Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression

Abstract

Imaging of gene-expression patterns in live animals is difficult to achieve with fluorescent proteins because tissues are opaque to visible light. Imaging of transgene expression with magnetic resonance imaging (MRI), which penetrates to deep tissues, has been limited by single reporter visualization capabilities. Moreover, the low-throughput capacity of MRI limits large-scale mutagenesis strategies to improve existing reporters. Here we develop an MRI system, called GeneREFORM, comprising orthogonal reporters for two-color imaging of transgene expression in deep tissues. Starting from two promiscuous deoxyribonucleoside kinases, we computationally designed highly active, orthogonal enzymes (‘reporter genes’) that specifically phosphorylate two MRI-detectable synthetic deoxyribonucleosides (‘reporter probes’). Systemically administered reporter probes exclusively accumulate in cells expressing the designed reporter genes, and their distribution is displayed as pseudo-colored MRI maps based on dynamic proton exchange for noninvasive visualization of transgene expression. We envision that future extensions of GeneREFORM will pave the way to multiplexed deep-tissue mapping of gene expression in live animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MRI pseudocolor reporter system.
Fig. 2: Design of highly active and orthogonal Dm-dNK and HSV1-TK reporter genes.
Fig. 3: In vitro and in vivo MRI of GeneREFORM.

Similar content being viewed by others

Data availability

The datasets generated in this study are available at https://doi.org/10.5281/zenodo.5594956. Source data are provided with this paper.

Code availability

The PROSS-design algorithm is available for noncommercial use through a webserver online (http://pross.weizmann.ac.il). The MATLAB scripts used for processing the CEST data are available at http://godzilla.kennedykrieger.org/CEST/. The Python code and the relevant data used for CEST simulations can be found at https://github.com/nirbhayyadav/NBT-RA51532A.

References

  1. Tsien, R. Y. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 48, 5612–5626 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Genove, G., DeMarco, U., Xu, H., Goins, W. F. & Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 11, 450–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Cohen, B. et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat. Med. 13, 498–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Schilling, F. et al. MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat. Biotechnol. 35, 75–80 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Mukherjee, A., Wu, D., Davis, H. C. & Shapiro, M. G. Non-invasive imaging using reporter genes altering cellular water permeability. Nat. Commun. 7, 13891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilad, A. A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol. 25, 217–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Patrick, P. S. et al. Dual-modality gene reporter for in vivo imaging. Proc. Natl Acad. Sci. USA 111, 415–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Bar-Shir, A. et al. Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression. J. Am. Chem. Soc. 135, 1617–1624 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bartelle, B. B., Szulc, K. U., Suero-Abreu, G. A., Rodriguez, J. J. & Turnbull, D. H. Divalent metal transporter, DMT1: a novel MRI reporter protein. Magn. Reson. Med. 70, 842–850 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Tannous, B. A. et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat. Methods 3, 391–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, G. J. et al. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. Nat. Mater. 17, 456–463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizushima, R. et al. Multiplexed (129)Xe HyperCEST MRI detection of genetically reconstituted bacterial protein nanoparticles in human cancer cells. Contrast Media Mol. Imaging 2020, 5425934 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 629–634 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. McMahon, M. T. et al. New ‘multicolor’ polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 60, 803–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, G. et al. In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magn. Reson. Med. 67, 1106–1113 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Johansson, M., van Rompay, A. R., Degreve, B., Balzarini, J. & Karlsson, A. Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster. J. Biol. Chem. 274, 23814–23819 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Black, M. E., Newcomb, T. G., Wilson, H. M. & Loeb, L. A. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl Acad. Sci. USA 93, 3525–3529 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bar-Shir, A. et al. Quantification and tracking of genetically engineered dendritic cells for studying immunotherapy. Magn. Reson. Med. 79, 1010–1019 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Bar-Shir, A., Liu, G., Greenberg, M. M., Bulte, J. W. & Gilad, A. A. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat. Protoc. 8, 2380–2391 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Arner, E. S. & Eriksson, S. Mammalian deoxyribonucleoside kinases. Pharmacol. Ther. 67, 155–186 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Gambhir, S. S. et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl Acad. Sci. USA 97, 2785–2790 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tjuvajev, J. G. et al. Imaging the expression of transfected genes in vivo. Cancer Res. 55, 6126–6132 (1995).

    CAS  PubMed  Google Scholar 

  25. Likar, Y. et al. A new pyrimidine-specific reporter gene: a mutated human deoxycytidine kinase suitable for PET during treatment with acycloguanosine-based cytotoxic drugs. J. Nucl. Med. 51, 1395–1403 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, L., Li, Y., Liotta, D. & Lutz, S. Directed evolution of an orthogonal nucleoside analog kinase via fluorescence-activated cell sorting. Nucleic Acids Res. 37, 4472–4481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldenzweig, A. et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell 63, 337–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meier, S. et al. Non-invasive detection of adeno-associated viral gene transfer using a genetically encoded CEST-MRI reporter gene in the murine heart. Sci. Rep. 8, 4638 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Villano, D. et al. A fast multislice sequence for 3D MRI-CEST pH imaging. Magn. Reson. Med. 85, 1335–1349 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Cohen, O., Huang, S., McMahon, M. T., Rosen, M. S. & Farrar, C. T. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF). Magn. Reson. Med. 80, 2449–2463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, T., Cai, L. X., Lelyveld, V. S., Hai, A. & Jasanoff, A. Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science 344, 533–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigues, T. B. et al. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat. Med. 20, 93–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frey, S. & Gorlich, D. A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. J. Chromatogr. A. 1337, 95–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Peleg, Y. & Unger, T. Application of high-throughput methodologies to the expression of recombinant proteins in E. coli. Methods Mol. Biol. 426, 197–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Unger, T., Jacobovitch, Y., Dantes, A., Bernheim, R. & Peleg, Y. Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J. Struct. Biol. 172, 34–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J. S. et al. Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures. Cell 174, 1559–1570 e1522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, M., Gillen, J., Landman, B. A., Zhou, J. & van Zijl, P. C. M. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn. Reson. Med. 61, 1441–1450 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, G., Song, X., Chan, K. W. & McMahon, M. T. Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed. 26, 810–828 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Liu, G., Li, Y. & Pagel, M. D. Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide. Magn. Reson. Med. 58, 1249–1256 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Morales, J. L. & Nocedal, J. Remark on ‘Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization’. ACM Trans. Math. Softw. 38, 1–4 (2011).

    Article  Google Scholar 

  44. Woessner, D. E., Zhang, S., Merritt, M. E. & Sherry, A. D. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn. Reson. Med. 53, 790–799 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Glunde, K., Jie, C. & Bhujwalla, Z. M. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 64, 4270–4276 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement nos. 677715 and 815379 to A.B.-S. and S.J.F., respectively) and by a charitable donation in memory of Sam Switzer (to S.J.F.).

Author information

Authors and Affiliations

Authors

Contributions

H.A.-A. and A.B.-S. designed the study. O.K. and S.J.F. performed and analyzed computational design calculations. N.D.T. synthesized 5-MDHT. H.A.-A. carried out all experiments, including cloning, transfections, cell-line establishment, western blots, FACS and in vivo CEST experiments, tumor inoculations, AAV viral infections and histology. Y.P., O.D. and S.A. performed bacterial protein expression, purification and crystallization. A.B. and T.M. developed optimized and performed LC–MS experiments. H.A.-A. and L.A. performed NMR experiments and H.A.-A. and T.H. performed in vitro CEST experiments. N.N.Y. performed CEST simulations and postprocessing of in vitro CEST data using Lorentzian line fitting approach. H.A.-A. and A.B.-S. analyzed the data and wrote the paper with input from O.K. and S.J.F.

Corresponding author

Correspondence to Amnon Bar-Shir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Biotechnology thanks Kevin Brindle, Franz Schilling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary protein sequences, Methods, Figs. 1–21, Tables 1–8 and References.

Reporting Summary

Source data

Source Data Fig. 2

Unprocessed western blots for Fig. 2a,j.

Source Data Fig. 2

Statistical source data Fig. 2.

Source Data Fig. 3

Statistical source data Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allouche-Arnon, H., Khersonsky, O., Tirukoti, N.D. et al. Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nat Biotechnol 40, 1143–1149 (2022). https://doi.org/10.1038/s41587-021-01162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-021-01162-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research