Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes

Abstract

Cells in complex organisms undergo frequent functional changes, but few methods allow comprehensive longitudinal profiling of living cells. Here we introduce scission-accelerated fluorophore exchange (SAFE), a method for multiplexed temporospatial imaging of living cells with immunofluorescence. SAFE uses a rapid bioorthogonal click chemistry to remove immunofluorescent signals from the surface of labeled cells, cycling the nanomolar-concentration reagents in seconds and enabling multiple rounds of staining of the same samples. It is non-toxic and functional in both dispersed cells and intact living tissues. We demonstrate multiparameter (n ≥ 14), non-disruptive imaging of murine peripheral blood mononuclear and bone marrow cells to profile cellular differentiation. We also show longitudinal multiplexed imaging of bone marrow progenitor cells as they develop into neutrophils over 6 days and real-time multiplexed cycling of living mouse hepatic tissues. We anticipate that SAFE will find broad utility for investigating physiologic dynamics in living systems.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Multiplexed temporospatial profiling in living cells.
Fig. 2: Mechanisms, synthesis and kinetics.
Fig. 3: Rapid, durable and non-toxic multiplexing of living cells.
Fig. 4: SAFE imaging of living hepatic tissue.
Fig. 5: SAFE imaging of living bone marrow.
Fig. 6: Longitudinal profiling of neutrophil differentiation.

Similar content being viewed by others

Data availability

All data that support the observations and conclusions of the study are included in the manuscript and its Supplementary Information. Raw multi-channel and/or z-stack source data from time series images are available in TIF format at https://doi.org/10.5281/zenodo.6482316.

References

  1. Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Patriarchi, T. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17, 1147–1155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Costantini, L. M. et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nat. Commun. 6, 7670 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez, E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42, 111–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Polonsky, M. et al. Induction of CD4 T cell memory by local cellular collectivity. Science 360, eaaj1853 (2018).

  6. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, eaal3604 (2017).

  7. Zindel, J. et al. Primordial GATA6 macrophages function as extravascular platelets in sterile injury. Science 371, eabe0595 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Alon, S. et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371, eaax2656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho, C. S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo, S. M. et al. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes. Nat. Commun. 10, 4377 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Radtke, A. J. et al. IBEX: a versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues. Proc. Natl Acad. Sci. USA 117, 33455–33465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Hartmann, F. J. & Bendall, S. C. Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat. Rev. Rheumatol. 16, 87–99 (2020).

    Article  PubMed  Google Scholar 

  21. Mahdessian, D. et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature 590, 649–654 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).

    Article  Google Scholar 

  24. Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99, 1303–1310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strauss, S. & Jungmann, R. Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat. Methods 17, 789–791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bechtel, T. J., Reyes-Robles, T., Fadeyi, O. O. & Oslund, R. C. Strategies for monitoring cell-cell interactions. Nat. Chem. Biol. 17, 641–652 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021).

  29. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017).

  30. Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Pfirschke, C. et al. Tumor-promoting Ly-6G+ SiglecFhigh cells are mature and long-lived neutrophils. Cell Rep. 32, 108164 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pucella, J. N., Upadhaya, S. & Reizis, B. The source and dynamics of adult hematopoiesis: insights from lineage tracing. Annu. Rev. Cell Dev. Biol. 36, 529–550 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Ko, J., Oh, J., Ahmed, M. S., Carlson, J. C. T. & Weissleder, R. Ultra-fast cycling for multiplexed cellular fluorescence imaging. Angew. Chem. Int. Ed. Engl. 59, 6839–6846 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen, S. S. & Prescher, J. A. Developing bioorthogonal probes to span a spectrum of reactivities. Nat. Rev. Chem. 4, 476–489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carlson, J. C. T., Mikula, H. & Weissleder, R. Unraveling tetrazine-triggered bioorthogonal elimination enables chemical tools for ultrafast release and universal cleavage. J. Am. Chem. Soc. 140, 3603–3612 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarris, A. J. C. et al. Fast and pH-independent elimination of trans-cyclooctene by using aminoethyl-functionalized tetrazines. Chemistry 24, 18075–18081 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Wilkovitsch, M. et al. A cleavable C2-symmetric trans-cyclooctene enables fast and complete bioorthogonal disassembly of molecular probes. J. Am. Chem. Soc. 142, 19132–19141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Linder, K. E. et al. Synthesis, in vitro evaluation, and in vivo metabolism of fluor/quencher compounds containing IRDye 800CW and Black Hole Quencher-3 (BHQ-3). Bioconjug. Chem. 22, 1287–1297 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Zaretsky, I. et al. Monitoring the dynamics of primary T cell activation and differentiation using long term live cell imaging in microwell arrays. Lab Chip 12, 5007–5015 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Mohan, J. F. et al. Imaging the emergence and natural progression of spontaneous autoimmune diabetes. Proc. Natl Acad. Sci. USA 114, E7776–E7785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Loughran, S. J., Haas, S., Wilkinson, A. C., Klein, A. M. & Brand, M. Lineage commitment of hematopoietic stem cells and progenitors: insights from recent single cell and lineage tracing technologies. Exp. Hematol. 88, 1–6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, G. G. et al. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nat. Methods 3, 287–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schubert, W. et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24, 1270–1278 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Ullal, A. V. et al. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine-needle aspirates. Sci. Transl. Med. 6, 219ra9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Agasti, S. S., Liong, M., Peterson, V. M., Lee, H. & Weissleder, R. Photocleavable DNA barcode–antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J. Am. Chem. Soc. 134, 18499–18502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giedt, R. J. et al. Single-cell barcode analysis provides a rapid readout of cellular signaling pathways in clinical specimens. Nat. Commun. 9, 4550 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Oh, J. et al. Rapid serial immunoprofiling of the tumor immune microenvironment by fine needle sampling. Clin. Cancer Res. 27, 4781–4793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prescher, J. A. & Bertozzi, C. R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. de la Torre, D. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2021).

    Article  PubMed  Google Scholar 

  54. Lang, K. & Chin, J. W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114, 4764–4806 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415–2420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Palaniappan, K. K. & Bertozzi, C. R. Chemical glycoproteomics. Chem. Rev. 116, 14277–14306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cañeque, T., Müller, S. & Rodriguez, R. Visualizing biologically active small molecules in cells using click chemistry. Nat. Rev. Chem. 2, 202–215 (2018).

    Article  Google Scholar 

  58. Yang, K. S., Budin, G., Tassa, C., Kister, O. & Weissleder, R. Bioorthogonal approach to identify unsuspected drug targets in live cells. Angew. Chem. Int. Ed. Engl. 52, 10593–10597 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Nikić, I. et al. Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 53, 2245–2249 (2014).

    Article  PubMed  Google Scholar 

  60. Beliu, G. et al. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun. Biol. 2, 261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Werther, P. et al. Live-cell localization microscopy with a fluorogenic and self-blinking tetrazine probe. Angew. Chem. Int. Ed. Engl. 59, 804–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Versteegen, R. M., Rossin, R., ten Hoeve, W., Janssen, H. M. & Robillard, M. S. Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew. Chem. Int. Ed. Engl. 52, 14112–14116 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, J., Wang, X., Fan, X. & Chen, P. R. Unleashing the power of bond cleavage chemistry in living systems. ACS Cent. Sci. 7, 929–943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Singh, K., Ejaz, W., Dutta, K. & Thayumanavan, S. Antibody delivery for intracellular targets: emergent therapeutic potential. Bioconjug. Chem. 30, 1028–1041 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Canton, I. et al. Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells. FASEB J. 27, 98–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Röder, R. et al. Intracellular delivery of nanobodies for imaging of target proteins in live cells. Pharm. Res. 34, 161–174 (2017).

    Article  PubMed  Google Scholar 

  67. Scoazec, J. Y. & Feldmann, G. Both macrophages and endothelial cells of the human hepatic sinusoid express the CD4 molecule, a receptor for the human immunodeficiency virus. Hepatology 12, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Mercier, F. E., Sykes, D. B. & Scadden, D. T. Single targeted exon mutation creates a true congenic mouse for competitive hematopoietic stem cell transplantation: the C57BL/6-CD45.1STEM mouse. Stem Cell Rep. 6, 985–992 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Sykes Laboratory for preparing live bone marrow cells and to C. Carlson-O’Fallon for assistance with imaging data analysis. This work was supported, in part, by grants from the CSB development fund (J.C.T.C.), R01CA257623 (R.W.), UH3CA202637 (R.W.), R01CA206890 (R.W. and M.P.), P01CA069246 (R.W.), U01CA206997 (R.W.), P01CA240239 (M.P.) and R01CA229777 (R.W.). J.K. was supported by the Schmidt Science Fellows and K99CA256353.

Author information

Authors and Affiliations

Authors

Contributions

Design: J.C.T.C., J.K. and R.W. Synthesis: M.W., H.M. and J.C.T.C. Experiments: J.K., J.O., E.B. and J.C.T.C. Data analysis: all authors. Writing: J.C.T.C., J.K., R.W. and all others.

Corresponding authors

Correspondence to Ralph Weissleder or Jonathan C. T. Carlson.

Ethics declarations

Competing interests

The authors declare the following competing interests. J.C.T.C., R.W. and H.M. declare the filing of a patent (PCT/US2021/053439, pending; Bioorthogonal linkers and reactions), which was assigned to Massachusetts General Hospital. R.W. is a consultant to ModeRNA, Tarveda Therapeutics, Lumicell, Seer, Earli, Aikili Biosystems and Accure Health, consultancies that are unrelated to the subject matter of this work.

Peer review

Peer review information

Nature Biotechnology thanks Christian Schürch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Supplementary Figs. 1–11, Synthetic Methods and chemical characterization data

Reporting Summary

Supplementary Video 1

Time lapse imaging of SAFE cycling in living hepatic tissue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, J., Wilkovitsch, M., Oh, J. et al. Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes. Nat Biotechnol 40, 1654–1662 (2022). https://doi.org/10.1038/s41587-022-01339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01339-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research