Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics

Abstract

The analysis of cell-free DNA (cfDNA) in plasma provides information on pathological processes in the body. Blood cfDNA is in the form of nucleosomes, which maintain their tissue- and cancer-specific epigenetic state. We developed a single-molecule multiparametric assay to comprehensively profile the epigenetics of plasma-isolated nucleosomes (EPINUC), DNA methylation and cancer-specific protein biomarkers. Our system allows for high-resolution detection of six active and repressive histone modifications and their ratios and combinatorial patterns on millions of individual nucleosomes by single-molecule imaging. In addition, our system provides sensitive and quantitative data on plasma proteins, including detection of non-secreted tumor-specific proteins, such as mutant p53. EPINUC analysis of a cohort of 63 colorectal cancer, 10 pancreatic cancer and 33 healthy plasma samples detected cancer with high accuracy and sensitivity, even at early stages. Finally, combining EPINUC with direct single-molecule DNA sequencing revealed the tissue of origin of colorectal, pancreatic, lung and breast tumors. EPINUC provides multilayered information of potential clinical relevance from limited (<1 ml) liquid biopsy material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EPINUC decodes the combinatorial epigenetic states of plasma cfNucleosomes.
Fig. 2: Multiplexed single-molecule detection of cancer-associated protein biomarkers, mutant p53 and DNA methylation.
Fig. 3: EPINUC reveals significant epigenetic and biomarker alterations in the plasma of individuals with CRC.
Fig. 4: EPINUC differentiates healthy individuals from individuals with CRC and identifies the tumor tissue of origin.

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this study are summarized in Supplementary Tables 1, 3 and 4. BED files of plasma-sequenced reads are available at the Zenodo repository at https://doi.org/10.5281/zenodo.6627498. Image analysis pipelines are available at the Zenodo repository at https://doi.org/10.5281/zenodo.6627723. Data from public repositories used in the study (cBioportal database for CRC primary tumor RNA expression) can be found at https://www.cbioportal.org/study/summary?id=coadread_tcga. Source data are provided with this paper.

Code availability

Code for performing overlap analysis is available at https://github.com/Vadim-Fed/EPINUC-overlap. Code for performing PPS analysis is available at https://github.com/8080labs/ppscore.

References

  1. Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bronkhorst, A. J., Ungerer, V. & Holdenrieder, S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol. Detect. Quantif. 17, 100087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Lo, Y. M. D., Han, D. S. C., Jiang, P. & Chiu, R. W. K. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 372, eaaw3616 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, R. H. et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 16, 1155–1162 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kang, S. et al. CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biol. 18, 53 (2017).

  8. Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Reinberg, D. & Vales, L. D. Chromatin domains rich in inheritance only certain histone posttranslational modifications qualify as being epigenetic. Science 361, 33–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Shema, E., Bernstein, B. E. & Buenrostro, J. D. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat. Genet. 51, 19–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Mancarella, D. & Plass, C. Epigenetic signatures in cancer: proper controls, current challenges and the potential for clinical translation. Genome Med. 13, 23 (2021).

  13. Sadeh, R. et al. ChIP–seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. Nat. Biotechnol. 39, 586–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gezer, U. et al. Histone methylation marks on circulating nucleosomes as novel blood-based biomarker in colorectal cancer. Int. J. Mol. Sci. 16, 29654–29662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van den Ackerveken, P. et al. A novel proteomics approach to epigenetic profiling of circulating nucleosomes. Sci. Rep. 11, 7256 (2021).

  16. Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ulz, P. et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat. Genet. 48, 1273–1278 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Sun, K. et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin. Genome Res. 29, 418–427 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shema, E. et al. Single-molecule decoding of combinatorially modified nucleosomes. Science 352, 717–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Tiernan, J. P. et al. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br. J. Cancer 108, 662–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meng, C. et al. TIMP-1 is a novel serum biomarker for the diagnosis of colorectal cancer: a meta-analysis. PLoS ONE 13, e0207039 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu, J. et al. Identification of MST1 as a potential early detection biomarker for colorectal cancer through a proteomic approach. Sci. Rep. 7, 14265 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mandal, S. et al. Direct kinetic fingerprinting for high-accuracy single-molecule counting of diverse disease biomarkers. Acc. Chem. Res. 54, 388–402 (2021).

  28. Furth, N. et al. Unified platform for genetic and serological detection of COVID-19 with single-molecule technology. PLoS ONE 16, e0255096 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakayama, M. & Oshima, M. Mutant p53 in colon cancer. J. Mol. Cell. Biol. 11, 267–276 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Jung, G., Hernández-Illán, E., Moreira, L., Balaguer, F. & Goel, A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17, 111–130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dawson, M. A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science 355, 1147–1152 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Wood, K. H. & Zhou, Z. Emerging molecular and biological functions of MBD2, a reader of DNA methylation. Front. Genet. 7, 93 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brown, R., Curry, E., Magnani, L., Wilhelm-Benartzi, C. S. & Borley, J. Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 14, 747–753 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Kerachian, M. A. et al. Crosstalk between DNA methylation and gene expression in colorectal cancer, a potential plasma biomarker for tracing this tumor. Sci. Rep. 10, 2813 (2020).

  36. King, W. D. et al. A cross-sectional study of global DNA methylation and risk of colorectal adenoma. BMC Cancer 14, 488 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Frederiksen, C. et al. Plasma TIMP-1 levels and treatment outcome in patients treated with XELOX for metastatic colorectal cancer. Ann. Oncol. 22, 369–375 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Garrido-Laguna, I. & Hidalgo, M. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat. Rev. Clin. Oncol. 12, 319–334 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Lubotzky, A. et al. Liquid biopsy reveals collateral tissue damage in cancer. JCI Insight 7, e153559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gai, W. et al. Liver- and colon-specific DNA methylation markers in plasma for investigation of colorectal cancers with or without liver metastases. Clin. Chem. 64, 1239–1249 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Tannapfel, A. & Reinacher-Schick, A. Chemotherapy associated hepatotoxicity in the treatment of advanced colorectal cancer (CRC). Z. Gastroenterol. 46, 435–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Li, W. et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res. 27, 1243–1257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lio, C. W. J., Yuita, H. & Rao, A. Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. Blood 134, 1487–1497 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L. et al. Tet-mediated covalent labelling of 5-methylcytosine for its genome-wide detection and sequencing. Nat. Commun. 4, 1517 (2013).

    Article  PubMed  Google Scholar 

  45. Song, C. X. et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res. 27, 1231–1242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lisanti, S. et al. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS ONE 8, 79044 (2013).

    Article  Google Scholar 

  48. Bock, C. et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat. Biotechnol. 34, 726–737 (2016).

    Article  Google Scholar 

  49. Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. 2014, 50549 (2014).

  50. Fleischhacker, M. & Schmidt, B. Circulating nucleic acids (CNAs) and cancer—a survey. Biochim. Biophys. Acta 1775, 181–232 (2007).

    CAS  PubMed  Google Scholar 

  51. Harris, T. D. et al. Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, K. L. et al. Systematic detection of m6A-modified transcripts at single-molecule and single-cell resolution. Cell Rep. Methods 1, 100061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Rozenzweing, O. Fasust, M. Maurer and R. Irwin for their contributions in establishing a protocol for MBD2 labeling. We thank L. Segev for help with writing and integrating the μManager scripts for performing EPINUC–seq. We are grateful for the important comments made by I. Ulitsky while reading the manuscript. E.S. is an incumbent of the Lisa and Jeffrey Aronin Family Career Development chair. This research was supported by grants from the European Research Council (ERC801655 and ERC_PoC_963863), Emerson Collective, The Israeli Science Foundation (1881/19), The Israel Cancer Research Fund: Research Career Development Award, The German-Israeli Foundation for Scientific Research and Development and Minerva. We also obtained generous support from the Swiss Society Institute for Cancer Prevention Research and the Henry Chanoch Krenter Institute for Biomedical Imaging and Genomics.

Author information

Authors and Affiliations

Authors

Contributions

V.F., N.E. and E.S. designed the study and wrote the manuscript. V.F. and N.E. performed the experiments and analyzed the data. N.F. and O.B. assisted in the experiments, G.R. assisted with data analysis. B.B.Z., Y.M., T.P., A.H., J.E.C., A.S., M.T., A.G., M.M. and A.Z. collected the plasma samples of individuals with early- and late-stage CRC. D.J., A.S. and E.A. contributed to the development of single-nucleosome imaging technology and sequencing experiments described in this study.

Corresponding author

Correspondence to Efrat Shema.

Ethics declarations

Competing interests

Yeda Research and Development Co., Ltd., and SeqLL, Inc., have filed a provisional patent application related to aspects of this publication, and E.S., N.E., V.F., A.S., K.A. and D.J. are named inventors. SeqLL, Inc., has a patent application related to this work (US2016/047747), on which E.S. and D.J. are inventors. E.A., A.S. and D.J. own equity in SeqLL, Inc., where D.J. is an officer and director.

Peer review

Peer review information

Nature Biotechnology thanks Shixin Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Supplementary Table 1

Clinical data.

Supplementary Table 2

Antibody inventory.

Supplementary Table 3

EPINUC results.

Supplementary Table 4

ENCODE tissue accession codes used for EPINUC overlap.

Source data

Source Data Fig. 1

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyuk, V., Erez, N., Furth, N. et al. Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat Biotechnol 41, 212–221 (2023). https://doi.org/10.1038/s41587-022-01447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01447-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer