Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads

Abstract

Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: JumboDBG pipeline.
Fig. 2: LJA pipeline.
Fig. 3: Chromosome-by chromosome LGA95 (left) and completeness (center) metrics as well as centromere-by-centromere LGA95 metric (right) for LJA (blue), hifiasm (green) and HiCanu (red) assemblies of the T2T read-set.
Fig. 4: Constructing a multiplex de Bruijn graph.

Data availability

All assemblies generated by LJA are available at https://zenodo.org/record/5552696#.YV3MkVNBxH4. All described datasets are publicly available through the corresponding repositories. All HiFi data were obtained from the National Center for Biotechnology Information Sequence Read Archive (SRA). The SRA access codes for all datasets are specified in Supplementary Note 2 ‘Information about datasets’. The CHM13 reference (version 0.9) generated by the T2T consortium (referred to as T2TGenome) can be found at https://s3.amazonaws.com/nanopore-human-wgs/chm13/assemblies/chm13.draft_v0.9.fasta.gz.

Code availability

The LJA code uses the open-source libraries spoa (version 4.0.5) and ksw2 (version 4e0a1cc) and is available at https://github.com/AntonBankevich/LJA. All software tools used in the analysis and their versions and parameters are specified in the text of the paper and in Supplementary Note 9 ‘LJA parameters’.

References

  1. Nurk, S. et al. The complete sequence of a human genome. bioRxiv https://doi.org/10.1101/2021.05.26.445798 (2021).

  2. Miller, D. E. et al. Targeted long-read sequencing identifies missing disease-causing variation. Am. J. Hum. Genet. 108, 1436–1449 (2021).

    CAS  Article  Google Scholar 

  3. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    CAS  Article  Google Scholar 

  4. Compeau, P. E., Pevzner, P. A. & Tesler, G. How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol. 29, 987–991 (2011).

    CAS  Article  Google Scholar 

  5. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS  Article  Google Scholar 

  6. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    CAS  Article  Google Scholar 

  7. Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30, 1291–1305 (2020).

    CAS  Article  Google Scholar 

  8. Cheng, H. et al. Haplotype-resolved de novo assembly with phased assembly graphs. Nat. Methods 18, 170–175 (2021).

    CAS  Article  Google Scholar 

  9. Myers, E. W. The fragment assembly string graph. Bioinformatics 21, ii79–ii85 (2005).

    CAS  PubMed  Google Scholar 

  10. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS  Article  Google Scholar 

  11. Pevzner, P., Tang, H. & Tesler, G. De novo repeat classification and fragment assembly. Genome Res. 14, 1786–1796 (2004).

    CAS  Article  Google Scholar 

  12. Ye, C., Ma, Z. S., Cannon, C. H., Pop, M. & Yu, D. W. Exploiting sparseness in de novo genome assembly. BMC Bioinformatics 13, S1 (2012).

    Article  Google Scholar 

  13. Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    CAS  Article  Google Scholar 

  14. Rautiainen, M. & Marschall, T. MBG: minimizer-based sparse de Bruijn graph construction. Bioinformatics 37, 2476–2478 (2021).

    CAS  Article  Google Scholar 

  15. Bloom, B. H. Space/time tradeoffs in hash coding with allowable errors. Commun. ACM 13, 422–426 (1970).

    Article  Google Scholar 

  16. Karp, R. M. & Rabin, M. O. Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31, 249–260 (1987).

    Article  Google Scholar 

  17. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540 (2019).

    CAS  Article  Google Scholar 

  18. Mc Cartney, A. M. et al. Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. Preprint at https://www.biorxiv.org/content/10.1101/2021.07.02.450803v1 (2021).

  19. Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M. & Yorke, J. A. Reducing storage requirements for biological sequence comparison. Bioinformatics 20, 3363–3369 (2004).

    CAS  Article  Google Scholar 

  20. Chikhi, R. & Rizk, G. Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms Mol. Biol. 8, 22 (2013).

    Article  Google Scholar 

  21. Minkin, I., Pham, S. & Medvedev, P. TwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomes. Bioinformatics 33, 4024–4032 (2017).

    CAS  PubMed  Google Scholar 

  22. Bzikadze, A. V. & Pevzner, P. A. Automated assembly of centromeres from ultra-long error-prone reads. Nat. Biotechnol. 38, 1309–1316 (2020).

    CAS  Article  Google Scholar 

  23. Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA—a practical iterative de Bruijn graph de novo assembler. in Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science Vol. 6044, 426–440 (2010).

  24. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).

    CAS  Article  Google Scholar 

  25. Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat. Biotechnol. 39, 309–312 (2021).

    CAS  Article  Google Scholar 

  26. Idury, R. M. & Waterman, M. S. A new algorithm for DNA sequence assembly. J. Comput. Biol. 2, 291–306 (1995).

    CAS  Article  Google Scholar 

  27. Pevzner, P. A., Tang, H. & Waterman, M. S. An Eulerian path approach to DNA fragment assembly. Proc. Natl Acad. Sci. USA 98, 9748–9753 (2001).

    CAS  Article  Google Scholar 

  28. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS  Article  Google Scholar 

  29. Chin, C. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS  Article  Google Scholar 

  30. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).

    CAS  Article  Google Scholar 

  31. Roberts, R. J., Carneiro, M. O. & Schatz, M. C. The advantages of SMRT sequencing. Genome Biol. 14, 405 (2013).

    Article  Google Scholar 

  32. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    CAS  Article  Google Scholar 

  33. Mikheenko, A., Valin, G., Prjibelski, A., Saveliev, V. & Gurevich, A. Icarus: visualizer for de novo assembly evaluation. Bioinformatics 32, 3321–3323 (2016).

    CAS  Article  Google Scholar 

  34. Hon, T. et al. Highly accurate long-read HiFi sequencing data for five complex genomes. Sci. Data 7, 399 (2020).

    CAS  Article  Google Scholar 

  35. Tvedte, E. S. et al. Comparison of long-read sequencing technologies in interrogating bacteria and fly genomes. G3 (Bethesda) 11, jkab083 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

A. Bankevich, A. Bzikadze and P.A.P. were supported by National Science Foundation EAGER award 2032783. D.A. was supported by Saint Petersburg State University (grant ID PURE 73023672). We thank A. Korobeynikov and A. Mikheenko for useful suggestions on assembling HiFi reads using SPAdes and benchmarking.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to developing the LJA algorithms and writing the paper. A. Bankevich (jumboDBG and mowerDBG), A. Bzikadze (multiplexDBG) and D.A. (LJApolish) implemented the LJA algorithm. A. Bankevich benchmarked LJA and other assembly tools. A. Bankevich and P.A.P. directed the work.

Corresponding authors

Correspondence to Anton Bankevich or Pavel A. Pevzner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Ergude Bao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bankevich, A., Bzikadze, A.V., Kolmogorov, M. et al. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-022-01220-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing