Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modular, programmable RNA sensing using ADAR editing in living cells

An Author Correction to this article was published on 23 November 2022

This article has been updated

Abstract

With the increasing availability of single-cell transcriptomes, RNA signatures offer a promising basis for targeting living cells. Molecular RNA sensors would enable the study of and therapeutic interventions for specific cell types/states in diverse contexts, particularly in human patients and non-model organisms. Here we describe a modular, programmable system for live RNA sensing using adenosine deaminases acting on RNA (RADAR). We validate, and then expand, our basic design, characterize its performance, and analyze its compatibility with human and mouse transcriptomes. We identify strategies to boost output levels and improve the dynamic range. Additionally, we show that RADAR enables compact AND logic. In addition to responding to transcript levels, RADAR can distinguish disease-relevant sequence alterations of transcript identities, such as point mutations and fusions. Finally, we demonstrate that RADAR is a self-contained system with the potential to function in diverse organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizing RADAR.
Fig. 2: Expanding and enhancing RADAR.
Fig. 3: Unique features and potential applications of RADAR.

Similar content being viewed by others

Data availability

Plasmids and plasmid maps have been deposited to Addgene. Next-generation sequencing data have been submitted to the Sequencing Read Archive under BioProject accession PRJNA874842. Raw flow cytometry data is available upon request from the corresponding author.

Code availability

Code for designing sensors and the bioinformatics analysis of mouse and human transcriptomes are available at https://github.com/kristjaneerik/radar-rna-sensing.

Change history

References

  1. Kulkarni, A., Anderson, A. G., Merullo, D. P. & Konopka, G. Beyond bulk: a review of single cell transcriptomics methodologies and applications. Curr. Opin. Biotechnol. 58, 129–136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Xie, Z., Liu, S. J., Bleris, L. & Benenson, Y. Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res. 38, 2692–2701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han, S.-P. et al. Programmable siRNA pro-drugs that activate RNAi activity in response to specific cellular RNA biomarkers. Mol. Ther. Nucleic Acids 27, 797–809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ying, Z.-M., Wang, F., Chu, X., Yu, R.-Q. & Jiang, J.-H. Activatable CRISPR transcriptional circuits generate functional RNA for mRNA sensing and silencing. Angew. Chem. Int. Ed. Engl. 59, 18599–18604 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, J., Wang, W.-J., Wang, Y., Liu, Y. & Xu, L. Building endogenous gene connections through RNA self-assembly controlled CRISPR/Cas9 sunction. J. Am. Chem. Soc. 143, 19834–19843 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Hochrein, L. M., Li, H. & Pierce, N. A. High-performance allosteric conditional guide RNAs for mammalian cell-selective regulation of CRISPR/Cas. ACS Synth. Biol. 10, 964–971 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Hanewich-Hollatz, M. H., Chen, Z., Hochrein, L. M., Huang, J. & Pierce, N. A. Conditional guide rnas: programmable conditional regulation of crispr/cas function in bacterial and mammalian cells via dynamic RNA nanotechnology. ACS Cent. Sci. 5, 1241–1249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, E. M. et al. RNA-responsive elements for eukaryotic translational control. Nat. Biotechnol. 40, 539–545 (2021).

    Article  PubMed  Google Scholar 

  10. Hur, S. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 37, 349–375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gallo, A., Vukic, D., Michalík, D., O’Connell, M. A. & Keegan, L. P. ADAR RNA editing in human disease; more to it than meets the I. Hum. Genet. 136, 1265–1278 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Goodman, R. A., Macbeth, M. R. & Beal, P. A. ADAR proteins: structure and catalytic mechanism. Curr. Top. Microbiol. Immunol. 353, 1–33 (2012).

    CAS  PubMed  Google Scholar 

  13. Gatsiou, A., Vlachogiannis, N., Lunella, F. F., Sachse, M. & Stellos, K. Adenosine-to-inosine RNA editing in health and disease. Antioxid. Redox Signal. 29, 846–863 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Katrekar, D. et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Vallecillo-Viejo, I. C., Liscovitch-Brauer, N., Montiel-Gonzalez, M. F., Eisenberg, E. & Rosenthal, J. J. C. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme. RNA Biol. 15, 104–114 (2018).

    Article  PubMed  Google Scholar 

  19. Loughran, G., Howard, M. T., Firth, A. E. & Atkins, J. F. Avoidance of reporter assay distortions from fused dual reporters. RNA 23, 1285–1289 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uzonyi, A. et al. Deciphering the principles of the RNA editing code via large-scale systematic probing. Mol. Cell 81, 2374–2387 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Biswas, J., Rahman, R., Gupta, V., Rosbash, M. & Singer, R. H. MS2-TRIBE evaluates both protein–RNA Interactions and nuclear organization of transcription by RNA editing. iScience 23, 101318 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katz, N. et al. Overcoming the design, build, test bottleneck for synthesis of nonrepetitive protein-RNA cassettes. Nat. Commun. 12, 1576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodriques, S. G. et al. RNA timestamps identify the age of single molecules in RNA sequencing. Nat. Biotechnol. 39, 320–325 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshikawa, K. et al. Mutant p53 R248Q but not R248W enhances in vitro invasiveness of human lung cancer NCI-H1299 cells. Biomed. Res. 31, 401–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gélinas, J.-F., Clerzius, G., Shaw, E. & Gatignol, A. Enhancement of replication of RNA viruses by ADAR1 via RNA editing and inhibition of RNA-activated protein kinase. J. Virol. 85, 8460–8466 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wong, S. K., Sato, S. & Lazinski, D. W. Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuttan, A. & Bass, B. L. Mechanistic insights into editing-site specificity of ADARs. Proc. Natl Acad. Sci. USA 109, E3295–E3304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaseniit, E. RADAR RNA sensor candidates for human genes. Figshare https://doi.org/10.6084/m9.figshare.20740006 (2022).

  32. Kaseniit, E. RADAR RNA sensor candidates for mouse genes. Figshare https://doi.org/10.6084/m9.figshare.20740009 (2022).

  33. Dykstra, P. B., Kaplan, M. & Smolke, C. D. Engineering synthetic RNA devices for cell control. Nat. Rev. Genet. 23, 215–228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Groves, B. et al. Computing in mammalian cells with nucleic acid strand exchange. Nat. Nanotechnol. 11, 287–294 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institutes of Health (4R00EB027723-02; to X.J.G.), Seed Grant from Brain Research Foundation (to X.J.G.), NARSAD Young Investigator Grant from the Brain and Behavior Research Foundation (to X.J.G.), Longevity Impetus Grant (to X.J.G.), Stanford Bio-X Interdisciplinary Graduate Fellowship (to K.E.K.), Fulbright Foundation (to N.K.), National Science Foundation GRFP (to N.S.K.), Stanford ChEM-H CBI training program (to N.S.K.), EDGE Doctoral Fellowship Program (to N.S.K.). N.K. is an Awardee of the Weizmann Institute of Science—Israel National Postdoctoral Award Program for Advancing Women in Science. We thank the Gao lab members for their feedback. We thank L. Luo and Y. Wu for gifts of Cre-related plasmids, J.B. Li and S. Hu for ADAR plasmids and the ADAR1 knockout cell line and advice. We thank C. Liou for technical advice on qPCR and Q. Li for technical advice on NGS.

Author information

Authors and Affiliations

Authors

Contributions

K.E.K., N.K., N.S.K., and X.J.G. designed the study. K.E.K., N.K., N.S.K., and C.C.C. performed and analyzed most of the experiments, with support from D.L.W., W.B.C., and E.S.S. for the plant experiments. K.E.K. performed bioinformatic analysis. K.E.K. and X.J.G. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Xiaojing J. Gao.

Ethics declarations

Competing interests

K.E.K., N.K., N.S.K, and X.J.G are co-inventors on a provisional patent filing related to RADAR sensors. All other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Tzu-Chieh Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1 and Supplementary Figs. 1–3.

Reporting Summary

Supplementary Table 1

Supplementary Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaseniit, K.E., Katz, N., Kolber, N.S. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat Biotechnol 41, 482–487 (2023). https://doi.org/10.1038/s41587-022-01493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01493-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research