A study of the brain–machine interface patent landscape suggests that the technology is in its early stages of development, but patent applications have been increasing exponentially in recent years.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Prashant, P., Joshi, A. & Gandhi, V. (eds) Brain computer interface: a review. In 5th Nirma University International Conference on Engineering (NUiCONE) 1–6 (IEEE, 2015).
Rao, R.R.N. Brain–Computer Interfacing: An Introduction (Cambridge University Press, 2013).
Chorev, E., Epsztein, J., Houweling, A. R., Lee, A. K. & Brecht, M. Curr. Opin. Neurobiol. 19, 513–519 (2009).
Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y. & Zhao, X. J. Neural Eng. 16, 011001 (2019).
Kaplan, R. M. Australas. Psychiatry 19, 168–169 (2011).
Naci, L. et al. Ann. Neurol. 72, 312–323 (2012).
Ibáñez, J. et al. Biomed. Signal Process. Control 8, 822–829 (2013).
Quandt, L. C., Marshall, P. J., Shipley, T. F., Beilock, S. L. & Goldin-Meadow, S. Neuropsychologia 50, 2745–2751 (2012).
Chaudhary, U., Birbaumer, N. & Ramos-Murguialday, A. Nat. Rev. Neurol. 12, 513–525 (2016).
Krusienski, D. J. et al. J. Neural Eng. 3, 299–305 (2006).
Garcia-Molina, G. et al. Detection of high frequency steady state visual evoked potentials for brain-computer interfaces. In 17th European Signal Processing Conference (eds Stewart, R. & Weiss, S.) 646-650 (EURASIP, 2009).
Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R. & Rossion, B. J. Vis. 15, 4 (2015).
Chavarriaga, R., Sobolewski, A. & Millán, JdelR. Front. Neurosci. 8, 208–220 (2014).
Chamola, V. et al. Sensors (Basel) 20, 3620 (2020).
Nicolas-Alonso, L. F. & Gomez-Gil, J. Sensors (Basel) 12, 1211–1279 (2012).
Ramos-Murguialday, A. et al. Ann. Neurol. 74, 100–108 (2013).
Lebedev, M. Transl. Neurosci. 5, 99–110 (2014).
Skansi, S. Introduction to Deep Learning (Springer International, 2018).
Bhagat, N. A. et al. Front. Neurosci. 10, 122 (2016).
Nowlis, D. P. & Kamiya, J. Psychophysiology 6, 476–484 (1970).
Hochberg, L. R. et al. Nature 442, 164–171 (2006).
Rabbani, Q., Milsap, G. & Crone, N. E. Neurotherapeutics 16, 144–165 (2019).
Kaplan, A. Y. et al. IEEE Trans. Comput. Intell. AI Games 5, 141–149 (2013).
Monastra, V. J. et al. Appl. Psychophysiol. Biofeedback 30, 95–114 (2005).
Andersen, R. A. et al. Proc. Natl Acad. Sci. USA 116, 26274–26279 (2019).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Greenberg, A., Cohen, A. & Grewal, M. Patent landscape of brain–machine interface technology. Nat Biotechnol 39, 1194–1199 (2021). https://doi.org/10.1038/s41587-021-01071-7
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41587-021-01071-7
This article is cited by
-
Harmful uses of patentable neurotechnology: a new regulatory approach
EMBO Reports (2024)
-
Machine learning for physical motion identification using EEG signals: a comparative study of classifiers and hyperparameter tuning
Journal of Ambient Intelligence and Humanized Computing (2024)