Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precise DNA cleavage using CRISPR-SpRYgests

Abstract

Methods for in vitro DNA cleavage and molecular cloning remain unable to precisely cleave DNA directly adjacent to bases of interest. Restriction enzymes (REs) must bind specific motifs, whereas wild-type CRISPR–Cas9 or CRISPR–Cas12 nucleases require protospacer adjacent motifs (PAMs). Here we explore the utility of our previously reported near-PAMless SpCas9 variant, named SpRY, to serve as a universal DNA cleavage tool for various cloning applications. By performing SpRY DNA digests (SpRYgests) using more than 130 guide RNAs (gRNAs) sampling a wide diversity of PAMs, we discovered that SpRY is PAMless in vitro and can cleave DNA at practically any sequence, including sites refractory to cleavage with wild-type SpCas9. We illustrate the versatility and effectiveness of SpRYgests to improve the precision of several cloning workflows, including those not possible with REs or canonical CRISPR nucleases. We also optimize a rapid and simple one-pot gRNA synthesis protocol to streamline SpRYgest implementation. Together, SpRYgests can improve various DNA engineering applications that benefit from precise DNA breaks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of SpRYgest in vitro cleavage efficiencies.
Fig. 2: Molecular cloning via SpRYgest.
Fig. 3: Rapid generation of saturation mutagenesis libraries via SpRYgest.
Fig. 4: Optimization of rapid, efficient and specific SpRYgest reactions.

Similar content being viewed by others

Data availability

Primary datasets are available in Supplementary Table 2. Any other data that support this study are available from the corresponding author upon reasonable request.

Code availability

The script used to determine the SpRYgest rate constants is provided as Supplementary Note 9.

References

  1. Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Collias, D. & Beisel, C. L. CRISPR technologies and the search for the PAM-free nuclease. Nat. Commun. 12, 555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, J.-W. et al. CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning. Biotechniques 58, 161–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, W. et al. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 6, 8101 (2015).

    Article  PubMed  Google Scholar 

  7. Jiang, W. & Zhu, T. F. Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments. Nat. Protoc. 11, 960–975 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Li, S.-Y., Zhao, G.-P. & Wang, J. C-Brick: a new standard for assembly of biological parts using Cpf1. ACS Synth. Biol. 5, 1383–1388 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Jeong, Y. K., Yu, J. & Bae, S. Construction of non-canonical PAM-targeting adenosine base editors by restriction enzyme-free DNA cloning using CRISPR–Cas9. Sci Rep. 9, 4939 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shola, D. T. N., Yang, C., Kewaldar, V.-S., Kar, P. & Bustos, V. New additions to the CRISPR toolbox: CRISPR-CLONInG and CRISPR-CLIP for donor construction in genome editing. CRISPR J. 3, 109–122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

  16. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Thyme, S. B., Akhmetova, L., Montague, T. G., Valen, E. & Schier, A. F. Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nat. Commun. 7, 11750 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moreb, E. A. & Lynch, M. D. A meta-analysis of gRNA library screens enables an improved understanding of the impact of gRNA folding and structural stability on CRISPR–Cas9 activity. CRISPR J. 5, 146–154 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Swarts, D. C. et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507, 258–261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Enghiad, B. & Zhao, H. Programmable DNA-guided artificial restriction enzymes. ACS Synth. Biol. 6, 752–757 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Enghiad, B. et al. PlasmidMaker is a versatile, automated, and high throughput end-to-end platform for plasmid construction. Nat. Commun. 13, 2697 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harrington, L. B. et al. A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8, 1424 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xia, Y. et al. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Res. 47, e15 (2019).

    Article  PubMed  Google Scholar 

  26. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, Z. & Zhao, H. A highly sensitive selection method for directed evolution of homing endonucleases. Nucleic Acids Res. 33, e154 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kleinstiver, B. P., Fernandes, A. D., Gloor, G. B. & Edgell, D. R. A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI. Nucleic Acids Res. 38, 2411–2427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuo, Z. et al. Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain. eLife 8, e46500 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hirano, S., Nishimasu, H., Ishitani, R. & Nureki, O. Structural basis for the altered PAM specificities of engineered CRISPR–Cas9. Mol. Cell 61, 886–894 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Anders, C., Bargsten, K. & Jinek, M. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61, 895–902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kudo, K. et al. In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives. Nat. Commun. 11, 4022 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Enghiad, B. et al. Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination. Nat. Commun. 12, 1171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moreb, E. A., Hutmacher, M. & Lynch, M. D. CRISPR–Cas ‘non-target’ sites inhibit on-target cutting rates. CRISPR J. 3, 550–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Moreb, E. A. & Lynch, M. D. Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity. Nat. Commun. 12, 5034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walton, R. T., Hsu, J. Y., Joung, J. K. & Kleinstiver, B. P. Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nat. Protoc. 16, 1511–1547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gurevich, V. V., Pokrovskaya, I. D., Obukhova, T. A. & Zozulya, S. A. Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal. Biochem. 195, 207–213 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Riesenberg, S., Helmbrecht, N., Kanis, P., Maricic, T. & Pääbo, S. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR–Cas9 cleavage. Nat. Commun. 13, 489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shams, A. et al. Comprehensive deletion landscape of CRISPR–Cas9 identifies minimal RNA-guided DNA-binding modules. Nat. Commun. 12, 5664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu, W. et al. Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 17, 41 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38, 433–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, G. B. et al. Rapid generation of somatic mouse mosaics with locus-specific, stably integrated transgenic elements. Cell 179, 251–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roewer, L. DNA fingerprinting in forensics: past, present, future. Investig. Genet. 4, 22 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karvelis, T. et al. Rapid characterization of CRISPR–Cas9 protospacer adjacent motif sequence elements. Genome Biol. 16, 253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. R. Edgell for helpful suggestions and S. Mahendraker for assistance developing the web version of SpOT-check. K.A.C. was supported by a Massachusetts General Hospital (MGH) Fund for Medical Discovery Fundamental Research Fellowship Award. B.P.K. acknowledges support from an MGH Executive Committee on Research Howard M. Goodman Fellowship and National Institutes of Health (NIH) grant P01 HL142494. R.T.W. is supported by the National Science Foundation Graduate Research Fellowship Program under grant 1745302. L.P. is partially supported by NIH R35 HG010717.

Author information

Authors and Affiliations

Authors

Contributions

K.A.C. and B.P.K. conceived of and designed the study. K.A.C., J.A.G., R.A.S., R.M.D., H.E.S. and L.M. performed experiments. M.M. and G.B.R. expressed and purified SpRY and SpRY-HF1. R.A.S. designed and wrote SpOT-check. R.M.D. and R.T.W. assisted with rate constant determination. J.L. and L.P. performed the predictive modeling. All authors analyzed data. K.A.C. and B.P.K. wrote the manuscript draft and finalized the manuscript, with input from all authors.

Corresponding author

Correspondence to Benjamin P. Kleinstiver.

Ethics declarations

Competing interests

K.A.C., R.T.W. and B.P.K are inventors on patents and/or patent applications filed by Mass General Brigham that describe genome engineering technologies, including for the development of SpRY (R.T.W. and B.P.K.). B.P.K. is a consultant for EcoR1 Capital and is an advisor to Acrigen Biosciences, Life Edit Therapeutics and Prime Medicine. L.P. has financial interests in Edilytics and SeQure Dx, Inc. L.P.ʼs interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. M.M. and G.B.R. are employees of the Research Department at New England Biolabs (NEB). NEB is a commercial supplier of molecular biology reagents, including some that were used in this work. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Table of contents for Supplementary Information, titles of Supplementary Tables 1–7, Supplementary Notes 1–9, Supplementary Figs. 1–18 and Supplementary References

Reporting Summary

Supplementary Tables

Supplementary Tables 1–7

Supplementary Data 1

PDF file of uncropped gel images

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christie, K.A., Guo, J.A., Silverstein, R.A. et al. Precise DNA cleavage using CRISPR-SpRYgests. Nat Biotechnol 41, 409–416 (2023). https://doi.org/10.1038/s41587-022-01492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01492-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing