Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro

Abstract

Technologies that profile chromatin modifications at single-cell resolution offer enormous promise for functional genomic characterization, but the sparsity of the measurements and integrating multiple binding maps represent substantial challenges. Here we introduce single-cell (sc)CUT&Tag-pro, a multimodal assay for profiling protein–DNA interactions coupled with the abundance of surface proteins in single cells. In addition, we introduce single-cell ChromHMM, which integrates data from multiple experiments to infer and annotate chromatin states based on combinatorial histone modification patterns. We apply these tools to perform an integrated analysis across nine different molecular modalities in circulating human immune cells. We demonstrate how these two approaches can characterize dynamic changes in the function of individual genomic elements across both discrete cell states and continuous developmental trajectories, nominate associated motifs and regulators that establish chromatin states and identify extensive and cell-type-specific regulatory priming. Finally, we demonstrate how our integrated reference can serve as a scaffold to map and improve the interpretation of additional scCUT&Tag datasets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: scCUT&Tag-pro enables simultaneous profiling of CUT&Tag and protein levels.
Fig. 2: Protein measurements facilitate integrated analysis across modalities.
Fig. 3: scChromHMM annotates chromatin states at single-cell resolution.
Fig. 4: Extensive heterogeneity in repressive chromatin encodes cellular identity.
Fig. 5: Supervised mapping of scCUT&Tag datasets.

Similar content being viewed by others

Data availability

Data generated for this manuscript have been deposited in the Gene Expression Omnibus with accession code GSE195725. The processed datasets are available as open-access downloads at https://zenodo.org/record/5504061. The following public datasets were used in this study: GSM4732109 and GSE164378 (Figs. 2,4 and Supplementary Fig. 3); GSM4732123 (Fig. 1d); GSM1220567, GSM1220569, GSM1027296 and GSM1102793 (Fig. 1g); and GSM5034342 and GSM5034344 (Supplementary Figs. 1c and Fig. 5). Datasets used in differential expression analysis with the bulk total RNA-seq were http://r2platform.com/rna_atlas and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138734.

Code availability

Seurat, Signac and scChromHMM are freely available as open-source software packages at https://github.com/satijalab/seurat, https://github.com/timoast/signac and https://github.com/satijalab/scchromhmm, respectively.

References

  1. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. ENCODE Project Consortium. A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

  10. Hoffman, M. M. et al. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 9, 473–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, S. J. et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat. Biotechnol. 39, 819–824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhu, C. et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat. Methods 18, 283–292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiong, H. et al. Single-cell joint detection of chromatin occupancy and transcriptome enables higher-dimensional epigenomic reconstructions. Nat. Methods 18, 652–660 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Suganuma, T. & Workman, J. L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80, 473–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Mimitou, P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. Elife 10, e63632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nathan, A. et al. Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nat. Immunol. 22, 781–793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Durbin, R., Eddy, S. R., Krogh, A. & Mitchison, G. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Cambridge Univ. Press, 1998).

  37. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Stuart, T. et al. Comprehensive inteÿgration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (ISB, 2013); http://www.repeatmasker.org

  40. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Kallies, A. & Good-Jacobson, K. L. Transcription factor T-bet orchestrates lineage development and function in the immune system. Trends Immunol. 38, 287–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, X., Shan, Q. & Xue, H.-H. TCF1 in T cell immunity: a broadened frontier. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-021-00563-6 (2021).

  44. Lorenzi, L. et al. The RNA Atlas expands the catalog of human non-coding RNAs. Nat. Biotechnol. 39, 1453–1465 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roh, T.-Y., Cuddapah, S., Cui, K. & Zhao, K. The genomic landscape of histone modifications in human T cells. Proc. Natl Acad. Sci. USA 103, 15782–15787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Schoenborn, J. R. et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nat. Immunol. 8, 732–742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barshan, E., Ghodsi, A., Azimifar, Z. & Zolghadri Jahromi, M. Supervised principal component analysis: visualization, classification and regression on subspaces and submanifolds. Pattern Recognit. 44, 1357–1371 (2011).

    Article  Google Scholar 

  51. Gopalan, S. et al. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol. Cell 81, 4736–4746 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Meers, M. P., Janssens, D. H. & Henikoff, S. Multifactorial chromatin regulatory landscapes at single cell resolution. Preprint at bioRxiv https://doi.org/10.1101/2021.07.08.451691 (2021).

  53. Mellis, I. A. et al. Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro.Cell Syst. 12, 885–899 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Shim, W. J. et al. Conserved epigenetic regulatory logic infers genes governing cell identity. Cell Syst. 11, 625–639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 65 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stuart, A. et al. Multimodal single-cell chromatin analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Satija Lab for thoughtful discussions related to this work. B.Z. is a postdoctoral fellow of the Jane Coffin Childs Memorial Fund for Medical Research. This investigation has been aided by a grant from the Jane Coffin Childs Memorial Fund for Medical Research. This work was supported by the Chan Zuckerberg Initiative (grants EOSS-0000000082 and HCA-A-1704-01895 to R.S.) and the National Institutes of Health (grant K99CA267677-01 to A.S.; grant K99HG011489-01 to T.S.; and grants RM1HG011014-02, 1OT2OD026673-01 and DP2HG009623-01 to R.S.).

Author information

Authors and Affiliations

Authors

Contributions

B.Z., A.S. and R.S. conceived the study. A.S., B.Z., T.S. and Y.H. performed computational work supervised by R.S.; B.Z., E.M. and I.R. performed experimental work supervised by R.S. All authors participated in interpretation and writing the manuscript.

Corresponding author

Correspondence to Rahul Satija.

Ethics declarations

Competing interests

In the past three years, R.S. has worked as a consultant for Bristol Myers Squibb, Regeneron and Kallyope and served as scientific advisory board member for ImmunAI, Resolve Biosciences, NanoString and the NYC Pandemic Response Lab. P.S. is co-inventor of a patent related to this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Barbara Treutlein, Goncalo Castelo-Branco, Anoop Patel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–3.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Srivastava, A., Mimitou, E. et al. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Nat Biotechnol 40, 1220–1230 (2022). https://doi.org/10.1038/s41587-022-01250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01250-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing