characterizations. A.A.T., Y.J., D.H., K.C., A.M.M.-B., S.M., M.R.L., A.S., E.B., S.J., S.R.S., K.S., T.J., E.Z., C.R.N., W.G.V., D.S., J.P., M.R., D.P.P., A.C., M.C.L., C.A.B., S.H.K., K.S.F., G.G., K.L. and K.Z. performed animal and cell culture experiments and single-cell evaluations. Y.J., A.A.T., S.N., M.J., G.C.G. and Z.B. wrote the manuscript with input from all coauthors.

Corresponding authors

Correspondence to Geoffrey C. Gurtner or Zhenan Bao.

Ethics declarations

Competing interests

Y.J., A.A.T., S.N., G.C.G. and Z.B. have filed a provisional application of patent through Stanford University with the assigned application number 63/238,017. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Can Dincer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictctional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Trotsyuk, A.A., Niu, S. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-022-01528-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing